Regulation of Tumour Necrosis Factor Receptor Expression on Neutrophils by Arachidonic Acid and Other Long Chain Fatty Acids.

FATEMEH (NAHID) MOGHADDAMI
BSc, MSc

Thesis submitted for the degree of Doctor of Philosophy

Department of Paediatrics
The University of Adelaide
(Faculty of Health Sciences)

June 2004
Summary

Tumor necrosis factor (TNF) is a pro-inflammatory cytokine with multiple biological effects. The receptors for this cytokine on neutrophils have been shown to be rapidly down-regulated following activation, leading to the release of soluble forms of these receptors. Thus neutrophils become less responsive to TNF and the soluble TNF receptors (TNFR) serve to control TNF activity. During inflammation, leukocytes become activated as a result of the action of a variety of mediators. These mediators include not only cytokines but also lipids, such as the pro-inflammatory ω-6 fatty acid, arachidonic acid (AA) and its metabolites. Cellular activation leads to the release of AA from membrane phospholipids. AA regulates the function of many cell types including neutrophils. In view of the known pro-inflammatory properties of AA and the anti-inflammatory properties of ω-3 fatty acids, a study was undertaken to examine whether or not these fatty acids regulate the expression and release of TNFR in neutrophils.

While much emphasis has been placed on agonist-induced down-regulation of TNFR, our data show that AA causes a rapid (10-20 min) and dose-dependent (0.5 to 30 μM) increase (8-fold) in the surface expression of both classes of TNFR (TNFRI and TNFRII) on human neutrophils, at concentrations found in inflammatory fluids. This correlates with an increase in superoxide production to a TNF challenge. In contrast, both fMLP and LPS significantly reduce the expression of both TNF receptors. Interestingly, in neutrophils pretreated with AA, fMLP causes an increase in TNF receptor expression, consistent with AA preventing the fMLP-induced receptor release in neutrophil culture. In addition, while AA causes an increase in TNF receptor
expression on matured HL-60 cells (neutrophil-like cells), a decrease occurs on HUVEC and non-matured HL-60 cells. These data demonstrate a unique effect of AA on neutrophils.

The relationship between AA and the anti-inflammatory ω-3 fatty acids, DHA and eicosapentaenoic acid (EPA), in the modulation of TNF receptor expression has also been examined. These ω-3 polyunsaturated fatty acids, including linolenic acid (LNA), cause a decrease in TNFR expression on neutrophils. The ω-6 linoleic acid (LA) and ω-9 oleic acid (OA) both cause an increase in TNFR expression. Furthermore, pre-exposure of neutrophils to nanomolar amounts of EPA or DHA prevents the AA-induced up-regulation of TNFR. These results thus identify another mechanism of regulating the inflammatory reaction by the ω-3 fatty acids.

The mechanisms by which AA induces an increase in TNFR expression have been studied. Masking of the carboxyl group results in loss of activity. It is unlikely that a product of AA is responsible since neither the hydroperoxyeicosatetraenoic acid, nor hydroxyeicosatetraenoic acid derivatives show activity. Also, the effects of AA are not sensitive to the action of inhibitors of the cyclooxygenases and lipoxygenases. Using chemical inhibitors of intracellular signaling pathways, we demonstrate that the effect of AA on TNFRI is very sensitive to GF109203X, PD098059, AACOCF3 and wortmannin, showing a role for protein kinase C, the extracellular signal regulated protein kinases and cytoplasmic phospholipase A2, and PI-3 kinase respectively, in the enhancement of TNF receptor expression by AA. Although the effects of AA on TNFRII are also decreased by the chemical inhibitors, the results show that these
signalling molecules only contribute in part to the mechanisms of increased TNFRII receptor expression.

The data presented in this thesis suggest a novel role for AA in the inflammatory reaction, through its action on neutrophil TNFR expression. The work has identified a unique effect of ω-3 polyunsaturated fatty acids for regulating this AA-induced increase in the expression of TNF receptors.
Table of contents

Summary .. II
Declaration ... V
Acknowledgements ... VI
Publications of the candidate VII
Table of Contents .. IX
Abbreviations .. XIII
Index of Figures .. XVI
Index of Tables .. XXIII

Chapter 1 INTRODUCTION... 1

1.1 General introduction ... 2

1.2 Neutrophils and their functions 4

1.3 Inflammation ... 6

1.4 Mediators of inflammation 9

1.4.1 Lipid Mediators .. 9

1.4.2 Kinins ... 10

1.4.3 Clotting and fibrinolytic proteins 10

1.4.4 Complement ... 11

1.4.5 Cytokines .. 13

1.4.5.1 Chemokines .. 13
1.4.5.2 Proinflammatory cytokines .. 14

1.4.5.3 Anti-inflammatory cytokines ... 14

1.4.5.4 Tumour necrosis factor α (TNF) ... 16

1.5 Receptors which regulate neutrophil responses 22

1.5.1 Receptor classes in neutrophils .. 23

1.5.2 TNF receptors .. 25

1.5.2.1 Receptor types .. 25

1.5.2.2 Biological responses mediated by TNF receptors 26

1.5.2.3 Regulation of TNF receptor expression and shedding 28

1.5.2.4 Mechanism of shedding TNF receptor 29

1.5.2.5 Significance of TNF receptor modulation and shedding 33

1.6 Intracellular signalling mechanisms regulating key neutrophil responses .. 37

1.6.1 The heterotrimeric G-proteins .. 37

1.6.2 The src and JAK families of cytoplasmic tyrosine kinases 39

1.6.3 Phosphoinositide 3-kinase (PI3-kinase) 40

1.6.4 Protein kinase C (PKC) .. 42

1.6.5 Mitogen-activated protein kinases (MAPK) 43

1.6.5.1 ERKs ... 44

1.6.5.2 JNKs ... 45

1.6.5.3 P38 ... 46
1.6.6 Phospholipase A2 (PLA2) .. 47
1.6.7 MAPKAP kinase 2 ... 49
1.7 Polyunsaturated fatty acids (PUFA) 49
1.7.1 Fatty acid structure and nomenclature 50
1.7.2 Fatty acids as building blocks of lipids 52
1.7.3 Sources of fatty acids ... 55
1.7.4 Transport and uptake of fatty acids 56
1.7.5 Fatty acid oxidation .. 58
1.7.6 Fatty acid synthesis .. 61
1.7.7 Fatty acids as eicosanoid precursors 67
1.7.7.1 Cyclooxygenase pathway ... 69
1.7.7.2 Lipoygenase pathway .. 69

1.7

1.8 Immunomodulatory properties of polyunsaturated fatty acids 73
1.8.1 PUFA and immunologically based inflammatory diseases 73
1.8.2 Effects of PUFA on in vivo immunological responses 74
1.8.3 Effects of PUFA on cytokine production measured ex vivo ... 79
1.8.4 Effects of PUFA on immunological responses in vitro 83

1.9 Effects of long chain fatty acids on neutrophils 88
1.9.1 Stimulation of key functions ... 88
1.9.2 Effects of PUFAs on neutrophils receptor expression 88
1.9.3 Stimulation of intracellular signalling molecules 88
Chapter 2 MATERIALS AND METHODS

2.1 Fatty Acids ... 93
2.2 Agonists .. 93
2.3 Inhibitors .. 94
2.4 Antibodies .. 94
2.5 Media, buffers and tissue culture ... 95
2.6 General biochemicals, enzymes, nitrocellose and TLC plates ... 95
2.7 Presentation of fatty acids to cells... 96

2.7.1 Determination of fatty acid purity by thin layer chromatography (TLC) ... 97
2.8 Neutrophil preparation ... 98
2.9 Preparation of endothelial cells .. 99
2.10 Culture and differentiation of HL-60 cells 100
2.11 Neutrophil chemiluminescence response 101
2.12 Measurement of surface expression of integrin receptors 101
2.13 Measurement of TNF receptor expression 102
2.14 Assay of soluble TNFRII ... 103
2.15 Activation of intracellular signalling molecules 104

2.15.1 Assay for ERK activity ... 104

2.15.1.1 Preparation of neutrophil lysates ... 104

2.15.1.2 Lowry's protein assay .. 104

1.10 Aims, hypotheses and significance .. 90
Chapter 3 MODULATION OF NEUTROPHIL TNF RECEPTOR EXPRESSION BY ARACHIDONIC ACID

3.1 Introduction .. 110
3.2 Effects of AA on TNF receptor expression ... 111
3.2.1 Effect of AA concentration of TNF receptor expression 112
3.2.2 The effect of pretreatment time of the ability of AA-induced increase in TNF receptor expression ... 118
3.2.3 Alteration in the TNF-induced superoxide response in AA activated neutrophils ... 118
3.2.4 The effect of AA on the expression of CD11a, CD11b CD11c 119
3.2.5 Regulation of TNF and CR3 receptor expression by LPS and fMLP 126
3.2.6 Effect of fMLP on AA-induced increase in TNFRI and TNFRII expression .. 127
3.2.7 Effect of AA pretreatment on fMLP-induced down-regulation of TNF receptors and release of TNF receptors .. 129
3.3 Ability of AA to increase TNF receptor expression on HL-60 cells 130
3.4 AA induces down-regulation of TNF receptors on vascular endothelial cells (HUVEC) .. 145

3.5 Summary .. 148

Chapter 4 COMPARISON OF EFFECTS BETWEEN ω-3, ω-6 AND ω-9 LONG CHAIN FATTY ACIDS ON TNF RECEPTOR EXPRESSION

4.1 Introduction .. 150

4.2 The effect of different types of long chain fatty acids on TNF receptor expression ... 150

4.3 The effect of varying the DHA concentration on TNF receptor expression ... 151

4.4 The effect of varying the EPA concentration on TNF receptor expression ... 152

4.5 The effect of varying the LNA concentration on TNF receptor expression ... 161

4.6 The effect of varying the LA concentration on TNF receptor expression ... 161

4.7 The effect of LA pretreatment time on TNF receptor expression ... 162

4.8 The effect of varying the OA concentration on TNF receptor expression .. 169

4.9 Summary .. 172
Chapter 5 THE \(\omega\)-3 PUFA, EPA AND DHA INHIBIT THE AA-INDUCED UP-REGULATION OF TNF RECEPTOR EXPRESSION

5.1 Introduction .. 174

5.2 Effects of EPA on the AA-induced up-regulation of TNF receptor expression in neutrophils .. 174

5.3 Effects of DHA on the AA-induced up-regulation of TNF receptor expression in neutrophils .. 178

5.4 Summary .. 182

Chapter 6 MECHANISMS BY WHICH ARACHIDONIC ACID ALTERS THE EXPRESSION OF TNF RECEPTORS

6.1 Introduction .. 184

6.2 The effects of 15-hydroperoxy eicosatetraenoic acid (15-HPETE) and methyl ester (ME) derivative on the expression of TNF receptors .. 185

6.3 The role of protein-kinase C (PKC) .. 185

6.4 The role of ERK1/ERK2 .. 186

6.5 The role of p38 .. 193

6.6 The role of cytosolic phospholipase \(A_2\) (cPLA\(_2\)) ... 196

6.7 The role of PI3-kinase ... 196

6.8 The role of lipoxygenase and cyclooxygenase .. 200

6.9 Summary .. 208
Chapter 7 DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Enhancement of TNFR expression by arachidonic acid</td>
<td>210</td>
</tr>
<tr>
<td>7.2</td>
<td>Effects of other long chain fatty acids on TNFR expression</td>
<td>213</td>
</tr>
<tr>
<td>7.3</td>
<td>Mechanisms of AA induced up-regulation of TNFR</td>
<td>214</td>
</tr>
<tr>
<td>7.4</td>
<td>The potential significance of the present finding to the inflammatory reaction</td>
<td>223</td>
</tr>
<tr>
<td>7.5</td>
<td>Concluding remarks</td>
<td>227</td>
</tr>
</tbody>
</table>