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Abstract

Background: Stable isotope analysis is increasingly being utilised across broad areas of ecology and biology. Key to much of
this work is the use of mixing models to estimate the proportion of sources contributing to a mixture such as in diet
estimation.

Methodology: By accurately reflecting natural variation and uncertainty to generate robust probability estimates of source
proportions, the application of Bayesian methods to stable isotope mixing models promises to enable researchers to
address an array of new questions, and approach current questions with greater insight and honesty.

Conclusions: We outline a framework that builds on recently published Bayesian isotopic mixing models and present a new
open source R package, SIAR. The formulation in R will allow for continued and rapid development of this core model into
an all-encompassing single analysis suite for stable isotope research.
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Introduction

Stable isotope approaches are an important ecological tool,

enabling increasingly sophisticated questions to be addressed in a

number of fields [1,2] although the majority of work has been in

the area of animal foraging and resource partitioning [e.g. 3].

Much progress has been facilitated by isotopic mixing models

which allow researchers to estimate the proportional contribution

of sources (dietary items) within a mixture (consumer tissue), and

thereby infer diet composition [4,5].

Numerous approaches to solving isotopic mixing models have

been proposed [6,7,8,9,10], although those developed by Phillips

& co-authors have been the most widely embraced. For

mathematically determined systems, simple linear mixing models

[6] were used to find unique solutions, the assumption being that

there is no variability within sources. An extension to these,

IsoError [10], allowed variation to be propagated to produce

uncertainty within the outputs, being more appropriate in natural

systems. In underdetermined systems where the number of sources

is greater than the number of isotopes plus one, and no exact

solution exists, the standard approach has been to use IsoSource

[9] using an iterative algorithm, producing a range of feasible

solutions, based on an arbitrary user-defined threshold.

Although these approaches have been successful, some recurring

issues remain:

1) The task of dealing with uncertainties inherent in all types of

biological systems, particularly ecological situations

2) Working with underdetermined systems, where there are

many more potential sources than isotopes.

3) Incorporating variability into the input parameters, such as

the end members (consumers), sources and trophic enrich-

ment factors (TEFs).

4) Dealing with external sources of variation not connected to

isotopic uncertainty (such as physiological differences or

unidentified minor dietary sources).

In general, some existing models can incorporate variability but

are constrained by the number of sources, e.g. IsoError [10]. While

later models, e.g. IsoSource [9] can cope with multiple sources, they

cannot incorporate uncertainty and variation. Perhaps most

frustratingly, the outputs from these models represent a range of

feasible solutions, with no quantification as to which solutions are

most likely. Furthermore, none of these models account for issues 3

& 4 above, particularly variation in TEFs, which can be problematic

[11,12].

Bayesian inference offers to circumvent the limitations indicated

above, incorporating many more sources of variability within the

model, while allowing for multiple dietary sources and then

generating potential dietary solutions as true probability distribu-

tions. We present a novel methodology for analysing mixing models

implemented in the software package SIAR (Stable Isotope Analysis

in R) [13]. SIAR is available to download from the packages section

of the Comprehensive R Archive Network site (CRAN) - http://

cran.r-project.org/. SIAR is similar in many regards to MixSIR, a
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recently published Bayesian mixing model [14] which is providing

novel insights in a variety of situations [15,16,17]. Aside from

relatively minor differences in the fitting algorithms implemented in

SIAR and MixSIR (SIAR uses MCMC while MixSIR uses Sample

Importance Resampling) the two models differ fundamentally such

that SIAR includes an overall residual error term lacking from

MixSIR [18]. Some debate remains as to the appropriateness of

including or omitting the residual error term with arguments for

model simplicity favouring omission in some cases [19]. However,

we maintain that unknown sources of error on the observed data,

beyond that quantified by errors on the sources and the trophic

enrichment factors should not be ignored from a philosophical

stand-point and a residual term should always be included (as one

would routinely expect in any linear model) [20].

Methods

First, we outline the algebra for our system. We deal with a

generic situation where data comprise N measurements on J

isotopes with K sources:

Xij = observed isotope value j of the consumer i.

sjk = source value k on isotope j; normally distributed with

mean mjk and variance vjk
2.

cjk = TEF for isotope j on source k; normally distributed with

mean ljk and variance tjk
2.

pk = dietary proportion of source k; estimated by the model.

qjk = concentration of isotope j in source k [see 20]

eij = residual error, describing additional inter-observation

variance not described by the model, sj
2 estimated by the

model.

The model is formulated as follows:

Xij~

PK
k~1

pkqjk(sjkzcjk)

PK
k~1

pkqjk

zeij ð1Þ

sjk*N mjk,v2
jk

� �
ð2Þ

cjk*N ljk,t2
jk

� �
ð3Þ

eij*N 0,s2
j

� �
ð4Þ

A key advance is that the Bayesian paradigm allows for

uncertainty in all the parameters. The two most important here

are p and s2, controlling proportional contribution and residual

variance respectively. Model fitting is hierarchical, offering

unbounded flexibility in adding complexity. Moreover, the

Bayesian approach allows for external (prior) information to be

incorporated, further narrowing the precision of estimated dietary

proportions. This prior information may be vague or informative,

e.g. corresponding to the volume of existing knowledge regarding a

priori knowledge about the diet of an animal. A natural prior

distribution for pk is the Dirichlet, a generalisation of the Beta

distribution [21].

The Dirichlet distribution treats each source input as indepen-

dent but requires they sum to unity. SIAR allows users to specify

prior information on the mean proportions (that sum to unity) for

each dietary source and a standard deviation for the first of these

proportions; this is used to generate K a values. This external

information directs the model according to the user’s expert

knowledge. The Dirichlet prior does not allow the user to specify

individual uncertainties for each proportion, but the prior as input

does match exactly what the model receives and uses it to draw

consistent proportions [18].

The generated marginal distributions of a Dirichlet distribution

with K a values [21] can be explored by defining:

aT~
XK

k~1

ak ð5Þ

and then the characteristics of the distribution are given by:

�ppk~ak=aT ð6Þ

var pkð Þ~ak aT{akð Þ
�

a2
T aTz1ð Þ ð7Þ

cov pk,pp

� �
~{akap

�
a2

T aTz1ð Þ
� �

ð8Þ

where pk and pp (and their associated Dirichlet parameters ak and

ap) are the kth and pth dietary proportions. The default SIAR

model sets each of the a values to 1. This corresponds to a vague

prior with each source having prior mean 1/K and prior variance

(K21)/(K2(K+1)). The Dirichlet-distributed default prior used by

SIAR is designed to be vague so that the results are primarily

influenced by the data. More informative prior distributions are

available as part of the SIAR software. Furthermore, although the

Dirichlet prior distribution has a prescribed covariance structure,

the posterior distributions may have more complicated structures,

yielding important information about how well the model can

discriminate between sources. SIAR includes diagnostic matrix

plots for exploring this covariance structure. Strong negative

correlation between two posterior pk values implies that one source

is simply being traded off against the other and the model is unable

to isolate the contribution of either in isolation. A vague prior is

also assigned to s.

Model fitting is via Markov chain Monte Carlo (MCMC) which

produces simulations of plausible values of pk consistent with the

data. The estimated values of the parameters after taking into

account the data and the prior information are known as posterior

distributions, representing a true probability density for the

parameters of interest. The R package SIAR allows full access

to these posterior densities so that users can create any summary of

the output they require.

Results

First, we illustrate the model with a simulated example involving

2 unique isotope measurements on 10 organisms whose diets

comprise 3 different uncertain sources: A, B and C; in SIAR these

are treated as normally distributed. We set TEFs to zero and the

concentration dependencies as equal with no loss of generality.

Setting the trophic enrichment values to zero mean and zero

standard deviation has no bearing on the performance of the

model. Adding variation here is mathematically identical to

SIAR: A Bayesian Mixing Model

PLoS ONE | www.plosone.org 2 March 2010 | Volume 5 | Issue 3 | e9672



increasing variation on the sources since the variances are

combined additively in the formation of the likelihood function:

(v2
jkzt2

jk) in equation 9 below. The likelihood function is then

used to calculate the probability of the data given the model.

Conversely, including a non-zero mean TEF simply offsets the

data geometrically in isotope-space and has no other bearing on

model performance. We simulate data from a known set of true

proportions: 0.75, 0.2 and 0.05 for sources A, B and C

respectively. Similarly, by varying the residual error parameter

s2
j when generating simulated data, we can see how the model

responds to differing levels of uncertainty (Fig 1).

Generating simple test data sets
Below we outline pseudo-code for generating the data sets used

for testing the SIAR coverage properties. The user first has to

input the number of data sets required for testing (we used 1000),

the number of consumers required for each data set (we use 10), as

well as lower and upper limits on the number of sources (we use 3

to 5) and the number of isotopes (we use 2 to 3). Key to the

pseudo-code is the likelihood function (which applies when the

concentration dependence parameters are set equal q1 = q2… = qk)

based on a normal distribution with a mean and variance:

Xij*N
XK

k~1

pk(mjkzljk),
XK

k~1

p2
k(v2

jkzt2
jk)

" #
zs2

j

 !
ð9Þ

Scenario 1 can then be created via the following pseudo-code:

Loop dataset number;

1. Generate a random set of proportions, p from a Dirichlet

distribution with all ak = 1.

2. Generate source means (m) based on a random sample from a

normal distribution with mean 0 and standard deviation 10.

3. Generate source standard deviations (v) based on absolute

normal distributions (to ensure only positive values) with mean

0 and standard deviation 2.

4. Similarly generate fractionation correction means (l) and

standard deviations (t) from normal and absolute normal

distributions with means 0 and standard deviations both 1.

5. Generate consumer means (as given by the mean of the

likelihood function eq 9) as a proportion-weighted sum of

source and correction means

6. Generate residual standard errors (s) as absolute normal

distributions with standard deviation 1.

7. Generate consumer standard deviations (right hand side of

likelihood function eq 9) as a weighted sum of the squared

proportions times the sum of the source and correction

variances. Finally add on the residual variance.

8. Generate consumer values (X) from the consumer means and

standard deviations.

9. Run the SIAR model for 200,000 iterations.

10. Check whether estimated 95% credibility intervals for each

proportion contain the original generated proportions.

Repeat for next data set.

The values reported in Figure 2 show the estimated proportion

of the 1000 data sets inside the 95% credibility interval.

More complex data structures
Second, we conduct a fuller examination of the model, picking a

selection of ‘reasonable’ scenarios and test how often the simulated

true proportions lie inside the 95% credible intervals of the

estimates. Clearly, it is impossible to examine all possible scenarios;

the 3 we consider are:

1. Model as given, with normally distributed error term eij, as well

as normally distributed sources and correction values.

Figure 1. Two example simulated datasets and corresponding
model performance on estimating the underlying parameters.
(A) Consumer (open circles and crosses) and source (filled squares)
isotope values from two data sets with different between-individual
variability in the animal isotope measurements (standard deviation
s = 0.1 for open circles, compared with 0.5 for crosses). (B) Posterior
density estimates of the proportions for both models. The true values of
the proportions are shown in the vertical lines. In both cases, the true
proportions are inside the 95% credibility intervals of the posterior
distributions.
doi:10.1371/journal.pone.0009672.g001
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2. Model as given, with t4-distributed error terms (this is Student’s

t-distribution with 4 degrees of freedom [21]) on the consumer

isotope values, as well as t4-distributed sources and correction

values. The t4 distribution provides long-tailed errors which

may be more natural when source and TEF standard

deviations are based on few observations (Nobs#5).

3. Model as given, but where the two closest sources have been

combined to produce a single source.

These more complex scenarios of the sensitivity analysis are

easily re-created by adapting the above steps for the simple case by

altering the distributions of random variables and averaging across

sources when combining the two nearest sources. In each case,

1000 simulated data sets of 10 target organism values were

produced for data with between 2 and 3 isotopes and 3 and 5

sources. SIAR performs extremely well (Fig 2), given that some

simulations, by chance, represent biological extremes. The model

performs increasingly poorly as the number of sources increases

(Fig 1). However, increasing the number of isotopes sustains the

predictive power of the model as the number of sources increase.

The model even performs acceptably in scenarios 2 and 3 where

some key model assumptions are violated.

Discussion

SIAR works exceptionally well for numerous datasets, appear-

ing robust to violations of its core assumptions (Figs 1 & 2). Users

can therefore be confident of the estimated dietary composition of

consumers, even in underdetermined systems. Further, they can be

assured that uncertainty and variation in parameters is included in

these estimates, meaning that we now have a tool to investigate

complex dietary systems with greater quantitative rigour than

before. Additionally, SIAR includes capability for inclusion of

concentration dependence which has shown to be an essential

consideration in some circumstances [20].

The Bayesian approach naturally propagates sources of

uncertainty into posterior probability distributions, and as such

we can make statements about which solutions are more likely

than others, allowing us to use these estimates in down-stream

statistical models such as relating proportion of a particular source

to another measured parameter of interest such as fitness. Ideally

one would bolt another Bayesian model onto the SIAR output and

use the full posterior distribution. However, such techniques are

not currently widely available to ecologists. Instead, since the

posterior contains information on which parameters are more

likely than others, a measure of central tendency (preferably the

mode) could be used and passed into standard frequentist

generalised linear models, particularly if the posterior distributions

of interest are precise and not highly skewed. We caution users to

be aware that the posterior dietary proportion estimates may be

highly uncertain and that single summary values (such as the

modes) should be used with care. There is also no reason to expect

the modes of the marginal posterior distributions to sum-to-unity:

something that is not an issue if the full posterior distribution is

used in down-stream analyses.

Not surprisingly there are caveats to consider before applying

SIAR (several that are common to all mixing models). Some of

these are:

1) SIAR can produce precise estimates, but the underlying

model may remain undetermined and thus the outputs

represent probable solutions.

Figure 2. Proportion of 1000 simulated data sets where true values lie inside 95% intervals. The model performs well for all of the
different scenarios considered. The figure shows the deterioration of model predictions as the number of sources is increased. Performance can be
improved by increasing the number of isotopes used.
doi:10.1371/journal.pone.0009672.g002
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2) SIAR (reasonably) assumes that the variability associated

with sources and the uncertainty associated with TEFs is

normally distributed. If it is suspected that the distributions

depart from this assumption then it is possible to change the

likelihood function in SIAR (requiring non-trivial recoding).

3) SIAR currently assumes that no isotopic routing occurs

within the body of the consumer and that all isotopes are

assimilated equally [22]. We urge researches to satisfy

themselves with the validity of this assumption as violation

may results in misleading results.

4) SIAR will always attempt to fit a model, even if the sources

lie outside of the isotopic mixing polygon [20]. Researchers

are urged to examine their data carefully before using any

mixing models.

Recent quantitative advances allow comparison of community

structure based on isotope data alone – in d-space [23,24]. However,

now that Bayesian approaches can yield robust estimates of diet, the

prospect of using diet composition to describe community structure

(i.e. in p-space) [25], and quantifying competition arising in over-

lapping niches is becoming a real possibility.

In most instances it will be the causes or consequences of dietary

differences that are of interest to the researcher. The Bayesian

approach allows further development via the model output, for

example the inclusion of the dietary proportions with their

uncertainty in generalised linear models to relate diet with other

explanatory variables such as the inclusion of random effects in

MixSIR [26]. Furthermore, these mixing models are equally

applicable to other mixing problems such as identifying pollution

sources. SIAR potentially opens up a host of possibilities for

addressing key ecological questions and we envisage it developing

continually as open-source software, becoming a holistic resource

for performing a range of generic analyses relating to stable isotope

techniques.
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