
Ecological and anthropogenic constraints on waterbirds of the 

Forth Estuary: population and behavioural responses to 

disturbance

Ross G. Dwyer

Thesis submitted as candidature for 

the degree of Doctor of Philosophy

Centre for Ecology and Conservation
University of Exeter
May 2010

Ecological and anthropogenic constraints on waterbirds of the 

Forth Estuary: population and behavioural responses to 

disturbance



Ross G. Dwyer

Submitted by Ross G. Dwyer, to the University of Exeter as a thesis for the degree of Doctor 
of Philosophy in Biological Sciences, May 2010. 
This thesis is available for Library use on the understanding that it is copyright material and 
that no quotation from the thesis may be published without proper acknowledgement.
I certify that all material in this thesis which is not my own work has been identified and that 
no material has previously been submitted and approved for the award of a degree by this or 
any other University.

.......................................................

Abstract
Disturbance  from  engineering  works  is  an  increasing  problem  in  terrestrial  and  marine 
ecosystems  throughout  the  world.  Many  reported  declines  in  population  size,  breeding 
success and body condition have been diagnosed as the result of anthropogenic disturbance, 
however  little  is  known  about  the  effect  of  long-term  disturbance  from  large-scale 
engineering  works.  Understanding  the  mechanisms  by  which  animals  respond  to 
anthropogenic activities  is  fundamental  to explaining interactions,  and resolving potential 
conflicts between humans and wildlife.
This thesis focuses on the factors affecting the habitat use and foraging decisions in wintering 
shorebirds and wildfowl. The first half of this thesis considers the direct and indirect impacts 
on waterbirds of a major engineering project in central Scotland; construction of the new 
Clackmannanshire  Bridge  at  Kincardine-on-Forth.  For  individual  bird  species  in  close 
proximity to the bridge site, round-the-clock construction work had consequences ranging 
from neutral to considerably negative. Cormorant Phalacrocorax carbo declined in the area, 
probably as  a  result  of  the  disturbance of  an  important  low tide  roost.  Redshank  Tringa 
totanus, previously abundant in the prey-rich areas adjacent to the construction site, were 
displaced into poorer areas for most of the construction period; where they may also have 
suffered from increased interference competition and elevated risk from raptorial predators.
Some  positive  effects  of  industrial  development  were  also  revealed;  radio-transmitters 
combined with tilt-switch posture sensors indicate that Redshank were able to capitalise on 
the improved nocturnal visibility in areas around Grangemouth docks to assist with foraging 
and predator  detection.  Evidence is  presented that birds switched foraging strategy (from 
sight to touch feeding) depending on ambient light levels; whereby artificial light was used in 
a similar manner to moonlight to assist with prey detection. Redshank also avoided riverine 
areas at night that were used frequently by day, probably in response to an elevated threat 



from nocturnal predators. As the predator landscape changes from day into night, birds adopt 
different  strategies to  minimise the risk from nocturnal  predators.  It  is  clearly important, 
therefore, that information on nocturnal distributions is available to inform decisions on site 
management, especially where anthropogenic activity continues throughout the diel cycle.
Behavioural decisions were shown to vary widely within a species depending on individual 
state, metabolic demands and previous exposure to human disturbance. Prey resources were 
shown to change dramatically over the course of a winter. In response to this decline, the 
home range of Redshank contracted over a winter season. Similarly, animals responded less 
and took greater risks in response to experimental disturbance events later in the winter than 
earlier in the winter, and on days when the temperature was lower. This effect was strongest 
for individuals occupying heavily disturbed areas, which were possibly already compensating 
for lost  feeding time and a negative energy balance. The results  were consistent with the 
hypothesis  that those individuals that respond most obviously to human disturbance were 
those least likely to suffer fitness consequences. This is the opposite from what is commonly 
assumed when behaviour is used as an index of disturbance impacts, most notably in the use 
of flush distance in the design of wildlife buffer zones.
In conclusion,  this  study demonstrated various negative impacts of disturbance,  including 
local displacement, due to construction activity on overwintering waterbirds. It also revealed 
two  key,  but  poorly  understood,  phenomena  relating  to  mechanisms  for  coping  with 
anthropogenic disturbance: routine utilisation of artificial light to extend night-time feeding 
opportunities  amongst  Redshank and an adaptive  flexibility in  escape responses  across  a 
range of species under varying conditions of risk.
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