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Abstract

The relationship between elastic anisotropy and extreme Poisson’s ratio behaviour (either positive or negative) in single-crystalline
materials has been investigated using experimentally determined single-crystal elastic constants for a wide range of solid materials. This
makes use of a recently proposed elastic anisotropy index that is applicable to all crystal symmetries. For many real materials we find a
striking correlation between the value of the elastic anisotropy index and the magnitudes of maximum and minimum Poisson’s ratios and
this is independent of crystal symmetry. This structure–property relationship provides new examples of auxetics and shows that negative
Poisson’s ratios are actually not uncommon among many classes of inorganic (and organic) materials, including elemental metals, alloys,
ionic solids, molecular solids and giant covalent networks.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A negative Poisson’s ratio in a solid defines the counter-
intuitive lateral widening upon application of a longitudinal
tensile strain. The phenomenon, also described as auxetic
behaviour [1], has a wide range of potential technological
applications such as indentation resistant materials,
improved honeycomb dielectrics, self-adaptive vibration
damping materials, molecular membranes and actuators or
sensors for MEMS applications, shear resistant materials,
improved sound and shock absorption, naturally simplisti-
cally curved (dome-shaped) surfaces, and medical applica-
tions such as artery dilators. The progress in the study of
auxetics for these practical uses has been the subject of sev-
eral review articles [2–5]. The first synthetic auxetic materials
were foams and microporous polymers, where structure on
the microscopic scale was fabricated to give so-called, re-
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entrant geometries that underwent lateral expansion upon
stress [6,7]. A few crystalline solids have also been reported
as having negative Poisson’s ratios on the basis of their
experimentally measured elastic stiffness matrices from sin-
gle crystals, including certain elemental metals [8], the silica
polymorph a-cristobalite [9], the oxide paratellurite, a-
TeO2 [10], and the zeolite mineral natrolite [11]. For some
of these materials, attempts have been made to relate nega-
tive Poisson’s ratios to atomic-scale structure by visualizing
crystal structures as being made up of rigid building units
linked by flexible hinges [11–13], akin to the models used to
explain the behaviour of auxetic polymers. For the elemental
metals a specific mechanism, based on the interactions
between hard spheres in specific crystal planes that give rise
to auxetic behaviour, was proposed [8].

It is noteworthy that although there are many published
reports of experimental measurements of single-crystal
elastic constants of a variety of materials [14], there are
actually relatively few quoted examples of materials with
negative Poisson’s ratios. In looking for a more detailed
understanding of the origin of negative Poisson’s ratios in
rights reserved.
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solid-state materials, it is important to provide new exam-
ples of crystalline materials that show the phenomenon. So
far single-crystalline materials that possess negative Pois-
son’s ratios have been treated as unusual, and therefore
knowledge of new materials with the property would be
helpful to the understanding of structure–property rela-
tionships, since crystallography also provides details of
the atomic-scale structure of such materials. A number of
authors have described mathematical descriptions of the
theoretical limits on Poisson’s ratio (both positive and neg-
ative) for single-crystalline materials and how they depend
on crystal symmetry: indeed, the physically allowable
extreme ranges of the possible values of Poisson’s ratios,
for all possible crystal symmetries, have been extensively
examined theoretically [15–24] Although it might be
expected that elastic anisotropy has no relationship to the
symmetry of the crystal being considered, in general the
property has been analysed by treating each crystal symme-
try individually.

The Poisson’s ratio, mij, for any material is most simply
described as a ratio of compliance coefficients:

mij ¼ �
Sij

Sii
ð1Þ

where Sij are tensorially rotated elements of the compliance
matrix. The expressions for Poisson’s ratios in non-axial
directions as functions of non-rotated compliance coeffi-
cients are more complex, but can be obtained by transfor-
mation and also defined in terms of stiffness coefficients,
Cij; this is documented in standard texts [25]. The Poisson’s
ratios on the principal axes of a material are limited by a
simple ratio of Young’s moduli, E [15]:

mij < ðEi=EjÞ1=2 ð2Þ
Ting and Chen [19], Boulanger and Hayes [16], Norris [21]
and Rovati [17,18] have explored the allowable range of
values of Poisson’s ratios for various different symmetries.
However, whilst these works explore the range of values
that are feasible, based on physically allowable elastic con-
stants and the three-dimensional variation of these con-
stants as a function of the direction cosines, they do not
examine systematically the experimentally measured val-
ues, or the physical causes, such as the underlying atom-
ic-scale crystal structure for the values that are found
experimentally.

The elastic properties of single crystals are described
using a tensor notation that makes a direct comparison
between materials that have related chemical structures
but different symmetry less than straightforward. A simple
means of classifying the elastic properties of single crystals
is to consider elastic anisotropy; indeed it is intuitively
expected that materials with a high degree of elastic anisot-
ropy may show the most extreme elastic behaviour, with
large maximum and minimum values of, for example, Pois-
son’s ratios. The Zener ratio, Z, is perhaps the best known
measure of the anisotropy of elastic behaviour, and this
applies for cubic single crystals, and was introduced in
Please cite this article in press as: Lethbridge ZAD et al. Elastic aniso
(2010), doi:10.1016/j.actamat.2010.08.006
1947 in a study of b-brass [26]. The ratio of the two shear
coefficients it is given by (using the conventional Voigt
matrix notation of the cij elements of the stiffness matrix):

Z ¼ 2c44

c11 � c12

ð3Þ

Z = 1 then is defined to indicate elastic isotropy, i.e., when
c44 = (c11 � c12)/2.

Since the time that the Zener ratio was proposed for
cubic materials, a wide variety of elastic anisotropy mea-
sures have been reported in the literature. These use either
various combinations of single-crystal elastic constants and
are usually presented for cubic materials but occasionally
for lower symmetries [27–30] or as ratios of experimentally
measured compression or shear velocities of acoustic pho-
nons [31].

In addition to numerical indicators of anisotropy, the
variation of elastic moduli with direction is also of rele-
vance. In 1971, Turley and Sines examined E, G, and m val-
ues in specific planes in the cubic system using direction
cosines [32]. Li et al. examined hexagonal [33], trigonal
[33] and tetragonal [34] symmetries, giving expressions for
examining the behaviour of Young’s modulus, shear mod-
ulus and Poisson’s ratio with variation of direction using
the Euler angles. They studied cadmium and thallium
[34], and found a negative Poisson’s ratio in cadmium
which they observed was structurally more anisotropic
than thallium (a higher c/a ratio).

Ledbetter and Migliori recently proposed a way of cal-
culating an anisotropy ratio, related to the Zener ratio, that
can be applied to all crystal systems, i.e., is independent of
crystal symmetry [35]. They invoked Christoffel’s equation
to derive an expression for anisotropy (A�) as a ratio of
maximum and minimum shear sound wave velocities, as
measured in scattering or ultrasound experiments, over
all propagation and polarisation directions.

A� ¼ v2
max

v2
min

ð4Þ

Here A� = 1 represents isotropy. Note that from this defini-
tion, A�P 1. Although some cubic materials have Z < 1,
this equates to a value of 1/A�. More recently Ranganathan
and Ostoja-Starzewski proposed a “Universal Elastic
Anisotropy Index”, AU, which is simply related to various
definitions of aggregate moduli [36]:

AU ¼ 5
GV

GR þ
KV

KR � 6 ð5Þ

G and K are shear and bulk moduli, respectively, and the
superscripts V and R denote Voigt and Reuss averages,
respectively. In this case AU = 0 defines isotropy. In prac-
tice this index has little advantage over the one proposed
by Ledbetter and Migliori for experimentally determined
elastic constants, since in practice it requires knowledge
of both cij and sij values to implement, rather than sound
velocities that would be measured in experiment (see
Supporting Information for a comparison of A� and AU

for the materials that we consider below).
tropy and extreme Poisson’s ratios in single crystals. Acta Mater
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Fig. 1. Plots of maximum and minimum Poisson’s ratio against elastic
anisotropy. (a) For cubic materials using the Zener ratio, Z (=A�), and (b)
for all crystal systems using the Ledbetter and Migliori elastic anisotropy
index A�. In both plots the insets are expanded regions of the main graphs.
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In this paper we survey a range of published experimen-
tal elastic constants, using the Ledbetter and Migliori elas-
tic anisotropy ratio to classify extreme Poisson’s ratio in a
large number of single crystals that include examples of all
crystal symmetries. Our aim was to uncover new examples
of materials that show extreme elastic behaviour, and then
to examine whether a simple relationship, applicable to all
crystal symmetries, exists between elastic anisotropy and
the occurrence of negative Poisson’s ratios on the basis of
their experimentally reported elastic constants.

2. Methodology

In order to use the concept of elastic anisotropy to
explore Poisson’s ratio behaviour in real materials we
investigated the application of the Ledbetter and Migliori
ratio, A� [35]. We have concentrated on studying materials
for which elastic constants have been measured experimen-
tally and are available in the literature, either tabulated in
the Landolt–Börnstein tables [14], or taken directly from
more recently published reports. This includes values that
have been determined using resonant ultrasound spectros-
copy, laser Brillouin spectroscopy and inelastic X-ray and
neutron scattering. From the literature we selected 472 sets
of elastic constants (usually different materials but in some
cases a single material whose elastic constants had been
measured at more than one temperature, or by more than
one group of researchers), the full details of which are tab-
ulated in supplementary information. The examples cover
all triclinic, orthorhombic and hexagonal materials tabu-
lated in the Landolt–Börnstein tables, and a representative
number of monoclinic, tetragonal, trigonal and cubic
materials.

Maximum and minimum values of Poisson’s ratio, their
directions, and values of A� were evaluated using the pro-
gram ElAM (http://hdl.handle.net/10036/77859) [37]. This
program allows the calculation and visualization of three-
dimensional elastic properties of single-crystalline materials
with knowledge of elastic constants. The ElAM code car-
ries out the tensorial operations needed to calculate the val-
ues of elastic properties in any given direction upon input
of the elements of the stiffness matrix, cij. Most properties
(Young’s and shear modulus, compressibility, Poisson’s
ratio) only require tensorial inversion and rotation, but
the determination of wave velocities (necessary to calculate
A�) also calls for the diagonalization of the dynamic
matrix. In its standard mode, ElAM scans the unit sphere
to create 3D models of an elastic property’s anisotropy.
This 3D representation can be explored easily on screen
within ElAM to allow easy identification of any unusual
elastic properties. It can also produce 2D cuts in any given
plane and compute averages following various schemes
(Reuss, Voigt, Hill, direct). More importantly for this
study, it can also query a database of elastic constants
for properties (minima, maxima, averages), and associated
significant directions (for instance the direction in which a
Poisson’s ratio is minimum or maximum).
Please cite this article in press as: Lethbridge ZAD et al. Elastic aniso
(2010), doi:10.1016/j.actamat.2010.08.006
3. Results and discussion

Maximum and minimum Poisson’s ratios were calculated
as two separate datasets from cij values for 113 cubic materi-
als and are plotted against anisotropy, A� (=Z in this case) in
Fig. 1a. The extreme Poisson’s ratios all lie along two curves,
which appear approximately symmetrical with a single point
of intersection. The apparent trends have no relationship to
the chemical nature of the material (see Supporting Informa-
tion). For example, in addition to the solids mentioned in
Section 1, materials that possess negative Poisson’s ratios
in some crystallographic direction include the transition-
metal oxide ReO3; the molecular solid iodine; the mineral
anhydrite, CaSO4, a simple inorganic salt; the infinite chain
structure of trigonal, elemental selenium; and the organic,
molecular solids triphenylbenzene and urea, Table 1. To
the best of our knowledge these materials have never been
specifically reported as possessing negative Poisson’s ratios:
the advantage of using the Elam program is an easy explora-
tion of all crystallographic directions to interrogate
efficiently the elastic properties of a wide range of materials.
Fig. 1b shows similar plots of maximum and minimum Pois-
son’s ratio against A� that includes materials of lower
tropy and extreme Poisson’s ratios in single crystals. Acta Mater
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Table 1
Examples of materials possessing negative Poisson’s ratios in some crystallographic direction, listed in order of increasing elastic aniosotropy (A�). The
directions of maximum and minimum Poisson’s ratios, mmin and mmax respectively, are expressed for convenience using the Miller system [h k l] with the
load and transverse directions quoted for each extreme Poisson’s ratio. Note that the use of the Miller system is not exact and the program ElAM also
provides a unit vector description of the directions of extreme Poisson’s ratios. The reference is to the source of single-crystal elastic constants.

Material Crystal
system

A� mmin Load direction
(mmin)

Transverse direction
(mmin)

mmax Load direction
(mmax)

Transverse direction
(mmax)

Reference

Natrolite
Na2Al2Si3O10�2H2O

Orthorhombic 2.27 �0.12 [�1 1 0] [1 1 0] 0.46 [�3 3 5] [22 �21 26] [51]

a-Quartz (SiO2) Trigonal 2.29 �0.09 [0 27 29] [1 0 0] 0.31 [0 �23 33] [1 0 0] [52]
Ag Cubic 2.92 �0.08 [1 0 1] [1 0 �1] 0.81 [1 0 1] [0 1 0] [14]
a-Cristobalite (SiO2) Tetragonal 2.94 �0.51 [7 7 9] [�19 �19 30] 0.10 [1 1 0] [�1 1 0] [9]
ReO3 Cubic 3.98 �0.01 [0 0 1] [26 �31 0] 0.59 [1 0 1] [10 �1] [14]
CaSO4 Orthorhombic 5.91 �0.05 [�9 10 �15] [�7 7 9] 0.76 [�24 30 �11] [15 13 1] [14]
Triphenylbenzene Orthorhombic 6.52 �0.06 [11 29 �25] [14 �27 �25] 0.77 [8 �13 13] [341 �21] [14]
Selenium Trigonal 7.12 �0.08 [25 11 �29] [�13 14 �6] 1.27 [0 �6 19] [1 0 0] [14]
Iodine Orthorhombic 12.34 �0.48 [0 1 0] [0 0 1] 1.32 [0 0 1] [1 0 0] [14]
AuCd Cubic 14.10 �0.70 [9 9 4] [�1 1 0] 1.57 [7 7 �2] [2 2 13] [14]
Urea Tetragonal 14.22 �0.80 [�16 �16 33] [12 12 11] 1.91 [�2 �2 5] [�1 1 0] [14]
a-TeO2 (paratellurite) Tetragonal 32.73 �0.75 [10 0 17] [17 0 �10] 1.45 [2 0 3] [0 1 0] [40]
CsH2PO4 Monoclinic 53.46 �1.93 [�10 17 �4] [35 20 �4] 2.71 [10 �33 21] [39 11 �1] [14]
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symmetries (472 in total), also calculated using ElAM. The
same general shape of the two curves is observed, and they
intersect at A� = 1: for example, A� is very close to 1 for ele-
mental tungsten, with mmax = mmin = 0.280, and for nickel sil-
icate, Na2SiO4, A� = 1.005, mmax = 0.298 and mmin = 0.295.
Our analysis shows that there is no relationship between
crystal symmetry and the distribution of points in Fig. 1b,
nor is there any relationship, applicable to all crystal systems,
between the directions at which the extreme values of Pois-
son’s ratios are observed (see Supporting Information for
tables of the materials we have studied and the analysis of
their elastic constants). This implies that it is the crystal
structures of the materials that are responsible for the shapes
of the curves, i.e., the nature of constituent interatomic
forces and their relative directions with respect to each other,
and not an artefact arising from the conventional symmetry
descriptions of their structures.

An important observation from the two plots in Fig. 1 is
that negative Poisson’s ratios occur in many materials and
in fact from these experimentally derived points all real
cubic materials with A� > 4 show a negative Poisson’s ratio
in some combination of crystal load direction and trans-
verse plane. Previous work on the theoretical limits of Pois-
son’s ratios of cubic materials, such as that by Paszkiewicz
and Wolski, would predict that all materials with Z

(=A�) > 3 should have a negative Poisson’s ratio [24], con-
sistent with the experimental data we have analysed. It is
worth noting that errors on measured cij values have rarely
been quoted in the literature; the origin of the scatter of the
experimental data points in Fig. 1 should also be consid-
ered. For lower symmetries, where a greater number of
stiffness constants must be determined, it is probable that
some greater experimental error is present since a greater
number of independent experimental measurements is
needed, and this might explain the greater scatter of the
points in Fig. 1b. A feel for the error in Poisson’s ratios
Please cite this article in press as: Lethbridge ZAD et al. Elastic aniso
(2010), doi:10.1016/j.actamat.2010.08.006
may be gained by looking at materials for which several
sets of experimentally reported elastic constants are
reported and that have been measured independently by
different groups. For example, for tetragonal paratellurite
(a-TeO2) at least four sets of elastic constants are available
[38–41], and our analysis of these gives minimum Poisson’s
ratios ranging from �0.73 to �0.8 and maximum Poisson’s
ratios ranging from 1.42 to 1.52 (Supporting Information).
This would explain some of the scatter seen in the analysis
we have presented in Fig. 1.

It is initially worth considering some of the outlying
points which do not conform to the general curves seen in
Fig. 1, and for these we can identify two distinct classes of
material. There is first the case of layered materials, Table
2. Graphite and boron nitride are both constructed from
covalently bonded layers with weak inter-layer van der
Waals forces and are classical examples of highly anisotropic
crystal structures. They also both have rather large values of
A�: 110 and 52, respectively, reflecting the high degree of
anisotropy also in their elastic constants. The Young’s mod-
ulus in the plane of the layers is large (graphite 1092 GPa,
boron nitride 776 GPa), while perpendicular to the layers it
is much smaller (graphite 39 GPa, boron nitride 27 GPa).
A zero Poisson’s ratio is the minimum observed and this cor-
responds to a force applied perpendicular to the layer, where
the physical effect of changing the inter-layer spacing but not
the interatomic separations within the layers would be
observed, Fig. 2. Molybdenum disulfide is another example
of a layered material whose elastic constants have been
reported (from X-ray and neutron scattering data) [42]: the
anisotropy here is lower (A� = 7.68) compared to the cases
of graphite and boron nitride, possibly reflecting a greater
bonding interaction between the sulfide layers, but maxi-
mum and minimum values of Young’s modulus and Pois-
son’s ratio are 210 GPa and 46 GPa, and 0.57 and �0.28,
respectively. The extreme values of Poisson’s ratio for ele-
tropy and extreme Poisson’s ratios in single crystals. Acta Mater
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Table 2
Examples of layered materials that show anomalous Poisson’s ratio behaviour owing to their highly anisotropic atomic-scale structures. Legend is as for
Table 1.

Material Crystal system A� mmin Load
direction (mmin)

Transverse
direction (mmin)

mmax Load
direction (mmax)

Transverse
direction (mmax)

Reference

Arsenic Trigonal 4.81 �0.93 [0 37 14] [1 0 0] 1.98 [0 19 6] [0 �6 19] [14]
MoS2 Hexagonal 7.85 �0.28 [25 32 0] [�32 25 0] 0.58 [�2 3 0] [0 0 1] [14]
Boron nitride Hexagonal 51.53 0.00 [0 0 1] [�40 1 0] 0.64 [10 35 16] [4 15 �37] [53]
Graphite Hexagonal 107.94 0.00 [0 0 1] [�40 1 0] 0.83 [22 29 16] [10 13 �37] [14]

Fig. 2. Example of the anisotropic elasticity of a layered material. Here, the case of graphite, whose structure (hexagonal rhombohedral symmetry) is
shown in (a), shows a zero Poisson’s ratio along Z, as illustrated by the three-dimensional surface representation of the Poisson’s ratio shown in (b) and
correspondingly anisotropic Young’s moduli as shown in (c).
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Fig. 3. Example of a highly anisotropic elasticity of a material close to a
structural phase transition. The case of LaP5O14 is shown where cij values
of the materials at three temperatures are plotted along with values of A�

(denoted by the large red squares). Data were taken from Ref. [44] and the
temperature of phase transition (126 �C) is shown by the vertical dotted
line. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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mental arsenic also lie some distance away from the typical
curves in Fig. 1: there are two reported sets of elastic con-
stants that give A� = 4.815 and A� = 4.640 with minimum
Poisson’s ratios of �0.709 and �0.93, respectively. The
arsenic structure consists of double layers with weak inter-
layer bonding, and as with graphite and boron nitride, the
anisotropy of the structure is reflected in its unusual elastic
properties [43].

The second class of “outlying materials” on Fig. 1 are
those whose elastic constants have been measured at a tem-
perature and pressure close to a structural phase transition.
Aside from the layered materials described above, all mate-
Please cite this article in press as: Lethbridge ZAD et al. Elastic aniso
(2010), doi:10.1016/j.actamat.2010.08.006
rials with A� > 35 in our survey fall into this category. Car-
penter and Salje have already surveyed the use of Landau
theory to predict how elastic constants vary with different
classes of phase change [44]: as certain transitions are
approached, the velocity of certain acoustic phonons can
tend to zero (soft acoustic modes), thus associated elastic
constants (or symmetry adapted combinations) may also
decrease to zero. This behaviour can then lead to a large elas-
tic anisotropy, which in turn can give some extreme values of
Poisson’s ratios. Lanthanum pentaphosphate, LaP5O14, is a
clear example of this: it is monoclinic below 126 �C and
becomes orthorhombic above this temperature [45]. Its A�

value shows a dramatic increase at the phase transition to
a value of 451, falling back to 2.4 at 200 �C; at the phase tran-
sition the maximum and minimum Poisson’s ratios are 7.01
and �6.36, respectively. This behaviour is plotted in Fig. 3.
For InTl alloys with a range of compositions a softening of
certain phonon modes is observed near a cubic-tetragonal
phase change [46]; indeed elastic constants from In0.73Tl0.27

at 125 K (the transition temperature) show A� = 1904, with
maximum and minimum Poisson’s ratio of 1.996 and
�0.997, respectively [47]. The In�Tl alloys have been well
studied in the literature because of this extreme anisotropy:
in the case of the 27% Tl analogue the phase transition is a
martensitic face-centred tetragonal to face-centred cubic
transition where 1/2(C11 � C12) approaches zero at the tran-
sition [48]. For martensitic phase transformations, it is well
established that they may be accompanied by a lattice soften-
ing and a large elastic anisotropy [49]. Other examples of this
behaviour include the molecular material betaine maleate,
[(CH3)3NCH2COOH][(COOH)(CH)2(COO)], for which a
large increase in anisotropy is seen at a low temperature
phase transition [50], and sodium azide, which undergoes a
ferroelastic transition on cooling at 20 �C from a trigonal
to monoclinic and for which room temperature elastic
tropy and extreme Poisson’s ratios in single crystals. Acta Mater
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Fig. 4. Simulation of extreme Poisson’s ratio vs. A� curves. In (a) the
minimum Poisson’s ratio curve has a form that is consistent with a model
of close-packed spheres (two of which are shown in the inset) and in (b)
the maximum Poisson’s ratio curve is simulated by a model of point atoms
linked by springs (shown in two dimensions in the inset). Thus the
occurrence of extreme values of Poisson’s ratio in single-crystalline
materials is related to the variation of structural density within their
atomic-scale structures.
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measurements show a high A� value of 226, with an associ-
ated minimum Poisson’s ratio of �4.35 [51].

Aside from these “outlying cases”, previous theoretical
work on the extremal values of Poisson’s ratio does not
explain why so many different solids follow the apparently
simple behaviour shown by Fig. 1, and why the behaviour
is independent of crystal symmetry. Baughman et al. pro-
vided some insight into the possible cause of this extremal
behaviour in the specific case of elemental metals and their
alloys, by considering cubic symmetry and suggesting that
the atoms be treated as hard spheres [8]. We here adopt a
more general approach to the interaction of spheres, based
on that found in the literature concerning granular solids
[52,53]. This model assumes that neighbouring spheres
have two interaction constants, a normal force constant,
kn and a tangential force constant kt. The interaction
between spheres can then be specified by:

k1 ¼ kt=kn ð6Þ

So, hard spheres have k1 ? 0 and spheres dominated by a
tangential interaction have k1 ?1. Assuming a random
distribution of spheres and averaging over the ensemble,
Bathurst and Rothenburg [52,53] showed that:

v ¼ ð1� k1Þ=ð4þ k1Þ ð7Þ
Since it is apparent that k1 may itself be considered a

measure of anisotropy in bonding, we have also made the
assumption that a linear relationship exists between k1

and A�: in fact we find by defining the relationship
k1 = A� � 1 an excellent agreement is achieved with the
form of the experimental data points. This equation thus
describes very well the fundamental form of the anisotropy
vs. Poisson’s ratio data in the case of minimum Poisson’s
ratios as shown in Fig. 4a. Here we have removed the out-
lying layered materials and also those for which data are
measured close to a phase transition, so that A� < 35. In
addition, at the limit of k1 ? 0 (A�? 1) we have isotropy
and normal force interaction; here m � 1/4, the standard
point-to-point, Cauchy value for the Poisson’s ratio. This
analysis suggests that if an atomic interaction in a particu-
lar plane is dominated by “sphere-to-sphere” contacts, then
these negative extremal Poisson’s ratios occur in planes
where high structural density is found (whether it be the
modulation of cumulative atomic or of electronic density
in a particular crystal direction).

Taking this approach further, we propose that extreme
positive Poisson’s ratios will occur in planes of low struc-
tural density and hence that a more appropriate model is
a simple atom-to-atom spring model. Such approaches
have been used many times, but one of the simplest is
described by Feynman [54]. Here, at least two spring con-
stants are required (essential for Poisson’s ratio to be any-
thing other than 1=4); k1, nearest neighbour interaction
spring constant and k2, second nearest neighbour interac-
tion spring constant. Feynman’s own simple two-dimen-
sional model gives:
Please cite this article in press as: Lethbridge ZAD et al. Elastic aniso
(2010), doi:10.1016/j.actamat.2010.08.006
v ¼ ð1þ k2Þ=ð3þ 2k2Þ ð8Þ
where k2 = k1/k2.Plotted in Fig. 4b is the situation for the
maximum Poisson’s ratio curves where we have used the
form:

mmax ¼ ð1þ 4k2Þ=ð3þ 2k2Þ ð9Þ
This takes into account that we have moved from two
dimensions to three. Here we have defined k2 = (A� � 1)/
3: the use of these constants successfully replicates the gen-
eral form of the observed points.Hence the two curves used
in Fig. 2a and b are very simply related by:

k1 ¼ 3k2 ð10Þ
Eqs. (7) and (9) do not predict the same values for m when
A� = 1 (mmin = 0.25 and mmax = 0.33), which is not surprising
since they are both simple approximate descriptions of the
real atomic interactions. These considerations, however,
provide a basis for consideration of how real atomic-scale
structure dictates bulk elastic properties and by detailed
analysis of the crystal structures of each of the materials we
tropy and extreme Poisson’s ratios in single crystals. Acta Mater
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have considered, the simple models could be refined. This
will be the subject of future work.

4. Conclusions

A survey of experimental elastic constants of nearly 500
materials shows that many real single crystals possess auxetic
behaviour in one or more directions. This is an important
observation in understanding structure–property relation-
ships in functional materials. The direction of extreme Pois-
son’s ratio are usually not co-incident with a principal
crystallographic axis (i.e., parallel to a unit cell edge) and
hence have typically not been noticed or reported with mea-
sured elastic constants, since computation on the non-axial
properties is non-trivial for the lower symmetry materials.
A number of apparently simple materials possess negative
Poisson’s ratios in certain crystallographic directions, in
addition to the metals and alloys previously discussed in
the literature: this includes inorganic materials such as the
transition-metal oxide ReO3 and the mineral CaSO4, the ele-
ments solid iodine (a molecular material) and the infinite
chain structure of trigonal, elemental selenium, and organic
solids such as triphenylbenzene and urea. Each of these
materials would now be interesting to study in detail to try
to link their elastic properties to their atomic-scale struc-
tures. This could also lead to a greater understanding of
other ”unusual” properties of some of these materials: for
example, ReO3 has recently been the focus of attention
because of its negative thermal expansion [55].

Although many mathematical analyses have predicted the
theoretical bounds of Poisson’s ratios for all crystal symme-
tries, we have used experimentally derived elastic constants.
It is interesting to note that while the simple models we pro-
pose for the general correlation between elastic anisotropy,
extreme Poisson’s ratios and atomic-scale structure, are
scale-independent, in fact the practically achievable range
for most single-crystalline materials appears to be limited
by the curves presented in Fig. 4. This is true for a range of
materials, whether dominated by largely ionic, covalent or
metallic bonding, or indeed for molecular materials, where
weaker intermolecular forces are present, such as hydrogen
bonds or van der Waals forces.
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