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Summary 

Radiotherapy is a common cancer treatment which aims to use radiation energy to kill tumour cells 

without damaging healthy tissue. High energy x-rays penetrate tissue deeply, depositing most of their 

energy beyond the skin and shallow tissues. X-rays with energies above 8 MeV may interact to produce 

neutrons, to which the patient is then exposed. Treatment planning systems (TPS), which calculate the 

amount of energy deposited to biological structures, do not currently account for contaminant neutrons 

produced in high energy interactions.  

Constant improvements in modern radiotherapy techniques have resulted in better patient life 

expectancy than ever before. The unfortunate corollary of increased life span is increased manifestation 

of late onset side effects from low dose radiation exposure. This has resulted in an increased drive to 

reduce the dose to untargeted tissues as much as possible. A perfect treatment plan delivers a prescribed 

dose to the target volume and no dose to any other tissue. In reality, there is always some tissue through 

which the radiation must pass in order to reach the target, and some energy which passes beyond the 

intended target volume. In addition, there is unavoidable scattering of radiation within the patient, which 

results in out-of-field doses to untargeted tissue.  

Dose to untargeted tissues resulting from x-ray energy is relatively well understood and is calculated 

and reported by TPS. Dose resulting from contaminant neutrons is not currently considered by TPS. The 

overall number of neutrons produced is relatively low, because high energy x-rays may interact in a 

variety ways and reactions producing neutrons are generally less likely. However, energy deposited by 

radiation can produce different biological outcomes depending on the type of radiation which deposits 

the energy. The biological damage inflicted by neutron radiation depends on the energy of the neutrons, 

and neutrons with energy around 1 MeV may be up to 20 times more damaging than x-rays.  

So, how do we know the risk associated with neutrons produced from high energy x-rays? Measure the 

number of neutrons produced? Measure the amount of energy they deposit? Neutron radiation is 

incredibly difficult to quantify, much more so than alpha, beta, x-ray, gamma or proton radiation. 

Neutrons are neutrally charged particles, which means they are not attracted or repelled by the positive 

nuclei or negative electrons which make up all matter. Neutrons primarily pass straight through most 

materials without leaving a trace of evidence. This makes them quite difficult to detect! Neutrons do 

interact with the nuclei of some materials, in nuclear reactions, which produce energy and secondary 

particles which can more easily be detected. The extra energy released in these interactions and their 

complex probability functions make it difficult to determine the number of neutrons or the energy they 

would release in human tissue. 

The high uncertainty in neutron measurement techniques has resulted in some controversy around the 

use of high energy x-ray beams. There is no question that the deeper penetration of the higher energy x-

rays is extremely useful for treatment of some anatomical sites. The source of the contention is the 

degree of risk posed by the neutrons themselves. Without an accurate and precise method for quantifying 

the degree of neutron contamination, an accurate determination of the risk cannot be made.  

Thermoluminescence dosimeters (TLDs) and activation foils have been used in this work to quantify 

neutrons produced in high energy radiotherapy. TLDs are a common radiotherapy dose measurement 

tool and are routinely used in existing clinical protocols. Lithium fluoride is a common TLD material 

and the two naturally occurring isotopes of lithium, 6Li and 7Li, have very different probabilities for 

neutron interaction. TLDs made from these materials can be used in pairs to produce signals which in 

combination can be correlated with the degree of neutron exposure. Activation foils are materials which 
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become radioactive when exposed to neutrons. A first principles calculation can be used to determine 

the number of neutrons causing activation in a material.  

Both these methods for neutron detection are highly dependent on the energy of the neutrons. Both 

produce a response related to the number of incident neutrons which needs to be corrected for the energy 

of the neutrons which are to be measured. The energy deposited by the neutrons in the detector material 

is not directly related to the energy which would be deposited in tissue in a patient exposure. Another 

energy correction is required to quantify the biological damage which may occur. This is the primary 

source of uncertainty and the cause of the disagreement between the vast number of existing publications 

on the topic. 

This work determines energy correction values for the calibration of LiF TLDs for neutron 

measurements. The neutron energy spectrum relevant to high energy radiotherapy is modelled and used 

to determine energy corrections for activation foils. It is also needed to convert the response of detectors 

to the energy deposition in tissue and to correct for biological effect. 

Additional risk from neutron contamination is also examined. The production of neutrons may induce 

radioactivity in other materials. The medical linear accelerator (linac) used to produce the treatment x-

rays may itself become radioactive when it is operated at high energies. The induced activity is low level 

and is mainly of concern for radiotherapy staff rather than patients as they spend much greater time in 

proximity to the linac. Implants within the patient may also interact in unexpected ways. Metallic 

implants such as prosthetic hips can become radioactive from exposure to neutrons or high energy x-

rays. This is primarily of concern for patients, as it potentially induces a low level internal source of 

radiation. 

Many existing peer reviewed publications investigate the degree of neutron exposure to patients 

undergoing high energy radiotherapy, but there is no consensus amongst experts regarding the risk. This 

stems from the high degree of uncertainty in neutron measurement techniques. This thesis discusses the 

challenges of neutron dosimetry and proposes a methodology for correcting for detector energy 

dependence. An investigation of the indirect risks of neutron production is also presented. 

This thesis offers a comprehensive analysis of existing neutron detectors and dosimeters with an in-

depth discussion of their properties in relation to their suitability for use in high energy radiotherapy.  

The energy dependence of LiF TLD response to neutron radiation is carefully examined for calibration 

sources and for photoneutrons from medical linacs. The energy dependence should be considered for 

calibration sources, but is shown to be less critical for the energies produced by linacs. The energy 

dependence of activation foils depends on the material chosen but can be accounted for by calculating 

an energy spectrum weighted interaction probability, or cross section. Converting neutron measurements 

to values representing dose to human tissue for a given exposure must be corrected for the energy of the 

neutrons.  

This thesis also presents a summary of neutron dose equivalent values from peer reviewed publications 

and compares the effects of a number of parameters on the neutron dose. Comparison between studies 

is made difficult by a lack of detail on the magnitude of energy corrections used in published papers. 

The indirect risk from secondary activations is considerably lower, however may be reduced by 

employing the existing collimation devices within linacs as shielding. A small amount of activation in 

hip prostheses does occur, but does not result in a significant dose to surrounding tissue. 
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1. Introduction 

Radiotherapy involves the use of radiation energy to treat tumours. Many types of tumour cells are more 

sensitive to damage from radiation than healthy cells, and this inherent difference is exploited to reduce 

the size of and inhibit the growth of tumours. In Australia, the most common type of radiotherapy is 

external beam radiotherapy (EBRT) which is most often delivered by a medical linear accelerator (linac) 

operating with acceleration potentials in the mega-voltage (MV) range. The most commonly used 

acceleration potential is 6 MV which produces x-rays with a spectrum of energies up to a maximum of 

6 MeV.  

Any external beam of radiation incident on a patient inevitably delivers some radiation to un-targeted 

organs and tissues. The central goal of radiotherapy is to deliver enough radiation energy in the form of 

a radiation dose to a tumour to completely eradicate it. It is equally important to simultaneously reduce, 

as much as possible, the amount of dose delivered to healthy tissue. While the healthy tissue is 

fortunately inherently less sensitive, it is not immune to damage from radiation. 

Multiple beams delivered from different entry angles, geometries and energies are used to optimise the 

dose distribution such that the tumour volume receives sufficient eradication dose and the surrounding 

tissues receive as little as physically possible. The type and location of the tumour to be treated dictate 

the energy of the beam which should be used. Higher energy x-rays will penetrate more deeply in tissue, 

and are often desired for deeply seated tumours or larger patients. Whilst the same dose may be delivered 

to a tumour using a lower energy beam, it can only be done so at the expense of the healthy tissues. 

A risk factor in the use of high energy radiotherapy beams is the undesirable production of contaminant 

particles. An x-ray with enough energy may interact with the materials it encounters in a linac, causing 

the emission of nucleons from ordinarily stable nuclei. This phenomenon is known as the photonuclear 

effect. The energy from an x-ray can cause protons, neutrons or heavy particles to be ejected from a 

nucleus. A positively charged particle, such as a proton or heavy particle has a limited range and will 

most likely not reach a patient. Charge neutral neutrons however, are a very penetrating type of radiation, 

and will likely irradiate the patient.  

Modern radiotherapy is highly successful in the treatment of cancer. Improved geometric conformity 

and advanced dynamic techniques such as intensity modulated radiotherapy (IMRT), volumetric 

modulated arc therapy (VMAT), deep inhalation breath hold (DIBH) and so forth, have all resulting in 

improved outcomes for patients. Increased life span for cancer survivors results in an increased 

likelihood of observable manifestations of stochastic radiation effects. These are low dose effects where 

a biological effect is observed with some probability proportional to the dose received by a given 

population. The increase in life expectancy for cancer patients has resulted in a renewed interest in the 

unavoidable dose received by un-targeted healthy tissue in radiotherapy. Contaminant neutrons in 

particular may be of concern because of their high radiation weighting factor compared to other types 

of radiation. Radiation weighting factors are published by the International Commission on Radiological 

Protection (ICRP103 2007) and are used to evaluate the risk resulting from radiation exposure (ICRP116 

2010). 

The dose to patients resulting from neutron contamination is not only an unwanted dose received by 

healthy tissues; it is also an unknown quantity. Treatment planning systems (TPS) predict and calculate 

doses to patients for given beam configurations. This allows the crucial prescription dose for a tumour 

volume to be determined and delivered. The doses to proximate un-targeted tissues are also calculated 

and organs at risk (OAR) adjacent to treatment target volumes are checked and limited. TPS algorithms 

which calculate these doses do not at present include any information about the dose deposited by 
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neutrons produced in high energy radiotherapy. The data required to inform the algorithms and allow 

calculation of the neutron dose is not yet available.  

To provide TPS with enough information to calculate neutron doses for specific beam geometries 

incident on patients, the degree of neutron contamination must be quantified. Neutrons are neutrally 

charged, and do not easily interact with materials. This fundamental property makes them very difficult 

to detect.  

A neutron may interact with the nuclei in matter in a nuclear reaction. If the probability of interaction is 

known, the number of incident neutrons can be calculated from the number of detections. The 

probability of a neutron interacting with a material to produce a measurable response is strongly 

dependent on the energy of the neutrons. In order to determine the energies of the neutrons present under 

the measurement conditions, Monte Carlo radiation transport modelling can be used. A series of particle 

interactions are calculated and the number of neutrons in specified energy ranges are calculated. 

Many researchers have investigated the degree of neutron contamination produced by medical linear 

accelerators operating at high energies. Despite this, there is still controversy amongst experts regarding 

the levels of neutron contamination in high energy beams. The high uncertainty in neutron detection and 

dosimetry is the main factor contributing to the disunity, but there are also significant complexities in 

translating the information gathered from measurement into an actual risk to a patient. The quantity of 

absorbed dose (energy absorbed per unit mass) is used because in general it correlates with observable 

biological effects. Equivalent dose is a weighted absorbed dose which accounts for the varying degrees 

of biological damage done by different types of radiation. These parameters cannot be directly measured. 

Absorbed dose to tissue differs from the absorbed dose to whichever detector material is used because 

different types of nuclear interactions occur in the different materials. All interactions are energy 

dependent and it is not necessarily possible to relate dose in one material to dose in another. 

The radiation weighting factor for neutrons is determined from experimental data for the relative 

biological effectiveness (RBE) and is the only radiation type to have an energy dependent radiation 

weighting factor (ICRP103 2007). The energy dependence of the radiation weighting factor contributes 

to the uncertainty when comparing results reported in published literature. Authors may state the 

function used to determine the weighting factor, without explicitly stating the assumptions made of the 

neutron energies used to evaluate the weighting factor in their study. Many published papers do not 

provide enough detail to extract comparable quantities. The values which are published for 

measurements taken under similar conditions vary over several orders of magnitude, due to differences 

in methodology to convert the output or response of their detectors to a dose equivalent, which is the 

quantity needed to evaluate the risks. 

Aside from the direct exposure to the patient from neutrons produced, the photonuclear interactions 

which occur at high energies may contribute to other risks. Photonuclear interactions occurring in the 

components of the linear accelerator can cause those otherwise stable nuclei to become radioactive. 

After long periods of time using high energy beams, components of the machine may have built up 

radioactivity. This is generally most relevant to radiotherapy staff rather than patients, as the levels are 

very low. It may add up to a significant amount for staff who spend a lot of time in close proximity to 

the machines.  

There is also a risk from implants and foreign objects within patients. The composition of human tissue 

is overwhelmingly made up of lighter elements which generally have lower probability of interacting 

with neutrons and becoming radioactive. Heavier elements which may be present in prostheses, pace-

makers or other implants are more susceptible to activation by incident neutron radiation. 
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1.1 Thesis objectives 

The key objectives of this thesis are as follows: 

 To present a comprehensive review of methods of neutron detection and their advantages and 

disadvantages  

 To assess the suitability and considerations for use of neutron detectors for measurements in high 

energy radiotherapy  

 To perform systematic measurements of neutron dose and consider the risk resulting from 

contaminant neutrons  

 To quantify the indirect risk from secondary radiation caused by activation in the linac and in hip 

prostheses within the patient 

 To provide relevant clinical recommendations for the use of TLDs for neutron dosimetry and the 

radiation protection of staff from induced radioactivity for high energy beams 

1.2 Thesis structure 

A technical introduction to some necessary physical concepts is given in chapter 2. Chapter 3 presents 

a comprehensive review of methods of neutron detection which have been used in medical physics to 

evaluate neutrons produced by high energy medical linacs. An in-depth analysis of the properties of the 

detectors and their suitability is given. Additional detailed information on the two most common 

detectors: thermoluminescence dosimeters (TLDs) and activation foils is included.  

A deeper investigation of the properties of TLDs and activation foils is presented in Chapter 4. 

Methodology is developed for the use of these two detectors. Some results to support the proposed 

techniques are presented to assist in interpretation of the responses of the detectors and how that response 

can be most accurately related to neutron fluence and absorbed dose. Monte Carlo modelling is used to 

investigate the neutron energy spectrum produced by medical linear accelerators to aid the interpretation 

of the detector responses. 

Chapter 5 gives the results of neutron measurements taken on medical linear accelerators operating at 

18 MV. Measurements of neutron fluence as a function of depth in solid water and as a function of the 

distance from the treatment beam field edge are presented. The neutron fluence determined with 

different detectors are compared and converted into absorbed dose to tissue and neutron equivalent dose.  

The indirect risks arising from photonuclear interactions are discussed in chapter 6. Here, the results of 

measurements investigating activation of linear accelerators are presented as well as measurements of 

the activation of prostheses irradiated with radiotherapy beams.  

Chapter 7 presents a detailed discussion of the results and the resultant risks. The neutron dose 

equivalents determined are compared to values reported in peer reviewed published papers for 

measurements taken under similar circumstances and the consequences for the assessment of the overall 

risk are discussed.  

The final conclusions of the thesis are given in chapter 8.  
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2. Background 

This chapter is included to introduce some necessary physical concepts which are the foundation for the 

propositions put forward by this thesis. It provides an outline of the modern applications of high energy 

radiotherapy and those techniques to which neutron contamination is most relevant. The physics of high 

energy photon interactions is discussed such that the reader may know the origin of the neutron 

contamination. The probabilities or ‘cross sections’ of these interactions are shown in section 2.2 for 

some relevant materials. Some relevant radiation protection concepts are also introduced to illuminate 

the significance of the results presented later in the thesis and to engage further discussion of the ultimate 

risks to patients and staff. 

2.1 Neutrons in high energy radiotherapy 

High energy photons interacting via the photonuclear effect can cause the emission of contaminant 

neutrons in radiotherapy beams. Neutrons have a high relative biological effectiveness (RBE) (ICRP116 

2010) and even a relatively small neutron fluence may pose a significant risk to patient safety. A 

conference was held in Gaithersburg, Maryland USA almost forty years ago to address contaminant  

neutron production in medical electron accelerators (Heaton and Jacobs 1979). Although modern 

medical linear accelerators (linacs) have dramatically improved in design and function since then, 

neutron contamination is still a factor in evaluating the risks of radiotherapy (Romero-Expósito et al 

2015). Modern treatment techniques such as Intensity Modulated Radiation Therapy (IMRT), 

Volumetric Modulated Arc Therapy (VMAT) and Stereotactic Ablative Body Radiotherapy (SABR) 

can involve higher dose rates and longer beam times than conformal radiotherapy. High dose rates and 

longer beam times increase the probability of neutron production and may lead to an unavoidable higher 

patient risk (Kry et al 2005a). Although outside the scope of this thesis, the methods discussed are 

relevant to quantifying the risks from contaminant neutrons in proton and heavy ion therapy, the viability 

of which is currently under investigation in Australia. 

In order to accurately quantify the risks posed by neutrons for various treatment techniques, accurate 

characterisation of the neutron field produced by a medical linear accelerator is required. To quantify 

the primary risk of neutron incidence on a patient, a number of neutron dosimetry and detection 

techniques are available, each with extraordinary challenges and uncertainties. Aside from the direct 

risk to the patient who may be exposed to neutron radiation, other materials exposed may become 

radioactive. Neutron activation in components of the linear accelerator and even metallic prostheses 

within the patient may pose a further risk to patients and staff. 

2.2 The photonuclear effect 

The photonuclear effect is a photon interaction with a nucleus. If a photon has sufficient energy, it may 

be absorbed by a nucleus, which in turn emits a nucleon or heavy particle. The interaction was first 

observed by Chadwick and Goldhaber (1934) who likened the “photodisintegration” of nuclei to the 

ionisation of atoms by light. They studied the photodisintegration of the deuterium nucleus, because of 

its low binding energy and simple nuclear structure. The incident photons used were the 2.6 MeV γ-rays 

of  208Tl, which they acquired from the decay chain of 232Th (L'Annunziata 2007). Chadwick and 

Goldhaber also noted that the 1.6 MeV γ-rays of 212Bi were not of sufficient energy to cause 

disintegration. The energy of the incident photons must have energy greater than the nucleon binding 

energy to cause the emission of nucleons. These results allowed the calculation of the binding energy of 

the deuterium nucleus and thus calculation of an estimate of the mass of the neutron of 1.0080 ± 0.0005 

atomic mass units, which is very close to the currently accepted value of 1.0087 atomic mass units. 

(Kessler Jr et al 1999). 
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The probability, or cross section, of an interaction occurring depends on the material in which the 

interaction occurs. Medical linear accelerators are manufactured from numerous materials, and contain 

a wide variety of nuclear species. The predominant elements by mass are tungsten and lead, which make 

up the primary collimator, jaws, multi-leaf collimator (MLC) and shielding. The most abundant isotopes 

of these elements are 184W and 208Pb (Rosman and Taylor 1999). The cross sections for the emission of 

neutrons through photonuclear interactions (γ,n) with these nuclei are shown in Figure 1. A typical 18 

MV linac photon energy spectrum is also shown for comparison. 

These isotopes of tungsten and lead have photonuclear thresholds between 7.0 and 8.2 MeV, which 

means that linacs operating in photon mode with an accelerating potential above 7-8 MeV may produce 

contaminant neutrons in addition to the treatment beam. The maximum probability for photoneutron 

production occurs between 12 and 15 MeV (Shibata et al 2011), as shown in Figure 1, which is easily 

encompassed by medical linacs, with high accelerating potentials.  

 

 

Figure 1: The photonuclear interaction cross sections (Shibata et al 2011) for the most naturally abundant 

isotopes of tungsten and lead; the main elements in a medical linear accelerator. The photon energy spectrum 

produced by an 18 MV Varian medical linear accelerator calculated at 100 cm source to surface distance (SSD) 

using the BEAM user code of EGSnrc by Sheikh-Bagheri and Rogers (2002) is shown for comparison. 

2.3 Risk posed by neutrons in the context of radiotherapy 

As modern radiotherapy techniques improve, patient life expectancy following treatment increases.  

Whilst this is excellent news for patients, a corollary is the increased importance of dose delivered to 

the patient outside of the target volume and the associated health risks (Taylor and Kron 2011). In the 

context of radiotherapy, the untargeted doses are a small percentage of the prescribed dose; however, 

from a radiation protection point of view, these relatively small doses may be significant in some 

circumstances. 
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2.3.1 Direct risks posed by neutron production 

Neutrons are a highly penetrating radiation. Those produced in a linac easily penetrate the tungsten or 

lead shielding designed to attenuate photons and electrons. The cross sections for neutron capture in 

these materials are very low and neutron attenuation is minimal. Energy lost through scatter is also 

minimal because of the large mass difference. The intensity of high energy neutrons can even increase 

due to (n,2n) reactions in these materials (McCall et al 1979). Neutrons emitted following photonuclear 

interactions are incident on the entire patient, exposing both the radiotherapy target volume and the 

untargeted healthy tissues.  

The biological effect of neutron radiation is much greater than that of photons and electrons. The 

absorbed dose, D, is a measurable quantity equal to the energy absorbed from a radiation per unit mass 

of material. The equivalent dose, H, accounts for the differences in the biological effects caused by 

different types and energies of radiation. Each radiation type, R, is assigned a radiation weighting factor, 

wR, which is multiplied by the dose deposited by that type of radiation, DR, to calculate the equivalent 

dose, see equation 1 (ICRP116 2010). Neutrons have a high radiation weighting factor, wR, of up to 20 

(Figure 2) compared to the weighting factor of 1.0 assigned to photons and electrons, reflecting the 

significance of their biological effect.  

 


R

RRT DwH  
[ 1 ] 

 

 

 

Figure 2: The ICRP116 (2010) energy dependent radiation weighting factor for neutron radiation.  
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2.3.2 Indirect risks posed by neutron production 

The interactions which cause neutron emission may also result in the production of radioisotopes. This 

induced radioactivity can pose an additional risk to patients and staff. Materials which are exposed to 

high energy photons may emit neutrons and become activated as a result. Materials which are in turn 

exposed to the emitted neutrons may also become activated. The components in the linear accelerator 

are in the vicinity of a large fluence of high energy photons and can become radioactive from exposure 

to high energy beams. The patient exposed to the beam may also be activated, but this is typically less 

likely for the light elements which compose the bulk of biological material. Patients with implanted 

devices, such as prostheses or pace makers may be at a greater risk of activation because of the 

incorporation of heavier elements from which these are typically manufactured.   

2.3.2.1 Activation of the medical linear accelerator 

Delivery of high energy radiotherapy treatments may cause the linac itself to become radioactive and 

hence present potential health risks. Neutrons produced in high energy radiotherapy beams are ejected 

from nuclei primarily in the components of the linac where the photon treatment beam is produced, 

directed and shaped. Nuclei losing a neutron may be unstable and consequently decay via emission of 

other radiations. The activation of a linac following the delivery of high energy radiotherapy beams is 

primarily a risk to staff, who spend the greatest cumulative time in close proximity to linacs. The dose 

resulting from activation products is expected to be low, and patients would only be exposed for a short 

period of time at the end of each fraction they receive. Staff members may deliver multiple high energy 

treatments daily and could potentially receive a significant cumulative exposure. Israngkul-Na-

Ayuthaya et al (2015) measured a dose of 4.14 μSv/hour at 100 cm source to surface distance (SSD) 

following a 1000 MU 15 MV photon beam delivered at 400 MU per minute. Annual estimates of dose 

to staff resulting from activation following high energy conventional 3D conformal radiotherapy range 

from 0.7 mSv (Almen et al 1991) and 0.9 mSv (Donadille et al 2008) up to 2.5 mSv (Perrin et al 2003) 

and 5 mSv (Ho et al 2012). Data from Rawlinson et al (2002) shows that for IMRT which requires 

longer beam times activation may result in an annual dose of up to 17 mSv compared to 3 mSv for 

conventional radiotherapy. The annual dose estimates determined by different clinics are obviously 

dependent on local clinical practice and frequency of high energy treatments. 

2.3.2.2 Activation of prostheses 

Devices implanted within patients such as prostheses, spine support or pacemakers may also become 

activated by exposure to neutrons. These devices are typically manufactured from heavier elements 

which generally have much higher cross sections for neutron interactions than the typically light 

elements predominantly present in biological material. Hip prostheses are of particular interest because 

of their proximity to beams during external beam prostate radiotherapy which benefits from the use of 

higher energy beams. Hip prostheses pose a number of challenges, even for low energy radiotherapy. 

The dose distribution can be strongly influenced by the presence of a high-Z material between the beam 

entry and the target volume (Reft et al 2003). Treatment planning systems are generally not 

commissioned appropriately nor intended to accurately calculate doses near high-density, high-Z 

materials. Keall et al (2003) compare the performance of various Monte Carlo, superposition and pencil 

beam treatment planning algorithms for patients and phantoms containing high-Z, high density 

implanted devices. The pencil beam algorithm shows particularly poor compensation for the altered 

charged particle equilibrium conditions around the few millimetres near the tissue-metal interface. 

Treatment planning is also hindered by the quality of imaging it is possible to achieve with large masses 

of metal in the field of view. Streaking artefacts and greater attenuation reduce the quality of CT images 

and make delineation and contouring of structures more difficult. 

The use of high energy radiotherapy beams on patients with implanted materials carries the additional 

risk of neutron activation of the implanted material. Metallic objects typically have a high cross section 
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for neutron activation. It is also possible that incident x-rays of high enough energy could also produce 

more neutrons from within the patient. Prostheses are typically avoided in treatment planning to prevent 

attenuation of the dose kernel before it reaches the target, however the beam may be allowed to pass 

through a prosthesis on exit from the patient. Neutrons are not effectively collimated by the treatment 

beam shaping components, meaning that even prostheses kept outside of trajectories of any beams may 

be exposed to neutron radiation, and activated. Depending on the number of MU and the geometry of 

the irradiation, the dose resulting from such activation is expected to be very low relative to the 

prescription dose and even the doses from scattered and leakage photon radiation. Prostheses directly 

irradiated by high energy beams and secondary neutrons may become more radioactive and detailed 

analysis of the isotopes produced, their half-lives and their quantities is required to determine the overall 

risk to patients. 

2.4 Conclusion 

This chapter presents some fundamental physics definitions and concepts which will assist the readers 

understanding of the ideas which follow in the remainder of the thesis. The provided introduction to 

photonuclear physics and radiation protection will allow the reader to fully engage with the subject 

matter presented by this thesis. This will allow for a deeper understanding of the significance of the 

following literature review and analysis of the techniques of neutron detection and their suitability for 

high energy radiotherapy applications. An introduction to these core concepts of radiation protection is 

required in order to present the reader with a thorough exploration of the direct and indirect risks 

resulting from neutron exposure,   
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3. Comprehensive evaluation of literature 

3.1 Contention in literature 

There is a wealth of literature pertaining to the evaluation of photoneutrons produced by high energy 

linacs, but there is still a high degree of uncertainty in the field. Clinics wishing to initiate advanced 

treatment technologies at high energies understand that there may be an increased risk due to neutron 

contamination. A comprehensive review of literature reveals no clear directive on the implementation 

of advanced high energy treatments requiring long beam times and large monitor units. Stereotactic 

Ablative Body Radiotherapy (SABR), Intensity Modulated Radiotherapy (IMRT), Total Body 

Irradiation (TBI) and Volumetric Modulated Arc Therapy (VMAT) are of particular concern from this 

perspective. Some clinics are cautiously proceeding with high energy treatments, while others are 

refraining from implementing potentially beneficial techniques from fear of the unknown neutron field 

(Verellen and Vanhavere 1999). Higher energy treatment fields can provide improved tumour coverage 

and skin sparing for deep-seated tumours (Shambira and Lazarus 2015), but clinicians are wary of 

implementing them because of a lack of trustworthy data to inform the magnitude of the risk posed by 

contaminant neutrons. Data sets supporting both points of view have been recently published. Data 

published by de Gonzalez et al (2015) shows no significant difference in the development of secondary 

cancers between patients treated with high and low energy radiotherapy, whereas Bednarz et al (2010) 

concluded that there was an excess risk attributable to neutron contamination. 

Professor David Followill of the MD Anderson Cancer Centre, Texas and Professor Fridtjof Nüsslin of 

the University Hospital, Munich have debated the contaminant neutron issue in 2007 (Followill and 

Nüsslin). Each acknowledged the presence and potential risk posed by neutron contamination in high 

energy radiotherapy beams. The point of disagreement between the two authors is whether or not the 

benefits of using higher energy beams outweigh the risks posed by neutron contamination. Followill’s 

argument is that as patient survival improves it becomes more important to consider the risk of 

untargeted dose inducing a secondary cancer later in life. Kry et al (2005a) have published data showing 

a 2 – 5 % increase in absolute risk of fatal secondary malignancy resulting from the use of high energy 

beams in IMRT. Nüsslin’s argument focussed on the benefits of high energy treatments; deep 

penetration, steeper dose gradients and skin dose reduction. He rejects the increased risk of cancer 

attributed to the use of higher energy beams, pointing out that only around 10% of secondary cancers 

are radiation induced. 

Without a consensus on the risk benefit analysis of high energy beams and neutron contamination, 

clinicians are left with a level of uncertainty regarding the safety of high energy beams particularly with 

IMRT, VMAT, TBI and SABR techniques. The neutron risk needs to be more accurately quantified to 

deliver a conclusion to the question of high energy radiotherapy. 

The difficulty with accurate quantification of the neutron risk lies in the difficulty of neutron dosimetry. 

In the environment of a medical linear accelerator, the high photon fluence can overwhelm the response 

of detectors even with low photon sensitivity. The dosimetry of neutrons is further complicated by the 

strong energy dependence of interaction cross sections in most materials. Additionally, binding energy 

from target nuclei is often released during neutron interactions, and the amount is highly dependent on 

the target nuclide species. The lack of equivalence between neutron detectors and human tissue requires 

the application of a conversion factor to the response of the detector to acquire the dose to tissue under 

the same conditions. The difficulty arises in the energy dependence of this conversion factor. 
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The challenges of neutron dosimetry in the radiotherapy environment have long been recognised. (13)  

McCall et al (1979) provides a list of the difficulties in neutron measurement which have frequently led 

to errors in reported data. The main points are summarised here; 

1. The response of detectors to the high photon flux is often ignored. 

2. Assumptions made about the neutron energy spectrum, leading to incorrect values for detector 

efficiency when measuring fluence. 

3. Assumptions made about the neutron energy spectrum, leading to incorrect interpretation of 

dosimeter response when measuring dose equivalent. 

4. Assumptions made about the neutron energy spectrum, leading to incorrect conversion of 

fluence to dose equivalent. 

5. Assumptions made about the inverse square relationship between the source intensity and the 

distance from the source. The scattered component of the neutron field is nearly uniform 

throughout the room and a measurement at a given distance cannot be simply extrapolated to 

the source strength. 

Although the susceptibilities of neutron dosimetry to errors were raised as early as 1979, the main 

sources of uncertainty and error in neutron dosimetry remain in the assumption of neutron energy 

spectra. So many aspects of detector characteristics, neutron interaction cross section, and the 

conversion of signal to dose, rely on accurate information of the energy of the neutrons to be measured. 

It is impossible to correctly interpret the response of a detector without evaluating the energy 

dependence of the detector. To then deduce the resulting risk to tissue, the strong energy dependence of 

the interactions in tissue must be well understood. 

3.2 Neutron detection 

3.2.1 Neutron interactions in matter 

Neutron detection and dosimetry is more challenging than the photon or electron case. Neutron 

interactions may be classified as elastic, inelastic, non-elastic, capture and spallation interactions 

(Auxier et al 1968).  Neutrons elastically scattered by nuclei maintain their kinetic energy in the centre 

of mass reference frame, but may change direction. They impart kinetic energy in the form of recoil to 

the target nucleus. Inelastic scattering places the target nucleus in an exited state, often resulting in the 

emission of a secondary gamma-ray. The neutron is re-emitted with a different kinetic energy and 

direction and the excited target nucleus recoils accordingly. Non-elastic scatter refers to nuclear 

interactions in which a secondary particle other than a neutron is emitted. These interactions can be 

exothermic or endothermic, depending on the binding energies of the target nuclei and secondary 

particles. Neutron capture is a non-elastic interaction occurring at a low neutron energy (Alpen 1997). 

Elastic and inelastic scattering interactions provide the most efficient energy exchange when target 

nuclei are of a similar size. The 1H nucleus is the most effective example, composed of only a single 

proton, which is almost identical in mass to a neutron, the energy exchange from a knock on type 

collision is highly effective in transferring energy from the neutron to the system. Materials high in 

hydrogen e.g. water, are highly effective as neutron moderators, materials which “slow down” neutrons, 

absorbing their kinetic energy. Neutrons which have been moderated to the point of equilibrium with 

the surrounding medium are referred to as thermal neutrons. Neutrons are categorised into energy or 

temperature regimes according to their kinetic energies (shown in Table 1). The value assigned to 

“thermal” neutron energy is calculated from the Maxwell-Boltzmann distribution function of velocities 

at 293 K.  
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Table 1: Neutron temperature categories and their corresponding energy ranges (Carron 2006). 

Neutron temperature Energy 

Cold < 0.025 eV 

Thermal 0.025 eV 

Epithermal 0.025 – 0.4 eV 

Cadmium 0.4 – 0.6 eV 

Epicadmium 0.6 – 1 eV 

Slow 1 – 10 eV 

Resonance 10 – 300 eV 

Intermediate 300 eV – 1 MeV 

Fast 1 – 20 MeV 

Relativistic > 20 MeV 

 

A neutron detector can be designed to measure the recoil energy deposited by neutrons as they undergo 

elastic or inelastic scattering. Neutrons may also interact via a nuclear interaction such as neutron capture 

or neutron absorption with the emission of another particle, such as (n,α) or (n,p) interactions. Nuclear 

interactions such as these can result in the release of a significant quantity of nuclear binding energy. 

This may result in a mismatch between the dose to the detector material and the dose which would be 

received by human tissue under the same conditions. 

3.2.2 Neutron detectors and dosimeters 

The quantity absorbed dose is useful because it can be measured and correlated with biological effects. 

Dosimetry, the measurement of dose, in the case of neutron radiation is complicated by the nuclear 

energy released by interactions with specific nuclei. In addition, the dose absorbed by a detector must 

be correlated with the dose to human tissue, which is made up of nuclei which generally differ from 

those found in neutron dosimeters. Neutron interactions in tissue involve a completely different set of 

nuclear reactions, releasing different amounts of energy, resulting in a different absorbed dose. The 

difference between the absorbed dose to the detector and the absorbed dose to tissue is dependent on the 

energy of the neutrons. 

Alternatively, the energy deposited in a detector material can be interpreted in terms of the incident 

neutron fluence, and operated therefore as a detector rather than a dosimeter. The incident neutron 

fluence can be used to determine the dose that would be absorbed by tissue under the same exposure 

conditions if the energy deposition profile in tissue is known. Figure 3 shows the neutron detectors and 

dosimeters used in the reviewed literature to evaluate the photoneutron contamination from high energy 

medical linear accelerators.  A summary of the advantages and disadvantages of each detector is given 

in Table 2. 
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Figure 3: The popularity of various neutron detectors and dosimeters for the evaluation of photoneutrons 

produced by medical linear accelerators from 130 reviewed publications from 1973 to 2015.  

Activation foils can be used to determine neutron fluence. The induced activity is related to the neutron 

cross section (interaction probability) and the fluence of incident neutrons. It is thus possible to calculate 

the neutron fluence from the measured activity of a sample exposed to a neutron source. Gold, indium 

and aluminium are commonly used as they have high neutron cross sections and half-lives ranging from 

minutes to hours for convenient read out time. 

Thermoluminescence dosimeters (TLDs) are commonly used for radiotherapy dosimetry. 

Manufacturing TLDs from materials with differing neutron interaction cross sections provides a means 

for distinguishing between the thermoluminescence caused by photon radiation and that caused by 

neutron radiation. Lithium fluoride TLDs enriched in 6Li and 7Li used in pairs are ideal for this 

application. 

Gas filled chambers, such as ionization chambers, proportional counters, Geiger-Müller tubes, and 

recombination chambers collect charge formed within the gas following radiation interactions. To 

measure neutrons this charge must be caused by secondary radiation formed following a neutron 

interaction. The walls of such chambers are often lined with boron to produce secondary alpha particles 

or a similar material with a high neutron cross section. They can be used paired with a chamber 

manufactured from low neutron cross section material and used in pairs to discriminate between photon 

and neutron doses (Fujii et al 2011). 

Superheated drop detectors or bubble detectors are composed of materials in which gas bubbles are 

compressed into a superheated liquid. The liquid decompresses into macroscopic gas bubbles when 

exposed to neutrons (d'Errico 1999). They are particularly attractive to radiotherapy applications 

because they are insensitive to x-ray and electron radiation. The chemical composition of the detector 
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can be varied to produce detectors sensitive to neutrons of various kinetic energies. These can be used 

in conjunction to acquire information about neutron energy spectra (Apfel and d’Errico 2002). 

Track etch detectors utilise the physical damage caused by neutrons incident on materials. Neutrons 

incident on the material cause “damage tracks” which can be chemically developed or electrochemically 

“etched” to improve visibility. In practise track etch detectors are usually combined with a radiator 

material, depending on the energy regime of the neutrons to be measured. Thermal neutrons are usually 

captured with a material such as lithium or boron, whereas polyethylene can be used for intermediate or 

fast neutrons (Fiechtner and Wernli 1999). The radiator material produces high energy recoil ions and 

these can inflict damage on the detector material. The tracks can be counted using commercially 

available automatic readers in which light transmission through the material is measured (Tanner et al 

2005). 

Neutrons incident on microelectronic devices may cause single event upsets and single-word multiple-

bit upsets in static random access memories (Johansson et al 1999). The number of upsets can be 

correlated with the incident neutron fluence. The rate of occurrence of upsets is dependent on the 

incident neutron energy spectrum. 

Scintillation detectors can be used to measure neutrons through the secondary charged particles 

produced by their interactions. Organic materials are often used because of their high hydrogen content 

which moderates the incident neutron energy spectrum and produces recoil protons. The scintillation 

material can also be doped with a high neutron cross section material such as lithium-6 or boron-10 to 

produce secondary alpha particles, which are then detected (Fischer et al 2006). Time-of-flight 

measurements can be used to provide energy spectra of the incident neutrons. 

Imaging plates or radiochromic films have a low sensitivity to neutrons, but can be combined with a 

layer of conversion material such as boron-10 or lithium-6 which “converts” the incident neutrons into 

charged particles which can be more easily detected (Takahashi et al 1996). 

Direct measurement of the biological effect caused by neutron irradiation is perhaps the least convoluted 

method for assessing the risk posed by neutron radiation. In vitro rodent cells have been used to quantify 

neutron effective dose in high energy radiotherapy (Hall et al 1995). However, there is a high degree of 

uncertainty in this technique because of the photon sensitivity of the cells and the inherent variations in 

biological processes leading to development of malignancies. There are also inherent differences 

between in vivo and in vitro results as well as the added complication of transferring a rodent model of 

radiation damage to a human biological system.  

Although not neutron detectors in their own right, Bonner spheres are frequently used in neutron 

measurement. Polyethylene spheres of various diameters moderate neutrons to different degrees. By 

measuring the neutron fluence at the centre of different spheres using one of the aforementioned 

detectors, information about the energy spectrum of incident neutrons is obtained. The neutron spectrum 

is obtained by iterative “unfolding” from an initial “guess” spectrum, the accuracy of which has been 

tested by Vega Carrillo and Iñiguez de la Torre (2002). 

A summary of the advantages and disadvantages of the heretofore described detectors are summarised 

in the following table. 
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Table 2: Summary of neutron detectors which have been used for measuring neutron contamination in high energy radiotherapy.  

Detector Advantages Disadvantages 

Activation foils  Small in size, high resolution measurements can be made. 

 Photon insensitive, depending on the material chosen. 

 Reusable, following decay to background. 

 Cross section dependence on neutron energy spectrum. 

 Secondary detector such as gamma spectroscopy system required. 

 Absolute efficiency for gamma detection must be determined. 

TLD pairs  Small in size, high resolution measurements can be made. 

 Reusable after annealing at high temperatures. 

 Cross section dependence on neutron energy spectrum. 

 Photon sensitivity. 

Gas chambers  Familiar 

 Reusable. 

 Can be manufactured from “tissue equivalent” gas, such as 

methane. 

 A ‘conversion material’ is required to convert the neutral neutron 

particles into ionising particles. 

 The interaction with the conversion material is energy dependent. 

 These detectors generally have a low efficiency. 

Superheated drop 

detectors 

 Can be specifically formulated to be sensitive to different energy 

regimes. 

 The gas bubbles can be recompressed for a reusable detector. 

 Bubbles can be automatically counted by an automatic reader. 

 Manual counting of bubbles is time intensive. 

 Available energy regimes for customised sensitivity are coarse, and 

spectral information is not easily acquired. 

 Coarse spatial resolution. 

Track etch 

detectors 

 Small in size, high resolution measurements can be made. 

 Photon insensitive. 

 

 Manual counting of tracks is time intensive. 

 Low sensitivity. 

 A ‘conversion material’ is required to convert the neutral neutron 

particles into ionising particles. 

 The interaction with the conversion material is energy dependent. 

Static random 

access memories 

 Photon insensitive.  

 Real time response. 

 Low sensitivity. 

 Sensitivity is dependent on the neutron energy spectrum. 
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Scintillators  Time-of-flight measurements can provide spectral information.  Low efficiency. 

 Photon sensitive. 

Imaging plate  Can provide high resolution 2D information.  A ‘conversion material’ is required to convert the neutral neutron 

particles into ionising particles. 

 The interaction with the conversion material is energy dependent. 

Rodent cells 

 

 Provides a direct measure of the biological damage inflicted.  Requires facilities and expertise to culture and analyse cells. 

 Sensitive to photon radiation. 
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3.2.3 Choice of detector 

To evaluate the risk posed by neutron contamination in high energy radiotherapy, neutron dosimetry in 

mixed γ-n fields is necessary. Radiotherapy linacs are designed to produce a very high fluence of x-rays 

which dwarfs the small fluence of contaminant neutrons produced. This presents challenges for neutron 

detection and dosimetry. A suitable detector and robust dosimetric methodology is required to achieve 

accurate results in the presence of the high x-ray fluence. 

Ideally, neutron detectors for use with medical linear accelerators require a high sensitivity to neutrons 

and little or no sensitivity to x-ray or electron radiation. If detectors are not insensitive to x-rays, there 

needs to be a way to determine the proportions of the detector response caused by x-rays and caused by 

neutrons. 

In an ideal world, detector response would not change with the energy of the neutrons. Neutron 

interaction cross sections for detector materials are always dependent on the energy of the neutrons to 

some extent. However, if the form of the energy dependence is relatively simple, an accurate result can 

be obtained without detailed information about the neutron energy spectrum of interest. 

To achieve good spatial resolution, detectors should be as small as practicable. Spatially resolved dose 

information is necessary to evaluate the risk to patients. If in vivo neutron measurements such as those 

published by Lonski, Keehan et al (2017) are to be performed, it is useful if detectors are small, free of 

wires and do not perturb the treatment beams. If the detectors are required to be measured or “read out” 

following irradiation by neutrons it is important that the read out technique is reliable and practical. It is 

cost effective and convenient if detectors are reusable.  

Table 3 gives a summary of these properties for the detectors discussed in §3.2.2.  Activation foils and 

TLDs offer many of the desirable properties described above. The primary advantage of activation foils 

for radiotherapy applications is their insensitivity to photons. Activation foils are almost always photon 

insensitive, except for some materials like gold which can be activated by high energy photons as well 

as neutrons. The method for quantifying the neutron fluence from the activity of an exposed material 

can be derived from the first principles of radioactive decay. They are easy to read out following 

irradiation and can be reused following decay of the radioactive products produced, which can be quite 

soon after irradiation depending on the half-life of the isotope produced. The activation material can be 

chosen to optimise the parameters required for the intended use. High cross section materials can be 

chosen for a more sensitive detector, short half-life materials for faster read out and reusability. More 

abundant elements can be chosen for a cost effective solution. This makes them a dynamic and flexible 

choice of detector.    

TLDs are well characterised for use as x-ray dosimeters. Protocols for measuring light emitted following 

irradiation and annealing at high temperatures are established in many radiotherapy departments. In 

radiotherapy their sensitivity to photons is a disadvantage for neutron dosimetry, however the 

availability of TLD materials enriched in specific isotopes, which can be used in pairs allows for 

distinction between the detector response caused by photons and by neutrons. Their existing common 

usage as in vivo dosimeters attests to their advantages in radiotherapy applications, their small size, 

reliability and accuracy are all benefits which apply also to their properties as neutron detectors. 
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Table 3: Summary of neutron detectors and their properties 

Detector Photon sensitive Read out Reusable Spatial resolution Real time 
Peripherals  

(cables etc.) 

Activation foils 
No – material 

dependent 

Gamma-ray 

spectroscopy 

Yes – half-life 

dependent 
Centimetres No None 

Thermoluminescence 

dosimeters 
Yes 

Automatic TLD 

reader 

Yes – annealed at 

high temperature 
Millimetres No None 

Superheated drop 

detectors 
No Light transmission 

Yes – bubbles re-

compressed 
Centimetres No None 

Track etch detectors No Light transmission No Centimetres No None 

Ion chambers 
Yes – material 

dependent 
Charge collection Yes 

Centimetres to tens 

of centimetres 
Yes Yes 



3. Comprehensive evaluation of literature 

22 

 

3.3 Activation foils 

Enrico Fermi (1934) first reported on the production of radioisotopes following interaction with 

neutrons. He produced neutrons by bombarding beryllium powder with alpha particles. He observed 

radioactivity in aluminium and fluorine which remained even after the neutron source was removed. 

The amount of induced activity is related to the neutron cross section (interaction probability) and the 

fluence of incident neutrons. It is thus possible to calculate the neutron fluence from the measured 

activity of a sample exposed to a neutron source.  

To accurately calculate the neutron fluence the sample and detector must be characterised. The isotopic 

fractional composition of the sample must be known. From this, the number of target nuclei can be 

calculated and the neutron interaction cross section for a given neutron energy spectrum can be 

determined. The total efficiency of the detector is needed to convert the number of detections to the 

absolute activity of the sample. The efficiency of the detector depends on the physical geometry of the 

source-detector arrangement as well as the type and energy of emissions emanating from the activated 

sample. The irradiation time, counting time and any cool off period in between are needed to correct for 

the decay of the activated sample. 

 

Figure 4: The relative popularity of activation foil materials for the measurement of photo-neutrons produced by 

medical linear accelerators as determined by literature review of peer reviewed work published between 1976 

and 2015.  

 

The materials used for neutron measurements in high energy radiotherapy are shown in Figure 4. Gold, 

indium and aluminium are the three most popular materials. These materials have relatively high cross 

sections for neutron capture interactions (see Figure 5) and half-lives ranging from minutes to days for 

convenient irradiation and measurement times (see Table 4). The detector used to measure the activity 

must be characterised so that the intrinsic efficiency of each emission energy of the activated isotope 

can be accounted.  
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Figure 5: Neutron capture cross sections for the three most popular activation foil materials; 115In, 197Au and 27Al 

(Chadwick et al 2011). 

Table 4: Properties of the three most popular activation foil materials; 115In, 197Au and 27Al. 

Sample 

material 

Naturally 

occurring 

isotopes 

Isotopic 

abundance 1 

Interaction Emissions of 

activated isotope 

Half-life of 

activated 

isotope 

Indium 113In 
115In 

4.29 % 

95.71 % 

InnIn 116m115   417, 819, 1097, 

1294 keV γ-rays 2 

54.29 minutes 2 

Gold 197Au 100 % AunAu 198197   412 keV γ-rays 3 2.6947 days 3 

Aluminium 27Al 100 % AlnAl 2928   1179 keV 4 2.245 minutes 4 

1 Rosman and Taylor (1999), 2 Blachot (2010), 3 Xiaolong (2009), 4 Basunia (2013) 

One of the main advantages of activation foils as a neutron detector for radiotherapy dosimetry is that 

they are typically photon insensitive. They can be manufactured as thin foils with small dimensions, to 

offer negligible perturbation of the neutron fluence and allow the potential for high resolution spatial 

data. They are easy to use provided there is a detector available to measure the absolute activity 

following irradiation. They are reusable, provided enough time is allowed for the sample to decay. 

The limitation of using activation foils to quantify neutron fluence is the high uncertainty. The cross 

section for neutron activation in most materials varies strongly with the energy of the incident neutron 

fluence. The cross section is highest at lower neutron energies, decreasing as the neutron energy 

increases. There are nearly always a complex series of resonance peaks such as those seen in Figure 5, 

which make it difficult to select an accurate single value for the interaction probability. The more 

accurately the neutron energy spectrum is known, the more accurately the net cross section can be 
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determined. The neutron energy spectrum usually has an associated high degree of uncertainty, as it can 

only be determined from Monte Carlo modelling or de-convolution of Bonner sphere measurements. 

Another limitation of using activation foils in a clinical setting is the need for a detector which can 

measure absolute activity with a low uncertainty. Gamma spectroscopy with either a sodium iodide 

(NaI) or a high purity germanium (HPGe) detector is commonly used to measure the activity of 

activation foil samples. NaI detectors are typically higher efficiency where HPGe can offer higher 

resolution. For measuring low activity samples lead shielding is often employed around the detector to 

reduce the detection of background radiation.  

3.4 Thermoluminescence dosimeters 

Thermoluminescence dosimeters (TLDs) are commonly used for the dosimetry of photons and electrons 

in radiotherapy. TLDs are crystalline materials containing dopants which form electron traps. Incident 

radiation causes the transfer of an electron into a trap, where it remains until heat is applied to release 

it. When heat is applied the electrons return to the valence band emitting photons. The output photons 

are measured and the charge they produce in a photomultiplier tube is collected. The charge collected is 

directly proportional to the energy absorbed from incident radiation (McKeever et al 1995).  

Lithium fluoride is a widely used TLD material for photon and electron dosimetry. There are two 

naturally occurring isotopes of lithium: 6Li (7.59%) and 7Li (92.41%). TLDs can be manufactured from 

lithium fluoride enriched in either of these two isotopes. 6Li and 7Li have differing neutron interaction 

cross sections (see Figure 6) which result in different responses in TLDs enriched in either isotope. 

TLDs enriched in 6Li or 7Li are also sensitive to photon and electron radiation and their total response 

is the sum of the responses caused by each radiation type (Spurný et al 1976). In this work LiF TLDs 

doped with magnesium, copper, and phosphorus have been used, because they have higher sensitivity 

than the traditionally available magnesium-titanium doped LiF TLDs. This allows them to be used out-

of-field for in vivo dosimetry of low doses as published in Lonski, Keehan et al (2017). 

 

Figure 6: The total neutron interaction cross sections (Chadwick et al 2011) for lithium-6, lithium-7 and 

fluorine-19, the only naturally occurring isotopes of lithium and fluoride (Rosman and Taylor 1999). 

Most publications using LiF TLDs enriched in 6Li and 7Li state that 6LiF TLDs are sensitive to both 

neutron and photon radiations and that 7LiF TLDs are sensitive to photon radiation only (Barquero et al 

2002, Chu et al 2011, Esposito et al 2008, Gregori et al 2002). It follows that if the photon sensitivity 

of each material is identical; the component of the response caused by incident neutrons is the difference 
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between the responses of each material irradiated together. However, the responses of the two materials 

are dependent on the energy of the incident neutrons. 

Figure 6 shows the total neutron cross sections for 6Li, 7Li and 19F. The probability of neutron interaction 

with 6Li is ~ 5000 barns compared to ~ 2.5 barns in 7Li for 1 meV neutrons (Chadwick et al 2011). 

However at higher energies, the cross sections of 6Li and 7Li don’t differ a great deal, and the resonance 

peaks in the 19F cross section begin to dominate. The energy deposited by a neutron which does interact 

with one of these three nuclei varies depending on the type of interaction which takes place (Spurný et 

al 1976, Tanaka and Takeuchi 1975). The dominating mode of neutron energy deposition in LiF TLDs 

is the (n,α) interaction with 6Li, which has a Q value of 4.78 MeV. 

The challenge of using TLDs for neutron dosimetry arises from this energy dependence. The validity of 

taking the difference between the responses of paired 6LiF and 7LiF TLDs is justifiable only at low 

neutron energies. Calibration of the TLD response to a given dose delivered by a standard neutron source 

of a given energy spectrum is only valid for measurements taken under an identical energy spectrum. 

Assuming 7LiF insensitivity at higher neutron energies results in underestimation of the calibration 

factor, and therefore underestimation of the dose to be measured.  

Glow curve analysis can be a useful mechanism for distinguishing between photon and neutron 

exposures for LiF:Mg,Ti materials. There is an interesting paper by Youssian and Horowitz (1998) 

which demonstrates a method for using glow curve analysis, specifically peak 4 to peak 5 ratios, to 

determine gamma dose for mixed field irradiations. However, the technique is only useful for scenarios 

where the gamma dose is less than 10% of the total dose, which is not usually the case in high energy 

radiotherapy. Salah et al (2007) provide a comparison of the glow curves of LiF:Mg,Cu,P, LiF:Mg,Ti, 

and 7LiF:Mg,Cu,P. The Mg,Cu,P doped TLD materials have a much simpler structure than the Mg,Ti 

doped TLDs, with only a single prominent dosimetry peak which is proportional to the exposure dose. 

This makes glow curve analysis less useful for the Mg,Cu,P materials which were used in this thesis. 

The advantage of using the newer Mg,Cu,P material is their higher sensitivity, which was useful for 

measuring doses outside the primary photon field of the linac. 

However, TLDs offer many advantages for radiotherapy dosimetry. Small and wireless, with a robust 

readout and annealing technique well established, they are commonly used for photon and electron 

dosimetry. Radiotherapy clinics often employ TLDs for routine dosimetry and many clinics have the 

capability to use, read and anneal these dosimeters. The use of TLDs for neutron dosimetry is 

complicated by their energy dependence and release of nuclear binding energy. If these can be properly 

accounted for, TLDs have potential as a promising tool for evaluating neutron risks in radiotherapy. 

3.5 Conclusion 

This chapter has provided an up-to-date evaluation of the relevant issues caused by neutron production 

in high energy radiotherapy. Although this has been the subject of scientific study for many years, there 

is by no means a consensus amongst experts. In order to begin addressing the challenge, a broad 

introduction is given covering a variety of neutron detectors and a deeply considered and extensive 

analysis of the properties of each detector is given. A discussion of the advantages and disadvantages of 

each detector type for use in the context of high energy radiotherapy is used to explain the choice of 

detectors used in this thesis. Finally a detailed discussion of the underlying physics for two specific 

detectors is given so that the reader may be prepared for the development of a robust methodology for 

calibration and use presented in the following chapter. 
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4. Methods for neutron detection and dosimetry  
In order to determine the risk resulting from contaminant neutrons in high energy radiotherapy, the 

degree of neutron contamination must be quantified. The density of neutrons in a given area is known 

as the fluence, ϕ. The flux is the rate at which neutrons pass through an area. Fluence and flux are often 

used interchangeably in peer reviewed publications to describe the quantity which is technically the 

fluence rate or flux density with units of cm-2∙s-1. The simplest quantification of a neutron field is the 

fluence rate, which simply provides a measure of the number of neutrons. This cannot be directly related 

to the risk posed by a given neutron field and thus the quantity dose is needed. The absorbed dose, D, 

deposited in a material is the energy absorbed per unit mass of the material. The equivalent dose, H, is 

weighted to account for the different amount of damage done by different radiation types depositing the 

same amount of energy.  

The measurement of neutrons is far more complex than the measurement of photon or electron dose 

which are more commonly required in radiotherapy. Thermoluminescence dosimeters (TLDs) are often 

used for routine dosimetry in medical physics. Selection of specific isotopes for use in the manufacture 

of TLDs allows neutron sensitivity to be enhanced or diminished to provide means for quantification of 

the neutron field, but not necessarily the quantity of interest, dose equivalent. Activation foils are a 

common method of neutron fluence measurement in which the amount of activation produced in a 

material can be used to calculate neutron fluence. Conversion of a measured neutron fluence to an 

absorbed dose or dose equivalent requires calculation of the energy deposited in tissue for a given 

neutron fluence. This conversion is strongly dependent on the energy distribution of the neutron fluence, 

and so the energy spectrum is also required. 

Whilst this chapter is primarily a “methods” chapter, some results are included to support the techniques 

chosen to acquire the bulk of results obtained in later chapters of this thesis. The development of robust 

methodology for neutron detection in mixed γ-n fields is presented here. This requires interpretation of 

the responses of 6Li and 7Li enriched LiF TLDs irradiated in pairs and the response of irradiated 

activation foils.  To evaluate risk, absorbed dose or dose equivalent is the quantity of interest and for 

this the energy spectrum of the neutrons to be measured is required, which is obtainable from accurate 

Monte Carlo modelling of the measurement scenario. 

4.1 Lithium-6 and lithium-7 enriched lithium fluoride dosimeters 

Lithium fluoride thermoluminescence dosimeters (TLDs) are well established for measuring x-ray doses 

(Kron 1999). Lithium has two naturally occurring isotopes; 6Li (7.59 %) and 7Li (92.41 %) (Rosman 

and Taylor 1999), which have extremely different neutron interaction cross sections (see Figure 6). LiF 

TLDs can be manufactured from material enriched in either isotope and have very different probabilities 

for neutron interaction. The responses of 6LiF and 7LiF TLDs exposed to neutrons reflect the difference 

in probability of interaction. 

For low energy neutrons, the cross section for 6Li greatly exceeds that of 7Li. Thermal neutrons with 

kinetic energy of 2.53 × 10-2 eV have a total interaction cross section of 939 barns with 6Li and only 

1.09 barns with 7Li. For 6LiF and 7LiF TLDs exposed to a mixed γ-n field where the neutrons are low 

energy neutrons only, the component of the response caused by the neutron radiation only, Rn, can be 

determined from the difference in response between a 6LiF and 7LiF TLD exposed together (see equation 

2). I.e. 7LiF TLDs are insensitive to thermal neutrons. 

LiFLiF
n 76 RRR   

[ 2 ] 
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4.1.1 Neutron interactions with 6Li, 7Li and 19F 

As well as differing interaction probabilities, there are also differences in the types of interactions which 

occur between the incident neutrons and the three isotopes present in the LiF TLDs (see Table 5). These 

interactions are predominantly endothermic, with the exception of the 6Li(n,αt) reaction which is 

exothermic with a Q value of +4.78 MeV. Despite the prevalence of endothermic interactions, all these 

interactions cause a net release of kinetic energy when the incident neutrons have sufficient kinetic 

energy. 

Table 5: Neutron interactions which occur with 6Li, 7Li and 19F nuclei. 

6Li 7Li 19F 

Elastic scatter 1,2 Elastic scatter 1,2 Elastic scatter 1,2 

Inelastic scatter 1,2 Inelastic scatter 1,2 Inelastic scatter  2 

(n,ndα) 1,2 (n,nαt) 1,2 (n,p) 1,2 

(n,2n) 1,2 (n,2n) 1,2 (n,α) 1,2 

(n,p) 1 (n,2nαd) 1,2 (n,2n) 2 

(n,αt) 1,2 (n,d) 1,2  

(n,2npα) 2   

1Interaction included by Tanaka and Takeuchi (1975) 2Interaction included by Spurný et al (1976) 

n is a neutron, p is a proton or 1H nucleus, d is a deuteron or 2H nucleus, t is a triton or 3H nucleus and α is an 

alpha or 4He nucleus. 

 

The papers by Tanaka and Takeuchi (1975) and Spurný et al (1976) each posit that the response 

measured from TLDs is directly proportional to the kerma, K, released by neutrons of specific energies, 

En, in the material. Thus, the ratio of the responses caused by neutrons in two TLD materials will be 

equal to the ratio of the kerma deposited by neutrons of a given energy in the materials. 

nLiF

nLiF

nLiF

nLiF

K

K

R

R

,

,

,

,

7

6

7

6

  [ 3 ] 

 

The average kerma per neutron can be calculated using equation 4 for each of the interactions shown in 

Table 5. The kerma, K, is the sum of the mean energy εlji released by interactions with nuclear species l, 

by interactions j, with interaction products i multiplied by the cross section σlj for that interaction. This 

is then multiplied by the number of nuclei Nl and summed over all nuclear species present. 

    
j i

nljnlji

l

ln EENEK )(  
[ 4 ] 

The neutron interactions are considered to take the form;  

'iiln   [ 5 ] 
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Where n is the incident neutron, l is the target nucleus, i interaction product whose energy is being 

calculated and i' is the sum of the remaining interaction products. 

For elastic scatter neutron interactions, the kinetic energy of the neutron is unchanged (in the centre of 

mass reference frame), but its velocity vector may change direction, causing recoil of nuclei in the TLD 

material. The average recoil energy can be calculated from simple kinematics (see equation 6) if the 

neutron energy is below relativistic. A neutron velocity of 10% of the speed of light corresponds to a 

neutron kinetic energy of 9.26 MeV, so neutrons below this can be considered non-relativistic (Walker 

2008). Some sample neutron energy spectra produced by linacs will be presented in §4.1.4, for now, 

consider a mean neutron energy of about 0.5 MeV. This corresponds to only ~3 % of the speed of light 

and may be safely considered non-relativistic. 

 
 

  cos1
2

2



 n

in

in
nlji E

mm

mm
E  [ 6 ] 

Equation 6 gives the average recoil energy from elastic scatter of neutrons where l, is the target nucleus 

which scatters the neutron, n, and i, the interaction product will be the neutron. θ is the scattering angle 

in the centre of mass reference frame. Equation 7 gives the average energy released by an inelastically 

scattered neutron. Q is the excitation energy of the scattered nucleus (given in Table 6). 

 
 

QE
mm

mm
E n

in

in
nlji 




2

2
  [ 7 ] 

 

Table 6: The Q values for inelastic scatter of neutrons with 6Li, 7Li and 19F nuclei (Spurný et al 1976). 

Nucleus Q (MeV) 

6Li -3.560 

7Li -0.478 

19F -0.109 

 

 

The average energy deposited by the other interactions which release charged particles is given by 

equation 8; 

 
  

Q
mm

m
E

mmmm

mmmm
E

ln

i
n

iiln

ilin
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
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
 '

'

'  [ 8 ] 

 

 

The mean energy must be calculated separately for each charged particle i produced by the interaction, 

where i' is the sum of the other products of the interaction. For example, in the interaction 6Li(n,α)t, 

there are two charged interaction products; the alpha particle and the triton. The mean energy of the 

alpha and of the triton must be calculated separately using equation 8 and summed in equation 4. 

Applying equations 4 – 8 to the interactions given in Table 5 gives the kerma in MeV/g per incident 

neutron of a given energy. This can also be calculated using Monte Carlo radiation transport modelling. 

To validate the analytical method used in this study MCNP6 has been used to model 3 × 3 × 1 mm3 TLD 
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chips composed of NatLiF, 6LiF and 7LiF. A spherical source (Ø = 1 cm) of isotropic monoenergetic 

neutrons was placed 10 cm from the TLDs. The total energy deposition averaged over a cell and the 

neutron fluence averaged over the cell were scored and these results were used to calculate the dose 

deposited per incident neutron. The MCNP6 results are obtained from standard tally 4, which scores the 

average flux over a cell in particles/cm2 and standard tally 6+ which scores the total heating over a cell 

in (MeV/g). The kerma per incident neutron is the tally 6+ result divided by the tally 4 result. The 

ENDF/B-VII.1 Release 0 was used for all simulations throughout this work. 

4.1.2 Kerma in NatLi, 6LiF and 7LiF  

The results of the analytical method of calculating the kerma per neutron (using equations 4 – 8) are 

shown in Figure 7. A constant ratio between 6LiF and 7LiF is apparent below ~ 2 keV. Above this energy 

the resonance peaks in the 19F elastic scatter cross section begin to dominate. The 6Li and 7Li resonance 

peak at ~ 220 keV is also an obvious feature. There is a sharp rise in the kerma in 6LiF at around 4 MeV. 

There is clearly strong energy dependence in the kerma released in 6LiF and 7LiF TLDs exposed to 

neutrons. To validate these calculations, the dose per neutron in TLD materials has also been modelled 

using MCNP6. The dose in the three TLD materials is calculated for a number of monoenergetic neutron 

sources and the results are shown in Figure 8. The difference between the two calculation methods is 

shown in Figure 9. There is approximately a 50 % mismatch between the two data sets around the 19F 

elastic scatter resonances. The main difference comes from the absence of the steep increase above 4 

MeV in the MCNP6 calculated results. 

This arises from the physical differences between the quantities calculated. The analytic calculation 

determines the kerma, kinetic energy released to mass, whilst the Monte Carlo model determines the 

energy deposition averaged over the cell. The cell in this case was a 3 × 3 × 1 mm3 TLD chip. In the 

analytical calculation any interactions within the cell, which release energy are counted toward the total. 

In the Monte Carlo simulation only those interactions which result in energy being deposited within the 

cell contributed. The larger values in Kerma seen above 4 MeV indicate energy which has been released 

within the cell, but where the dose is deposited outside of the volume. The Monte Carlo simulation 

accurately reflects this. Kerma is approximately equal to dose under some circumstances, where the 

energy of the radiation is sufficiently low and charged particle equilibrium is valid. For TLD chips of 3 

× 3 × 1 mm3 kerma is equal to dose only for neutron radiation below 4 MeV.  

The analytic method of calculation is much less computationally demanding (in the order of one second 

compared to one day) and is sufficiently accurate for neutron energies below about 4 MeV. This could 

potentially be advantageous in provided a quick analytical estimate for the energy dependence of TLDs 

rather than full scale Monte Carlo modelling, which may be time consuming. 
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Figure 7: The kerma per incident neutron in NatLiF, 6LiF and 7LiF calculated analytically using equations 4 – 8 

for the reactions given in Table 5. 

 

Figure 8: The average energy deposited per incident neutron in NatLiF, 6LiF and 7LiF calculated using MCNP6 

total heating tally t6+ and neutron fluence tally 4. 
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Figure 9: The percentage difference (MCNP minus Analytic) between the two methods of calculation. Panels (a) 

and (b) show different scales to illustrate the details in the data at low energies (a) and the larger discrepancy in 

the above about 4 MeV (b). 

 

The TLDs used in this study were doped with magnesium, copper, and phosphorus for extra sensitivity. 

Previous work in the field has usually used magnesium-titanium doped LiF TLDs. The dopant materials 

are present in very low quantities and neutron interactions with these materials have been excluded from 

the above calculations due to the negligible contribution to dose absorbed in the dosimeters. The relative 

concentrations of all isotopes present in natLiF, 6LiF and 7LiF doped with either Mg,Ti or Mg,Cu,P are 

given in Table 7. The cross sections for neutron interaction with each isotope are shown in Figure 10 

and Figure 11. The cross section, or interaction probability, has been weighted according to the amount 

of material present in 6LiF:Mg,Ti and 6LiF:Mg,Cu,P for demonstration. The cross sections for the 

lithium and fluorine nuclei, which are present in the highest quantities, are several orders of magnitude 

higher than those of the dopants. It is assumed that interactions with the dopant materials do not present 

a significant contribution to the ratio of the signal read out from the TLDs following exposure to neutron 

radiation. The methods used in the thesis might be more difficult to apply to Mg,Ti doped TLDs because 

of the supralinear behaviour above 2 Gy. The Mg,Cu,P doping provides a higher signal, and has a very 

linear dose-response behaviour. The superior properties of this material will likely cause it to replace 

the older Mg,Ti materials in the future. The neutron spectra produced by medical linear accelerators are 

investigated in §4.1.4. 
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Table 7: The isotopic composition of natural and enriched LiF TLD materials for Mg,Ti and Mg,Cu,P dopants. 

The amount of dopant was determined from the elemental concentrations published by Bilski (2002) weighted 

according to their natural abundance (Rosman and Taylor 1999). 

Isotop

e 

natLiF:Mg,T

i 

TLD100 

natLiF:Mg,Cu,

P 

TLD100H 

6LiF:Mg,T

i 

TLD600 

6LiF:Mg,Cu,

P 

TLD600H 

7LiF:Mg,T

i 

TLD700 

7LiF:Mg,Cu,

P 

TLD700H 

6Li 3.79 % 3.7 % 47.79 % 47.08 % 0.015 % 0.015 % 

7Li 46.20 % 45.51 % 2.20 % 2.17 % 49.98 % 49.24 % 

19F 49.99 % 49.25 % 49.99 % 49.25 % 49.99 % 49.25 % 

24Mg 0.0095 % 0.16 % 0.0095 % 0.16 % 0.0095 % 0.16 % 

25Mg 0.0012 % 0.02 % 0.0012 % 0.02 % 0.0012 % 0.02 % 

26Mg 0.0013 % 0.02 % 0.0013 % 0.02 % 0.0013 % 0.02 % 

46Ti 0.0001 % - 0.0001 % - 0.0001 % - 

47Ti 0.0001 % - 0.0001 % - 0.0001 % - 

48Ti 0.0010 % - 0.0010 % - 0.0010 % - 

49Ti 0.0001 % - 0.0001 % - 0.0001 % - 

50Ti 0.0001 % - 0.0001 % - 0.0001 % - 

31P - 1.25 % - 1.25 % - 1.25 % 

63Cu - 0.035 % - 0.035 % - 0.035 % 

65Cu - 0.015 % - 0.015 % - 0.015 % 
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Figure 10: The neutron interaction cross sections (Chadwick et al 2011) for all nuclei present in 6LiF:Mg,Ti, also 

known as TLD600, are shown. They are weighted according to the amount of each material present as shown in 

Table 7. The dominant materials are shown by solid lines and the dopants as dashed or dotted lines. These are not 

intended to be individually considered, but rather are shown to illustrate the magnitude difference in the interaction 

probabilities for the bulk and dopant materials. 

 

Figure 11: The neutron interaction cross sections (Chadwick et al 2011) for all nuclei present in 6LiF:Mg,Cu,P, 

also known as TLD600H, are shown. They are weighted according to the amount of each material present as 

shown in Table 7. The dominant materials are shown by solid lines and the dopants as dashed or dotted lines. 

These are not intended to be individually considered, but rather are shown to illustrate the magnitude difference 

in the interaction probabilities for the bulk and dopant materials.  
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4.1.3 Calibration of 6LiF and 7LiF for neutron dosimetry 

The energy dependence of the neutron response of TLDs has implications for their calibration and use 

as detectors or dosimeters. The assumption that 7LiF TLDs are “insensitive” to neutrons is only valid 

for neutron energies below about 2 keV. Isotopic and fission neutron sources such as californium-252, 

americium-beryllium and americium-boron predominantly emit neutrons with higher energies (see 

Figure 12). The TLD response becomes more complex to interpret under these circumstances as 7LiF 

becomes more sensitive to neutrons as the energy increases. MCNP6 has been used to calculate the 

average energy deposited per incident neutron in natLiF, 6LiF and 7LiF from incident neutrons of the 

spectra shown in Figure 12 in the same geometry as described in §4.1.1. The neutron spectra produced 

by medical linear accelerators are presented in §4.1.4. 

 

 

Figure 12: The neutron energy spectra of 241AmB, 241AmBe and 252Cf neutron sources (ISO8529-1 2001). 

 

If TLDs are given a known dose from a standard isotopic or fission neutron source, the difference 

between the responses of 6LiF and 7LiF is smaller than the proportion of the response caused by neutrons 

(see Figure 13). A calibration factor determined under these conditions could be overestimated by as 

much as 131 % (see Table 9). If the TLDs are to be used for dosimetry under the same neutron spectrum 

as the calibration source, the calibration factor can be applied without consideration of the energy 

dependence. But care should be taken that the calibration factor is only applied to measurements made 

under the exact same conditions as the calibration. The source should have the same energy spectrum, 

and the exposure geometry should also be kept constant. The presence of scattering and moderating 

materials has the effect of reducing the kinetic energy of the neutrons therefore changing the response 

behaviour of the TLDs. 
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Figure 13: The average energy deposited per incident neutron calculated for the neutron energy spectra shown in 

Figure 12 calculated using MCNP6. 

The response of LiF TLDs exposed to mixed γ-n fields also includes a component due to the photon 

dose. The total response of the TLD is the sum of the neutron and photon components of response (see 

equation 9). If the energy spectrum of the neutrons is known, the ratio of the energies deposited from 

neutron interactions in each material can be calculated. The ratio of the energies deposited by neutrons 

in each material is assumed to be directly proportional to the ratio of the TL responses of each material 

(see equation 3). The neutron component of the response of TLD600H can be calculated as shown in 

equation 10. k(E) is defined in equation 11 and functions as an energy dependence correction factor for 

TLDs irradiated by neutrons with energies above ~ 2 keV. 
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The k factors for three reference spectra (241AmB, 241AmBe and 252Cf ) have been calculated using the 

MCNP6 results shown in Figure 13 and are shown in Figure 14 and Table 8. The mean energy of each 

spectrum has been calculated according to Khan and Gibbons (2014) and is also shown in Table 8. The 

energy spectrum of 241AmBe has the highest mean energy (4.05 MeV) and gives the highest k factor 

(see Table 8). This is consistent with the incident energy vs. energy deposited relationship shown in 

Figure 8, where the lower energy neutrons show a constant ratio of energy deposited in 6LiF to energy 

deposited in 7LiF but which varies strongly as incident energy increases. 

 

Figure 14: The energy correction factor k which is multiplied by the difference between the responses of 6LiF 

and 7LiF to attain the component of the TL response of 6LiF attributable to neutrons. (See equations 10, 11 and 

12). 

Table 8: MCNP calculated energy deposition in natLiF, of 6LiF and 7LiF as well as the energy correction factor k 

for 241AmB, 241AmBe and 252Cf neutron sources. 

Neutron 

spectrum 

Mean energy 

(MeV) 

Energy deposited per incident neutron 

(MeV/g) 

k

























LiF

LiF

K

K

6

7

1

1  

natLiF 6LiF 7LiF 

241AmB 2.63 3.86 × 10-2 6.77 × 10-2 3.60 × 10-2 2.14 ± 0.05 

241AmBe 4.05 6.25 × 10-2 9.69 × 10-2 5.49 × 10-2 2.31 ± 0.09 

252Cf 1.98 3.52 × 10-2 7.35 × 10-2 3.02 × 10-2 1.70 ± 0.07 
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If the TLDs can be calibrated under the same neutron energy spectrum as that which they will be exposed 

to as dosimeters, then the calibration factor can be applied without correction for energy dependence. 

However, if the TLDs are to be used for dosimetry of neutrons of a different energy spectrum, 

particularly neutrons moderated or scattered to lower energies, the error will propagate directly into the 

final estimate of dose. The resulting discrepancy for neutrons produced by medical linear accelerators 

will be discussed in the next section. Table 9 is included to highlight the magnitude of the error that 

arises from not correcting for the neutron energy dependence of TLD600H and TLD700H when 

calibrating with AmB, AmBe or 252Cf sources. Many studies reporting on the neutron contamination 

present in high energy radiotherapy beams report calibration by isotopic neutron sources. If no energy 

correction is applied, the calibration factor determined in this way overestimates the component of the 

TLD response caused by neutrons by between 70 and 131 %. The percentage difference is calculated as 

the corrected value minus the uncorrected value as a fraction of the uncorrected value.  

Table 9: The % difference ((corrected – uncorrected)/uncorrected) between calibration factors determined with 

and without appropriate energy correction factors. The uncorrected value will overestimate the neutron fluence. 

Neutron spectrum Mean energy (MeV) % difference 

241AmB 2.63 114 %  

241AmBe 4.05 131 % 

252Cf 1.98 70 % 

 

A set a 6LiF and 7LiF TLDs doped with magnesium, copper and phosphorus (TLD600H and TLD700H 

from Harshaw (KS, USA)) were exposed to a calibrated 241AmBe neutron source. The source has a 

nominal activity of 370 GBq with a National Physics Laboratory (UK) calibration certificate stating 

emissions of 2.062 × 107 n/s (± 5 %) as of 28th September 1995. Fifty TLD600H and 48 TLD700H were 

exposed for 94.3 hours at a distance of 615 mm from 3rd – 7th of September 2015. The neutron fluence 

was corrected for decay, attenuation through air, solid angle and anisotropy. The neutron fluence at the 

location of the TLDs was 440 ± 25 n/s/cm2. The TLDs were read out using a Harshaw automatic reader 

and corrected for individual chip variations relative to the average of the TLD batch as determined in a 

6 MV photon beam. The results are shown in Figure 15.  

The mean TLD600H response was 930 nC with a standard uncertainty of 2 nC and the mean TLD700H 

response was 840 nC with a standard uncertainty of 3 nC. Using the MCNP6 calculated k value for 
241AmBe of 2.31 ± 0.09, the neutron component of the response of TLD600H was 210 ± 8 nC. This 

results in a calibration factor of 7.1 × 105 (± 5 × 104) neutrons/cm2 for every nC of response measured 

for this set of TLD600H. The total uncertainty in the calibration factor is determined by quadratic 

addition of the uncertainties in the calibration of the activity of the source and the standard uncertainties 

of the mean of the readings of the TLD600H and TLD700H (JCGM 1995). The uncertainty is quite high 

because of the relatively small difference between the responses of TLD600H and TLD700H and the 5 

% uncertainty in the calibration of the AmBe source. 
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Figure 15: The measured responses of fifty 6LiF TlD600H and forty-eight 7LiF TLD700H following exposure to 

a standard 241AmBe neutron source. These values are corrected for individual chip variations relative to the 

average of the TLD batch as determined in a 6 MV photon beam. 

4.1.4 Measurement of neutron fluence produced by medical linear accelerators 

The energy spectrum of neutrons produced by a medical linear accelerator differs from the spectra 

produced by isotopic and fission neutron sources. The neutron spectrum of a linac varies with a number 

of factors including; beam energy, distance from field, distance from scattering materials and type of 

scattering materials. To investigate the effect of variation in neutron energy spectra on the TLD 

response, a sample of spectra chosen from published literature will be used.  

A number of authors have published calculated and measured linac neutron spectra under specific 

conditions. Esposito et al (2008) measured the neutron spectrum produced by an Elekta Precise 

operating at 18 MV. Gold foils and LiF TLD pairs were placed inside polyethylene Bonner spheres and 

the spectrum was acquired from the FRUIT unfolding code. The detectors were placed at four positions 

within the linac bunker; point 1, at isocentre, point 2, one metre to the right of isocentre, point 3, 1.5 

metres from isocentre (away from the gantry) and point 4 at the beginning of the maze. The reported 

spectra at points 1 – 3 are shown in Figure 16. Kry et al (2009a) used MCNPX to calculate the neutron 

spectrum produced by a Varian 2100 Clinac operating at 18 MV. The neutron energy spectrum was 

modelled at the patient plane in air without any phantom present, as well as at several depths within 

tissue. Figure 16 shows the in air spectrum and the spectrum at 1 mm depth in tissue. These spectra will 

be used as test cases to calculate the TLD response to neutrons of spectra representative of those which 

may be produced by medical linear accelerators. Their mean energies are given in Table 10. 
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Figure 16: Linac produced neutron energy spectra. The spectra at isocentre, 1 metre and 1.5 metres were 

measured by Esposito et al (2008). The spectra in air and at 1 mm depth in tissue were calculated by Kry et al 

(2009a). The spectra are normalised such that the area under each is equal to one. 

The energy deposited in NatLiF, 6LiF and 7LiF have been calculated using MCNP6 for the incident energy 

spectra shown in Figure 16. The geometry described in section 4.1.1 was used in the model, i.e. 3 × 3 × 

1 mm3 TLD chips composed of NatLiF, 6LiF and 7LiF with a spherical source (Ø = 1 cm) of isotropic 

neutrons 10 cm from the TLDs. The neutron source emitted neutrons with the energy spectra shown in 

Figure 16. Since these spectra are normalised to have a total area of one, the value in each energy bin is 

effectively a probability of emission within that energy bin. The total energy deposition averaged over 

a cell and the neutron fluence averaged over the cell were scored and these results were used to calculate 

the dose deposited per incident neutron. The MCNP6 results are obtained from standard tally 4, which 

scores the average flux over a cell in particles/cm2 and standard tally 6+ which scores the total heating 

over a cell in (MeV/g). The kerma per incident neutron is the tally 6+ result divided by the tally 4 result. 

The value of k was calculated from these results using equation 11. 

The energy deposited in each material varies significantly with differing neutron energies (see Figure 

17, note the logarithmic scale on the vertical axis). However the energy correction factor, k, needed to 

acquire the neutron component of TLD response is equal to 1.00 for all variations of the linac neutron 

spectra tested (see Figure 18 and Table 10). This allows the assumption of 7LiF insensitivity to be applied 

to measurements of linac produced neutrons. The neutron component of the TLD response can be 

calculated by a simple subtraction of the 7LiF response from the 6LiF response as per equation 2. 
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Figure 17: The average energy deposited per incident neutron in NatLiF, 6LiF and 7LiF for a variety of incident 

neutron spectra. The isotopic and fission neutron source results from Figure 13 are shown again for comparison 

with the spectra from published literature shown in Figure 16. Note the vertical axis is logarithmic.  

 

Figure 18: The k energy correction factor, defined in equation 11, to account for the variation in energy 

dependence in 6LiF and 7LiF for various neutron spectra including five sample spectra produced by medical 

linear accelerators. 
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Table 10: MCNP calculated energy deposition in natLiF, of 6LiF and 7LiF as well as the energy correction factor 

k. 

Neutron 

spectrum 

Mean energy 

(MeV) 

Energy deposited per incident neutron 

(MeV/g) 

k

























LiF

LiF

K

K

6

7

1

1  

natLiF  6LiF  7LiF  

241AmB (1) 2.63 3.86 × 10-2 6.77 × 10-2 3.60 × 10-2 2.14 ± 0.05 

241AmBe (1) 4.05 6.25 × 10-2 9.69 × 10-2 5.49 × 10-2 2.31 ± 0.09 

252Cf (1)  1.98 3.52 × 10-2 7.35 × 10-2 3.02 × 10-2 1.70 ± 0.07 

Isocentre (2)  0.510 0.598 2.29 1.14 × 10-2 1.00 ± 0.04 

1 metre (2) 0.310 0.869 3.59 1.03 × 10-2 1.00 ± 0.03 

1.5 metres (2) 0.267 1.35 5.66 1.14 × 10-2 1.00 ± 0.03 

Air (3) 0.249 0.623 2.94 8.65 × 10-3 1.00 ± 0.03 

Tissue (3) 0.146 1.35 6.77 9.47 × 10-3 1.00 ± 0.03 

(1) (ISO8529-1 2001) (2) (Esposito et al 2008) (3) (Kry et al 2009a) 

4.1.5 Determining neutron dose to tissue using TLDs 

The neutron energy spectrum produced by medical linear accelerators is of sufficiently low energy that 

the ratio between the responses of 6LiF and 7LiF is constant. This allows the accurate measurement of 

neutron fluence without needing detailed information about the energy spectrum. To determine the dose 

to tissue, the neutron interactions in tissue need consideration. Tissue is primarily composed of 1H (63% 

w/w), 16O (24% w/w) and 12C (12% w/w) (Valentin 2002). Neutron interactions with these nuclei have 

very different cross section and energy deposition functions as compared to TLDs. For neutrons below 

~ 10 keV, the primary interactions which deposit dose to tissue are 1H(n,γ) which produces a 2.2 MeV 

gamma-ray and 14N(n,p) which releases 0.58 MeV (ICRP116 2010). 

Tissue also differs in that the energy spectrum is rapidly moderated as the neutrons penetrate the 

material. In this study MCNP6 has been used to calculate the fluence and energy deposited in 1 cm depth 

increments in ICRP soft tissue (Valentin 2002). A 30 × 30 × 1 cm3 neutron source was modelled 10 cm 

from one surface of a 30 × 30 × 30 cm3 tissue phantom. The neutrons were initiated in the source cell 

with direction vectors toward the cube of tissue. The scoring cells were 1 × 1 × 1 cm3 cubes at the centre 

of the phantom at 1 cm increments from the surface facing the source. This was to ensure adequate 

scattering material surrounding the scoring voxels. The fluence and energy deposition resulting from 

monoenergetic neutron sources of different energies are shown in Figure 19, Figure 20 and Figure 21. 

The fluence and energy deposited in tissue resulting from the test case spectra given in Figure 12 and 

Figure 16 are shown in Figure 22 and Figure 23 respectively. 
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Figure 19: Neutron fluence as a function of depth in tissue in 1 cm increments calculated with MCNP6. Each 

curve is a different sample neutron source of a given energy.  

 

Figure 20: Average energy deposited as a function of depth in tissue in 1 cm increments calculated with 

MCNP6. Each curve is a different sample neutron source of a given energy. 
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Figure 21: The average energy deposited by incident neutrons as a function of energy at three depths in tissue. 

 

The fluence and energy deposited by a selection of the modelled monoenergetic neutron sources are 

shown in Figure 19 and Figure 20 respectively. The depth in tissue at which the maximum fluence occurs 

differs with the incident energy of the neutrons. Higher energy neutrons penetrate tissue more easily and 

have deeper fluence maxima. The lowest energy modelled, 1 × 10-9 MeV (1 meV), shows no build up 

behaviour since these neutrons are almost completely thermalised and the cross section for absorption 

rapidly increases at these low energies. The higher energy neutrons are more likely to undergo scattering 

interactions. Multiple scattering events within the phantom and (n,2n) interactions cause the fluence to 

maximise at a given depth in tissue. 

The energy deposited as a function of depth in tissue for a selection of monoenergetic neutron sources 

is shown in Figure 20. Here the behaviour is quite different, with the build-up on entry to the denser 

medium completely absent. The dose gradient is almost flat as a function of depth. The main mechanism 

of dose deposition in tissue comes from capture-type interactions which emit secondary radiations. 

Scattering interactions also result in some energy deposition, but the dominating effect is neutrons which 

are captured following moderation. 

The energy deposited as a function of incident neutron energy for a selection of depths in tissue is shown 

in Figure 21. These show a rapid increase in the energy released for incident neutrons with energies 

above a threshold energy of around 10 keV. The threshold varies with depth in tissue, increasing as the 

depth increases due to moderation. Incident neutrons are further reduced in energy the deeper they 

penetrate. Neutrons with energy below 10 keV release similar amounts of energy, around 0.19 eV per 

neutron locally. Above 10 keV interactions which release larger amounts of energy to tissue begin to 

dominate.  
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Figure 22: Neutron fluence as a function of depth in tissue for various incident neutron spectra. The isocentre, 1 

metre and 1.5 metre spectra are taken from Esposito et al (2008) and the air and tissue spectra are taken from 

Kry et al (2009a).  

 

 

Figure 23: Energy released by neutrons as a function of depth in tissue for various incident neutron spectra. The 

isocentre, 1 metre and 1.5 metre spectra are taken from Esposito et al (2008) and the air and tissue spectra are 

taken from Kry et al (2009a).  

 

The fluence and energy calculated as a function of depth in tissue for various energy spectra are shown 

in Figure 22 and Figure 23 respectively. The fluence function shows similar behaviour to the 

monoenergetic fluence functions of Figure 19, with the spectra of higher mean energies penetrating 

more deeply in tissue. The lower energy spectra reach a maximum at around 2 cm depth and fall off 

with a steeper gradient (see Figure 22). The energy deposited at different depths shows a simple drop 

off, with the maximum energy released within the first centimetre of tissue and a steady drop off with 

depth.  
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The energy deposited in tissue varies with the incident neutron energy spectrum, with greater energy 

released by incident neutrons of higher energies. The depth-energy deposition curves calculated for the 

various linac produced neutron energy spectra show differences in the magnitude of energy released. 

So, although the energy deposited (Figure 17) in the TLD materials (and therefore their responses) does 

not vary significantly with these differences in neutron energy, the dose to tissue does vary with small 

differences in neutron energy. Whilst the neutron fluence can be easily measured using 6LiF and 7LiF 

TLD pairs, the dose to tissue cannot be determined unless the neutron energy spectrum is well known 

for the specific measurement conditions. 6LiF and 7LiF “thermoluminescence dosimeters” should 

therefore be used as detectors rather than dosimeters in this context. Only if the neutron energy spectrum 

is known can the fluence be converted to dose.  

4.2 Activation foils  

Neutrons incident on a material may cause it to become radioactive. If the material has a high neutron 

interaction cross section, particularly for neutron capture, a measurable amount of radioactivity can be 

produced. If the mass and composition of the material are well known, the degree of induced 

radioactivity can be used to calculate the neutron fluence. Indium and copper foils have been used here; 

chosen for their high cross sections. Neutron interaction cross sections typically have a strong 

dependence on the neutron energy spectrum. A small error in the assumed neutron energy can result in 

a large error in the estimation of the corresponding cross section value, which in turn, propagates to the 

final flux result. Care must be taken in determining an appropriate cross section value, and the spectral 

distribution of neutron energies should be considered. 

4.2.1 Calculation of neutron fluence 

A neutron activation foil sample is placed in the neutron fluence to be measured. Krane (1987) gives the 

rate of activation, R, in a sample as; 



R  N0  
[ 13 ] 

 

where N0 is the number of target nuclei of the isotope of interest, σ is the cross section in cm-2 and ϕ is 

the neutron fluence rate in cm-2∙s-1.  

For an elemental sample, the number of target nuclei, N0, can be calculated from stoichiometry as 

follows; 



N0 
m

w  
[ 14 ] 

 

where m is the mass of the sample in grams, η is Avogadro’s number, α is the fraction of target nuclei 

in the sample (often the natural abundance of the isotope) and w is the molar mass of the isotope in 

grams∙mol-1. 
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These combine such that the rate of activation can then be written; 



R 
m

w
 [ 15 ] 

 

It is generally accepted that the number of radioactive nuclei produced, N1, can be described by the 

following differential equation; 



dN1  Rdt  N1dt  
[ 16 ] 

 

where λ is the decay constant for the isotope produced. A solution for this differential equation follows; 

 ite
R

N





 11  [ 17 ] 

 

where ti is the time since the sample was placed in the neutron flux (Krane 1987). 

This can be extended for when the sample is removed from the neutron flux and the radioisotope ceases 

to be produced. The number of nuclei begins to decrease exponentially as follows; 

  ci tt
ee

R
N






 11

 [ 18 ] 

 

where tc is the cooling time (time since the sample was removed from the neutron flux). 

The activity of the sample is then measured via gamma spectroscopy. The net area of a photopeak, Anet, 

is related to the true number of disintegrations Nd as follows; 

ft

tA
N

l

rnet
d


  [ 19 ] 

 

where tr and tl are the real and live count times of the detector respectively,  is an efficiency factor 

accounting for the intrinsic efficiency of the detector for the energy of the gamma emission and the 

geometric efficiency of the sample and detector arrangement. f is the fraction of emissions for a given 

gamma energy per decay of the radioisotope. 

The number of disintegrations during the measurement time (tr) can also be calculated from the earlier 

expression for N1 (equation 18); 

   rci ttt

d eee
R

N





 11  [ 20 ] 

 

Thus, from the counts in a photopeak, the neutron flux density can be determined; 

   rci ttt

l

rnet

eeefmt

wtA









11

 
[ 21 ] 
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Where the quadratic addition of uncertainties (JCGM 1995) gives; 
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4.2.2 Calculation of net photopeak counts 

The counts in a photopeak should be corrected for “background”. A background spectrum should be 

acquired for an appropriate length of time and subtracted from the activation spectrum. Aside from this, 

a background of Compton scatter exists for lower photopeak energies, as shown in Figure 24, the 

channels either side of the peak do not have zero counts. 

 

Figure 24: A sample gamma spectroscopy peak. l and u are the lower and upper channels of the peak width, 

Bscatter is the Compton scatter background and Anet is the net peak area. 

A Region Of Interest (ROI) is set around the photopeak for which the area is to be calculated. The lower 

energy edge of the ROI is designated l and the upper edge u. The net area of the photopeak can be 

calculated as follows (Ortec 2006): 

scattergrossnet BAA   
[ 25 ] 
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where i is the channel number. 

In this method, the first three channels on each side within the ROI selected are used to calculate the 

baseline level outside of the photopeak, which is then subtracted from the data in the remaining channels 

inside the ROI. If the ROI limits are set too narrowly and there is a steep gradient between the three 

points taken inside each side of the ROI the number of counts in the baseline will include some genuine 

photopeak counts and will result in calculation of a net area lower than what was detected. The ROI 
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should be carefully set so that the first three points inside the ROI on each side have a relatively flat 

gradient. This may result in the ROI being slightly wider than the photopeak, but this is corrected for as 

the net area is calculated from the fourth channel inside the ROI. 

The uncertainty in the net photopeak area can be calculated from the following (Ortec 2006); 
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4.2.3 Calculating the gamma detection efficiency 

The detection efficiency of the detector is essential to the accurate calculation of the neutron fluence. 

Two sodium iodide (NaI(Tl)) scintillators were used to measure the activity of activation foils. To 

convert the number of counts measured to the activity of the material, the total detector efficiency is 

required. The total efficiency is a combination of the intrinsic efficiency of the detector and the 

geometric efficiency of the physical source-detector arrangement. The intrinsic efficiency of the detector 

depends on the energy of the gamma-rays to be measured. 

A 137Cs point source with a calibrated activity of 10.37 μCi (± 3.7 %) was used to measure the total 

efficiency of the two NaI(Tl) detectors for 662 keV gamma-rays. The reference date of the activity 

calibration is 1st June 1976, and the efficiency measurements were carried out on 16th March 2015. The 

half-life of 137Cs is 30.08 years and for the elapsed time of 38.79 years, the activity of the source on the 

day of measurement was 4.242 μCi or 1.570 × 105 Bq. Recordings of 1002 and 1153 counts per second 

(± 3 %) were recorded on detectors A and B respectively. The total efficiency, ε, is defined as the 

measured count rate divided by the activity corrected for the emission intensity of the gamma-ray 

measured. The emission intensity of the 662 keV gamma-ray of 137Cs is 0.8510 (Browne and Tuli 2007), 

meaning ~85 662 keV gamma-rays will be emitted for every 100 decays of 137Cs nuclei. This results in 

total efficiencies of 7.50 × 10-3 ± 5 % for detector A and 8.63 × 10-3 ± 5 % for detector B. 

Although both detectors are seemingly identical, with identical electronics, shielding and geometries, 

there are obviously some differences affecting the overall efficiency. Small differences in source-to-

detector distance can make a large difference to the solid angle of emissions intersecting the detector 

and the geometric efficiency difference contributes to an overall difference in total efficiency. An MCNP 

model of the source, detector and its shielding was used to calculate the total detection efficiency (see 

Figure 25). The 137Cs point source was modelled as a cylinder with thickness and radius of 0.1 mm. The 

indium activation foils are rectangular with dimension of 2.5 × 2.5 cm2 and thickness of 1 mm and are 

modelled as such. The copper activation foils are cylindrical with radii of 1.25 cm and thicknesses of 

0.1 mm are were modelled as such.   

Intrinsic differences between the two detectors can be caused by differences in detector size and volume, 

or differences in applied bias voltage. In the absence of detailed knowledge of the cause of the difference 

between the two detectors, MCNP calculations were performed for different source to detector distances 

and an inverse square fit of the results was used to determine the source to detector distance for each 

detector. Detector A was simulated with a source to detector distance of 11.942 cm and calculated a 

total efficiency of (7.49 ± 0.01) × 10-3 and detector B was modelled at a distance of 10.944 cm from the 

source to achieve a total efficiency of (8.63 ± 0.01) × 10-3. 
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Figure 25: Left: photo of the shielding and support assembly of the NaI detector. Right: MCNP model of the NaI 

detector (green), lead shielding (pink), stainless steel supports (yellow) and PVC source support (blue). Orange 

is the air surrounding the detector. 

 

The models with optimised source to detector distances for each detector were then used to calculate the 

efficiency of detection for the gamma emissions produced by indium and copper following neutron 

capture. The results are shown in Table 11 and Figure 26 along with the previous stated values calculated 

for the 662 keV gamma emission of the 137Cs source of known activity which was also used to verify 

the models of each detector. The measured results are also shown for comparison. 
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Table 11: The MCNP calculated total detection efficiencies for the 137Cs 662 keV gamma-ray used to measure 

the efficiency and the gamma-rays emitted by the indium and copper following neutron activation. 

Detector A B 

Source to detector distance 

(cm) 
11.942 10.944 

Gamma-ray energy  Measured total detection efficiency 

137Cs: 662 keV 7.50 × 10-3 ± 5 % 8.63 × 10-3 ± 5 % 

Gamma-ray energy  Calculated total detection efficiency 

137Cs: 662 keV (7.49 ± 0.01) × 10-3 (8.63 ± 0.01) × 10-3 

116In: 417 keV (1.079 ± 0.001) × 10-2 (1.245 ± 0.001) × 10-2 

116In:818 keV (6.31 ± 0.01) × 10-3 (7.25 ± 0.01) × 10-3 

116In:1097 keV (4.992 ± 0.008) × 10-3 (5.723 ± 0.009) × 10-3 

116In:1294 keV (4.366 ± 0.009) × 10-3 (5.004 ± 0.009) × 10-3 

64Cu: 511 keV (9.24 ± 0.01) × 10-3 (1.064 ± 0.001) × 10-2 
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Figure 26: The MCNP calculated total detection efficiencies as a function of gamma-ray energy. The difference 

between detector A and detector B arises purely from the different source to detector distance modelled. 

4.2.4 Calculating the cross section 

The neutron capture cross section is strongly dependent on the energy of the incident neutrons. As shown 

in Figure 27, it may vary over eight orders of magnitude in the relevant energy range. Accurate 

knowledge of the neutron energy spectrum at the point of measurement is required to calculate the 

neutron flux. For the use of activation foils with standard neutron sources, the neutron spectra are readily 

available in published data, such as ISO8529-1 (2001). However, for moderated sources or 

photoneutrons from linear accelerators, simulations are required to obtain this data. 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 200 400 600 800 1000 1200 1400

T
o
ta

l 
d

et
ec

ti
o
n

 e
ff

ic
ie

n
cy

Gamma energy (keV)

Detector A

Detector B



4. Methods for neutron detection and dosimetry 

53 

 

 

 

Figure 27: The neutron capture cross sections for indium-115 and copper-63 as a function of incident neutron 

energy from ENDF/B.VII.1 (Chadwick et al 2011) 

The total energy weighted reaction probability for a specific neutron flux can be calculated; 

    dEEEBP

E

E

total  
max

min

  [ 29 ] 

where B is the emission probability for a given energy bin. The energy resolution of the cross section 

data and the energy bins of the neutron spectrum data are nearly always different. The cross section data 

can be resampled to match the energy bins in the spectrum data. For cross section data of finer resolution 

a weighted average across the bin is taken. An example is provided in Figure 28. The energy weighted 

probability can then be calculated by multiplying the weighted average cross section value in each bin 

(blue) by the fraction of neutrons emitted with energy in that bin (grey). The total probability for a 

neutron fluence of a given spectrum is the sum of the energy weighted reaction probability (green). The 

calculated cross sections for neutron capture in indium-115 and copper-63 for neutrons of the energy 

spectra given in Figure 16 are given in Table 12. 
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Figure 28: The neutron capture cross section of indium-115 is labelled “original cross section data”. The energy 

spectrum of linac neutrons in air (Kry et al 2009a) is shown as “spectrum” and is plotted against the right-hand 

vertical axis. The spectrum is normalised such that its integral is one, so that the value in each bin is the 

probability of neutron emission within that energy range. The “binned cross section” shows the original cross 

section data resampled into bins equal to those in the spectrum data. The “reaction probability” is the resampled, 

interpolated cross section multiplied by the probability of neutron emission within that energy range.  
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Table 12: Energy weighted interaction probabilities for neutron capture in indium-115 and copper-63 calculated 

for various neutron energy spectra. The spectra of standard 241AmB, 241AmBe and 252Cf are taken from ISO8529-

1 (2001). The spectra at isocentre, 1 metre and 1.5 metres were measured by Esposito et al (2008). The spectra in 

air and in tissue were calculated by Kry et al (2009).  

Neutron Energy Spectrum 
Indium-115 neutron capture 

cross section  (cm2) 

Copper-63 neutron capture 

cross section  (cm2) 

241AmB 9.137 × 10-26 6.505 × 10-27 

241AmBe 8.374 × 10-26 7.792 × 10-27 

252Cf 1.568 × 10-25 1.045 × 10-26 

Isocentre 1.629 × 10-23 3.568 × 10-25 

1 metre 2.338 × 10-23 5.037 × 10-25 

1.5 metres 3.587 × 10-23 7.705 × 10-25 

Air 4.788 × 10-23 4.704 × 10-25 

Tissue 9.898 × 10-23 9.440 × 10-25 

 

 

4.2.5 Calculating fluence 

Once the area of the detected gamma-ray peak has been calculated and values for neutron interaction 

cross section and total detection efficiency of the produced gamma-rays have been selected, the neutron 

fluence can be easily calculated. The irradiation time, cooling time, detector “live” and “real” times are 

easily measured. The mass of the sample is easily measured and the isotopic ratio can be found in 

reference data. The emission intensity of each gamma-ray energy emitted by the sample can also be 

easily found in reference data. Equation 20 from §4.2.1 is repeated below. A summary of the terms 

required is given in Table 13. 

From this information the neutron fluence causing the activation can be calculated. 
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Table 13: Summary and description of parameters needed to calculate neutron fluence from activation foils. 

Parameter Notes Parameter Notes 

ϕ (cm-2∙s-1) Neutron fluence rate  f 

116In: 

416 keV: 0.272 

818 keV: 0.1213 

1097 keV: 0.585 

1294 keV: 0.848 

(Blachot 2010) 
64Cu: 

511 keV: 0.352 

(Singh 2007) 

Anet (s-1) 
Measured and calculated according 

to §4.2.2 
m (g) Measured with a laboratory balance 

tr (s) 

Measured in detector software 

(Ortec 2006) 
η (mol-1) 6.02214129 × 1023 (Krane 1987) 

λ (s-1) 
116In: 2.128 × 10-4 (Blachot 2010) 
64Cu: 1.516 × 10-5 (Singh 2007) 

α 

115In: 0.9571 
63Cu: 0.6917  

(Rosman and Taylor 1999) 

w (g∙mol-1) 

115In: 114.903878 
63Cu: 62.929601 

(Audi and Wapstra 1993) 

σ (cm2) 

Calculated according to §4.2.3 

NB: depends strongly on the neutron 

energy spectrum 

tl (s) 

Measured in detector software 

(Ortec 2006) 
ti (s) Measured with a stopwatch 

ε Calculated according to §4.2.4 tc (s) Measured with a stopwatch 
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4.3 Converting neutron fluence to dose using MCNP6 

The two methods of neutron detection described in §4.1 and §4.2 offer the measurement of neutron 

fluence and not of dose. The correct interpretation of the responses of lithium fluoride 

thermoluminescence dosimeters and of indium and copper activation foils depends strongly on an 

accurate and detailed knowledge of the energy spectrum of the neutrons to be measured. The response 

of the detectors can be used to calculate the neutron fluence to which they were exposed. Whilst an 

accurate measurement of the neutron fluence is useful, it doesn’t allow the evaluation of the risk to a 

patient or staff member exposed to the neutron fluence from a medical linear accelerator. Absorbed dose 

is often used as a proxy to describe risk because the dose and risk can be linked through observable 

biological effects.  

MCNP6 was used in §4.1.5 to investigate the differences between energy deposited by neutrons in TLD 

materials and in tissue materials. The results for energy deposited in the first 1 cm of a 30 × 30 × 30 cm3 

ICRP soft tissue phantom per unit neutron fluence in that volume are shown in Figure 29. These values 

can be used to determine fluence to dose conversion factors for neutron exposures to soft tissue if the 

energy spectrum of the neutrons is known.  

MCNP6 is used in this chapter to investigate factors affecting the neutron energy spectrum. Accurate 

knowledge of the neutron energies is absolutely essential for converting the measured neutron fluence 

to dose equivalent, which can then be used to evaluate the degree of risk associated with the exposure. 

 

Figure 29: MCNP calculated energy deposited per unit incident neutron fluence in the first centimetre of tissue 

for monoenergetic neutron sources. 

 

  

0.001

0.01

0.1

1

1E-9 1E-6 1E-3 1E+0

A
v
er

a
g
e 

en
er

g
y
 d

ep
o
si

te
d

 p
er

 i
n

ci
d

en
t 

n
eu

tr
o
n

 (
M

eV
/g

)

Energy of incident neutrons (MeV)



4. Methods for neutron detection and dosimetry 

58 

 

4.3.1 MCNP modelling of a medical linear accelerator 

Monte Carlo N-Particle transport code MCNP6 (2013) was used to calculate the energy spectrum of 

neutrons produced by the photonuclear effect in high energy medical linear accelerators. The production 

and transport of neutrons in a Varian 21EX operating in 18 MV photon mode were modelled. The model 

was developed using detailed information about the linac components responsible for the production 

and collimation of the photon beam (see Figure 30a). This is adequate for simulations which require 

accurate calculation of the properties of photon or electron beams. For simulations of neutrons, the 

surrounding materials have great impact on the fluence and energy spectrum of neutrons. Materials 

adjacent to the neutron producing components scatter and moderate the neutrons and need to be properly 

accounted for in order to correctly characterise neutron production.  

The bremsstrahlung x-ray target is a thin 0.6 mm slab of tungsten attached to a 1.1 cm slab of copper. 

The electron beam is incident on the tungsten surface and produces photons. The primary collimator is 

a cylindrical tungsten component with a conical opening for forward transport of photons. The conical 

angle is 11.3° and the thickness is 7.5 cm. This absorbs any photons not travelling in the forward 

direction, producing a collimated, directional beam. The open conical region of the primary collimator 

is under vacuum and so the photon beam must pass through a thin (0.25 mm) beryllium vacuum window. 

An iron flattening filter with a tantalum core is used to produce a photon beam of uniform fluence. The 

geometry of the flattening filter is designed to reduce the fluence in the centre where the highest fluence 

is produced from the target. It has a complex geometry which is modelled explicitly (Varian 1996); the 

overall shape is approximately conical. The beam then passes through a monitor chamber composed of 

air, with thin layers of tantalum, kapton, copper and gold. An additional filter, or mirror composed of 

mylar is placed at an angle of 60° to the beam. Tungsten jaws provide further collimation. There are two 

sets of opposing slabs 7.6 cm thick which move in the x and y direction to create rectangular field shapes. 

Below this a multileaf collimator (MLC) which is composed of many independently moving tungsten 

“leaves” 6.8 cm thick, which can produce photon fields in more complex geometries.   

However, there is relatively little information available regarding the shielding and other internal 

components of linacs. Information useful for the purposes of modelling photon and electron transport 

(such as phase space files and component geometry) are readily available from linac manufacturers, 

however the details of out of field shielding components, which are required for neutron transport 

calculations are difficult to obtain. Measurements were made of the external shielding structure of a 

Varian 21EX during a scheduled engineering maintenance period (see Figure 30b). Despite these 

additional details, there was still large spatial volume of which the contents were largely unaccounted 

for. In practise, this volume is likely a complex mixture of electronic components, vacuum pumps, rails 

and drivers for the beam shaping components. Without knowing the detailed dimensions and 

compositions of these components, it is not possible to explicitly model them and calculate their effect 

on neutron transport and possible influence on the neutron energy spectrum at the patient plane. To 

assess the magnitude of the effect such components may have, three separate geometries were 

developed. In the first; the volume between the beam production components and the external shielding 

components was composed of air (see Figure 31a). In the second it was filled with stainless steel (see 

Figure 31b) and in the third it was filled with stainless steel at half the density of regular stainless steel 

to approximate a mixture of components and empty space close to that which probably exists. The 

scoring region was a 5 cm thick cylinder of air at the face of the linac. The in-field scoring was a 

rectangular shape lining up with the inner coordinates of the jaws used to create a field size of 10 × 10 

cm2 at isocentre (defined at 100 cm from the target). Thus, the in-field scoring volume was a cuboid of 

5.4 × 5.4 × 5 cm3. The out-of-field scoring region was a cylinder of radius equal to the outer shielding 

of the linac head 36.5 cm, and height of 5 cm. It excluded the overlapping volume which was defined 

as the in-field scoring volume. 
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Figure 30: Left: Geometry of the simulated Varian 21EX. Only the primary components used to produce and 

shape the beam are shown. Right: Photograph of a Varian 21EX with the external covers removed. The shielding 

in the model was estimated from measurements of the visible components with the external cover of the machine 

removed. 

  

Figure 31: MCNP models of a Varian 21EX with approximate shielding. The space between the shielding and 

the beam production and shaping components is filled with air (left) and stainless steel (right). A third geometry 

was also modelled where the stainless steel was modelled with half the density of regular steel. 

4.3.2 Variance reduction 

The photonuclear yield from bremsstrahlung photons up to 18 MV is relatively low. To achieve a low 

statistical uncertainty and reduce overall computation time, a number of variance reduction techniques 

were applied. Table 14 shows the energy thresholds for photonuclear events with target nuclei present 

in the components of the linear accelerator. For the modelling of the neutron energy spectrum the photon 

and electron cut off energies were set to 1.6654 MeV which is the threshold for photoneutron production 

in 9Be, the lowest threshold of the nuclides present. This allows any photons or electrons below this 

energy to be disregarded, which is justified because they cannot produce any neutrons. 
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Table 14: Thresholds of nuclides present in MCNP model of Varian 21EX linear accelerator. These values were 

used to select photon and electron cut off energies. The lowest threshold is for neutron production from 9Be 

nuclei at 1.6654 MeV (Chadwick et al 2011). 

Nuclide Threshold (MeV) Nuclide Threshold (MeV) 

9Be 1.6654 181Ta 7.57637 

12C 18.722 182W 8.2 

14N 10.554 184W 7.41138 

16O 15.664 186W 7.19537 

54Fe 13.4 197Au 8.07137 

56Fe 11.1984 206Pb 8.08837 

63Cu 10.8524 207Pb 6.73837 

65Cu 9.90937 208Pb 7.36737 

 

The secondary particle biasing (SPABI) option in MCNP6 was also utilised to reduce simulation time 

and improve uncertainties. Secondary neutrons produced by incident photons between 0 and 25 MeV 

were multiplied by 109 with a corresponding reduction in statistical weight.  
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4.3.3 Neutron energy spectra 

The neutron energy spectra were calculated in a cylindrical cell at the face of the linac. The in-field and 

out-of-field spectra were scored separately. A 10 × 10 cm2 field was defined at 100 cm from the target. 

This corresponded to an MLC opening of 5.4 cm at the linac face. The in-field scoring cell was defined 

as a 5.4 × 5.4 × 5.4 cm3 cube at the linac face and the out-of-field scoring cell was a cylinder of the same 

diameter as the linac face with a height of 5.4 cm. The resultant neutron energy spectra are shown in 

Figure 32 and Figure 33. The material used to fill the space between the outer shielding and the inner 

beam producing components has an effect on the overall energy spectrum of neutrons. Most neutrons 

are produced in the primary collimator (Pena et al 2005), but the surrounding material has an effect on 

the scattering of neutrons, the type and frequency of scattering interactions changes the energy of the 

neutrons. The results shown here do not show the lower energy peak observed at around 0.05 – 0.08 eV 

in the spectra reported in literature and shown in Figure 16. However, they agree with the trends shown 

in the results of Howell et al (2006), where the neutron energy spectrum was measured using gold 

activation foils inside Bonner spheres for a number of treatment energies and modalities at isocentre and 

at 40 cm superior to isocentre.  

The low energy peaks arise from scattering and moderation of the neutron spectrum throughout the 

treatment room (McCall et al 1979). The spectra modelled here show the only the “direct” component 

of the neutron field at the exit window of the linac head, before ambient scattering has occurred. They 

are useful to demonstrate the importance of the accuracy of the components modelled. Differences in 

materials within the linac head have an effect on the energy spectrum calculated. Table 15 shows the 

mean energies of the in-field and out-of-field spectra calculated with different materials surrounding the 

linac components. In this high energy range, small differences in neutron energy result in large 

differences in fluence to dose conversion factors (see Figure 29), and in the response function of LiF 

TLDs (see Figure 7). The cross sections of activation materials don’t generally vary rapidly in this region 

(see Figure 27).  

Approximations in the modelling of a linac, which would have no effect on the more commonly sought 

photon or electron beam information, can have an effect on the spectrum of neutrons produced. The size 

and contents of the entire bunker have an effect on the neutron fluence and energy spectrum at the patient 

plane. The scattered low energy component of the neutron field is inversely proportional to the surface 

area of the room (McCall et al 1979). Larger bunkers, containing more scattering surfaces will have 

lower neutron fluence overall, however the neutrons present will have a higher mean energy. 
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Figure 32: The neutron energy spectrum scored inside the photon field with air, steel and half-density steel 

filling the space between the linac components producing and shaping the beam and the externally visible 

shielding components. The spectrum weighting is the number of neutrons within the scoring volume per initial 

electron simulated on the linac target. 

 

 

Figure 33: The neutron energy spectrum scored outside the photon field with air, steel and half-density steel 

filling the space between the linac components producing and shaping the beam and the externally visible 

shielding components. 
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Table 15: The mean energies (in MeV) of the spectra shown in Figure 32 and Figure 33.  

Energy spectrum 

Mean energy (MeV) 

In-field Out-of-field 

Air 0.62 0.59 

Steel 0.40 0.23 

Half density steel 0.43 0.29 

 

The neutron energy spectrum produced by a medical linear accelerator depends on the amount, material 

and geometry of the shielding surrounding the internal components of the linac. In order to accurately 

calculate the energy spectrum of neutrons produced in the head reaching the patient plane, detailed 

information about the shielding is required. In lieu of the required level of detail, a less accurate 

estimation must be adopted. The size, geometry and composition of the bunker containing the linac also 

affects the energy spectrum of scattered neutrons. For an accurate measurement of the neutron fluence, 

as much detail as possible should be included in Monte Carlo models used to determine the neutron 

energy spectrum produced by a medical linear accelerator.  

A best estimate of the neutron energy spectrum will be used in this work to interpret measurements 

made with thermoluminescence dosimeters and activation foils. Neutron fluence can be measured 

without knowing the detailed energy spectrum using 6LiF and 7LiF TLD pairs. However, the calibration 

factor must be corrected for the energy dependence of the higher energy neutrons from the calibration 

source. The activity of an activated sample can be used to calculate the neutron fluence only if the 

neutron energy spectrum at the point of measurement is known. 

A dose equivalent can be calculated from a fluence and energy spectrum using the fluence to dose 

function shown in Figure 29. The dose equivalent may then be determined using the ICRP116 (2010) 

radiation weighting function for neutrons (as shown in Figure 2). These values may then be used for 

comparison with values reported in literature and evaluation of the risk to the patient resulting from 

contaminant neutron radiation. 

4.4 Relevance to risk from neutron contamination 

The methods for implementing neutron dosimetry with 6Li and 7Li enriched LiF TLD pairs and indium 

and copper activation foils in 18 MV radiotherapy are developed in this chapter. The underlying physics 

of the chosen detectors is deeply investigated resulting in a robust methodology for interpreting the 

signals produced by TLDs and activation foils. Monte Carlo simulations of medical linear accelerators 

and of neutron interactions in detector materials and ICRP soft tissue are presented to give an insight 

into the complexity of the energy dependence of neutron interactions, neutron dose and therefore the 

risk from neutrons.   
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5. Direct risks posed by neutron production  

Neutron fluence has been measured as a function of depth in a solid water phantom and as a function of 

distance from isocentre using both TLDs and activation foils. The results of the two measurement 

techniques are compared and the differences are used to indicate the level of uncertainty in the 

measurement of neutrons. The measured fluence is converted to dose with Monte Carlo modelled 

neutron energy spectra at various depths in solid water and the fluence to dose conversion factors for 

neutron radiation (Figure 29).  

This chapter presents the results of systematic depth and proximity phantom measurements of neutron 

fluence and the calculation and conversion to dose equivalent. In the previous chapter, the physical 

mechanisms of neutron interaction and detection were used to describe a robust approach for relating 

the detector response to neutron fluence. In this chapter, the more mundane details of the method used 

to perform the systematic measurements such as the irradiation geometry and read out of the detectors 

is presented to aid in the understanding of the fluence and dose results. 

5.1 Methods 

5.1.1 Exposure geometries 

Two exposure geometries have been used to investigate the neutron fluence as a function of depth in 

solid water and as a function of distance from isocentre.  

To determine the neutron fluence as a function of depth, ten solid water slabs 1 × 30 × 30 cm3 were 

placed on the treatment couch and irradiated with a 10 × 10 cm2 field incident on the one side (see Figure 

34). TLD100H, TLD600H, TLD700H and indium and copper activation foils were placed at 1 cm depth 

increments 10 cm from field edge. This configuration was irradiated by an 18 MV x-ray beam with a 

TPR20,10 of 0.784 from a Varian 21 EX at a gantry angle of 0°. For the TLD exposures the phantom was 

irradiated to 1,000 MU and for the activation foils the phantom was exposed to 10,000 MU, both at dose 

rates of 600 MU/min. 

For the measurement of neutron fluence as a function of distance from isocentre, solid water slabs were 

arranged to form a phantom of 120 × 30 × 6 cm3 in which detectors were placed at a depth of 5 cm (see 

Figure 35). TLDs were placed in 5 cm increments from the edge of a 10 × 10 cm2 field and the phantom 

was irradiated at 18 MV by 1,000 MU at a dose rate of 600 MU/min from a Varian 21 EX at gantry 0°. 

Indium activation foils were placed in 10 cm increments from the edge of a 10 × 10 cm2 field and 

irradiated at 18 MV by 10,000 MU at a dose rate of 600 MU/min from a Varian 21 EX. Two groups of 

TLDs were irradiated in two separate exposures, one with the collimators aligned at 0° and one with the 

collimators aligned at 90°. The activation foils were irradiated only once with the collimators aligned at 

0°. 

 



5. Results for neutron detection and dosimetry 

65 

 

 

Figure 34: Solid water, x-ray field and detector position configuration. Detectors were placed at 1 cm depth 

increments from the surface to 7 cm depth. The entire phantom was 10 cm deep. 

 

 

Figure 35: Measurement configuration for out-of-field neutron fluence measurements as a function of distance 

from isocentre. Detectors were placed at a depth of 5 cm in a 120 × 30 × 6 cm solid water phantom. 

 

5.1.2 MCNP modelling 

To determine the cross section values for the activation of the indium and copper foils, Monte Carlo 

modelling was used to determine the energy spectrum of neutrons incident on the foils at the different 

depths in solid water.  

The moderation of the neutron energy spectrum was modelled in 1 cm depth increments in an A-150 

tissue-equivalent plastic (Berger et al 2009) phantom beneath a Varian 21EX. The model was designed 

to match the experimental irradiation geometry as closely as possible. The dimensions of the treatment 

bunker were measured, and the walls, floor and a ceiling composed of concrete were included in the 

model. A carbon treatment couch was included below isocentre; with a 30 × 30 × 10 cm3 solid water 

phantom positioned such that the centre of a 10 × 10 cm2 field was 5 cm from one edge of the phantom, 

replicating the experimental set up as shown in Figure 34. The variance reduction techniques discussed 

in §4.3.2 were employed to improve simulation efficiency. The neutron fluence was scored in 1 cm cells 

using MCNP6 standard tally F4 in 40 logarithmic energy bins from 1 × 10-8 to 10 MeV. 
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5.1.3 TLD readout 

The TLDs were read on the day following exposure using a Harshaw 5500 automatic reader. The 

responses are corrected for individual chip variations relative to the average of the TLD batch as 

determined in a 6 MV photon beam. Four un-irradiated TLDs of each type were also read to determine 

the background signal. The signal from the irradiated TLD100H, 600H and 700H were corrected for 

background signals of 2.3, 2.7 and 2.6 nC respectively. The difference between the responses of 

TLD600H and TLD700H at each depth were taken and multiplied by the calibration factor 7 × 105 (± 2 

× 105) neutrons/cm2/nC  determined in §4.1.3.  

5.1.4 Activation measurement 

The activities of the foils exposed at various depths in solid water as shown in Figure 34 were measured 

with the sodium iodide scintillators (NaI(Tl)) described in §4.2.4 between 35 and 60 minutes after 

irradiation.  

The activation foils exposed at distances from the beam isocentre the activity of the indium foils were 

also measured with a 3 × 3” sodium iodide scintillator, but this time using a portable Ortec DigiBASE-

E Ethernet multichannel analyser PMT base (Ametek, USA). The portable nature of the detector allowed 

the measurement of the foils to occur between 2 and 35 minutes following the irradiation. However, the 

distance between the activation foils and the detector was less reproducible in the portable set up, which 

contributes additional uncertainty to the detector efficiency and results in an overall increase in the 

uncertainty in the calculated neutron fluence. 

5.2 Results 

5.2.1 MCNP calculated neutron energy spectra as a function of depth in solid water 

The MCNP calculated neutron energy spectra in 1 cm depth increments in solid water is shown in Figure 

36. These spectra were used to determine weighted neutron interaction cross section values for activation 

of indium and copper (see Table 16) which are needed to evaluate neutron fluence. They are also used 

to determine energy weighted fluence to dose conversion factors from the MCNP calculated function 

shown in Figure 29.  
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Figure 36: MCNP6 calculated neutron energy spectra at 1 cm increment depths in solid water from an 18 MV 

Varian 21EX. 

 

Table 16: The weighted average cross sections for indium and copper activation by neutrons with the energy 

spectra shown in Figure 36. 

Depth in solid water (cm) 115In(n,γ) cross section (cm2) 63Cu(n,γ) cross section (cm2) 

0 6.17 × 10-23 6.36 × 10-25 

1 1.02 × 10-22 1.15 × 10-24 

2 1.28 × 10-22 1.52 × 10-24 

3 1.49 × 10-22 1.83 × 10-24 

4 1.59 × 10-22 2.04 × 10-24 

5 1.66 × 10-22 2.26 × 10-24 

6 1.66 × 10-22 2.39 × 10-24 

7 1.68 × 10-22 2.45 × 10-24 
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5.2.2 Neutron fluence as function of depth and distance from isocentre in solid water measured 

with TLDs and activation foils 

The responses of the three TLD types for each irradiation geometry are shown in Figure 37 and Figure 

38. TLD600H are enriched in 6Li up to 95.12 % (Saint-Gobain 2001), which has a significantly higher 

neutron interaction cross section for neutrons with energies below about 2 keV. As expected the 

TLD600H response was significantly higher than either of the other two types. TLD100H is composed 

of natural lithium containing 7.59 % 6Li (Rosman and Taylor 1999) shows a slightly higher response 

than TLD700H containing < 0.03 % 6Li (Saint-Gobain 2001). The difference between the TLD100H 

and the TLD700H response shows that there is a small portion of the TLD100H response which is due 

to the presence of neutron radiation. TLD100H are commonly used for x-ray dosimetry. If measurements 

are made in the presence of neutron radiation, the dose reported may be overestimated as a result of the 

neutron response of the 6Li in the TLD100H. Kry et al (2007a) observed this effect in TLD100 and 

TLD700 (LiF:Mg,Ti) which have similar lithium concentrations as TLD100H and TLD700H 

(LiF:Mg,Cu,P). The Mg, Cu, P doped TLD100H are more sensitive than the Mg, Ti doped TLD100 and 

are more suitable for measuring low doses. Kry et al (2007a) recommended that only TLDs enriched in 
7Li, with a reduced 6Li concentration be used for out-of-field measurements. 

The neutron fluence measured by TLDs at depths in solid water is shown in Figure 39. The maximum 

fluence is measured at 4 cm depth in solid water. The neutron fluence as a function of distance from 

isocentre for collimators aligned at 0° and 90° is shown in Figure 40. The fluence measured with the 

collimators aligned at 90° is consistently lower than that measured at 0° however, the results agree 

within uncertainty. The consistency of the results might indicate that the trend is the result of a real 

difference in neutron fluence based on the alignment of the collimator. The asymmetry of the jaws and 

MLC collimators within the head could possibly result in more or less scatter depending on the 

arrangement and alignment of these collimators. It is worth noting that a similar trend in out of field 

photon dose has been previously observed (Taylor et al 2011). 
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Figure 37: The responses of TLD100H, 600H and 700H per MU delivered. The TLDs were 10 cm from the edge 

of an 18 MV, 10 × 10 cm2 field incident on a 30 × 30 × 10 cm3 solid water phantom. The responses of two TLDs 

of each type at each position are shown to indicate an estimate of the magnitude of uncertainty associated with 

the response of a given TLD. 

 

Figure 38: The responses of TLD100H, 600H and 700H per MU delivered with an 18 MV beam delivered with 

the collimators aligned at 0°.  
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Figure 39: Neutron fluence per monitor unit measured by TLD600H and 700H pairs. The uncertainty is 

propagated from the uncertainty in the calibration factor only as determined in §4.1.3.  

  

Figure 40: Neutron fluence per MU as a function of distance from isocentre for 18 MV fields delivered with the 

collimator at 0° and at 90° as measured with TLD-600H and TLD-700H. The uncertainty is propagated from the 

uncertainty in the calibration factor only as determined in §4.1.3. 

The fluence at depths in solid water as measured with indium and copper activation foils are shown in 

Figure 41 and Figure 42 respectively. The fluence as a function of distance from isocentre measured 

with indium activation foils is shown in Figure 41. 
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Figure 41: Neutron fluence per monitor unit determined by the activation of indium. The fluence was calculated 

from the four most prominent gamma-ray peaks and the average and standard deviation of these is shown. The 

standard deviation is greater than the magnitude of the uncertainty calculated via the quadratic addition of 

uncertainties. 

 

Figure 42: Neutron fluence rate determined by copper activation foils. The magnitude of the error bars was 

calculated using quadratic addition of uncertainties (see equation 22). 
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Figure 43: The neutron fluence per MU as a function of distance from isocentre for 18 MV fields delivered with 

the collimator at 0° as measured with indium activation foils. The fluence was calculated from the four most 

prominent gamma-ray peaks (416, 818, 1097 and 1294 keV) and the average and standard deviation of these is 

shown. The standard deviation of the results calculated from the four peaks is greater than the magnitude of the 

uncertainty calculated via the quadratic addition of uncertainties. 

 

5.2.3 Disagreement between detectors 

The large discrepancy between the results obtained with the three different detectors indicates the high 

degree of uncertainty between each measurement technique as a result of the interpretation of the 

detector response. The spread of results gives an indication of the order of magnitude of neutron fluence. 

The results reported here will be compared with those reported in existing published literature in §7.1. 

The discrepancies observed here will be further discussed in chapter 7. Whilst there is a high degree of 

uncertainty in the magnitude of the neutron fluence, it is possible to observe consistent trends in the 

data. The MCNP calculated neutron fluence in Figure 19 (§4.1.5) show a similar shape as depth in tissue 

increases. The calculated neutron fluence shown in Figure 22 (§4.1.5) indicate a maximum fluence at 2 

– 3 cm depth in tissue for linac neutron spectra from literature. Isotopic neutron sources show a 

maximum fluence at depths of 4 – 6 cm in tissue. Figure 44 shows the trend in the fluence measured in 

solid water with indium activation foils shows a maximum at 2 – 3 cm, and the copper activation foils 

show a maximum at 2 cm depth in solid water. The TLD measured fluence shows a maximum at 3 – 4 

cm depth. Although the points in Figure 44 and Figure 45 do not explicitly intersect, as the results in 

Figure 44 are at a distance of 15 cm from isocentre, extrapolating the data in Figure 45 shows agreement 

of approximately 30 % for the activation foils and TLDs, which indicates reproducibility of the results 

within the bounds of the discrepancy observed.  

The magnitude of the measured neutron fluence as a function of distance from the isocentre also varies 

with the detector used (see Figure 45). The TLD measured results are consistently about one order of 

magnitude higher than those measured with activation foils. The trend of fluence decreasing as the 

distance from the field increases is as expected. The ‘direct’ fast neutrons are expected to decrease with 

the square of distance from the field, whilst the ‘scattered’ thermal neutrons are expected to be uniform 

throughout the room (McCall et al 1999). 
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Figure 44: A compilation of results from Figure 39, Figure 41 and Figure 42 which each show the neutron 

fluence rate as a function of depth in solid water as measured with TLDs, copper activation foils and indium 

activation foils. The results obtained with the activation foils are significantly lower than those obtained from 

TLD and have been plotted against the right hand axis so that the trends may be compared. 

  

Figure 45: A compilation of results from Figure 40 and Figure 43 which each show the neutron fluence rate as a 

function of the distance from the isocentre of a photon field as measured with TLDs and indium activation foils. 

The results obtained with the activation foils are significantly lower than those obtained from TLD and have 

been plotted against the right hand axis so that the trends may be compared. 
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The most likely source of the discrepancy between the different detectors is ultimately traceable to the 

neutron energy spectrum. The TLD responses are uncorrected for energy dependence in this 

measurement because the energy spectra produced by medical linear accelerators are of low enough 

energies that the ratio of responses from 6LiF and 7LiF TLD materials is constant (see Figure 18) and as 

these measurements were taken with solid water build up, the moderated neutrons have even lower 

energies. The activation foils results rely much more heavily on the modelled neutron energy spectrum. 

The neutron fluence calculated from the activity of a given foil is inversely proportional to the cross 

section (see equation 21), which is strongly dependent on the neutron energy spectrum as shown in 

Figure 27. The results for neutron fluence shown in Figure 44 and Figure 45 were determined using 

cross section values (shown in Table 16) which were calculated for the MCNP modelled spectra shown 

in Figure 36.  

The cross sections for neutron interactions with 115In and 63Cu are shown in Table 12 for standard 

isotopically produced neutrons with the energy spectra shown in Figure 12 and for the spectra sourced 

from published literature shown in Figure 16. The discrepancy between the neutron fluence results 

obtained from the activity of indium and copper activation foils is potentially the result of uncertainty 

in the neutron energy spectrum contributing to an error in the cross section value. To explore this 

possibility a sensitivity analysis was conducted using the same neutron energy spectra as those used to 

test dose to TLDs in chapter 4. The discrepancy between the two foil materials is expressed as a ratio in 

the second column of Table 17 below. The ratio is relatively constant with increasing depth indicating 

that the degree of moderation in the spectra at each depth is modelled consistently. The ratio of neutron 

fluence calculated from the activities of the copper and indium foils has been recalculated for the cross 

sections given in Table 12 for the neutron spectra given in the column headings. Whilst this ignores the 

(not insignificant) moderation of neutron energy with increasing depth in solid water, it is included here 

to indicate the sensitivity of the fluence results to changes in neutron energy spectrum. For the positions 

at greater depths in solid water the energies used here are therefore higher than those which would occur 

realistically, however Table 17 shows that the lower energies result in greater disagreement between the 

copper and indium activation foils. 
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Table 17: The ratio of fluence measured with copper activation foils to the fluence measured with indium 

activation foils. Each column represents the results obtained using cross sections calculated for the neutron 

energy spectrum given in the column heading. The second column is the ratio of the original data presented in 

Figure 44, which was calculated from spectra modelled at each depth in solid water. The remaining spectra 

columns do not account for the moderation at each depth. 
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4 9.82 1.77 1.35 1.89 5.74 5.84 5.86 12.80 13.19 
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6 10.49 2.12 1.63 2.27 6.90 7.02 7.04 15.39 15.86 

7 11.26 2.30 1.76 2.46 7.49 7.61 7.64 16.70 17.20 

(1)(ISO8529-1 2001) (2)(Esposito et al 2008) (3)(Kry et al 2009a) 

The neutron fluence, as measured by activation foils of different materials, should be expected to agree 

for the same irradiation conditions. The ratios of the results obtained from copper and indium foils 

shown in Table 17 shows an approximately factor of 10 disagreement for the cross sections calculated 

for the MCNP modelled neutron spectra (Figure 36). When using the cross sections calculated for the 

neutron spectra from published literature of medical linacs, the results are roughly the same, with slightly 

better agreement for those from Esposito et al (2008) and slightly worse for those from Kry et al (2009a). 

The copper and indium activation foil results agree quite well for the cross sections calculated for high 

energy isotopic sources, however these energies are unrealistic for neutrons produced by a medical linear 

accelerator, especially for measurement positions inside a moderating material. These calculations are 

included to demonstrate the degree of uncertainty in the neutron energy spectrum which would be 

necessary to explain the discrepancy between the results from the two activation foil materials.  
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5.3 Results: Conversion to neutron dose equivalent rate  

MCNP was used to calculate the dose deposited in a 30 × 30 × 30 cm3 cube of ICRP tissue in 80 

simulations of monoenergetic neutron sources with different energies (Figure 29). These values 

combined with the neutron energy spectra calculated in one centimetre depth increments in solid water 

shown in Figure 36 were used to determine neutron fluence to absorbed dose coefficients for the 

measurements made at depths in solid water. The values for absorbed dose per unit neutron fluence 

(pGy∙cm2) are given in the third column of Table 18. The neutron dose equivalent is also a quantity of 

interest, because it accounts for the different damage inflicted by neutron radiation compared to other 

types of radiation. In order to convert the absorbed neutron dose to the neutron dose equivalent, the 

energy spectra from Figure 36 have been used in conjunction with the energy dependent ICRP103 

(2007) radiation weighting factor for neutron radiation which is shown in Figure 2. The resultant 

radiation weighting factors for each energy spectrum are given in the fourth column of Table 18. Both 

sets of these values have been separately applied to the neutron fluence results presented in Figure 44 

and Figure 45 to produce neutron absorbed doses in Figure 46 and Figure 47 as well as neutron dose 

equivalents in Figure 48 and Figure 49. 
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Table 18: Fluence to absorbed neutron dose conversion factors calculated in this study using MCNP for a variety 

of neutron energy spectra. The radiation weighting factors corresponding to each of these spectra is also given 

and has been calculated from the neutron radiation weighting factor function given in ICRP116 (2010). The 

absorbed dose per neutron and radiation weighting factors combined give the neutron dose equivalent per unit 

fluence. 

Neutron 

spectrum 

Mean energy 

(MeV) 

Dose per neutron 

fluence 

(pGy∙cm2) 

Radiation 

weighting factor 

wR 

Dose equivalent 

per neutron 

fluence (pSv∙cm2) 

241AmB (1) 2.63 21.9 15.7 343 

241AmBe (1) 4.05 26.2 13.7 358 

252Cf (1) 1.98 17.6 16.8 296 

Isocentre (2) 0.510 7.84 15.7 123 

1 metre (2) 0.310 5.73 14.2 81.2 

1.5 metres (2) 0.267 5.09 12.7 64.6 

Air (3) 0.249 4.75 10.6 50.2 

Tissue (3) 0.146 3.21 7.52 24.2 

Depth in solid 

water (4) 
    

0 cm 0.185 4.03 9.62 38.8 

1 cm 0.107 2.72 6.71 18.2 

2 cm 0.081 2.27 5.59 12.7 

3 cm 0.065 2.01 4.89 9.82 

4 cm 0.055 1.83 4.44 8.13 

5 cm 0.047 1.69 4.07 6.89 

6 cm 0.040 1.60 3.85 6.15 

7 cm 0.038 1.55 3.74 5.82 

(1) (ISO8529-1 2001) (2) (Esposito et al 2008) (3) (Kry et al 2009a) (4) This study, shown in Figure 36. 
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Figure 46: Absorbed dose from neutron radiation as a function of depth in solid water out-of-field of an 18 MV 

photon beam. The data is measured using 6LiF and 7LiF TLD pairs and indium and copper activation foils. The 

dose is calculated using the conversion factors presented in Table 18. 

 

Figure 47: Absorbed dose from neutron radiation as a distance from the field edge of an 18 MV photon beam. 

The data is measured using 6LiF and 7LiF TLD pairs and indium activation foils. The dose is calculated using the 

conversion factors presented in Table 18. 
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The neutron dose equivalent is essential to assess the magnitude of the risk to patients potentially treated 

with 18 MV x-ray beams. The dose equivalent quantity allows inter comparison of the biological effects, 

and hence, risk resulting from irradiations by different types of radiation. It also allows comparison with 

this work and existing published literature, because it is the quantity most often reported. For the highest 

degree of clarity possible, all factors used to convert between neutron fluence, absorbed neutron dose 

and neutron dose equivalent in this work are presented in Table 18.  

 

Figure 48: Neutron dose equivalent from neutron radiation as a function of depth in solid water out-of-field of an 

18 MV photon beam. The data is measured using 6LiF and 7LiF TLD pairs and indium and copper activation 

foils. The dose equivalent is calculated using the conversion factors presented in Table 18. 
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Figure 49: Neutron dose equivalent from neutron radiation as a distance from the field edge of an 18 MV photon 

beam. The data is measured using 6LiF and 7LiF TLD pairs and indium activation foils. The dose equivalent is 

calculated using the conversion factors presented in Table 18. 

 

As discussed in §5.2.3, there is a significant degree of variation in values obtained from the different 

detectors employed in this study. For the purposes of discussion of the magnitude of the neutron dose 

an indicative range of values will be selected. The maximum neutron dose equivalent observed was 48 

μSv/MU, as calculated from the responses of a pair of 6LiF and 7LiF TLDs placed at 1 cm depth in solid 

water at a distance of 10 cm from the edge of a 10 × 10 cm2 18 MV field. A minimum value of 0.74 

μSv/MU as measured with indium activation foils at the same location as the maximum TLD result. 

5.4 Summary of the relevance to risk from neutron contamination 

The results of neutron measurements in solid water phantoms are presented in this chapter. The 

measurement of neutrons in phantoms is used as a proxy to indicate the dose a patient might receive 

during 18 MV radiotherapy. Quantifying the neutron fluence rate allows the absorbed dose to tissue 

from neutron exposure to be determined. From this, the neutron dose equivalent can be determined. The 

resultant risk to a patient can be discussed in a quantitative manner from the neutron dose equivalent 

information presented. 
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6. Indirect risks posed by neutron production 

Neutrons produced via the photonuclear effect in high energy radiotherapy may be incident on all objects 

within a medical linear accelerator bunker. The most immediate concern is the risk to the patient. 

However, there are secondary effects which may also pose a risk to staff and equipment. Production of 

neutrons by high energy photons may result in activation of the target nuclei of the interaction. These 

neutrons may then interact with otherwise stable nuclei and cause further activation. Components within 

a medical linear accelerator operating at high energies can become radioactive and remain so after 

termination of the beam. The risk this poses is of greater relevance to radiotherapy staff who may be in 

close proximity to a linac frequently throughout their work. Neutrons incident on patients during 

treatment are of concern because of their high radiobiological effect (RBE). Neutron interactions within 

patients are unlikely to cause a high degree of activation because interaction with tissue resulting in 

residual activity have lower cross sections (see Figure 1, §2.2). However, patients with metallic implants 

undergoing radiotherapy are at risk of activation of the implanted object. Electronic implants such as 

pacemakers may be damaged and malfunction due to radiation exposure (Zaremba et al 2015). Hip 

prostheses may be activated by incident neutrons or high energy photons directly from the treatment 

beam.  

Two specific cases have prompted specific concerns from treating staff and are worthy of individual 

investigation. This chapter describes the application of established conventional methods for gamma ray 

spectroscopy and TLD photon dosimetry to quantify the degree of activation in linacs and prosthetic 

hips. The isotopes produced are identified with gamma spectroscopy and the resulting doses are 

determined from ion chamber and TLD measurements. The work in this chapter has also been published 

in peer reviewed journals; please see Keehan et al (2015) and (Keehan et al 2017). 

6.1 Activation of the components in the linear accelerator 

Medical linear accelerators operating above 7-8 MeV produce contaminant neutrons through 

photonuclear interactions in which a high energy photon causes the emission of a neutron. The loss of a 

neutron for some nuclei renders them unstable and radioactive. The extent of the activation depends on 

the number of monitor units (MU) delivered at high energies. Treatment techniques that require a higher 

number of MU produce a higher level of activity. Total body irradiation (TBI), intensity modulated 

radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and stereotactic ablative body 

radiotherapy (SABR) typically require long beam times and can benefit from being delivered at high 

energies. TBI requires a very large field size, whilst IMRT, VMAT and SABR are typically delivered 

as small fields. For small fields there is a larger mass of collimating material intersecting the beam, 

which provides shielding against secondary radioactivity produced after the beam is terminated. The 

large fields of TBI require the collimators to be fully open for the delivery of the beam. If the jaws 

remain open at termination of the beam, the absence of shielding results in a higher dose rate at the beam 

exit window of the linac. The relevant isotopes are identified in this section, and the measurements of 

the resultant doses at representative positions are presented. 
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6.1.1 Methods 

6.1.1.1 Methods for identifying the radioisotopes produced in linac components 

Gamma-ray spectroscopy was used to identify radioisotopes present following termination of 18 MV 

beams from a Varian 21EX and an Elekta Synergy. A 3 × 3 inch sodium iodide (NaI(Tl)) scintillation 

detector (Saint-Gobain, France) and Ortec DigiBASE-E Ethernet multichannel analyser PMT base 

(Ametek, USA) were calibrated with the characteristic gamma-ray emissions of 137Cs, 22Na and 60Co. 

The detector was then placed on the treatment couch, with the centre of the crystal at 100 cm SDD. 

Spectral measurements were acquired after 8 hours (Varian) and 4 hours (Elekta) of typical use at 

multiple energies (Figure 51). Spectra were also measured from one minute following 500 MU delivered 

at 18 MV from each linac (Figure 52). The detector was removed from the room whilst the beam was 

delivered and placed at isocentre within one minute of the beam termination to avoid any afterglow 

effects.  

Gamma-ray spectra were also measured immediately following the delivery of 18 MV electron beams.  

A 25 × 25 cm2 applicator was used to deliver 10,000 MU at a dose rate of 1,000 MU/min. The spectrum 

measured following this beam is compared to that measured following an 18 MV photon beam in Figure 

53. For comparison, an 18 MV electron beam was also delivered in service mode without the presence 

of an applicator.  

6.1.1.2 Methods for determining doses resulting from activation of the linac head 

The photon dose rate directly under the beam exit window of the Varian linac was measured using a 

PTW 32002 1 litre spherical ion chamber (Freiburg, Germany). The chamber has a polyoxmethylene 

wall and graphite coated polystyrene central electrode.  

The dose rates were measured with the jaws remaining open (40 × 40 cm2) after each of four 2197 MU 

beams from a Varian 21EX were delivered to a patient as part of an 18 MV total body irradiation 

treatment on two consecutive days. The treatment was the first of the day, and background 

measurements were taken after pre-treatment machine testing/warm-up, before any treatment beams 

were delivered. Two twenty minute measurements were taken for each of two treatment fractions, 

following left and right lateral deliveries (see Figure 50) of 2197 MU each at a dose rate of 200 MU/min. 

The chamber was set up on the treatment couch out of the beam, and moved into place just after 

termination of the beam. To estimate the dose rate received by a radiation therapist attending the patient 

at the TBI treatment couch, dose measurements at this position, 4.8 metres from the linac face, were 

also taken. 

 To investigate correlation between the amount of collimation and the level of induced activity 10,000 

MU were delivered with the jaws open to 40 × 40 cm2 and closed to 0.5 × 0.5 cm2. Measurements were 

also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. 
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Figure 50: Right lateral total body irradiation geometry viewed from above. The gantry was rotated 90° and the 

patient was positioned on a TBI treatment couch at the edge of the treatment room, 4.8 meters from the linac 

face. 

 

6.1.2 Results 

6.1.2.1 Results for identifying the radioisotopes produced in linac components 

Gamma spectra were acquired from a Varian linac after 8 hours and from an Elekta linac after 4 hours 

of typical use at multiple energies (Figure 51). Spectra were also measured from within one minute 

following a delivery of 500 MU at 18 MV from a Varian and an Elekta (Figure 52). The spectra shown 

in Figure 51 are subtracted from those shown in Figure 52 in order to show the activity generated during 

the 500 MU delivery only. 

The spectrum measured following an electron beam of 10,000 MU delivered at 18 MeV is shown in 

Figure 53. An 18 MV electron beam was also delivered in service mode without the presence of an 

applicator. The spectrum measured following this beam is compared to that measured with an applicator 

in place in Figure 54. 
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Figure 51: Gamma-ray spectra measured at 100 cm SDD following ~8 hours of typical use at multiple energies 

for the Varian 21EX and ~4 hours of typical use at multiple energies for the Elekta Synergy.  

 

Figure 52: Gamma-ray spectra measured at 100 cm SDD following 500 MU photon beams delivered at 18 MV. 

The beams from the Varian 21EX were delivered at dose rates of 600 MU/min and at 400 MU/min. The Elekta 

Synergy beam was delivered at 400 MU/min only. The detector was placed on the couch within one minute of 

termination of the beam and spectra were acquired for forty minutes. The spectra shown in Figure 51 were 

subtracted.  
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Figure 53: The spectrum measured following an 18 MV electron beam of 10,000 MU at a dose rate of 1,000 

MU/min. The spectrum measured following 500 MU of an 18 MV photon beam at 600 MU/min from Figure 52 

is shown for comparison of the difference in the magnitude of the activity.  

 

 

Figure 54: Spectra measured following 10,000 MU delivered at a dose rate of 1,000 MU/min in 18 MV electron 

mode. One beam was delivered with a 25 × 25 cm2 applicator in place and the other in linac service mode 

without an applicator in place.  
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The isotopes identified from their characteristic gamma-ray energy peaks in Figure 51, Figure 52, Figure 

53, and Figure 54 are shown in Table 19. The 1779 keV peak from 28Al (with half-life 2.3 minutes) is 

only visible in the spectra acquired immediately following termination of the 18 MV beam (Figure 52). 

The peaks of the longer lived 187W, 56Mn and 24Na are not visible in Figure 52 but appear after the short 

lived activation products have decayed (Figure 51). The gamma-ray spectra measured following electron 

beams had much lower count rates (by a factor of ~250) and thus activity than those measured following 

photon beams, see Figure 53. The spectra in Figure 53 are not normalised to the number of monitor units 

delivered in each beam because the level of activation is dependent on the dose rate and total time for 

beam delivery as well as the half-lives of the isotopes produced. The activation is not linearly related to 

the number of monitor units. The lower activity observed following the electron beams is expected 

because the cross sections for direct electro-nuclear events are estimated to be of the order of the fine 

structure constant, 1/137, compared to the cross sections for photonuclear interactions (McCall et al 

1984). The 962 keV gamma peak of 63Zn shown in Figure 54 is only present in the spectrum measured 

with the electron applicator present.  

Table 19: Isotopes identified in the spectra shown in Figure 48, Figure 49, Figure 50, and Figure 51. 

Isotope Energy (keV) Half-life Interaction 

187W 686 24 hours (n,γ) 

63Zn 962 38 min (γ,n) 

56Mn 847, 1811, 2113 2.6 hours (n,γ) 

24Na 1369 15 hours (n,γ) 

28Al 1779 2.3 min (n,γ) 

6.1.2 Doses resulting from activation of the linac head  

The dose rate was measured following left and right lateral beams delivered during a patient TBI.  The 

left lateral beams were delivered first, followed by the right lateral beams. The dose rate measured after 

the second of the lateral beams is always higher than after the first beams because of the accumulation 

of activity. The dose rates measured on the first day showed an overall lower activity than on the second 

day, because an interlock occurred during this delivery which resulted in the initial beam being 

interrupted. The beam was off for approximately one minute while the interlock was checked and 

recorded before the remaining monitor units were delivered. During this time isotopes continue to decay 

whilst no more are being produced resulting in an overall lower activity when all monitor units had been 

delivered.  

The patient is positioned near the bunker wall for the TBI, and this is typically where staff stand when 

they first enter the room to attend to the patient. Further dose measurements were taken at the patient 

location (4.8 m away from the beam exit window (‘■’ in Figure 55) to provide more realistic dose 

information for concerned staff.  
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Figure 55: The dose rate measured at the beam exit window following TBI beams delivered to a patient. The left 

lateral beams were delivered first, followed by the right lateral. During day 1 a beam interlock occurred resulting 

in premature termination of the beam. The fault was documented and the beam restarted within a couple of 

minutes. Also shown is the dose rate measured at the patient location, 4.8 m from the linac face.  

 

Figure 56: The dose rates measured at the beam exit window of a Varian 21EX after 10,000 MU at 18 MV. 

Beams were delivered with the jaws and MLC fully retracted to form a 40 × 40 cm2 field designated “open” and 

with the jaws fully closed to form a 0.5 × 0.5 cm2 field designated “closed”. The dose rates were also measured 

in these two configurations. 
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To investigate a possible correlation between the amount of induced activity and the degree of beam 

collimation, 10,000 MU were delivered in photon mode with the jaws open and closed. As evident in 

Figure 56, there was no difference observed between the induced radioactivity for small or large field 

sizes. However, the dose rate is significantly reduced by the extra shielding provided by the jaws if they 

are closed after beam delivery (‘♦’ in Figure 56).  The dose rate integrated over ten minutes directly 

below the closed jaws is a factor of 12 lower than that measured with the jaws opened.  Closing the jaws 

before entering the treatment room to reduce the dose from activation products within the linac is 

justifiable by this reduction, in keeping with the ALARA principle. It is already common practice at 

some hospitals to do this after a high energy treatment.  

For a staff member spending 10 minutes at the patient location following a TBI delivery involving six 

fractions of four beams of 2197 MU the annual dose estimate is 750 μSv for an annual patient load of 

24. The dose received by staff as a result of induced radioactivity has the potential to make a small 

contribution to the 20 mSv annual dose limit for occupational exposure. If the jaws are closed before 

the staff member enters the room, the dose rate over 10 minutes is reduced by a factor of 12, and results 

in a reduced annual dose to staff members of 65 μSv. This assumes that the same staff member would 

receive this small dose each time a TBI is delivered and does not account for rostering and rotation of 

staff throughout the year.  

6.2 Activation of hip prostheses in patients 

Patient implants, pacemakers, or prostheses composed of non-biological materials may invite 

significantly different interactions with incident photon and neutron radiation. Heavy nuclei typically 

have much larger neutron interaction cross sections than the light isotopes predominantly found in tissue. 

Modern radiotherapy typically involves highly conformal photon beams directed toward a target 

volume. Contaminant neutrons may be scattered by collimators, but not efficiently absorbed by them. 

Compared to the photon field, neutrons do not exist as a collimated beam, but as a comparatively diffuse 

fluence incident on the entire patient (McCall et al 1979). 

The National Joint Replacement Registry of the Australian Orthopaedic Association (AOA 2016) 

reported 44,710 hip replacements in the 2015 calendar year. The number of hip replacements has 

increased each year since complete national data collection was commenced in 2003 with a 64.9 % 

increase to 31 December 2015. In 2003 the AAPM task group 63 (Reft et al 2003) conducted a survey 

of 30 institutions which showed that 1 – 4 % of patients has prosthetic devices which could affect their 

therapy. 

One of the challenges for pelvic radiotherapy of patients with hip prostheses arises from the artefacts 

which occur during the planning CT. The high density prosthesis material causes higher attenuation 

meaning fewer photons reach the detector, which results in an overall lower quality image. The 

interfaces between a prosthesis and regular tissue type produce bright streaking artefacts in the image 

(Coolens and Childs 2003). This can lead to inappropriate assignment of CT number to certain regions, 

which will in turn affect the dose calculation (Roberts 2001). It also becomes difficult to ascertain the 

boundaries of the prosthesis and of surrounding anatomical structures. Figure 57 shows a CT image of 

a prostate cancer patient with bilateral hip prostheses. The dark patches labelled “artifacts” are caused 

by the highly attenuating prosthesis material. Modern CT scanners with artefact reducing algorithms are 

able to produce better quality images.  

It is common practice to avoid directly irradiating metallic prostheses in treatment planning as they are 

known to perturb the radiation field and reduce the dose to the tissue downstream of the prosthesis (Reft 

et al 2003). Moreover, treatment planning systems do not accurately account for beams traversing 
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metallic implants and estimate the reduction in dose poorly (Keall et al 2003). However, beams are 

commonly allowed to pass nearby or even through prostheses on exit from the patient. 

 

Figure 57: A transversal view of computed tomography slice of prostate cancer patient showing bilateral metallic 

hip prostheses and artifacts taken from (Rana and Pokharel 2014). 

Prostheses may be activated by photons and/or neutrons in high energy radiotherapy. High energy 

photons can activate prostheses via the photonuclear effect, causing the emission of neutrons from 

within the patient. Neutrons produced in the linac can also be incident on and activate the prostheses, 

even when planned treatment beams are not directly incident upon them, due to the diffuse nature of the 

neutron contamination arising from the high frequency of neutron scattering events. These neutrons 

have mean energies in the vicinity of 0.14 MeV in tissue (Kry et al 2009a) and, as such, have high cross 

sections for capture with the nuclei of hip prostheses. Neutron capture often induces radioactivity in the 

target nuclei. 

In addition to the direct interaction of neutrons with patient tissue, neutrons pose another potential 

exposure pathway to patients via the production of unstable product nuclei following neutron capture. 

These radioactive nuclei may emit secondary radiations with half-lives that may be much longer than 

the beam irradiation times. This can be extended to the neutron activation of metal objects inside the 

patient. The decay of activation products may involve radiation emissions that will deposit energy in 

nearby tissue. 

6.2.1 Methods 

6.2.1.1 Irradiation geometries 

Prosthetic hips (Thackray, UK) were irradiated in and out-of-field by 18 MV photon beams in a water 

phantom in different geometries. The four representative irradiation geometries of interest are shown in 

Figure 58. The beam entering through the prosthesis (Figure 58 (a)) should ideally be avoided clinically 

because the prosthesis directly shadows the target. However, this geometry is sometimes necessary to 

avoid adjacent organs at risk. It is also of interest as it provides a “worst-case” scenario for activation. 

The other three geometries are more commonly encountered clinically. The beam exiting through the 

prosthesis, Figure 58 (c), is identical to the “entry” beam (a) except the beam has been significantly 

attenuated before entering the prosthesis. Beams (b) and (d) pass laterally to the prosthesis, which is 

exposed only to out-of-field photons and neutrons scattered from the linac head. The water phantom 

configurations used to simulate these geometries are shown in Figure 59 (a-d). Each water phantom was 
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placed on at least 3 cm of solid water backscatter material. Each irradiation was 200 MU delivered by a 

Varian 21 EX at a dose rate of 400 MU/min in 18 MV (TPR20,10 = 0.784) photon mode.  

 

 

 

Figure 58: Simulated patient irradiation geometries. Beam (a) enters through the prosthesis, (b) passes laterally 

10 cm away. Beam (c) exits through the prosthesis with a larger degree of photon attenuation and neutron 

moderation than beam (a). Beam (d) also passes laterally in close proximity (within 1 cm) to the prosthesis. The 

labels (a), (b), (c) and (d) correspond to the geometries shown in Figure 59. 

 

Figure 59: Prosthetic hips were irradiated in a water tank by (a) a beam entering through the prosthesis, (b) a 

beam passing 10 cm laterally to the prosthesis, (c) a beam exiting through the prosthesis and (d) a beam passing 

laterally in close proximity to the prosthesis. The red circle represents the isocentre of the beam. Each water 

phantom was placed on at least 3 cm of solid water backscatter material. The labels (a), (b), (c) and (d) 

correspond to the geometries shown in Figure 58. 
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6.2.1.2 Isotopic identification with gamma spectroscopy 

The gamma ray energy spectra were acquired within one minute of termination of the beam with a 3 × 

3” NaI(Tl) scintillation detector (Saint-Gobain, France) and an Ortec DigiBASE-E Ethernet 

multichannel analyser PMT base (Ametek, USA). The spectra were each acquired for 15 minutes to 

allow sufficient counts for peak identification. 

6.2.1.3 Dosimetry 

To induce sufficient activity to produce a measurable dose, one prosthesis was irradiated at isocentre in 

water by 10,000 MU from an Elekta Synergy at a dose rate of 450 MU/min at 18 MV (TPR20,10 = 0.780). 

High sensitivity LiF:Mg,Cu,P thermoluminescence dosimeters (TLD-100H) (Harshaw, USA) were used 

to measure the dose resulting from radioactive isotopes produced in the prosthesis. 24 TLD chips (0.89 

× 3.1 × 3.1 mm3) were placed on the surface of the hip within two minutes of termination of the beam 

(see Figure 60) and removed after 12 hours (5 half-lives of the longest lived isotope). The responses of 

the TLDs were measured with a Harshaw 5500 automated reader. Each TLD was corrected for its 

individual sensitivity relative to the batch average as determined in a 6 MV beam (Faulkner et al 1999). 

The average signal of 16 un-irradiated TLDs was subtracted from the signal of TLDs placed on the hip 

to remove background signal unrelated to the irradiation. This is important for reducing uncertainty 

when using high sensitivity TLDs to measure very low doses (Shoushan et al 1986). The backgound 

dose was minimised by annealing the TLDs immediately before the measurements were performed and 

the read-out was within 24 hours of the measurements. A total of 50 TLD chips were read out with a 

Harshaw 5500 automatic reader, which takes approximately 1 hour. Half of the un-irradiated 

background TLDs were read at the beginning and the other half at the end to allow for variations over 

the duration of the read-out session. Standards irradiated to 5, 10, 20 and 50 cGy at 6 MV were also read 

during the session for calibration of the dosimeters affixed to the prosthesis. 

 

Figure 60: The left figure shows a 3 × 3 mm TLD-100H chip. It is affixed to a small square of graph paper by 

plastic cling wrap which is held in place by double sided tape at the edges of the square. The right figure shows 

the graph paper squares with attached TLDs affixed to the hip prosthesis following irradiation. 

6.2.2 Results 

6.2.2.1 Isotopic identification with gamma spectroscopy 

The gamma-ray spectra acquired following irradiation show the characteristic gamma-ray peaks of 53Fe, 
56Mn and 52V (Figure 61). The total count rates measured during spectroscopy of in-field irradiated 

prostheses were between 6 and 7.5 times higher than those measured from out-of-field irradiated 

prostheses. The prostheses irradiated in the lateral out-of-field region are notable for the absence of the 
53Fe gamma-ray peaks. The half-lives and gamma-ray energies of these isotopes are given in Table 20. 

Radioactive 53Fe with a half-life of 8.51 minutes was observed only in prostheses directly irradiated by 

18 MV photon beams. Production of 53Fe is thus attributed to photonuclear interactions with stable 54Fe 
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and involves neutron production from within the prosthesis itself.  This neutron production from within 

the patient may pose a further risk because of the high relative biological effectiveness (RBE) of neutron 

radiation.  

56Mn and 52V with half-lives of 155 and 3.74 minutes respectively were observed for prostheses 

irradiated in-field as well as those placed just outside the field and 10 cm from the field. The production 

of these isotopes is attributed to activation by contaminant neutrons which do not exhibit the same 

penumbral drop in fluence as photons. 

 

 

Figure 61: Gamma-ray energy spectra acquired over 15 minutes within one minute of irradiation, for each of the 

irradiation schemes illustrated in Figure 58 and Figure 59. The peaks shown are consistent with the isotopes 

given in Table 20.  

 

Table 20: The gamma-ray energies and half-lives of the isotopes produced within the hip prostheses. 

Eγ (keV) Half-life (min) Isotope Reaction 

378, 511 8.51 53Fe (γ,n) 

847, 1811, 2113 155 56Mn (n,γ) 

1434 3.74 52V (n,γ) 
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6.2.2.2 Dosimetry 

The average dose measured over the 12 hours immediately following direct irradiation of 10,000 MU 

was 0.20 mGy at an effective distance of 1 mm (LiF density 2.2 g/cm3, thickness of the chip 0.89 mm) 

from the surface with a standard deviation of 0.04 mGy. The limit of detection calculated from the mean 

and standard deviation of the readings of the un-irradiated background TLDs was 0.05 mGy (with a 

99% confidence interval). The highest dose was recorded by the TLDs attached to the thickest part of 

the prosthesis reflecting the proximity of greater mass of activated material (see Figure 62). 

 

Figure 62: The dose measured on the surface of the prosthesis as a function of the approximate distance from the 

narrow end to the thicker end which is inserted into the socket. The error bars are the standard deviations of three 

to four TLD measurements taken at approximately the same distance. Inset: Photo of the hip prosthesis.  

 

The photon dose measured from two minutes post irradiation for a twelve hour duration was 0.20 ± 0.04 

mGy for a 10,000 MU irradiation. Twelve hours is approximately five times the longest half-life 

identified and more than 96% of the radionuclei produced will decay during this time. The dose is 

slightly higher at the surface of the hip in the thicker regions which is due to the larger mass present. 

This dose is minute compared to the treatment dose and even the out-of-field doses resulting from scatter 

and leakage x-rays. 

The dose rate induced in prostheses following a typical 2 Gy treatment fraction is of greater clinical 

relevance. The surface dose over 12 hours was below the minimum detectable limit of 0.05 mGy 

following the 200 MU exposures performed to measure the gamma spectra of the activated prostheses. 

The activity induced in a material is not linearly related to the number of monitor units delivered because 

some nuclei decay during the beam delivery. The overall activity induced is dependent on both the 

number of MU and the dose rate. The activity of those prostheses irradiated in-field was much higher 

than those irradiated out of the primary photon field. The surface dose rate of a prosthesis irradiated out-

of-field would be expected to be reduced by a similar factor, and it would be below the limit of detection 

of 0.05 mGy. 
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6.3 Summary of the relevance to indirect risk from neutron contamination 

This chapter lays the foundation for addressing the risk from secondary radiation resulting from 

photonuclear events and neutron activations. Identifying the isotopes produced in both medical linear 

accelerators and activated prosthesis within patients allows the half-lives of the radioisotopes to be 

identified. The half-lives of the isotopes determines the length of time which is relevant for exposures 

to staff and patients, which in turn relates to the degree of risk. The amount of radioactivity also must 

be factored in to fully assess the degree of risk. The multiple isotopes activated by neutron interactions 

provide different contributions to the net dose. Each isotope is produced in a different quantity and has 

a different half-life, which makes the analysis of the risk non-trivial. The approach here, of measuring 

the dose rate as a function of time informs risk management strategies, such as the use of shielding or 

waiting times. 

By measuring the dose at the linac face and at a representative location within the treatment bunker 

following 18 MV beam deliveries, the resulting risk to radiotherapy staff who may frequently be exposed 

to an activated linac can be determined. The dose at the surface of a prosthetic hip irradiated by an 18 

MV is used to quantify the degree of risk which a patient is exposed to resulting from the neutron 

interactions which may occur during an 18 MV radiotherapy treatment. 
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7. Discussion 

This chapter provides an in-depth discussion of the results of direct neutron measurements and 

secondary activations presented in the previous chapters. An assessment of the validity of direct neutron 

measurements is conducted using a comprehensive summary of published neutron dose equivalent 

values compiled for this study. The results of the neutron phantom measurements are discussed in the 

context of the risk posed to the patient. Activation of the components of linear accelerators and of 

implanted devices within patients is also discussed, with a view to assessing the risk posed to staff and 

patients. The degree of activation observed in linacs is low level, but could be of concern for staff who 

may spend a significant period of time in close proximity to the machines. Radioisotopes produced in 

hip prostheses exposed to high energy radiotherapy beams have been identified and presented in chapter 

6 and will be discussed in this chapter in terms of the resultant risk to patients.  

7.1 Comparison of direct neutron measurement results to literature values 

An in-depth literature review was conducted to assess the validity of the direct neutron measurements 

made in this study. Journal publications which reported a neutron dose equivalent measured or 

calculated under irradiation conditions similar to those used in this study were included. The reported 

neutron dose equivalents are shown in Figure 63. References and detailed information about the 

parameters of each measurement or calculation are given in Table 21.  

Nearly all studies which report the results of physical measurements used Bonner spheres or 

anthropomorphic phantoms. The studies which used Bonner spheres or similar were aiming to measure 

the neutron energy spectrum and have also inferred the net neutron fluence from the spectrum unfolding 

data. The studies which used anthropomorphic phantoms have predominantly reported neutron fluence 

or dose information for organ locations in specific phantom models. The depth of measurement points 

from the surface and distance from the irradiating field is not always disclosed explicitly.  

The measurement configurations used in this study were intended to provide a systematic assessment of 

the changes with depth and distance from the irradiating field. Although the irradiation conditions and 

points of measurement differ between studies, this collection of data is useful to assess the order of 

magnitude of neutron dose equivalent. The two data points from this study which are included in Figure 

63 are the maximum results for each detector from the depth-dose curve presented in Figure 48.  

The data has been separated according to some key parameters in Figure 64, Figure 65, Figure 66, and 

Figure 67. Data was included in these figures for all studies where the parameter of interest was specified 

in the publication. A spread of values is anticipated because the other variables are not held fixed in 

each plot. The average neutron dose equivalent at some key distances from beam isocentre are shown 

in Figure 64. Figure 65 shows the average dose measured with different field sizes. The reported doses 

are separated by the measurement or calculation method in Figure 66 and Figure 67 shows the average 

results determined for different manufacturers’ linacs for given nominal beam energies. Each data point 

is labelled with the number of reported values used to calculate the average. 
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Figure 63: Neutron dose equivalent in mSv/Gy photon dose as reported in literature. The coloured points are those measured in this study. Note the vertical axis is logarithmic. The 

plot incorporates 152 data points taken from 58 references; see Table 21 for details and references. Results from publications are grouped together and ordered the year of 

publication. 
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Figure 64: The mean neutron dose equivalent in mSv/Gy photon dose as reported in literature at different 

distances from isocentre. The error bars represent the standard uncertainty of the mean. Each data point is 

labelled with the number of values used to calculate the mean. 

 

Figure 65: The mean neutron dose equivalent in mSv/Gy photon dose as reported in literature for different 

treatment field sizes. The error bars represent the standard uncertainty of the mean. Each data point is labelled 

with the number of values used to calculate the mean. 
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Figure 66: The mean neutron dose equivalent in mSv/Gy photon dose as reported in literature determined from 

different measurement and calculation techniques. The error bars represent the standard uncertainty of the mean. 

Each data point is labelled with the number of values used to calculate the mean. The detectors were positioned 

at various locations, the distance from isocentre for each study is given in Table 21. 

 

Figure 67: The mean neutron dose equivalent in mSv/Gy photon dose as reported in literature for different linac 

manufacturers and accelerating potentials. The error bars represent the standard uncertainty of the mean. Each 

data point is labelled with the number of values used to calculate the mean. The measurements were conducted at 

various locations, the distance from isocentre used in each study is given in Table 21. 
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The data compiled from literature and shown in Figure 63 varies over more orders of magnitude than 

that observed with the systematic changes with depth and distance measured in this study (Figure 48, 

Figure 49). The wide spread of values plotted in Figure 63 is not unexpected given that the measurements 

are taken under different conditions, however since the overall variation is greater than the systematic 

changes observed in the data collected for this study, this may reflect the degree of the inherent 

challenges in neutron dosimetry. The data shown in Figure 63 has been reported for a variety of 

irradiation conditions; however, all measurement or calculation points were specified within the patient 

plane. The irradiations vary amongst machine manufacturer, accelerating potential and field size. The 

results are also compiled for a number of different measurement techniques and for values calculated 

using Monte Carlo simulation codes. 

It is of interest from a radiation protection point of view to note the upper bound on the neutron dose 

equivalent values. It is common practise in risk assessment to take a conservative approach to 

determining estimates so that a worst case scenario can be considered. The upper bound from the data 

collated in Figure 63 is approximately 35 to 40 mSv/Gy.   

The mean of values reported at the same distance from isocentre are calculated and shown in Figure 64. 

Apart from an outlying value at a distance of 50 cm, which has a large standard deviation, the neutron 

dose reduces with distance from the isocentre in the near out-of-field region, up to 25 cm from isocentre. 

At greater distances there is less data available at different distances, so the compilation of results is 

coarse in resolution. It is expected that the far out-of-field regions would have a relatively constant 

neutron fluence and spectrum of low energy scattered neutrons (McCall et al 1999).  

Neutron dose equivalent results obtained from irradiation by different photon field sizes are shown in 

Figure 65. The standard deviation of the mean of doses measured with an irradiation field size of 20 × 

20 cm2 is quite large and makes it difficult to determine an overall trend between dose and field size. 

The work of Sohrabi et al (2016) showed that for out-of-field neutron measurements, field size did not 

correlate with neutron dose equivalent. In-field measurements did show an increase in neutron dose 

equivalent with increasing field size. This implies that both primary (direct) and scattered neutrons 

contribute to the neutron fluence in-field and the greater the amount of lead and tungsten collimators 

intersecting the beam, the more neutron fluence is scattered away from the primary field. For neutrons 

outside the primary field, the fluence is primarily scattered neutrons and is not significantly affected by 

the field size of the primary field.  

The measurement or calculation technique chosen may introduce a systematic bias in the result. Figure 

66 shows the average of all results measured with the same detector type and those calculated with 

Monte Carlo code MCNP. The neutron dose equivalents reported from measurements made with TLDs 

appear to be significantly higher than those results obtained through the use of other detectors and 

through modelling. This may be due to the energy dependence of TLD response and the effect of using 

a calibration source with a different energy spectrum to that produced by a medical linear accelerator. 

Many of the publications included did not mention an energy correction, and of those that did the 

magnitude of the correction was not explicitly reported.  

The energy correction used for TLD calibration in this work assumes no scattering (or moderation) of 

the AmBe source. A very large room was chosen specifically to reduce the effect of scattered neutrons. 

A larger surface area corresponds to fewer scattered neutrons relative to direct neutrons (McCall et al 

1999). It is an assumption of this work that the surface area of the calibration room was sufficiently 

large that the scattered component is negligible. If this assumption is incorrect, the overall effect is that 

the value of k used to correct the TLD response in the calibration is too high. This would result in the 

calibration factor determined being an underestimate of the true calibration factor, and the measured 

neutron fluences presented in chapter 5 were an underestimate of the true neutron fluence. This seems 
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unlikely, as the TLD results of this thesis (and of many other works, see Figure 66) tend to be higher 

than the results achieved through other methods. 

Of the published studies included in this review, only two used more than one type of detector to perform 

the measurements under the same conditions. Di Fulvio et al (2013) used track etch detectors and bubble 

detectors with good agreement with results of 4.5 and 5 mSv/Gy at isocentre. Ipe et al (2000) used a 

combination of activation foils, track etch detectors, and bubble detectors with neutron dose equivalent 

results varying from 2.5 to 8.5 mSv/Gy photon dose. The overall discrepancy between detector types 

observed in Figure 66 is invisible to an individual using only one type of detector. 

Different linac designs could be expected to influence the level of neutron contamination. The cross 

section for neutron production is material dependent and energy dependent. The photon energy spectrum 

produced by a linac will also have an effect. The results reported for measurements made from different 

linac manufacturers and nominal beam energies are shown in Figure 67. There is a high degree of 

uncertainty in the mean dose equivalent for neutrons produced by Elekta linacs operating at 18 MV, 

because there are relatively few studies reporting on this. There is much more data available for linacs 

manufactured by Varian, where a clear increase in neutron dose equivalent with increasing beam energy 

can be observed. This is expected as the cross section for neutron production in the materials most 

commonly present in linacs peaks around 12 – 15 MeV (see Figure 1, §2.2). 

The wide spread of reported values for neutron dose equivalent under similar irradiation conditions 

highlights the difficulty of accurate neutron dosimetry. The overly simplistic treatment of energy 

spectrum effects on both calibration exposures and linac measurements is probably the largest source of 

error in published works to date. Calibration of detectors or dosimeters with neutron sources of higher 

energy than the linac neutrons, without correctly accounting for the energy dependence can result in 

overestimation of the neutron fluence or dose. Many papers do not fully describe the procedure or 

calculation used to convert neutron fluence to equivalent or effective dose, which may make comparison 

between studies invalid. 

The results presented in this thesis also have considerable associated uncertainty. The calibration factor 

determined for the 6LiF and 7LiF TLD pairs has a high uncertainty because the low signal produced by 

the TLDs is inherently noisy and the neutron source activity has an uncertainty of 5 %. The main source 

of uncertainty in the activation foil measurements comes from the high uncertainty in the neutron energy 

spectrum used to calculate the activation foil cross section.  
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Table 21: Reported neutron dose equivalent dose per Gy of photon dose for a variety of positions, linac manufacturers and field sizes. 

Reference Neutron dose 

equivalent 

(mSv/Gy) 

Distance from 

isocentre (cm) 

Linac 

manufacturer 

and beam energy 

Field 

size 

(cm2) 

Detector or Monte 

Carlo code used 

Comments 

This work 0.07 15 Varian 18 MV 10 × 10 Activation foil - indium  

 4.83 15 Varian 18 MV 10 × 10 TLD  

Barquero et al (2002) 0.35 30 Siemens 18 MV 40 × 40 TLD  

 0.86 25 Siemens 18 MV 40 × 40 TLD  

 0.64 25 Siemens 18 MV 40 × 40 TLD  

 0.34 80 Siemens 18 MV 40 × 40 TLD  

Barquero et al (2005) 0.78 25 Siemens 18 MV 40 × 40 TLD  

 0.45 25 Siemens 18 MV 40 × 40 TLD  

 0.45 25 Siemens 18 MV 40 × 40 TLD  

Bedogni et al (2013) 0.383 150 Varian 15 MV 10 × 10 Activation foils  

 0.224 200 Varian 15 MV 10 × 10 Activation foils  

Benites-Rengifo et al (2014) 0.612 100 Varian 15 MV 20 × 20 TLD Median spectrum energy values 

Bezak et al (2015) 3.8 Thyroid Varian 18 MV 10 × 10 TLD 4 field prostate treatment 

 5.9 Lung Varian 18 MV 10 × 10 TLD 4 field prostate treatment 

 5.6 Oesophagus Varian 18 MV 10 × 10 TLD 4 field prostate treatment 

 5.8 Liver  Varian 18 MV 10 × 10 TLD 4 field prostate treatment 

 5.8 Spleen Varian 18 MV 10 × 10 TLD 4 field prostate treatment 

 5.8 Stomach Varian 18 MV 10 × 10 TLD 4 field prostate treatment 

 5.5 Kidney Varian 18 MV 10 × 10 TLD 4 field prostate treatment 

 5.8 Pancreas Varian 18 MV 10 × 10 TLD 4 field prostate treatment 

 7 Colon Varian 18 MV 10 × 10 TLD 4 field prostate treatment 

 6.6 Small intestine Varian 18 MV 10 × 10 TLD 4 field prostate treatment 

Carinou et al (2005) 1.62 0 Elekta 14 MV 10 × 10 Monte Carlo MCNP  

 0.62 20 Elekta 14 MV 10 × 10  Monte Carlo MCNP  

 0.36 50 Elekta 14 MV 10 × 10 Monte Carlo MCNP  

 0.26 90 Elekta 14 MV 10 × 10 Monte Carlo MCNP  

 1.58 0 Elekta 14 MV 10 × 10 Activation foils  

 0.58 20 Elekta 14 MV 10 × 10 Activation foils  

 0.33 50 Elekta 14 MV 10 × 10 Activation foils  

 0.29 90 Elekta 14 MV 10 × 10 Activation foils  
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Reference Neutron dose 

equivalent 

(mSv/Gy) 

Distance from 

isocentre (cm) 

Linac 

manufacturer 

and beam energy 

Field 

size 

Detector or Monte 

Carlo code used 

Comments 

Chen et al (2006) 0.225 100 Varian 10 MV 10 × 10 Bubble detector  

 0.189 100 Varian 10 MV 10 × 10 Monte Carlo FLUKA  

Chibani and Ma (2003) 0.503 0 Siemens 18 MV 10 × 10 Monte Carlo MCNP  

Chu et al (2011) 1.195 36 Varian 15 MV 10 × 10 TLD  

 0.874 100 Varian 15 MV 10 × 10 TLD  

 0.847 36 Varian 15 MV 40 × 40 TLD  

 0.441 100 Varian 15 MV 40 × 40 TLD  

d’Errico et al (1998) 2 10 GE 18 MV 10 × 10 Bubble detector  

Di Fulvio et al (2013) 5 0 GE 20 MV 10 × 10 Track etch detector  

 4.5 0 GE 20 MV 10 × 10 Bubble detector  

 3 10 GE 20 MV 10 × 10 Track etch detector  

 3 10 GE 20 MV 10 × 10 Bubble detector  

Domingo et al (2010) 0.532 50 Siemens 15 MV 10 × 10 Activation foils  

 0.539 50 Siemens 15 MV 10 × 10 Activation foils  

 0.595 50 Siemens 18 MV 10 × 10 Activation foils  

 1.846 50 Siemens 23 MV 10 × 10 Activation foils  

 0.769 50 Varian 15 MV 10 × 10 Activation foils  

 0.403 50 Elekta 15 MV 10 × 10 Activation foils  

Facure et al (2004) 1.08  GE 25 MV  Monte Carlo MCNP 140 cm from target 

 0.42  Siemens 20 MV  Monte Carlo MCNP 140 cm from target 

 1.07  Varian 18 MV  Monte Carlo MCNP 100 cm from target 

 0.67  Varian 15 MV  Monte Carlo MCNP 100 cm from target 

Falcao et al (2007) 1.36  GE 25 MV  Monte Carlo MCNP  

 0.53  Siemens 20 MV  Monte Carlo MCNP  

 1.35  Varian 18 MV  Monte Carlo MCNP  

 0.82  Varian 15 MV  Monte Carlo MCNP  

Fernandez et al (2007) 1.452 100 Varian 18 MV 10 × 10 Activation foils Fission, intermediate and thermal 

 1.158 100 Varian 18 MV 10 × 10 Activation foils Giant dipole resonance and thermal 

Followill et al (1997) 4.6 50 Varian 18 MV  Calculated  

 7.6 50 Varian 25 MV  Calculated  

Ghassoun et al (2011) 2.3 0 GE 18 MV 10 × 10 Monte Carlo MCNP  

Golnik et al (2004) 35.4 0 Varian 15 MV 10 × 10 Chamber  
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Reference Neutron dose 

equivalent 

(mSv/Gy) 

Distance from 

isocentre (cm) 

Linac 

manufacturer 

and beam energy 

Field 

size 

Detector or Monte 

Carlo code used 

Comments 

Golnik et al (2007) 1.2 50 Varian 15 MV 10 × 10 Chamber  

 1.367 50 Varian 15 MV 10 × 10 Chamber  

 0.617 100 Varian 15 MV 10 × 10 Chamber  

 0.567 100 Varian 15 MV 10 × 10 Chamber  

Hälg et al (2014) 0.015 7.46479 Varian 15 MV  Track etch detector IMRT 

 0.019 12.5352 Varian 15 MV  Track etch detector IMRT 

Howell et al (2005a) 5.17 21 Varian 18 MV  TLD IMRT 

 1.85 21 Varian 18 MV  TLD Conventional 

 2.61  Varian 18 MV 0 × 0 Monte Carlo MCNP  

 2.65  Varian 18 MV 5 × 5 Monte Carlo MCNP  

 2.46  Varian 18 MV 10 × 10 Monte Carlo MCNP  

Howell et al (2005b) 15.26  Varian 18 MV  TLD IMRT 

 2.49  Varian 18 MV  TLD Conventional 

 7.26  Varian 15 MV  TLD IMRT 

 1.15  Varian 15 MV  TLD Conventional 

Howell et al (2006) 3.13 0 Varian 18 MV  TLD Conventional 

 6.58 0 Varian 18 MV  TLD IMRT 

 2.3 40 Varian 18 MV  TLD Conventional 

 5.38 40 Varian 18 MV  TLD IMRT 

 1.85 0 Varian 15 MV  TLD Conventional 

 3.59 0 Varian 15 MV  TLD IMRT 

 1.04 40 Varian 15 MV 10 × 10 TLD Conventional 

 2.86 40 Varian 15 MV 10 × 10 TLD IMRT 

Howell et al (2009) 0.11 40 Varian 15 MV 10 × 10 Activation foils  

 1.9 40 Varian 18 MV 10 × 10 Activation foils  

 2.6 40 Varian 20 MV 10 × 10 Activation foils  

 0.25 40 Elekta 15 MV 10 × 10 Activation foils  

 0.84 40 Elekta 18 MV 10 × 10 Activation foils  

 0.48 40 Siemens 15 MV 10 × 10 Activation foils  

 0.52 40 Siemens 18 MV 10 × 10 Activation foils  

Hsu et al (2010) 0.48 40 15 MV 6 × 11 TLD  

Huang et al (2005) 0.1 0 15 MV  Monte Carlo FLUKA  
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Reference Neutron dose 

equivalent 

(mSv/Gy) 

Distance from 

isocentre (cm) 

Linac 

manufacturer 

and beam energy 

Field 

size 

Detector or Monte 

Carlo code used 

Comments 

Ipe et al (2000) 8.5 0 Varian 15 MV 20 × 20 Activation foil  

 3 0 Varian 15 MV 20 × 20 Track etch detector   

 2.5 0 Varian 15 MV 20 × 20 Bubble detector  

Kim and Lee (2007) 2.01 5 Varian 15 MV 10 × 10 Monte Carlo MCNP  

 2 5 Varian 15 MV 10 × 10 Monte Carlo MCNP  

Kralik and Turek (2004) 0.2763 71 Varian 15 MV 20 × 20 3He counter  

Kry et al (2005b) 0.98 Colon Varian 18 MV  Activation foil Prostate 3D CRT 

Kry et al (2007b) 1 10 Varian 18 MV 10 × 10 Monte Carlo MCNP  

Kry et al (2008) 2.31 40 Varian 18 MV 10 × 10 Monte Carlo MCNP  

Kry et al (2009a) 1.8 20 Varian 18 MV 10 × 10 Monte Carlo MCNP  

Kry et al (2009b) 0.24 Colon Varian 18 MV  Monte Carlo MCNP Prostate IMRT 

 0.12 Liver Varian 18 MV  Monte Carlo MCNP Prostate IMRT 

 0.19 Stomach Varian 18 MV  Monte Carlo MCNP Prostate IMRT 

 0.11 Oesophagus Varian 18 MV  Monte Carlo MCNP Prostate IMRT 

 0.17 Lung Varian 18 MV  Monte Carlo MCNP Prostate IMRT 

 0.23 Thyroid Varian 18 MV  Monte Carlo MCNP Prostate IMRT 

 0.53 Testes Varian 18 MV  Monte Carlo MCNP Prostate IMRT 

La Tessa et al (2014) 1.079 10.13 Elekta 25 MV  Bubble detector IMRT 

Lin et al (2001) 0.598 23.2558 Siemens 15 MV 40 × 40 Bubble detector  

Lin et al (2007) 0.856 15 Siemens 15 MV 10 × 10 Bubble detector  

 0.244 15 Siemens 15 MV 10 × 10 Bubble detector  

Maglieri et al (2015) 2.083 40 Varian 18 MV  Bubble detector  

Martinez-Ovalle et al (2011) 5.8 0 Varian 18 MV  Monte Carlo MCNP  

Mesbahi et al (2010) 0.8 10 Elekta 18 MV 10 × 10 Monte Carlo MCNP  

Mohammadi et al (2015) 0.875 0 Siemens 15 MV 10 × 10 Monte Carlo MCNP  

Nedaie et al (2014) 4.5 0 Varian 18 MV 20 × 20 Monte Carlo MCNP  

 2.1 0 Elekta 18 MV 20 × 20 Monte Carlo MCNP  

 41.8 0 Varian 18 MV 20 × 20 TLD  

Nedaie et al (2014) 36.6 0 Elekta 18 MV 20 × 20 TLD  

Ongaro et al (2000) 2.6 15 Siemens 15 MV  Monte Carlo MCNP  

Rebello et al (2008) 1.44 20 Varian 18 MV 5 × 5 Monte Carlo MCNP  

Reft et al (2006) 2.807 27 Cl-2100 18 MV 10 × 10 track etch detector  
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Reference Neutron dose 

equivalent 

(mSv/Gy) 

Distance from 

isocentre (cm) 

Linac 

manufacturer 

and beam energy 

Field 

size 

Detector or Monte 

Carlo code used 

Comments 

Reft et al (2006) 0.863 27 Primus 18 MV 10 × 10 track etch detector  

 0.797 27 SL-C 18 MV 10 × 10 track etch detector  

Roy and Sandison (2000) 0.18  Varian 18 MV 30 × 30 Bubble detector Dose to foetus from chest irradiation 

Saeed et al (2009) 4.5 0 Varian 18 MV 10 × 10 Monte Carlo GEANT  

Sánchez-Doblado et al 

(2012) 
0.21 15 Varian 15 MV 10 × 10 Digital detector  

Sánchez-Doblado et al 

(2009) 
0.055  18 MV  Digital detector  

Sanz et al (2001) 0.86 25 Siemens 18 MV 40 × 40 TLD  

 0.64 25 Siemens 18 MV 40 × 40 TLD  

 0.61 25 Siemens 18 MV 40 × 40 Monte Carlo MCNP  

 0.61 25 Siemens 18 MV 40 × 40 Monte Carlo MCNP  

Takam et al (2009) 10.09 Colon Varian 18 MV  TLD 4 field prostate treatment 

Takam et al (2012) 1.8 50 Varian 18 MV  TLD, track etch detector In air measurement 

Thomas et al (2002) 2.652 0 Varian 15 MV 40 × 40 Activation foil  

 0.367 100 Varian 15 MV 40 × 40 Activation foil  

 0.691 100 Varian 15 MV 40 × 40 Activation foil with 30° hard wedge 

Vanhavere et al (2004) 1.2  Varian 18 MV 10 × 10 Bubble detector Total dose to organs 

Waller et al (2003) 0.031 0 Varian 18 MV 10 × 10 Bubble detector  

 0.541  Varian 18 MV 10 × 10 MCNP 157 cm from the head 

 0.593  Varian 18 MV 10 × 10 Bubble detector 157 cm from the head 

Zabihzadeh et al (2009) 1.38 0 Varian 20 MV  Monte Carlo MCNP  

 1.08 0 Varian 18 MV  Monte Carlo MCNP  

 0.05 0 Varian 10 MV  Monte Carlo MCNP  

 1.04 0 Siemens 20 MV  Monte Carlo MCNP  

 0.99 0 Siemens 18 MV  Monte Carlo MCNP  

 0.22 0 Siemens 15 MV  Monte Carlo MCNP  

 0.07 0 Siemens 10 MV  Monte Carlo MCNP  

Zanini et al (2004) 1.05 15 Varian 18 MV 10 × 10 Monte Carlo MCNP  
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7.1.1 A note on the “Sins of the Sievert” 

The use of dose equivalent for comparison between studies is not necessarily a suitable comparison. 

Relatively recently, in the ICRP103 (2007) report, the radiation weighting factor for neutrons was re-

evaluated to reflect a new understanding of the energy dependence of neutron dose deposition behaviour. 

The relative biological effect of neutrons is energy dependent, and the accepted values have been 

updated and re-evaluated over time and introduce a degree of uncertainty when comparing historically 

reported values. There is also data to suggest that the ICRP values are overly conservative and not 

appropriate for high energy radiations or neutrons (Pelliccioni 1998). Not all published studies used for 

comparison in this work use the same methodology to convert fluence to dose equivalent, or dose in 

Gray to dose equivalent in Sieverts. It would indeed be more accurate if studies would report neutron 

absorbed doses in units of Gray and comparisons could be performed without the added uncertainty of 

the equivalent or effective dose conversion weighting factors. However, the measurement of neutron 

dose is exceptionally complicated. Neutron dose to tissue cannot be directly measured; the dose to the 

detector is radically different and the calibration is dependent on energy spectrum. Even if the dose (in 

Gray) could be inferred, it would not provide an appropriate metric with which to assess the risk from 

exposure to a given dose. In order to quantify the risk, the neutron fluence (which can be measured) 

should be converted to a neutron dose equivalent (in Sieverts). However, results reported this way should 

be unambiguous in reporting the methods and values used to convert to dose equivalent in Sieverts in 

order to allow comparison with other values into the future. 

7.1.2 Risk  

The challenges and uncertainties associated with neutron dosimetry are illustrated by Figure 63. The 

spread of reported values for neutron dose in high energy radiotherapy makes it difficult to accurately 

evaluate the risks to patients. In estimating a risk, the tendency is to err on the side of conservatism and 

over-estimate the risk. The widely employed ALARA principle and the Linear No Threshold (LNT) 

model exemplify this conservatism. The danger of course is that the potential benefits of high energy 

radiotherapy are lost because of potentially over-conservative risk estimates.  

The neutron dose evaluated in this thesis is within the range of 0.1 to 5 % of the delivered photon dose. 

Taking the lower bound of 0.1 % of the photon dose, the neutron dose is likely low enough to consider 

implementing longer, more complex treatments such as IMRT, VMAT, SABR and TBI if the dose 

distribution could be significantly improved by using higher energy beams. However, taking the upper 

bound of neutron doses up to 5 % of the photon dose, this dose is high enough to warrant some restriction 

and perhaps complete prohibition of the use of higher energy beams for treatment modalities involving 

high numbers of MU. 

The principles of risk analysis require that the consequence of the risk be a consideration in the 

evaluation. Since the consequences in this case will directly impact on a cancer patient’s projected 

survival following treatment, a conservative approach is justified when assessing the risk resulting from 

a neutron dose which cannot be more precisely quantified. In order to make a more informed judgement 

on the issue of neutron contamination in high energy radiotherapy, more accurate neutron dosimetry is 

required. The largest reduction in the uncertainty in neutron dosimetry can be made with more detailed 

and accurate information about the neutron energy spectrum produced by medical linear accelerators. 

This would be best achieved with detailed Monte Carlo modelling. This could be made possible if the 

manufacturers of medical linear accelerators released detailed dimensions of the shielding and other 

components inside medical linear accelerators. The size of the treatment bunker and the composition of 

the walls, ceiling and flooring also need to be considered in developing an accurate model. 
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7.2 Indirect risk from secondary activation 

The photonuclear effect may cause the emission of neutrons and may also induce secondary 

radioactivity. The nuclei from which the neutrons are emitted may become unstable from the loss of a 

neutron and become radioactive. This can affect components in the linac itself as well as other materials 

inside the treatment room. The isotopes present in human tissue do not have high cross sections for 

neutron activation or photonuclear interactions; however implanted devices may have an increased 

likelihood of becoming activated. The photonuclear effect poses a risk to staff and patients from 

activation of the linac and activation of patient implants. A flow chart describing the interactions and 

locations of secondary activation is shown in Figure 68.  

 

Figure 68: Flowchart summary of the indirect neutron risks, those caused by secondary activations. 

7.2.1 Linac activation 

Reported staff annual dose estimates from activation caused by 3D conformal radiotherapy techniques 

range from 0.7 mSv (Almen et al 1991) and 0.9 mSv (Donadille et al 2008) for a variety of linear 

accelerator models, up to 2.5 mSv (Perrin et al 2003) and 5 mSv (Ho et al 2012) both estimated from 

measurements performed on Elekta Precise linear accelerators. Rawlinson et al (2002) report the 

estimated dose to staff from activation as a result of IMRT treatments (up to 17mSv/year) and 

conventional treatments (3 mSv/year) from measurements made on a Varian 21EX. IMRT treatments 

are of interest in this context because they typically require a large number of monitor units and are 
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performed more frequently in the clinic. However, as they involve small field sizes, the jaws provide 

additional shielding from activation products. If the jaw position is left unchanged after treatment, the 

annual dose estimate resulting from the induced activity following 18 MV TBI (0.75 mSv) presented in 

chapter 6 of this thesis is much lower than that reported for IMRT (17 mSv) and conventional treatment 

(3 mSv), which reflects the more frequent utilization of these treatments. The estimates of Rawlinson et 

al (2002) are calculated for the delivery of 55 IMRT fractions of 1600 MU (88,000 MU/week) and 150 

CRT fractions of 400 MU per week (60,000 MU/week). The typical TBI patient load used to calculate 

dose estimates is for an average of 26,364 MU/week. The lower patient load of TBI contributes to the 

lower annual dose estimate. The increased distance between the linac head and the patient (and therefore 

staff member) in TBI also contribute to the lower dose estimate. 

7.2.2 Acitvation of implanted prosthetic hips 

Contaminant neutrons in high energy radiotherapy can induce radioactivity in metallic prostheses, even 

when prostheses are outside the primary field. In chapter 6, 56Mn and 52V were found to be present in 

prostheses directly irradiated and those exposed between ~1 and 10 cm from the edge of the field. 53Fe 

was observed only from in-field irradiation and is therefore attributed to the photonuclear effect. Since 
56Mn and 52V are produced regardless of whether the prosthetic hip was in- or out-of the photon field, 

they are attributable to neutron activation. Prostheses irradiated in-field demonstrated count rates 6 – 

7.5 times higher than those irradiated out-of-field. The dose measured at the surface of a prosthesis 

irradiated to 10,000 MU was 0.20 mGy over 12 hours (five half-lives of the longest lived isotope 

produced in the prosthesis). The surface dose rates for fewer MU and out-of-field irradiations were 

below the limit of detection for the TLDs. This is very low dose when compared to prescribed 

radiotherapy doses and even the out-of-field photon dose a patient receives from scatter and leakage 

radiation, which may be of the order of 0.1% or 70 mGy for a typical prostate treatment of 70 Gy. 

7.2.3 Risk from secondary activations 

The primary concern relating to the photonuclear production of neutrons in high energy radiotherapy is 

additional, potentially unknown, exposure to patients. The untargeted tissues within a patient may be 

receiving an additional, detrimental dose from contaminant neutrons. A secondary concern following 

neutron production is radioactivity remaining in target nuclei following photonuclear events or 

secondary activation caused by the ejected neutrons themselves. The activation of the linear accelerator 

mainly affects radiotherapy staff, as opposed to patients, because the doses are fairly low in magnitude 

and it is only the staff who spend a large percentage of their time in close proximity to a linac. An 

indirect risk to patients may arise from activation of implanted materials which have high neutron 

interaction cross sections. 

The annual dose staff receive as a result of activation of the linear accelerator is in the vicinity of ~ 750 

μSv for an 18 MV TBI patient load of two per month. The dose can be reduced by closing the jaws at 

the completion of the beam to take advantage of the existing shielding built into medical linear 

accelerators.  

The activation of hip prostheses in a water phantom revealed that the resultant dose to patients is ~ 0.20 

mGy over the 12 hours following beam delivery for a prosthesis directly irradiated by 10,000 MU. This 

is a very small dose, even when compared to the out-of-field doses proximal organs at risk may receive 

in a typical treatment in the order of 10s of mGy and in general, direct irradiation of implants is avoided 

to prevent attenuation of the dose distribution before it reaches the target volume.  
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7.3 Relevance to thesis objectives 

The direct and indirect risks from photoneutrons produced in high energy radiotherapy have been 

discussed in this chapter. The direct risk from patient exposure to neutrons is discussed in terms of the 

results of neutron dose measurement which were given in chapter 5. The neutron dose equivalents 

determined in this study were also compared to the extensive range of values published in literature. 

There are also indirect risks resulting from secondary activation, where photonuclear interactions result 

in activation or where the neutrons themselves cause activation. The activities and resultant doses 

measured were presented in chapter 6 and discussed in this chapter in the context of the risk to both 

radiotherapy staff and patients.   
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8. Conclusions 

The neutron contamination resulting from photonuclear events occurring in the production of x-ray 

radiotherapy beams at high energies must be considered when evaluating risk to the patient from 

untargeted dose. Any potential benefits from the improved x-ray dose distribution must be weighed 

against any additional risk which arises from the use of higher energy beams. The degree of risk posed 

by neutron contamination can only be evaluated with accurate quantification of the neutron fluence. The 

neutron fluence is the simplest quantity to measure, giving a density or rate of particles produced. 

However, this quantity cannot easily be related to the biological effects which occur in human tissue or 

therefore, the risk which may be involved. Dose is often used to evaluate risk from radiation exposures 

because the resultant biological effects are proportional to the dose. The measurement of fluence, and 

subsequent determination of absorbed dose from neutrons and even neutron dose equivalent all require 

some degree of understanding of the neutron energy spectrum produced.  

The use of 6LiF and 7LiF TLD pairs to measure neutrons in radiotherapy is quite common and can be 

done without detailed knowledge of the neutron energy spectrum produced by a medical linear 

accelerator; provided a correction for energy spectrum is used in the calibration of these detectors. 

However to determine the dose which would be absorbed by tissue if irradiated by the same neutron 

fluence a highly accurate energy spectrum is required. The interactions neutrons undergo with the 

isotopes present in tissue are different to those which occur with the lithium and fluoride nuclei present 

in the TLD material or any other detector which might be used to quantify neutron contamination.  

There have been a wide range of values published in the results of peer reviewed papers covering 

measurements under similar conditions. This wide range of values indicates a high degree of uncertainty 

which in turn leads to uncertainty amongst clinical physicists and a general mistrust of 15 and 18 MV 

x-ray beams. How many high energy MU are safe? At what point does the risk become unacceptable? 

The current methods for quantifying neutron contamination in radiotherapy beams must be improved in 

order to address the uncertainty and allow accurate assessments of the risks.  

The greatest challenge to accuracy in neutron detection and dosimetry no doubt arises from the strong 

energy dependence of neutron interaction cross sections in many materials. This affects the energy 

dependence of the detector material, as well as the dose absorption in tissue and the damage caused by 

the energy deposited in tissue by the neutron exposure. One of the most significant obstacles in 

comparing data measured or calculated in present and future studies is a lack of detailed disclosure in 

existing published studies regarding the methods used to convert fluence to absorbed dose or dose 

equivalent. The fluence is the simplest quantity to determine, but is often not reported. The most 

commonly reported quantity is the neutron dose equivalent which is weighted for the biological effect. 

This quantity is dependent on the neutron energy and is calculated from the neutron absorbed dose. The 

dose to tissue from neutrons primarily comes from secondary charged particles released by nuclear 

interactions within the tissue. The probability of these interactions and the amount of energy they release 

is strongly dependent on the energies of the incident neutrons. 

So, how can we improve our knowledge of the neutron energy spectrum? Monte Carlo modelling of the 

neutron production and transport allows calculation of the neutron energy spectrum incident on patients 

treated with high energy x-rays. The energy spectrum is sensitive to the geometry and material of the 

components within the linac which produce the treatment beam, with most of the neutron contamination 

being produced in the primary collimation unit of the x-ray beam. The shielding and bending magnet 

components of the linac, which do not affect the modelling of the photon beam for computational studies 

of radiotherapy beams, do have an effect on the neutron energy. A great deal of scattering occurs within 

the lead and tungsten collimators and shields, which reduces the energy of the neutrons. The size of the 
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room in which the linac is installed also has an effect on the neutron energy, and the material of the 

walls, floor, ceiling and other scattering surfaces is significant (McCall et al 1979). Simulations 

developed to interrogate neutron energy information should include a great deal of detail on a much 

larger physical scale than most radiotherapy Monte Carlo simulations.  

Whilst it is relatively simple to produce a model of a radiotherapy treatment bunker for a given clinical 

scenario, it is much harder to acquire detail and model the internal structure and composition of the 

shielding within a medical linear accelerator. There are obvious differences in the components which 

produce the x-rays between manufacturers and models of linacs in current use in Australia. There are 

less obvious, but no less important, differences in the surrounding structures. The Varian TrueBeam 

linear accelerator for example, has an extremely different approach to shielding design compared with 

previous Varian linac models. All of these details will have a significant effect on the energy spectrum 

of neutrons produced by the linac and that which falls incident on a patient treated with a high energy 

beam.  

These details of the design and composition of linacs and particularly shielding components are not 

readily available. If the uncertainty amongst experts around quantification of neutron contamination is 

to be reduced, these details are needed. Detailed geometrically accurate simulations can be produced, 

which will require high powered computation and targeted variance reduction to produce statistically 

significant results. The photonuclear effect which produces the neutron contamination is a relatively low 

probability event in the grand scheme of interactions a photon can undergo. This requires a great deal 

of computational power, as many incident particles are required to produce enough neutrons to be 

transported and then analysed with an acceptably low statistical uncertainty.  

There is currently interest in Australia for installing a proton therapy facility. The risk from 

contamination from neutrons must be considered against the potential benefits offered by proton 

therapy. The ability to accurately quantify the risk is essential to the safe implementation of proton 

therapy techniques. 

The neutron dose measured in this study was between 0.1 mSv and 5 mSv per Gy of x-ray dose delivered 

to the dose output specification point. Doses measured with TLDs were consistently higher than those 

measured with activation foils. Reported values in literature range from 0.0007 to 42 mSv/Gy with a 

mean of 2.6 mSv/Gy.  

The principles of radiation protection are founded on a conservative attitude toward radiation exposure. 

Although the linear no-threshold model for low dose exposure is controversial and there is little reliable 

scientific evidence to support limiting all exposures even at very low dose levels, it is likewise difficult 

(or perhaps impossible) to prove beyond all doubt that there might be a low level dose which is safe for 

human exposure in all circumstances. Therefore a risk management procedure aims to limit all 

unnecessary exposures. If we cannot accurately quantify the neutron dose and therefore the neutron risk, 

we must take the conservative approach and take reasonable measures to limit this potential exposure.  

Other aspects of the risk posed by neutrons also require consideration. Many therapists in local 

radiotherapy facilities have enquired about entering a bunker following the delivery of high energy 

beams, as it is known that a degree of activation of the components of linacs can occur. This work has 

presented dose measurements following TBI deliveries of ~2000 MU per beam and found the dose to 

be relatively low. In the interests of ALARA and a conservative approach to radiation protection, it is 

recommended that the in-built shielding and collimation present within linear accelerator treatment units 

is utilised. The jaws and secondary collimators can be closed following patient treatment before hospital 

staff enter the room. This can provide a six-fold reduction in the dose resulting from activated 

components within the linac which are primarily located higher within the treatment head than these 

final beam collimation components. This result has been discussed with radiation therapy staff at the 
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hospital where the measurements were taken and has been used to reassure staff concerned about their 

individual exposure. 

In Australia, radiotherapy staff are monitored for radiation exposure, and typically only low levels are 

observed. If a clinic were to significantly increase its high energy workload, and an increase in staff 

exposure levels occurred it would be identified by the existing routine monitoring. The option of waiting 

a set cooling off period of a few minutes before entering the room is not practicable in a busy clinic and 

staff should instead make use of the built in shielding within the linear accelerator by closing the jaws 

before re-entering the room to tend to the patient. Software controls could be implemented to automate 

the jaws moving to the closed position following high energy exposures.  

The neutron production and interaction cross sections in predominantly light elements present in human 

tissue are relatively low, as compared to heavier elements in general. The presence of foreign objects in 

and around patients presents a new exposure pathway and potential risk. A proportion of patients 

undergoing radiotherapy are elderly and may have hip replacements. This introduces a high Z, high 

density prosthesis which may be in close proximity to the target volume or impede the traversal of 

treatment beams. It is best practise to avoid such structures in treatment planning because of the high x-

ray attenuation of high Z materials, but beams will often be allowed to pass nearby or exit through 

metallic prostheses. Scattered photons incident on these materials have the potential to produce neutrons 

from within the patient and neutrons produced in the components of the linac itself will be incident on 

the prosthesis even if no x-ray beams are directly incident. Any neutrons produced or interacting with a 

metallic implant are likely to produce secondary radioactivity in the atoms of the object. The isotopes 

produced and their half-lives depend on the composition of the object in question and the likelihood of 

inducing radioactivity depends on the energies of the incident neutrons. 

The doses resulting to tissue surrounding irradiated hip prostheses have been investigated in this study. 

The dose was found to be around 0.2 mGy over a 12 hour exposure to a prosthesis irradiated to 10,000 

MU. This dose is extremely small when compared to magnitude of doses prescribed in radiotherapy and 

even the out-of-field doses inevitably received by healthy tissues from scattered x-rays. Implants 

composed of other materials should be evaluated separately as different isotopes will produce different 

radioisotopes and other interactions may deposit more or less dose to the un-targeted tissues around 

implanted materials. The size of the prosthesis present also plays an important part. 

The risks posed by neutron contamination are primarily from doses deposited in un-targeted healthy 

tissues during high energy radiotherapy. The production of neutrons in a radiotherapy treatment bunker 

can also cause induced radioactivity in other materials in the room. The components of the linear 

accelerator itself are exposed to the highest fluence rate of neutrons and are likely to be the highest 

source of induced radioactivity in the room after termination of treatment beams. This is a low level of 

radiation, but may pose a risk to staff members who may spend a large proportion of their time in close 

proximity to the treatment machines. In addition, whilst patients are unlikely to become activated 

themselves, any foreign materials present may have high neutron interaction probabilities. Implants such 

as pace-makers, hip prostheses and so on, may well cause internal neutron production or become 

activated during high energy radiotherapy. 
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Recommendations arising from this study: 

 6Li and 7Li enriched TLD pairs can be used to measure neutron fluence in radiotherapy, but an 

energy correction should be used for the neutron energy spectrum of the calibration source. 

 An energy correction is needed to convert measured neutron fluence to absorbed dose and/or 

dose equivalent. 

 Future studies reporting on neutron measurements in radiotherapy should explicitly disclose the 

values of any energy corrections used to determine fluence, absorbed dose or dose equivalent.  

 Radiation therapy staff performing lots of high energy treatments should consider closing the 

jaws before re-entering the room to shield against neutron induced radioactivity within the linac 

components.  

 The activation of hip prostheses does not result in a significant dose to the surrounding tissue. 

There are many reasons to avoid irradiation of prostheses during radiotherapy, but the dose from 

activation should not be a cause of concern.  
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