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Abstract 

Although membrane distillation offers distinctive benefits in some certain areas, i.e., RO 

concentrate treatment, concentrating solutions in the food industry and solar heat utilization, the 

occurrence of wetting of the hydrophobic membrane hinders its potential industrial applications. 

Therefore, wetting prevention is a vital criterion for the treatment of solutions with lower surface 

tension than water. The present work examines the effect of recharging air bubbles on the 

membrane surface for the wetting incidence when a surfactant (sodium dodecyl sulfate, SDS) 

exists in a highly concentrated NaCl aqueous solution. This study shows that the presence of the 

air bubbles on the surface of the superhydrophobic membrane in a direct contact membrane 

distillation setup inhibited the occurrence of wetting (~100% salt rejection) even for high 

concentrations of the surface-active species (up to 0.8 mM SDS) in the feed solution while no 

undesirable influence on the permeate flux was observed. Introducing air into the feed side of the 

membrane displaces the liquid which partly tends to penetrate the macroporous structure with air 

bubbles and therefore increases the liquid entry pressure, and in addition, the simultaneous use of 

a superhydrophobic membrane enhances the solution contact angle.  

Keywords: Membrane distillation; Wetting phenomenon; Air recharging; Superhydrophobic 

membrane  
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1. Introduction 

Membrane distillation is a thermally driven membrane process that utilizes a porous 

hydrophobic membrane for separating components in a liquid mixture based on their volatility. 

The driving force in MD relies on the difference in vapor pressure of the volatile component that 

is induced by a transmembrane temperature difference. Mass transfer through the membrane pores 

only takes place in the vapor phase, from a hot feed solution to a cooled permeate condensate [1]. 

Therefore, the liquid feed must be prevented from penetrating partially or entirely through the dry 

pores of the membrane. When pore wetting occurs, it will at the least impair product quality or at 

most will incapacitate the process. A primary advantage of MD is the high salt rejection (99.9%+), 

and pore wetting can cause rejection to fall below 85%, ruining the process [2].  

Recently, a new approach has been created to mitigate membrane wetting, by continually adding 

in the air to the feed side of the process, effectively reducing the fraction of the membrane area in 

contact with the liquid, and depinning liquid from inside the membrane pores. Some authors have 

also concluded that existence of the air gap could provide an opportunity to increase mass flux [3]. 

When measuring foulant mass adhered, this new method has been shown to be very effective in 

mitigating biofouling [4], and also effective in reducing inorganic scaling and particulate fouling 

[5]. However, those studies used membranes in stirred-cells and not full MD systems. Prior to this 

work, the impact of air recharging has not been studied in full MD systems, has not examined 

spacers for improving air trapping, and has not been tested for wetting prevention or the impact of 

permeate flux. 

Hydrophobic MD membranes are always associated with the pore wetting problem. Wetting 

restricts MD for some practices such as desalination, removal of trace volatile organic compounds 
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from wastewater and concentration of ionic, colloids or other non-volatile aqueous solutions [6,7], 

and other solutions with high fouling propensity. Similar to using thinner membranes, significant 

partial wetting into the membrane may reduce its effective thermal conductivity and thus decrease 

the MD thermal efficiency, resulting in permeate flux reduction [8]. But, when complete pore 

wetting occurs due to water bridging, the permeate flux of membrane increases with time. 

Membrane wettability can be characterized by Liquid Entry Pressure (LEP, occasionally 

incorrectly named “wetting pressure”). The “Round Table” at the “Workshop on Membrane 

Distillation” in Rome on May 5, 1986, defined LEP as the pressure that must be applied to pure 

water before it enters into a non-wetted membrane [9]. LEP can be calculated by the Young-

Laplace equation 

𝐿𝐸𝑃 =
4𝐵 𝛾𝑙 𝑐𝑜𝑠𝜃

𝑑𝑚𝑎𝑥
 (1) 

where 𝐿𝐸𝑃 is the entry pressure difference, 𝛾𝑙 is the surface tension of the solution, 𝜃 is the angle 

of contact between the solution and the membrane surface, 𝑑𝑚𝑎𝑥 is the largest pore size, and 𝐵 is 

a geometric factor influenced by the pore structure with a value equal to one for cylindrical pores 

[10]. 

When organic compounds or surfactants exist in the feed solution, LEP decreases and the 

membrane pores may wet. LEP depends on the pore diameter, the geometric structure of the pores, 

surface tension of the liquid with vapor, and the contact angle between the membrane surface, the 

liquid, and vapor phases. Membranes with small pore size, narrow pore size distribution, ideal 

cylindrical pore geometry, low surface energy, high contact angle, and high roughness typically 

show higher LEP. However, LEP cannot properly describe the happening of membrane wetting. 

For instance, some membranes have been reported not to wet at all despite their LEP value of zero 
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(CA=90°), which indicates an immediate wetting even at a transmembrane pressure of only 0.1 

kPa. In contrast, some other membranes with LEP of 42 kPa and 32 kPa experienced wetting [11]. 

Those authors concluded that the occurrence of wetting could not be justified by the LEP value, 

but relates tightly with the existence of micro-scale defects. Still, membranes with higher LEP 

have shown corresponding higher fouling resistance and significantly reduced wetting. 

Although wetting prevention in MD is the main process requirement, it has not been 

comprehensively studied and relatively few investigations have attempted to solve the wetting 

problems in MD membranes [12–20]. Some authors have investigated the improvement of 

hydrophobic properties of membranes employing novel materials or applying surface modification 

through manipulating surface chemistry and surface geometry by nanoparticle coating and surface 

fluorination [21–27]. However, these membranes are still susceptible to pore wetting when treating 

feed solutions containing a high concentration of surface-active species. Other authors have 

studied the effect of operating parameters on the wetting process and suggested that increasing 

feed temperature can slow the wetting process by reducing the absolute pressure in the feed side, 

and consequently the driving force for the Poiseuille flow and increase the distillate diluting effect 

[28]. However, this is mentioned to be helpful after the occurrence of membrane partial pore 

wetting. Some authors reported that delaying membrane wetting by using membrane distillation 

bioreactors allows the system to keep a high total organic removal efficiency of 99.9% for an 

extended operation time (in contrast to standalone MD systems). Nevertheless, their system still 

needed membrane cleaning and drying after wetting occurrence [29]. Several authors have placed 

spacers in MD modules and have carried out experimental and theoretical investigations on the 

subject [30–34]. In their results, they published notable enhancement on heat and mass transfer 

and consequently the mass flux in spacer filled modules and provided suggestions on optimal 
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spacer geometry, voidage, and hydrodynamic angle [35]. Although these approaches are 

meaningful, robust solutions are needed to prevent wetting permanently. 

The main objective of this paper is to show the effect of air recharging near the surface of the 

membrane on the wetting phenomenon, using hydrophobic polypropylene (PP) and 

superhydrophobic polytetrafluoroethylene/polyethersulfone (PTFE/PES) membranes. In such a 

system, numerous direct contact membrane distillation (DCMD) experiments were carried out to 

study also the influence of mesh spacer existence in the feed and permeate side of the membrane 

on wetting control. For reaching wetting condition, SDS was added stepwise to a high 

concentration of NaCl aqueous solution to decrease steadily the surface tension of the feed. 

2. Theoretical section 

The impact of increasing the air fraction via air recharging can be examined using Cassie’s law 

(equation 2), which gives an effective contact angle for a surface containing multiple materials 

(materials 1 and 2) [36]. 

cos(𝜃𝑐) = 𝑓1 cos(𝜃1) + 𝑓2 cos(𝜃2) (2) 

Where 𝜃𝑐is the effective contact angle and 𝑓1and 𝑓2are the area fractions of materials 1 and 2, 

and sum to 1. Here 𝜃1and 𝜃2are the contact angles for the materials. Notably, the contact angle of 

air is 180°. Equations (1) and (2) can be combined to examine the impact of air recharging on LEP 

(Fig. 1). 

As seen in Fig. 1, the presence of air can dramatically improve the LEP of the membrane, 

especially for less hydrophobic materials. Diminishing returns are reached for very high contact 

angles (>150°). Notably, the contact angles here are for the surface material itself, which is 

typically lower than that measured on membranes, since the membrane roughness already traps 
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some air in those measurements. Therefore, the benefit of increasing the air fraction is still 

expected to be large for very hydrophobic membranes. For example, the contact angle of the 

PTFE/PES membranes used was 153°, while PTFE itself has a contact angle of about 109°. 

 

Fig. 1. LEP versus the air area fraction 𝑓1for membrane materials of different contact angles. 

Representative values are chosen for B (1) and 𝑑𝑚𝑎𝑥(4 μm) for the Young-Laplace Equation. 

3. Experimental section 

3.1 Materials 

Flat sheet Accurel® hydrophobic polypropylene and Tetratex® superhydrophobic 

polytetrafluoroethylene membranes from Enka and Donaldson are used. Table 1 summarizes the 

properties of the PP and PTFE membranes used in this study.  

The superhydrophobic membrane chosen has been proven to be an effective MD membrane in 

the past, and was created using a stretching technique, and bonded to a Reemay 2275 polyester 

nonwoven support layer [37]. Sodium dodecyl sulfate (99%) as a wetting agent and sodium 
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chloride (NaCl) are obtained from Sigma–Aldrich. SDS was chosen as wetting liquid due to the 

lower surface tension than water, which makes it more penetrative in the pores of the membrane. 

Table 1. Properties of polymeric membranes. 

Membrane 

trade name 

Polymer Thickness 

(µm) 

Nominal 

pore size 

(µm) 

IPA 

bubble 

point (kPa) 

Air flowrate 

(l/min/cm2

@ 0.7 bar) 

Contact 

angle 

Accurel 

2E-PP 

PP 177 0.2 114.5 1.3 113° 

Tetratex 

6532 

PTFE/ PES 130 0.1 200 3 153° 

3.2 Membrane cell 

A plate and frame membrane cell was used to conduct the DCMD experiments. It consists of 

two sandwiched polyvinylidene fluoride (PVDF) disk cells with the membrane in between 

providing an effective contact area of 0.01 m2. The cell has open flow channels in both feed and 

permeate sides, including mesh spacer for supporting membrane stability and air distributors for 

dispensing air bubbles.  

Spacer channels are used to enhance the hydrodynamic conditions at the membrane surface [38]. 

For some experiments, a mesh spacer on the feed side of the membrane cell was placed to increase 

trapping the air bubbles on the membrane surface. Table 2 summarizes the specifications of flow 

channels and the mesh spacers. Further care needs to be considered regarding the location of the 

spacer, as the applied pressure on the particular places of the membrane by the spacer may intensify 

the pore wetting incident [39].  Before each experiment, the cell was inspected for any water 

leakage. 

3.3 Methods 
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The experiments started with deionized water as feed and permeate. After 30 minutes, NaCl was 

added to the feed side to make a solution of 1.0 M NaCl for examining the pore wetting and flux 

variations in highly concentrated saline water. In order to decrease progressively the surface 

tension of the feed solution, 0.1 mM SDS in the intervals of 30 minutes was sequentially added to 

the feed solution [40]. After wetting was noticed, experiments were proceeded to study the wetting 

phenomenon for the whole area of the membrane for a longer time. The experiments were stopped 

when a rapid reduction of the salt rejection factor or a sharp rise in the permeate flux obtained. 

Based on the salt rejection, the concentration of SDS in feed solutions for different experiments 

was varied between 0.3 to 0.8 mM. 

Table 2. Specifications of flow channels and mesh spacers. 

Channel or Spacer Property Value 

Mesh spacer material PP 

Mesh spacer void fraction 0.708 

Number of flow channel 4 

Hydraulic diameter of flow channel (m) 0.202 

Length of flow channel (m) 0.1 

Width of flow channel (m) 0.23 

Height of flow channel (m) 0.18 

The performance of the membranes and air changing in a DCMD setup were measured (Fig. 2). 

The membrane cell was sloped to retain the flow of air bubbles on the surface of the membrane, 

where the feed solution circulated from the bottom of the cell. The air was filtered through a 0.2 

µm hydrophobic Sartofluor® polytetrafluoroethylene membrane prior to the recharging to remove 

the air particulates and microorganisms which may cause bio-fouling and consequently lead to 
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membrane wetting. Permeate and feed inlet temperatures were set to 20 °C and 60 °C. The mean 

bulk feed and bulk permeate temperature difference was kept to 35 °C to obtain a high driving 

force. In all the experiments, a higher feed cross flow rate than permeate was applied to facilitate 

the detection of membrane wetting. This is because it causes a higher hydraulic pressure for feed 

side, and when pore wetting occurs, it prevents the reverse flow of the permeate to the feed side. 

This will lead to membrane pore wetting identification by increasing the permeate electrical 

conductivity due to the flow of the liquid feed solution to the permeate side through wetted 

membrane pores. To prevent instant membrane wetting, the transmembrane hydrostatic needs to 

be lower than the LEP [41]. Therefore, the pressure gradient through the membrane (0.1 bar) was 

controlled continuously by monitoring two manometers placed at the feed and permeate sides of 

the membrane module. The conductivity of the permeate solution was measured continuously to 

identify the incident of membrane wetting. Table 3 shows the range of the operating conditions for 

different experimental setups. 

 
Fig. 2. Schematic diagram of the lab-scale DCMD setup. TI, FI, PI, QI and WI are temperature, 

flow, pressure, quality (i.e., electrical conductivity) and weight indicators, respectively. 
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Table 3. Range of operating conditions 

Feed 

inlet 

temp. 

(°C) 

Feed 

outlet 

temp. 

(°C) 

Permeate 

inlet 

temp. 

(°C) 

Permeate 

outlet 

temp. 

(°C) 

Transmembrane 

pressure 

difference     

(bar) 

Liquid 

feed inlet 

flow rate 

(L/h) 

Permeate 

inlet flow 

rate  

(L/h) 

Air flow 

rate                               

(L/h) 

59.5-

61.5 

57.5-

59.5 

17.3-

19.5 

22.5-

25.4 

Max.~0.1 30 12 100 

In order to investigate the effect of the air recharging and presence of the mesh spacer on 

membrane pore wetting, several experimental configurations were defined. Two default 

configurations were defined for the systems with hydrophobic or superhydrophobic membranes 

and without air bubbles and mesh spacers. Table 4 shows the different configurations studied in 

this work. The air was introduced by continuously purging air flow through the air distributor 

placed at the bottom of the cell in the feed or permeate sides of the membrane. To eliminate 

measurement error, each set of experiments was carried out three times and the mean of these 

measured values and the maximum positive and negative difference from the mean were calculated 

and included as uncertainty bars in the presented data. 

Table 4. Experimental configurations. “+” and “-” correspond to the existence and non-existence 

of that parameter, respectively. 

Experiment Membrane Feed side Permeate side 

setup 
 

Air recharging Spacer Air recharging Spacer 

E1 (Default 1) PP - - - - 

E2 PP - + + + 

E3 PP + - - + 

E4 (Default 2) PTFE - - - - 

E5 PP + + - + 

E6 PTFE + + - + 
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To better estimate the feed circulation flux, the two-phase flow Reynolds number is calculated 

based on the method from H. Groothuis et al. [42]: 

𝑅𝑒𝑡𝑝 = 𝑅𝑒𝑙 + 𝑅𝑒𝑔 =
𝑑𝑈𝑙𝜌𝑙

𝜇𝑙
+

𝑑𝑈𝑔𝜌𝑔

𝜇𝑔
 (2) 

where Retp is air/liquid two-phase flow Reynolds number, Rel and Reg are liquid and air phase 

Reynolds numbers; Rel=dUlρl/μl, Reg=dUgρg/μg, d is the hydraulic diameter (m), Ul and Ug are the 

superficial velocities of liquid and air (m/s), μl and μg are the dynamic viscosities of liquid and air 

(kg/(m·s)), ρl and ρg are the densities of the liquid and air (kg/m3). The Reynolds number for the 

feed solutions with air recharging in the setups E3, E5 and E6 was 168 and Reynolds number of 

permeate with the air recharging for the setup E2 was 85. 

The effectiveness of air recharging and mesh spacer existence on membrane pore wetting was 

determined by measuring the salt rejection and the permeate flux in comparison with the default 

systems. Salt rejection, water flux, wetting factor, concentration factor and water recovery were 

calculated using following equations: 

𝑅 = (1 −
𝐶𝑏,𝑝

𝐶𝑏,𝑓
) 100 (3) 

J =
𝛥𝑚𝑝

𝐴 𝛥𝑡
 (4) 

𝑊𝐹 =
𝐽𝑡−𝐽𝑖

𝐽𝑖
  (5) 

𝐶𝐹 =
𝑀𝐹𝑖

𝑀𝐹𝑖 − 𝑀𝑃𝑗
 (6) 

𝑊𝑅 = 100
𝑀𝑃𝑗

𝑀𝐹𝑖
= 100(1 −

1

𝐶𝐹
) (7) 

where R is the salt rejection, Cb,p and Cb,f are the salt concentration in permeate and feed 

solutions, J is the permeate flux [kg m-2 h-1], Δmp is the mass of collected permeate, A is the 
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effective membrane area, Δt is the elapsed time, WF is the wetting factor, 𝐽𝑖 and 𝐽𝑡 are the mean 

initial permeate flux and mean permeate flux at time t, CF is the concentration factor, 𝑀𝐹𝑖 is the 

initial feed mass, 𝑀𝑃𝑗 final obtained permeate mass at step j [kg] and WR is the water recovery, 

respectively. Step j corresponds to each sequential addition of surfactant to the feed. Every step 

took at least 30 minutes in which the experimental values were recorded every 10 minutes and 

their averages were considered during that step for each experimental setup. Salt concentrations of 

feed and permeate were correlated by feed and permeate electrical conductivity (supporting 

information). 

4. Results and discussion 

The wetting occurrence depends on several parameters such as intrinsic characteristics of the 

porous material, operating pressure conditions, and nature of the feed solutions [43]. When the 

membrane gets entirely wet it acts as a hydrophilic microfiltration membrane because of the large 

pore size, resulting in an increase in permeate flux and a dramatic decrease in salt rejection. As 

soon as the membrane is wetted, MD is not any more selective and thus does not fulfill its purpose 

of desalination or other kinds of separation. Pore wetting degrades the capabilities of the MD 

systems either because it lowers the interface for evaporation and hence the formation of vapor, or 

because when a pore is wetted saline liquid feed may run through and contaminate the permeate 

[44]. 

By the addition of surfactants into the membrane cell, they begin to enter the membrane 

interface, decreasing the membrane surface free energy by:  

 reducing the energy of the interface [45], and 

 covering hydrophobic groups at the membrane surface with hydrophilic surfactant molecules 
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By increasing the concentration of the surfactant in the system, micellization may happen 

(aggregation of surfactant molecules). The minimum concentration at which micellization starts is 

known as the critical micelle concentration (CMC) [46]. Prior to attaining the CMC, the surface 

tension varies intensely with the concentration of the surfactant. When the CMC is reached, the 

surface tension stays comparatively unchanging or alters with a lesser slope. The CMC strongly 

depends on pressure, temperature, and on the existence and concentration electrolytes and of other 

surface-active species. For instance, the aggregation number for SDS rises with increasing 

amounts of the electrolyte NaCl, while CMC decreases [47]. Fig. 3 illustrates the surface tension 

versus SDS concentrations at eleven fixed concentrations of NaCl [48]. 

 

Fig. 3. Surface tension as a function of the concentration of SDS for eleven fixed NaCl 

concentrations[48] 

SDS creates spherical micelles at low NaCl concentrations (<0.45 M), however, it forms rod-

like micelles at high NaCl concentrations at which its micelle concentration is high [49]. Mostly, 

the micelle size reduces with the increase of temperature for SDS. The rod-like micelle produced 

at high NaCl concentrations reduces its size approximately five times more intensely than the 

spherical micelle by increasing the temperature [46]. 
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4.1 Effect of high salinity feed on wetting 

At the beginning of the experiments E1 to E4, when NaCl was added to the deionized water feed 

to make a 1.0 M solution, the permeate flux across the membrane negligibly decreased (Fig. 4a-

d). These results are in principle in accordance with other reports [50] as the adding non-volatile 

solutes to water leads to concentration boundary layer adjacent to the feed membrane surface. This 

reduces the partial vapor pressure of the system and accordingly lowers the driving force of the 

system. Additionally, when salt was added to the feed in the setups E1 to E4, the permeate 

electrical conductivity was slightly increased.  

Generally, the presence of salt in the distillate can be attributed either to entrainment of fine 

liquid droplets by vapor molecules [51] or to membrane pore wetting [52]. It these setups, high 

salt concentration did not cause complete pore wetting because the permeate flux did not increase. 

However, since the membrane pores are considerably larger (0.2 μm) than the ionic radius of Na+ 

and Cl-, the NaCl passage in the hydrophobic membranes happens primarily caused by the 

entrainment of fine liquid droplets in the vapor phase. The ionic radius of Na+ and Cl- are 1.02 and 

1.81 Å, respectively [53]. The improvement in salt rejection for superhydrophobic membranes is 

attributed to the relatively higher vapor flux and the rejection of liquid phase caused by higher 

hydrophobicity (setup E5). This phenomenon has been reported before [26].  

Ultimately, the combination of air recharging, mesh spacer and superhydrophobic membrane in 

setup E6 resulted in no increase in permeate electrical conductivity and permeate flux at the 

beginning of the experiment. This can be attributed to the reduction of the salt boundary layer near 

the feed membrane surface. 

4.2 Effect of air recharging 
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a. Setup E1 (default 1) 

 

b. Setup E2 (permeate air) 

 
c. Setup E3 (feed air, no spacer) 

 

d. Setup E4 (feed air with spacer)

  
e. Setup E5 (default 2) 

 

f. Setup E6 (feed air, superhydrophobic) 

 

Fig. 4. The permeate flux (● J) and salt rejection (● R) for setups E1-E6. The mean temperature 

of feed and permeate were 60 °C and 20 °C, respectively. The round vertical dots show the SDS 

concentration in the feed. NaCl was added after 30 minutes to make the 1.0 M saline solution. 
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Fig. 4 shows the permeate fluxes and salt rejections overtime for the setups E1 to E6. The 

polypropylene membrane without air recharging and mesh spacer on the feed side was first used 

as a default case to measure the reference permeate flux and salt rejection in the setup E1. It is 

worth noting that the pressure caused by air bubbles in the membrane cell must be less than the 

critical pressure of liquid entering membrane pores. By adding SDS to the concentration of 0.3 

mM the salt rejection dramatically decreased to 40% and permeate flux increased from 4.7 to 164.4 

kg/m2-h (Fig. 4a). The high conductivity of the permeate at 105 minutes indicated the membrane 

wetting from that time onwards and poor salt rejection. In this case, liquid-wicking led to a direct 

connection between both feed and permeate, and because of that produced a sharp loss of 

selectivity. 

In the next setup (experiment E2), air bubbles were introduced on the permeate side of the 

membrane and the mesh spacers were placed on both side of the membrane. Air recharging in the 

permeate side did a little and delayed the membrane pore wetting to SDS concentration of 0.4 mM. 

This was due to increasing pressure on the permeate side of the membrane, decreasing the 

transmembrane pressure difference and therefore increasing LEP (Fig. 4b). When air recharging 

without a mesh spacer in the membrane feed side (experiment E3) was used in the setup, the 

membrane held up for up to 0.4 mM SDS concentration until the pore wetting happened. Then, by 

adding more SDS into the feed, feed contaminated the distillate, therefore, permeate quality was 

dramatically affected and the salt rejection dropped sharply to ~40% and permeate flux raised from 

4.7 to 131.2 kg/m2-h (Fig. 4c). 

Surface wetting of hydrophobic membranes happens when hydrophilic groups (e.g., C=O, OH, 

and COOH) forms on the polypropylene surface [54]. But, when the air bubbles are introduced in 

the feed, SDS diffuses in water molecules and adsorb at the interfaces of air and water. The water-
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indissoluble hydrophobic hydrocarbon tails may reach out of the bulk water phase, into the air, 

whereas the water-dissoluble head stays in the water phase. In this case, hydrophobic (or non-

wetting) parts of surfactant dispersed in water easily attach to air bubbles, preventing the 

hydrophilic parts wet the membrane surface. 

4.3 Effect of mesh spacer and air recharging 

In the experiment E4, a mesh spacer was placed near the surface of the membrane on the feed 

side and air bubbles were introduced to the feed side of the membrane cell. The existence of the 

mesh spacer led to trapping air bubbles on the membrane surface and consequently reducing the 

cohesion of surfactant to the membrane surface. Although the mesh spacer remitted the occurrence 

of pore wetting compare to the experiment E3, for more SDS concentration in the feed the system 

experienced wetting and the salt rejection dropped to 92% (Fig. 4d). This pore wetting might be 

referred to this fact which the larger pores and the capillary force processed smaller hindrance for 

water penetration [55]. 

4.4  Effect of membrane superhydrophobicity 

In the experiment E5, the superhydrophobic PTFE/PES membrane was used in the setup instead 

of the hydrophobic PP membrane. Without introducing air bubbles in the feed side over the first 3 

h, the strong superhydrophobic properties of these membranes retarded the pores wetting and no 

pore wetting was observed. Nonetheless, by increasing the SDS concentration more than 0.6 mM, 

the hydrophobicity of the membrane was compromised and the permeate electrical conductivity 

rose to 8 mS/cm, proving the superhydrophobicity was not able to resist the wetting solely for high 

surface-active species in the feed solution (Fig. 4e). Therefore, the robustness of such membranes 

was not guaranteed as they are susceptible to wetting for the high surfactant concentration in feed. 
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It is worth to note that a study of the effect of the hydrophobicity demonstrated that higher 

hydrophobicity led to a reduction of partial pore wetting and therefore maintaining the vapor 

transport for the entire range of pore sizes of the membrane [56]. Modifications of surface energy 

have several consequences which result in enhanced permeability deviations and clarify the 

domination of the PTFE membranes over PP membranes. 

4.5  Effect of membrane superhydrophobicity with mesh spacer and air recharging 

When superhydrophobic membrane with air recharging and the mesh spacer (experiment 6) in 

the membrane feed cell were implemented the setup prevented the pore wetting incident for even 

up to 0.8 mM SDS concentration in the feed and the distillate product was salt-free and salt 

rejection remained >99.9% (Fig. 4f). Dispersing the air bubbles into the feed increases the 

saturation of the absorbed air in the liquid phase and as in the pore structures the pressure lowers, 

the dissolved air is desorbed at the entrance of pores and displaces the liquid which partly tends to 

penetrate the macroporous structure. In this case, the trapped air bubbles combined with 

superhydrophobicity of the membrane resulted in the formation of high static contact angle while 

simultaneously decreased the area of feed in contact with the membrane and reduced adhesion of 

the surface-active species to the membrane surface. As it is observed in Fig. 4f, trapped air bubbles 

had no undesirable effect on the permeate flux. 

For the comparison of both the best and worst scenarios for wetting prevention (setup E6 and 

E1 respectively), Fig. 5 shows in detail the process conditions (i.e., mean permeate and feed 

temperatures, transmembrane pressure difference, and permeate flux). In Fig.5a for the setup E1, 

there are three zones. In the first zone, the effect of feed temperature on flux is depicted.  
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By increasing the feed temperature from 40°C to 60°C, the flux increased by almost three times. 

In zone two, the addition of NaCl in the feed caused a slight decrease in the permeate flux as the 

salt decreased the vapor pressure of the solution [57]. In the last zone, wetting started to happen, 

seen in the increasing permeate flux, increasing permeate temperature, and the dropping of the 

transmembrane pressure difference along with the feed temperature. In contrast, in Fig.5b, because 

of a wetting hindrance in setup E6, permeate flux, transmembrane pressure difference, and mean 

temperatures stayed constant. 

0 50 100 150

0 50 100 150

20

25

30

35

40

45

50

55

60

 Tmf

 Tmp

 Transmembrane pressure difference

 Permeate flux

T 
(°

C
)

time (min)

(a) Setup E1

0

20

40

60

80

100

120

140

Tr
an

sm
e

m
b

ra
n

e 
p

re
ss

u
re

 d
if

fe
re

n
ce

 (
m

b
ar

)

1

10

100

1000

P
e

rm
e

at
e

 f
lu

x 
(k

gm
-2

h
-1

)

 

0 50 100 150 200 250 300

0 50 100 150 200 250 300

20

25

30

35

40

45

50

55

60

 Tmf

 Tmp

 Transmembrane pressure difference

 Permeate flux

T 
(°

C
)

time (min)

(b) Setup E6

0

20

40

60

80

100

120

140

Tr
an

sm
em

b
ra

n
e 

p
re

ss
u

re
 d

if
fe

re
n

ce
 (

m
b

ar
)

1

10

100

1000

P
er

m
ea

te
 f

lu
x 

(k
gm

-2
h

-1
)

 
Fig. 5. Mean permeate and feed temperatures, transmembrane pressure difference and permeate 

flux for the setup E1 (a) and E6 (b). Zone 1, 2 and 3 refer to the elapsed times for the feed 

temperature elevation, non-wetted and wetted conditions, respectively. 
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Fig. 6 shows that recharging the air bubbles on the feed side of the membrane had no undesirable 

effect on the permeate flux, despite a potential diffusion resistance to water vapor introduced by 

the air layers. This can be explained by several factors. First, the air-covered areas still experience 

evaporation at the air-water interface similar to that at the air-water interface in MD membrane 

pores. Additionally, vapor transport may be improved by enhanced local agitation, reduced 

salt/surfactant deposition/adhesion on the membrane surface/pores, and reduced temperature and 

concentration polarization effects in the feed-membrane boundary layers [58]. 

 
Fig. 6. Effect of air recharging introduction on the permeate flux 

Fig. 7 shows the flow of the air bubbles on the membrane surface. One of the advantages of air 

bubble recharging was the creation of a condition in the system similar to froth flotation, in which 

the bubble foams were created by the air flow in the feed solution. These foams could be later 

collected in the feed tank which may be resulting in the reduction of the surfactant in the solution. 
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Fig. 7. Air recharging at the membrane surface for the setup E6 (wetting preventing setup). The 

air bubbles created bubble foams which can be collected in the feed. 

Fig. 8 shows the wetting factor for the experiments E1 to E6. The wetting factor is defined as 

the relative permeate flux at the end of the experiment to the initial permeate flux without wetting. 

It is clear from Fig. 8 that E1 setup had the most wetting and E6 setup experienced no wetting. 

 
Fig. 8. Wetting factor for the setups E1-E6. 
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Moreover, Fig. 9 depicts the relationship between wetting rate and permeate flux for the E1-E5 

setups. The wetting rate is calculated as the slope of the recorded rise in conductivity in µS cm-1 

min-1. In general, the higher the flux after wetting, the lower the salt rejection, wetting time, and 

the wetting rate. Using air bubbles together with mesh spacer in the feed side and the 

superhydrophobic membrane led to the suppression of wetting as the wetting rate decreased while 

the permeate flux did not rise. 

Finally, the concentration factor and water recovery were considerably affected by wetting (Fig. 

10). For the experiments E1 to E3, the wetting magnitude was high, and therefore the high amount 

of liquid feed was passed through the membrane and affected the water recovery and concentration 

factor, while in setups E4 to E6 because of less wetting amounts the concentration factor and water 

recovery did not rise significantly.  

 

Fig. 9. Wetting rate and permeate flux after wetting has occurred. 
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surface tension and LEP (according to the Young-Laplace Equation) and has been studied in other 

work by the authors  [59,60]. 

 

Fig. 10. Water recovery versus concentration factor.  

5. Conclusions 

This study performed the first application of a new wetting prevention technique in a full MD 

setup: maintaining active air layers on an MD membrane surface. To develop this new approach, 

this study varied the membrane type, membrane hydrophobicity, application site of air, and the 

concentration of a surfactant which was used to cause wetting. Wetting in the MD process was 

best prevented by applying air bubbles on the membrane surface on the feed side in combination 

with superhydrophobic membranes, which was extremely effective and fully prevented wetting. 

This finding is consistent with the theory of Chandler [61] which shows that trapped air bubbles 

result in the formation of discontinuous three phase contact line and high static contact angle. 

Moreover, air recharging reduced the contact area of the membrane with the feed solution and 

consequently reduced the adhesion of surfactant to the membrane surface. 
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The most promising result for wetting prevention was achieved through using a PTFE 

superhydrophobic membrane in conjunction with airflow and a mesh spacer on the feed side. Even 

after reaching of 0.8 mM SDS concentration in the solution, no wetting occurred. Meanwhile, the 

default setup with a polypropylene hydrophobic membrane without the introduction of airflow or 

mesh spacer was the most vulnerable setup to the wetting incident, with wetting quickly occurring 

at concentrations as low as 0.3 mM SDS. In this setup, pore wetting led to penetration of liquid 

water and affected the quality of fresh water produced. 

A surprising observation in this study of the wetting phenomenon in MD was that the presence 

of a mesh spacer on the feed side of the membrane cell was vital for preventing wetting. This can 

be explained by the importance of the spacer trapping and maintaining the air bubbles on the 

membrane surface to avoid the direct bond of the hydrophilic tail of the surface-active species with 

the polymeric membrane surface.  
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Appendix A 

Fig. A.1 shows the electrical conductivity versus salt concentration which is used for calculating 

salt rejection. These measurements were made in triplicate and represent a relative standard 

deviation of less than 3%. 

 

Fig. A.1: Electrical conductivity and NaCl concentration calibration line (κ=83.99CNaCl, 

R2=0.9943). 
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Nomenclature 

Cb,p, concentration in permeate solution [mol/l]; Cb,f, concentration in bulk feed solution [mol/l]; 

CF, concentration factor [-]; f1, area fractions of material 1; f2, area fractions of material 2; J, 

permeate flux [kg/m²s]; LEP, liquid entry pressure [kPa]; MFi, initial feed mass [kg]; MPj, final 

obtained permeate mass at the end of stage j [kg]; R, salt rejection [%]; t, operating time [h]; Tm, 

mean temperature of Tm,f & Tm,p [°C]; Tm,f, feed temperature at the membrane [°C]; Tm,p, permeate 

temperature at the membrane [°C]; WF, wetting factor [-]; WR, water recovery [%]; θ1, contact 

angles for the material 1; θ2, contact angles for the material 2; θc, effective contact angle. 
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 For the first time, air recharging for wetting prevention in a full MD setup was examined. 
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