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Introduction

Even before the Nobel prize winning development of Stefan Hell (see Refs. [1–3]) it has
been known (see Refs. [4, 5]) that quantum emitters, emitting single photons by the
relaxation from a high to a low energy state, are useful for imaging a variety of different
objects and processes. These objects and processes of interest stem from a wide range of
areas. The use of quantum emitters provides access to a number of observation quantities
including, among others, the possibility to image biomedical processes (see, e.g., Ref. [6,
7]). It also allows to obtain information with regards to the characterization of engineered
nanostructures such as the optical and electronic properties at the edges of a graphene
flake or the exact shape of metallic nanostructures (see, e.g., Ref. [8]). In the case of
graphene, research has been conducted by the use of different methods such as scanning
electron microscopy or scanning near-field optical microscopy (see Refs. [9, 10]). However,
using emitters to probe graphene (as well as other materials) allows access to additional
physical properties such as magneto-optical properties (see Ref. [11, 12]) by detecting the
modification of the emitters’ emission dynamics.

Besides from their usefulness in imaging, quantum emitter have also become important
in hybrid light-matter devices whose development has evolved to a goal in itself. Here,
the challenge lies in sufficiently enhancing the coupling between the emitter (radiating
photons) and the nanophotonic system (matter) such that a controlled interaction occurs
(cf. Ref. [13] for a current review). Hybrid systems discussed in the literature, are, among
others, single emitters coupling to conducting nanostructures (see Ref. [14]) and cold atom
clouds coupling to graphene (see Ref. [15]) or other conducting materials (see Ref. [16]).
Especially, hybrid light-matter systems applied in the areas of quantum cryptography
and quantum information processing attract attention (see Refs. [17–20]).

Here, one of the important properties of an emitter is the capability to store information
(cf., e.g., Ref. [21]). This is needed when moving from all-electronic devices to optical chips
which are hopeful candidates for next generation computers (see Refs. [20, 22]). Since
optical components bare much smaller Ohmic losses than traditional electronic devices
and have much higher switching times, researchers have been trying to develop optical
chips for years. Until now there has not been made a final decision on the most suited
material system for these chips such that a commercialization is still lacking. Eventually,
however, one will not only need to provide a storage medium (such as possibly provided by
emitters) but also waveguiding elements that are able to highly confine and guide the light
that transports the information between different computational sites. These photonic
parts might consist of dielectric waveguides possibly containing plasmonic elements close
to which the coupling of emitters to light is enhanced. In conclusion, within the research
on emitters its interaction with suited photonic and plasmonic environments is of interest.
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Introduction

Figure 1: Sketch on three-dimensional scanning probe fluorescence lifetime imag-
ing microscopy. By gluing a nanodiamond containing a single nitrogen-vacancy
color center to a cantilever, we are able to not only measure the height profile of
plasmonic structures but at the same time the lifetime modifications of a single
quantum emitter due to the photonic environment. Figure adapted from Ref. [W2],
doi:10.1021/nl500460c.

In this field of light-matter coupling research where, on the one hand, the community
uses emitters in order to probe electromagnetic environments with increasing accuracy
and, on the other hand, the community tailors the coupling of emitters to their photonic
environment in order to develop light-matter devices with enhanced properties, this thesis
is located.

In the following, we present studies on different plasmonic systems (matter) coupling
to emitters (radiating photons). We especially focus on the probing capabilities of the
emitters which promise an increased understanding of fundamental electronic and optical
properties. For example, we discuss the lifetime modifications and their implications for
emitters placed above graphene which is known to be “a platform for strong light-matter
interactions” (cf. Ref. [23]). Although graphene is a system that exhibits with respect
to its two-dimensionality a strong coupling and low Ohmic losses, we also focus on the
coupling of emitters to well-known plasmonic nanostructures. Here, we concentrate on the
theoretical description of expected modifications of the emitters’ radiation dynamics when
probing these nanostructures to eventually achieve an enhanced light-matter coupling in
these systems.

Outline

The thesis is structured as follows: in chapter 1, we introduce the theoretical background
(see chapter 1) required within this work. We will begin with a basic discussion of
Maxwell’s equations and the properties of the electromagnetic fields, continue with the
introduction to some elements of quantum mechanics such as the quantum mechanical
equations of motion and an introduction to quantum field theory and close with an
inspection of elements of response theory where we focus specifically on the response of
the electrons in a medium to the electromagnetic field.

In chapter 2, we discuss some elements of the theory of graphene. We start out by
considering the tight-binding description and explaining the approximations necessary to
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arrive at the Dirac formalism before focusing on the nature of a band gap in graphene.
This lays the foundation to introduce the electromagnetic response of graphene within
different approximations using quantum-field theoretical descriptions. Together with the
review of the general response of the electrons in a medium, this allows for a description
of all plasmonic materials within this thesis, both graphene and metals.

In chapter 3, we focus on radiation dynamics of those emitters that will be discussed
in the main chapters of the thesis. Here, we distinguish between electric and magnetic
dipole transitions and discuss the classical description of an emitter, the influence of the
photonic environment leading to a modification of the emitter’s lifetime and transition
frequency and the experimental realization of these dipoles. With these foundations, we
can then study the light-matter interaction in different plasmonic systems.

In chapter 4, we discuss the influence of graphene exhibiting a band gap onto elec-
tric and magnetic emitters. Such a band gap is relevant since in experimental setups
graphene is often deposited on a substrate such as hexagonal boron nitride and in this
case researchers find the opening of a meV band gap in graphene. Additionally, the elec-
tromagnetic modes in slab dielectric - graphene - slab dielectric waveguides are discussed
in detail.

When moving to nanostructured systems, we require a computational modeling of
the nanophotonic systems to describe the radiation dynamics of the emitters accurately.
In chapter 5, we present the basics on the numerical method applied in this thesis,
the Discontinuous Galerkin Time-Domain method. Furthermore, we report on different
numerical tools implemented within the scope of this thesis such as current sheets suited
to incorporate graphene into the electromagnetic modeling. Furthermore, the concept of
oblique incidence within the Discontinuous Galerkin Time-Domain method is discussed
and made use of for a graphene multilayer system.

We furthermore make use of the Discontinuous Galerkin Time-Domain method to
probe more involved plasmonic nanostructures in chapter 6. Specifically, we demon-
strate the advantages of numerical modeling in order to characterize a three-dimensional
scanning-probe fluorescence lifetime imaging microscopy probe that allows for the three-
dimensional investigation of the lifetime modifications of a single-photon quantum emitter
in such a nanoplasmonic system (see Fig. 1). Additionally, we introduce a self-consistent
dipole description within the Discontinuous Galerkin Time-Domain method and display
its usefulness by studying the lifetime modification of picosecond emitters (such as found,
e.g., in the intersystem crossing in iridium or copper complexes, see Refs. [24, 25]) in the
proximity of a gold pentamer leading to involved radiation dynamics. These are relevant
since plasmonic structures allow to decrease the lifetime of emitters even further (see
Ref. [26]) and thus might allow to detect processes on very short time scales with an
appropriate spatial resolution and thus can be applied, e.g., in biological imaging.

In chapter 7, we conclude this work by summing up the outcomes and discussing in an
outlook future research questions including past and present work that is closely related
to the results presented here.
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CHAPTER 1

Theoretical background

“Whatever difficulties we may have in forming a con-
sistent idea of the constitution of the aether, there can
be no doubt that the interplanetary and interstellar
spaces are not empty, but are occupied by a material
substance or body, which is certainly the largest, and
probably the most uniform body of which we have any
knowledge.” 1

James Clerk Maxwell

In this first chapter of the dissertation, we discuss the fundamentals used throughout the
thesis. Since the thesis covers the electromagnetic interaction of emitters with plasmonic
nanostructures, a description of both the electromagnetic field propagation as well as
the surrounding matter is obligatory. For this reason, we split the first chapter into
three parts: first we discuss the propagation of the classical electromagnetic fields, then
we introduce quantum mechanical notations and last we cover methods to determine the
electronic response to an electromagnetic perturbation.

1.1 The electromagnetic field

1.1.1 Maxwell’s equations

Maxwell’s equations are at the core of every description of the time evolution of electro-
magnetic fields and thus are the starting point of this work. Since they were introduced
in a rather complicated formulation by J. C. Maxwell, they have been reformulated in a
number of ways suitable for different problems. In this work, we follow the notation in
Ref. [27] for the macroscopic Maxwell’s equations

∇ ·D(r, t) = ρfree(r, t) , (1.1a)

∇ ·B(r, t) = 0 , (1.1b)

∇×H(r, t)− ∂tD(r, t) = jfree(r, t) , (1.1c)

∇×E(r, t) + ∂tB(r, t) = 0 . (1.1d)

1“Ether”, Encyclopædia Britannica Ninth Edition
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1 Theoretical background

Above, ρfree(r, t) and jfree(r, t) describe the free charge density and charge current density
that are not constituents of a macroscopic object and obey the continuity equation (see
Ref. [27])

∂tρfree(r, t) + ∇ · jfree(r, t) = 0 . (1.2)

To complete this set of equations, we additionally list the constitutive relations that
connect the electric field E(r, t) with the electric displacement vector D(r, t) and the
magnetic field H(r, t) with the magnetic flux density B(r, t), respectively (cf. Ref. [27])

D(r, t) = ε0E(r, t) + P(r, t) , (1.3a)

H(r, t) =
1

µ0
B(r, t) + M(r, t) , (1.3b)

where we introduce the vacuum permittivity ε0 that connects to the vacuum speed of
light via the vacuum permeability µ0 with

c−2 = ε0µ0 . (1.4)

In Eq. (1.3a), the macroscopic electric polarization P(r, t) is defined as the sum over the
dipole moments pi of each of the different types of molecules i bound in a material

P(r, t) =
∑

i

Ni〈pi(r, t)〉 , (1.5)

where Ni are the average number of molecules of type i in a small volume around a point
r over which pi is averaged. The magnetic polarization M(r, t) is given analogously to
Eq. (1.5)

M(r, t) =
∑

i

Ni〈µi(r, t)〉 , (1.6)

summing over the averaged magnetization of all molecules in a small volume around
position r. With these definitions, we can derive the microscopic Maxwell’s equations
(relating the electric and magnetic fields to all microscopic charges, free and bound in the
material, ρ = ρfree +ρb and equivalently currents j = jfree + jb, see Ref. [27]). The macro-
scopic electric and magnetic polarization relate then to the bound charge and current as
(see Ref. [27])

ρb = −∇ ·P(r, t) , and jb = ∇×M(r, t) + ∂tP(r, t) . (1.7)

In the case of a spatial homogeneous medium, another way to introduce the material’s
properties into Maxwell’s equations is given by (see Ref. [27])

D(r, t) =

∫

V

d3r′
∞∫

−∞

dt′ε(r′, t′) ·E(r− r′, t− t′) , (1.8a)

B(r, t) =

∫

V

d3r′
∞∫

−∞

dt′µ(r′, t′) ·H(r− r′, t− t′) , (1.8b)
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1.1 The electromagnetic field

where the spatial integration is performed over the mode volume V in which the electro-
magnetic radiation is contained.

The temporal and spatial dependent dielectric and magnetic tensors ε(r, t) ≡ ε0εr(r, t)
and µ(r, t) ≡ µ0µr(r, t), respectively, describe the macroscopic material’s “response”2

to an electromagnetic field. Here, we split the dielectric and magnetic tensors into the
vacuum permittivity and permeability (see Eq. (1.4)) and the material dependent con-
tribution. As discussed above, the electromagnetic fields are then influenced not only by
external, free charges ρfree(r, t) and charge currents jfree(r, t) in Maxwell’s equations (1.1)
but are also governed strongly by dielectric and metallic structures and its bound charges
whose responses to the electromagnetic fields are described in an effective manner via the
dielectric and magnetic tensor.

In parallel to the time-domain and spatial description, all quantities introduced above
can be converted into frequency ω and wavevector q domain using the Fourier transform
F(r,t)[A(r, t)] of a function A(r, t) and the inverse transform F(r,t)[A(r, t)](q, ω)

A(r, t) = F(q,ω)[A(q, ω)](r, t) ≡ 1

(2π)4

∫ ∞

−∞
dω

∫ ∞

−∞
d3qA(q, ω)e−i(ω·t−q·r) ,

m

A(q, ω) = F(r,t)[A(r, t)](q, ω) ≡
∞∫

−∞

dt

∫ ∞

−∞
d3r A(r, t)ei(ω·t−q·r) .

(1.9)

Jointly with the convolution theorem

Fω[(f ∗ g)(t)](ω) ≡ Fω[

∞∫

−∞

dτ f(τ)g(t− τ)] ≡ Fω[f(t)]Fω[g(t)] , (1.10)

Equations (1.1) and (1.3) read

q ·D(q, ω) = ρfree(q, ω) , q ·B(q, ω) = 0 , (1.11a)

q×H(q, ω) + iωD(q, t) = jfree(q, ω) , q× E(q, ω)− iωB(q, ω) = 0 , (1.11b)

D(q, ω) = ε(q, ω) · E(q, ω) , B(q, ω) = µ(q, ω) ·H(q, ω) . (1.11c)

In this thesis we limit the discussion to materials for which µ
r

= 1 in the range of
frequencies of interest. Additionally, we assume only isotropic materials (since glasses
and metals discussed as material components in this thesis are in first approximation
isotropic) such that εr = εr1.

The wavevector q is connected to the wavelength of light λ via q ≡ |q| = 2π/λ while
wavevector and angular frequency are connected via the material’s phase velocity q = ω/c̃
with the speed of light in a material defined via

c̃ =
1√
εµ

=
c

εrµr
. (1.12)

2See sections 1.3 and 1.3.1 for more details on the correct formulation of the electron’s response to an
external or internal electromagnetic field.
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Last, we can derive the wave equations for the electric and magnetic fields (com-
pare Ref. [28]) for constant dielectric functions εr(r, ω) = εr (assuming a local and non-
dispersive material3)

q× q× E(q, ω)− ω2

c2
εrE(q, ω) = iωµ0jfree(q, ω) , (1.13a)

q× q×H(q, ω)− ω2

c2
εrH(q, ω) = q× j(q, ω) . (1.13b)

and for εr 6= 0, the use of Eqs. (1.1a) and (1.8a) and ∇×∇×A = ∇∇ ·A−∆A, the
wave equations then read

(
∆ +

ω2

c̃2

)
E(r, ω) = −iωµ0jfree(r, ω) +

∇ρfree(q, ω)

ε0εr
, (1.14a)

(
∆ +

ω2

c̃2

)
H(r, ω) = −∇× j(r, ω) . (1.14b)

Here, we reverse the Fourier transform of the real space component with the notation

A(r, ω) ≡ Fq[A(q, ω)](r, ω) , (1.15)

whereA(r, ω) andA(q, ω) exhibit different functional dependencies regardless of the same
symbolic notation.

1.1.2 Poynting’s theorem

For the description of the nanostructure’s electrons’ interaction with the electromagnetic
fields, energy considerations allow for the calculation of physical quantities, i.e., the losses
or later the decay rate of an emitter in proximity of the nanostructure. Considering a
single particle of charge q and velocity v, an external electric field E and magnetic flux
density B perform via the Lorentz force FLorentz(r, t) = qE(r, t) + q[v ×B(r, t)] work of
∂tW (r, t) = v · FLorentz(r, t) = qv · E per time unit on this particle. The magnetic field
cannot perform work due to its orthogonal action on the charged particle with respect to
the particle’s velocity. Considering now a continuous particle current, we arrive for the
rate of energy dissipation ∂tW (t) in a finite volume V per time unit at (cf. Ref. [28])

∂tW (t) =

∫

V
d3r jfree(r, t) ·E(r, t) . (1.16)

Rewriting the free current by use of Maxwell’s equation (1.1c), we find

∫

V
d3r jfree(r, t) ·E(r, t) =

∫
d3r

[
E(r, t) ·

(
∇×H(r, t)

)
−E(r, t) · ∂tD(r, t)

]
. (1.17)

3In general, non-dispersive, being frequency independent, dielectric functions are non causal and thus
unphysical. However, especially glasses exhibit a constant dielectric function over a broad frequency
window. Whenever one is interested in exclusively this window and considers linear phenomena, a
non-dispersive description is appropriate.
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1.1 The electromagnetic field

With the vector identity

∇ · (E(r, t)×H(r, t)) = H(r, t) · (∇×E(r, t))−E(r, t) · (∇×H(r, t)) ,

and electric field’s rotation Equation out of Maxwell’s equations (1.1d), we arrive at
∫

V
d3r jfree(r, t) ·E(r, t) = −

∫
d3r

[
∇ · (E(r, t)×H(r, t))

+E(r, t) · ∂tD(r, t) + H(r, t) · ∂tB(r, t)
]
.

(1.18)

Considering the special case of a linear macroscopic medium without dispersion and
internal losses, we can define

u(r, t) =
1

2

(
E(r, t) ·D(r, t) + B(r, t) ·D(r, t)

)
, (1.19)

and with this we find

−
∫

V
d3r jfree(r, t) ·E(r, t) =

∫
d3r

[
∇ · (E(r, t)×H(r, t)) + ∂tu(r, t)

]
(1.20)

m
∂tu(r, t) + ∇ · S = −jfree(r, t) ·E(r, t) , (1.21)

where the last reformulation is appropriate considering that we assumed an arbitrary but
finite volume V . Above, we introduce the Poynting vector

S(r, t) = E(r, t)×H(r, t) , (1.22)

which describes the energy flux density. Here, the reader should realize that we define
the Poynting vector in real space with real fields E(r, t) and H(r, t). Thus S(r, t) is the
instantaneous energy flux density. The common confusion on complex and real valued
fields and the way to calculate the Poynting vector correctly stems from the fact that one
is often interested in the average energy flux, finding (assuming a plane wave with one
frequency ω only)

〈S〉ω =
1

T

T∫

0

S(t)dt =
1

T

T∫

0

dt

(
Re
[
Ee−iωt

]
× Re

[
He−iωt

])

=
1

2T

T∫

0

dt

(
Re
[
E ×H∗

]
+ Re

[
E ×He−2iωt

])
=

1

2
Re
[
E ×H∗

]
.

(1.23)

In the last step, we neglected the rotating terms since they average out by performing
the time integral. Here, it is important to note that although one generally also uses
this approach to calculate a frequency dependent Poynting vector, they are only equal
in the case of a real plane wave. When using a finite pulse width in theoretical and
numerical computations, the Poynting vector is highly nonlinear and therefore in general
it is not justified to apply these single-mode considerations to the experiments or numerics
realized for broad probe pulses. However, for sufficiently wide pulses in time domain, these
approximations still hold.
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1.1.3 Electromagnetic potentials

Another possibility to write Maxwell’s equations is to introduce a scalar and vector po-
tential instead of the electric and magnetic fields. Especially in quantum field theory
(QFT) (see section 1.2.2), this notation is often used (see section 1.2.3) since the poten-
tials allow for Maxwell’s equations (see Eq. (1.1)) being formulated in one dense equation
(see Eq. (1.31) below).

To fulfill Eq. (1.1b), we can define a vector potential

B(r, t) = ∇×A(r, t) , since ∇ ·
[
∇×A(r, t)

]
= 0 , (1.24)

for any vector field. With this definition and Eq. (1.1d), we find

∇×
[
E(r, t) + ∂tA(r, t)

]
= 0 ,

that is always fulfilled for

E(r, t) = −∇Φ(r, t)− ∂tA(r, t) . (1.25)

By use of this scalar potential Φ(r, t) we find the equivalent to Maxwell’s equations

∆Φ(r, t) + ∂t
[
∇ ·A(r, t)

]
= −ρfree(r, t)

ε0εr
, (1.26a)

∆A(r, t)− εrµr
c2

∂2
t A(r, t)−∇

[
∇ ·A(r, t) +

εrµr
c2

∂tΦ(r, t)

]
= −µ0µrjfree(r, t) ,

(1.26b)

where we assumed the surrounding material to be non-dispersive and linear as it is the
case for many dielectrics such as glass in the frequency window discussed in this thesis.
In general, one has a certain freedom to choose the potentials since the physical quantity,
the magnetic flux density B, remains constant even for

A(r, t)→ A′(r, t) = A(r, t) + ∇Λ(r, t) , (1.27a)

Φ(r, t)→ Φ′(r, t) = Φ(r, t)− ∂tΛ(r, t) . (1.27b)

The freedom of the specific choice of the potentials is fixed by the choice of a specific
gauge, such as, e.g., the Lorenz gauge

∇ ·A(r, t) +
εrµr
c2

∂tΦ(r, t) = 0 , (1.28)

uncouples the equations of motion of both potentials and leading to

∆Φ(r, t)− εrµr
c2

∂2
t Φ(r, t) = −ρfree(r, t)

ε0εr
, (1.29a)

∆A(r, t)− εrµr
c2

∂2
t A(r, t) = −µ0µrjfree(r, t) . (1.29b)
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1.2 Elements of quantum mechanics

The parallelism of the two equations of motions allows then to rewrite the scalar and
vector potential into a covariant four-vector4 potential (see Ref. [27])

A = {Aµ} = (Φ/c̃,−A) , (1.30)

and an equivalent four-vector current j = {jµ} = (c̃ρ,−j), Maxwell’s equations read

∂ν∂νAµ = µ0µrjµ , (1.31)

where we define ∇ = {∂µ} = (∂t/c̃,∇) and use the Einstein convention of summing four-

vectors ∂ν∂ν =
3∑

ν=0
∂ν∂ν ≡ ∂2

t /c̃
2 −

3∑
ν=1

∂2
ν . As in Eq. (1.12), we abbreviate the speed of

light in a material as c̃ = 1/
√
ε0µ0εrµr.

1.2 Elements of quantum mechanics

In the macroscopic Maxwell’s equations (see Eqs. (1.11)), the electromagnetic fields are
coupled to a dielectric environment described by the dielectric tensor ε(q, ω). To derive
an appropriate effective model for this macroscopic function from microscopic and quan-
tum mechanics (QM) theories, remains a vivid field in condensed matter research. In the
context of graphene plasmonics, the choice of an appropriate dielectric function (or for
a two-dimensional medium rather a surface conductivity as discussed in Sec. 2.2.2) is of
great importance. Throughout this work, we apply descriptions of different physical real-
izations of graphene (e.g., graphene with and without band gap, at different temperatures
or with and without a finite chemical potential) and compare experimental consequences
within these models. They all base on a QFT modeling of the electrons.

In this section, we therefore first introduce the QM notation and then introduce the
basic elements of QFT. This is then the basis for the final section of this chapter where
we deal with response theory.

1.2.1 Quantum mechanical equations of motion

The time evolution of state |ψS(t)〉 of a QM system in the Schrödinger representation is
determined by the Schrödinger equation

i~∂t|ψS(t)〉 = Ĥ|ψS(t)〉 , (1.32)

4The co- and contravariant vector notation is a notation used especially in the theory of special relativity
but is useful in field theories as well. Since the distance squared of a four-coordinate system with the
contravariant vector x = {xµ} = (t/c̃,x) = (x0,x)

s2 = x2
0 − x2

1 − x2
2 − x2

3 ,

has to be Lorentz invariant in special relativity, a special covariant vector is defined x = {xµ} =
(t/c̃,−x) = (x0,−x) that all physical laws containing Lorentz-scalars, four-vectors and four tensors
are Lorentz invariant. The scalar product (also known as Lorentz scalar) can only be Lorentz invariant
when it is defined as

B ·A ≡ BαAα = B0A0 −B ·A ,

with Bα = gαβB
β . Here, we establish the contravariant, metric tensor {gµν} = {gµν} =

diag(1,−1,−1,−1) leading to B = {Bµ} = (B0,−B).
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where Ĥ = ĤS is the Hamiltonian in Schrödinger representation and ~ is the Planck
constant.

Equivalent to the Schrödinger notation, QM can be expressed in the Heisenberg rep-
resentation

d

dt
ÔH(t) = ∂tÔH(t) +

i

~
[ĤH(t), ÔH(t)] , (1.33)

assuming time-dependent operators ÔH(t) and time-independent states. The two repre-
sentations are for time-independent Hamiltonians ĤH(t) = ĤS = Ĥ connected via

ÔH(t) = eiĤtÔSe−iĤt ,

with ÔH(−∞) = ÔS and are thus in a physical sense equivalent since 〈ψ†S(t)|ÔS |ψS(t)〉 =

〈ψ†H(t)|ÔH(t)|ψH〉.
Also for a time-independent Hamiltonian, the solution to Eq. (1.32) is given by the

time evolution operator

|ψ(t′)〉 = Û(t′, t)|ψ(t)〉 , Û(t′, t) ≡ e−
i
~ Ĥ·(t′−t) . (1.34)

The expectation value of the time evolution operator

U(q′, t′; q, t) = 〈q′|Û(t′, t)|q〉 , (1.35)

is known as the propagator. In Eq. (1.35), |q〉 and |q′〉 are the initial and final state,
respectively, between which the propagator describes the transition probability.

Oftentimes, the Hamiltonian may be written as

Ĥ(t) = Ĥ0 + V̂ (t) , (1.36)

with an unperturbed, time-independent Hamiltonian Ĥ0 for which the solutions are well
known and a possibly time-dependent interaction potential V̂ (t) that is assumed to vanish
V̂ (−∞) = 0. Then, it is advantageous to use a third representation, known as the
interaction representation

ÔI(t) = e
i
~ Ĥ0tÔSe−

i
~ Ĥ0t , (1.37)

|ψI(t)〉 = e
i
~ Ĥ0tTte−

i
~
∫ t
−∞ dt′Ĥ(t′)|ψS(−∞)〉 . (1.38)

The time ordering operator Tt sorts the time-dependent operators within the exponential
operator’s series expansion with the smallest time to the rightmost. The general time
evolution connecting a state at time t′ with a state at time t is then given (compare
Ref. [29])

|ψI(t)〉 = S(t, t′)|ψI(t′)〉 , (1.39)

with the S-Matrix

Ŝ(t, t′) = e
i
~ Ĥ0(t−t′)Tte−

i
~
∫ t
t′ dt

′′Ĥ(t′′) , (1.40)
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QM

QFT

Degrees of freedom Path integral

q

t

q

φ

x

φ

x

t

Figure 1.1: The Figure above is adapted with permission from Ref. [30] and shows
the differences and similarities between QM and QFT. Due to the difference in degree
of freedom, the dimensionality of the path integral changes. In the figure above, the
dark red and blue point and lines, respectively, symbolize the QM and QFT quantities
at one given time, while the shaded lines represent the time evolution of one degree
of freedom.

that is also known as the interaction picture time-evolution operator ÛI in some literature.
The equation of motion for the S-Matrix is given as

i~Ŝ(t, t′) = V̂I(t)Ŝ(t, t′) , (1.41)

leading to the explicit representation

S(t, t′) = Ttexp

[
− i

~

∫ t

t′
dt′′V̂ (t′′)

]
. (1.42)

In this thesis, we mostly apply the Schrödinger representation. For simplicity, we drop
the subscripts and if not otherwise explicitly stated

|ψ(t)〉 ≡ |ψS(t)〉 and Ô ≡ ÔS . (1.43)

1.2.2 Elements of quantum field theory

We introduce the basic notion of quantum mechanics in the previous section in order to
describe different physical systems in this thesis. On the one hand, this includes emitters
(see chapter 3) but on the other hand it is necessary to appropriately describe material
models.

For an appropriate material description we focus on the electronic degrees of freedom
that are in general multiparticle states. In this case, the time evolution operator and the
solution of Eq. (1.34) is not solvable directly due to the dimensionality of the system. In
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these cases, it is helpful to make use of Feynman’s path integrals (see Refs. [30, 31]). This
path integral allows to describe the particles as excited states of a physical field such as,
e.g. photons as excitations of the electromagnetic fields. When using fields instead of
particles, we need a QFT instead of the previously introduced QM description to describe
the time evolution of the fields.

The concepts introduced in the following lead beyond others to the QFT description
of the electronic response to an external electromagnetic field. The difference between
the description of mechanics, e.g., a particle and a field theory can be easily understood
by Fig. 1.1. Mechanics starts from one degree of freedom that becomes one-dimensional
(1D) by integrating over time t (such as, e.g., a single particle). In field theory, however,
a field φ(x) is already depending on the parameter set x where x is d-dimensional (such
as, e.g., the electromagnetic field). This field is then additionally integrated over the time
t such that QFT itself maps from a (d+1)-dimensional space-time into the field manifold,
(x, t)→ φ(x, t).

One possible example of such a field is, e.g., an electromagnetic field with different
modes (defined, e.g, by parameters as polarizations and wavevector), where a different
state can be prepared in each mode, arriving at

|ψ〉 ≡ |ψ1, ψ2, . . .〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . . , (1.44)

where the field is described as a product state of the bosonic single-mode states. Since
coherent states are the eigenstates of the annihilation operator and additionally the most
classical (and therefore the states that are experimentally easiest to prepare), we will use
in this thesis (cf. Eq. (A.18))

|ψ〉 ≡ e−
∑
i

ψ∗i ψi
2 e

∑
i ψiâ

†
i |0〉 . (1.45)

In this case, the over completeness relation reads (cf. Eq. (A.19))
∫ ∏

i

dψ∗i dψi
π

|ψ〉〈ψ| ≡
∫

d(ψ∗, ψ)|ψ〉〈ψ| = 1F , (1.46)

with the unit matrix of the Fock states 1F .
Fields in this work are not exclusively bosonic (e.g., electromagnetic fields with the

photon as corresponding particle) as discussed above but also fermionic (e.g., electronic
fields with the electron as corresponding particle). For both of these entities, we can
formulate a QFT in terms of their coherent states (see appendix A and Eq. (1.45)). As
described above, these states are d-dimensional and thus a (quantum) field theory is
needed for their description (cf. Fig. 1.1).

There are several quantities that may be computed using QFT. One is the partition
function

Z = Tr

[
e
−β
(
Ĥ−µN̂

)]
=
∑

n

〈n|e−β
(
Ĥ−µN̂

)
|n〉 . (1.47)

This sum over all states in thermal equilibrium is a function from which all thermody-
namic quantities can be derived. It is governed by the quantum Gibbs distribution

ρ̂Gibbs =
1

Z e
−β
(
Ĥ−µN̂

)
, (1.48)
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1.2 Elements of quantum mechanics

that describes the thermodynamics of a system in contact with a heat bath of temperature T
as well as a particle reservoir at chemical potential µ. Then, with β = (kBT )−1 and N̂
the particle number operator, the temperature T is a measure of entropy exchange due
to its contact with the heat bath and the chemical potential µ is a measure of particle
exchange due to its contact with the particle reservoir.

In Eq. (1.47), we represent the partition Function in a sum over a complete set of Fock
states. In order to rewrite the partition function in terms of coherent states, we insert
the unit matrix presented in Eq. (1.46)

Z =

∫
d(ψ∗, ψ)

∑

n

〈n|ψ〉〈ψ|e−β
(
Ĥ−µN̂

)
|n〉

=

∫
d(ψ∗, ψ)

∑

n

〈ζψ|e−β
(
Ĥ−µN̂

)
|n〉〈n|ψ〉

=

∫
d(ψ∗, ψ)〈ζψ|e−β

(
Ĥ−µN̂

)
|ψ〉 ,

where we use the completeness relation of Fock states Eq. (A.11). Due to the different
nature of fermions and bosons, the factor ζ = ±1 for bosonic and fermionic states appears
in the equation above when interchanging the order of braket and matrix element (cf.
Eq. (A.23)). Splitting the partition function into N → ∞ equivalent temperature slices
δ = β/N and inserting a unit matrix Eq. (1.46) at each time step, the partition function
reads

Z = lim
N→∞

∫ N∏

n=1

d[(ψ∗)(n), ψ(n)]·

· e
−δ

N−1∑
n=0

{
δ−1[(ψ∗)(n)−ψ∗)(n+1))·ψ(n)+H[(ψ∗)(n+1),ψ(n))−µN [(ψ∗)(n+1),ψ(n)]

}

≡
∫
D(ψ∗, ψ)e−S[ψ∗,ψ] .

(1.49)

Here, we rewrite D(ψ∗, ψ) = limN→∞ΠN
n=1d

[
(ψ∗)(n), ψ(n)

]
with the states ψ(n) repre-

senting the states in each time slice n. The Hamiltonian and particle function read

H(ψ∗, ψ) ≡ 〈ψ|Ĥ(â†, â )|ψ′〉
〈ψ|ψ′〉 and N(ψ∗, ψ) ≡ 〈ψ|N̂(â†, â )|ψ′〉

〈ψ|ψ′〉 ,

considering the operators Ĥ(â†, â ) and N̂(â†, â ) to be normal ordered5. With this, we
find the action

S[ψ∗, ψ] =

β∫

0

dτ
[
ψ∗∂τψ +H(ψ∗, ψ)− µN(ψ∗, ψ)

]
, (1.50)

5Normal ordering describes the ordering of the annihilation and creation operators in a general operator
in such a way that all the annihilation operators are positioned to the right of the creation operators,
e.g., the normal-ordered number operator reads

n̂ = â†â .

11



1 Theoretical background

where we introduce the inverse temperature derivative ψ∗∂τψ. On first glance, one does
not distinguish between fermions and bosons in Eq. (1.50). However, while ψ∗∂tψ can
be understood as an ordinary derivative in the bosonic case, it is not trivial that this
is actually true in the fermionic case. Thus, it is simply a notation and describes the
expression ∂τ |τ=nδ ψ

∗(τ) ≡ limδ→0 δ
−1[(ψ∗)(n) − (ψ†)(n−1)]. Additionally, these coherent

states satisfy the boundary conditions ψ∗(0) = ζψ∗β and ψ(0) = ζψ(β) in the integral in
Eq. (1.50).

In Eq. (1.50), the action is represented at finite temperature with the variable τ in-
tegrating over inverse temperatures. This temperature dependence can be interpreted
as a formulation of the action in terms of imaginary times. Comparing Eq. (1.34) with
Eq. (1.47), the upper limit of Eq. (1.50) can be replaced by β → it/~. Then, one can
rephrase the imaginary time τ = it′/~ and find

S[ψ∗, ψ] =
i

~

t∫

0

dt′
[
−i~ψ∗∂t′ψ +H(ψ∗, ψ)− µN(ψ∗, ψ)

]

≡ − i

~

∫
dnxL[t′;ψ∗, ψ] .

(1.51)

In the last reformulation, we define a Lagrangian density L in parallel to classical field
theory and Lagrangian mechanics (see Refs. [32, 33]). For a classical field ϕi the classical
action reads

S[ϕi] =

∫
dnxL[ϕi(x), ∂xαϕi(x), xα]

with L[ϕi] =

∫
dn−1xL[ϕi(x), ∂sαϕi(x), xα] ,

(1.52)

where we integrate out all variables of the system but the time. Above, we consider n
independent variables α = 0, . . . , n − 1 and abbreviate s = {xα} with the time denoted
by t = x0. The Lagrangian density L is obtained with the conjugate momentum of the
field

πi =
∂L[ϕi(x), ∂xαϕi(x), xα]

∂xαϕi(x)
, (1.53)

via a Legendre transformation from the system’s Hamiltonian density Ĥ

L[ϕi(x), ∂xαϕi(x), xα] =

n∑

i=1

πiϕi(x)− Ĥ [ϕi(x), ∂xαϕi(x), xα] . (1.54)

Above, the Hamiltonian density is related to the Hamiltonian by the integration

Ĥ =

∫
dn−1x Ĥ , (1.55)

(see Refs. [32, 33] for further details).

Here, it is advantageous to include all ~-dependent prefactors into the action as opposed
to the classical formulation of the action in Eq. (1.52). When including these prefactors,

12



1.2 Elements of quantum mechanics

it is easier to “hide” them in the specific shape of the action instead of distinguishing
between different expressions for the action.

The action Eq. (1.51), is then called Minkowski action as opposed to the formulation
in imaginary times Eq. (1.50) which is called Euclidean action. The reformulation by
τ = −it′/~ is equivalent to a Wick rotation where the terminus “rotation” is motivated
by the fact that the integration axis is rotated by 90 degree in the complex plane.

Finally, the expectation value of an operator is then given as the functional average
over the action describing the system

〈...〉 ≡
∫
D(ψ∗, ψ) e−S[ψ∗,ψ] (...)

Z , (1.56)

where we further define the (free) expectation value of the unperturbed system (with the

unperturbed action S0 =
∫ β

0 dτ
[
ψ∗∂τψ +H0(ψ∗, ψ)− µN(ψ∗, ψ)

]
and Ĥ0 as defined in

Eq. (1.36))

〈...〉0 ≡
∫
D(ψ∗, ψ) e−S0[ψ∗,ψ] (...)∫
D(ψ∗, ψ) e−S0[ψ∗,ψ]

≡
∫
D(ψ∗, ψ) e−S0[ψ∗,ψ] (...)

Z0
. (1.57)

1.2.3 The action of the electromagnetic field

Since in this work we describe the electromagnetic fields classically, we introduce the
classical action of the electromagnetic field at the point (cf. Eq. (1.52)). The action of the
electromagnetic field is relevant in the context of light-matter interaction especially, when
using QFT methods to determine the electron’s response to an external field. Following
Refs. [27, 30], we introduce the electromagnetic field tensor

F (r, ω) =
{
Fµν

}
=




0 E1/c̃ E2/c̃ E3/c̃
−E1/c̃ 0 −B3 B2

−E2/c̃ B3 0 −B1

−E3/c̃ −B2 B1 0


 , (1.58)

where we consider a local medium with εr(ω) 6= 0, the speed of light inside a material c̃
(cf. Eq. (1.12)), the electric field E(r, ω) and the magnetic flux density B(r, ω) defined in
Eqs. (1.1) and (1.3). The electromagnetic field tensor Eq. (1.58) can also be represented
in terms of the four-vector electromagnetic field potential (see section 1.1.3) as

Fµν = ∂µAν − ∂νAµ , (1.59)

with {∂µ} = (−iω/c̃,∇) and {Aµ} = (Φ(r, ω)/c̃,−A(r, ω)).

In order to derive the electromagnetic field’s Lagrangian density, we start with a general
Lagrangian density (see Eq. (1.52)). Any Lagrangian density that correctly describes a
field theory of fields ϕi fulfills the variational principles (see Ref. [32])

∂L
∂ϕµ

− ∂ν
∂L

∂(∂νϕµ)
= 0 . (1.60)
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1 Theoretical background

As discussed in Ref. [30], it is possible to find three requirements of the form of the
Lagrangian density that are independent of Maxwell’s equations. The Lagrangian den-
sity has to be (i) invariant under Lorentz transforms, (ii) invariant under Gauge trans-
forms and (iii) as simple as possible. Including a four-vector current jfree = {jfree,µ} =
(c̃ρfree, jfree), the simplest Lagrangian density possible

LEM = α1FµνF
µν + α2Aµjµfree . (1.61)

Above, we introduce two undetermined prefactors α1 and α2 that need to be determined
comparing Eq. (1.61) to Maxwell’s equations (1.1) and the electromagnetic energy density
Eq. (1.19).

The generalized spatial and momentum variables are in the case of the electromagnetic
fields Aµ and ∂νAµ, respectively, such that the variation of the action reads

0 =
∂L
∂Aµ

− ∂ν
∂L

∂
(
∂νAµ

) = α2j
µ
free + 4α1∂ν

(
∂µAν − ∂νAµ

)
.

Applying in parallel to Eq. (1.31) the Lorenz gauge (see Eq. (1.28)]

∂νAν(r, ω) =
−iω

c2
Φ(r, ω) + ∇ ·A(r, ω) = 0 , (1.62)

we find that Eq. (1.31) is recovered by α1/α2 = −1/(4µ0). When we require that the
classical Hamiltonian equals the electromagnetic density Eq. (1.19), we find that

L = − 1

4µ0
FµνF

µν +Aµjµfree , (1.63)

fixing the remaining free parameter.

1.3 Elements of response theory

After having discussed the basic elements of QFT, we provide the basis of general response
theory6 following the general discussion in Ref. [30]. In this work, we will use expressions
derived from response theory for the description of photonic materials within macroscopic
Maxwell’s equations. Thus, we dwell in some detail on the basics of this theory that
can, in general, not only be used for the description of the electron’s response to the
electromagnetic fields but for a wide range of applications in a variety of fields in physics.

In general, response theory describes the response of a system to an external, time-
dependent and vectorial field F(r, t) (also known as generalized force) that, described
within Schrödinger representation, couples to one of the vectorial observable of the sys-
tem, i.e., B̂(r). The unperturbed system is then approximately described by a time-
independent Hamiltonian Ĥ0 and the resulting Hamiltonian then reads

ĤF (t) = Ĥ0 + F(r, t) · B̂(r) . (1.64)

6In general, response theory can be as well be formulated in classical mechanics or QM. However, since
we make use of the concept of (linear) response theory mainly in the context of the description of
graphene and this will be derived in QFT, we also introduce the response theory in the notation of
QFT.
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1.3 Elements of response theory

In a series representation, assuming the most general coupling of the external, time-
dependent field with the observable, we can write for the expectation value of one com-
ponent of the observable Bi(r, t)

Bi(r, t) =
(
Bi(r, t)

)
0

+
∑

j

∫
ddr′

∫
dt′ χ(1)

ij (r, r′; t, t′)Fj(r′, t′)

+
∑

j,k

∫
ddr′

∫
ddr′′

∫
dt′
∫

dt′′ χ(2)
ijk(r, r

′, r′′; t, t′, t′′)Fj(r′, t′)Fk(r′′, t′′)

+ . . . ,
(1.65)

with the expectation value (Bi(r, t))0 = 〈B̂i(r)〉0 of the free observable, for a d dimen-
sional system and where χ(i) are called the response functions or generalized susceptibili-
ties. Assuming a weak external field, the second and higher order terms can be considered
to be negligible and we arrive at the linear response theory where

B
(1)
i (r, t) =

(
Bi(r, t)

)
0

+
∑

j

∫
ddr′

∫
dt′ χ(1)

ij (r, r′; t, t′)Fj(r′, t′) . (1.66)

Thus, we define for convenience

χij(r, r
′; t, t′) ≡ χ(1)

ij (r, r′; t, t′) ,

as the (linear) generalized susceptibility or linear response function. Without further
specification, we can already state the following properties of a susceptibility (cf. Ref. [30],
p. 368):

• The external field cannot disturb the observable Bi prior to its action at time t′

such that χij(r, t; r
′, t′) = 0 for t < t′.

• For a time-independent, unperturbed Hamiltonian, i.e., the system is translational
invariant in time, the linear response function only depends on the difference of
time

χij(r, r
′; t, t′) ≡ χij(r, r′; t− t′) .

This allows for a reformulation of the expectation value

B
(1)
i (r, ω) =

∑

j

∫
ddr′χij(r, r′, ω)Fj(r′, ω) ,

where one realizes that for a linear response two frequencies do not mix. Thus, only
second and higher order susceptibilities lead to a frequency mixing.

• Additionally, for a system homogeneous in space, the response may be written as

χij(r, r
′; t− t′) ≡ χij(r− r′; t− t′) ,

leading to

B
(1)
i (q, ω) =

∑

j

χij(q, ω)Fj(q, ω) .

This can be interpreted as the conservation of momentum.
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1 Theoretical background

Analogously to Ref. [30], we furthermore assume a single-particle operator7

B̂i(r) =
∑

a,a′
ĉ†aBi,aa′(r)ĉa′ ,

where we consider ĉa a fermionic or bosonic operator and Bi,aa′(r) as an expansion coef-
ficient. Thus, we rewrite the expectation value Bi(r, t) within QFT at times t as

Bi(r, t) ≡ 〈B̂i(r)〉 =
∑

a,a′
〈ψ†a(t)Bi,aa′(r)ψa′(t)〉 , (1.67)

and the expectation value defined as in Eq. (1.56). Here, the action of the perturbed
system is defined as

S[F(r, t),F ′(r′, t′), ψ∗, ψ] = S0[ψ∗, ψ] + δS[F(r, t), ψ∗, ψ] + δS′[F ′(r′, t′), ψ∗, ψ] , (1.68)

where we artificially introduce (cf. Ref. [30]) a second driving field in order to derive the
final expression for the response function. With the definition of the action Eq. (1.51)
and the definition of the Hamiltonian Eq. (1.64), we find for the first driving field

δS[F(r, t), ψ∗, ψ] =
i

~
∑

i

∫
dtFi(t)

∑

a,a′
ψ†a(t)Bi,aa′(r)ψa′(t) , (1.69)

while S0[ψ∗, ψ] is the free action caused by the Hamiltonian Ĥ0. This equation reads anal-
ogously for F ′ and δS′[F ′(r, t), ψ∗, ψ]. With these definitions and the partition function
Eq. (1.47) follows

Z[F ,F ′] ≡
∫
D(ψ∗, ψ)e−S[F(r,τ),F ′(r′,τ ′),ψ∗,ψ] , (1.70)

which with Eq. (1.69) leads to

Bi(r, t) = i~
∂

∂Fi(r, t)

∣∣∣∣∣
F=0

log
(
Z[F ,F ′]

)
. (1.71)

For a weak external field F(r, t), we can then expand the functional to first order

Bi(r, t) ≈
(
Bi(r, t)

)
1

= 〈B̂i(r, t)〉0 +
∑

j

∫
ddr′

∫
dt′


 ∂

∂F ′j(r′, t′)

∣∣∣∣∣
F ′=0

Bj(r
′, t′)


F ′j(r′, t′) ,

(1.72)
arriving at (by insertion of Eq. (1.71)]

∆Bi(r, t) ≡ Bi(r, t)−
(
Bi(r, t)

)
0

= i~
∑

j

∫
ddr′

∫
dt′


 ∂2

∂Fi(r, t)∂F ′j(r′, t′)

∣∣∣∣∣
F=F ′=0

log
(
Z[F ,F ′]

)

F ′j(r′, t′) ,

(1.73)

7When we derive the reflection coefficients of graphene in section 2.2.1 making use of QFT, we (and the
standard literature) limit ourselves to the single-particle picture. This is justified since multi particle
interactions have a much smaller cross section (cf. also Ref. [34], p. 115).
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1.3 Elements of response theory

By comparing with Eq. (1.65), we find

χij(r, r
′, τ, τ ′) = i~

∂2

∂Fi(r, τ)∂F ′j(r′, τ ′)

∣∣∣∣∣
F(r,τ)=F ′(r′,τ ′)=0

log
(
Z[F ,F ′]

)
. (1.74)

As a further simplification, we assume that the observable 〈B̂i(r, t)〉 is of such nature that
it can only be measured when applying an external field. In other words 〈B̂i(r, t)〉0 = 0.
Rewriting the expectation value for the unperturbed system Eq. (1.57) (Bi(r, t))0 =

Z−1 ∂Fi(r,t)
∣∣∣
F(r,t)=0

Z[F , 0] = 0, we derive

χij(r, r
′; t, t′) =i~ Z−1 ∂2

∂Fi(r, t)∂F ′j(r
′, t′)

∣∣∣∣∣
F(r,t)=F ′(r′,t′)=0

Z[F ,F ′]

= − i

~
〈
∑

aa′
ψ†a(τ)Bi,aa′(r)ψa(t)

∑

bb′
ψ†b(τ

′)Bj,bb′(r
′)ψb(t

′)〉0

≡ − i

~
〈B̂i(r, t)B̂′j(r′, t′)〉0 .

(1.75)

In the second line above, we use the definition of the expectation value Eq. (1.56) explicitly
inserting the altered action Eq. (1.68) into the partition function. In the last line we make
use of definition Eq. (1.67).

This response function is the real-time response function of the observable Bj(r, t).
Due to causality, the physically meaningful response function, however, is the retarded
response function where the response of an observable to an interaction is only possible
at times t > t′ and that is given by (see Ref. [30])

χret
AiBj (r, r

′; t1, t2) = − i

~
Θ(t1 − t2)〈[Âi(r′, t1), B̂j(r

′, t2)]ζ〉0 , (1.76)

where by renaming B̂i by Âi we finally stress the point that, in general, B̂i can be
the component of a different operator than B̂j . We denote with [·, ·]ζ the commutation
relation in the bosonic and the anti-commutation relation in the fermionic case (cf. also
appendix A.2). The expression Eq. (1.76) can be understood best when considering that
any response function enters into the expectation value of an observable quantity via
an integral over all times. Thus, Eq. (1.76) corresponds to a time-ordering of the two-
operators while not allowing for any response of the observable to future events. More
details on this concept can be found in standard textbooks, e.g., in Ref. [30].

1.3.1 Response to the electromagnetic field

The Lagrangian density of the interaction of the electromagnetic field with a medium is
given by Eq. (1.63)

L = − 1

4µ0
FµνF

µν +Aµĵ
µ
free ,
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1 Theoretical background

where we again treat the electrons quantum field theoretically but the electromagnetic
field in a classical fashion and again apply Einstein’s sum convention as discussed above.
The interaction Hamiltonian is thus given as (Ĥ =

∫
d3rĤ = T̂ − V̂ )

V̂ (t) = −
∫

d3r Aµ(r, t)ĵµ(r, t) , (1.77)

where we drop the subscript ’free’ for the rest of the section for better readability. The
retarded current-current response function (see Ref. [35]) is then given as

χ jαβ(r, r′, t− t′) = − i

~
Θ(t− t′)〈[ĵα(r, t), ĵβ(r′, t′)]〉0 , (1.78)

with the Fourier transformed current-current response function in the case of a spatially
homogeneous system χ jαβ(r, r′, t− t′) ≡ χ jαβ(r− r′, t− t′)

χ jαβ(q, ω) =

∫
dt

∫
drχ jαβ(r− r′, t− t′)ei(ω·(t−t′)−q·(r−r′)) , (1.79)

and

〈ĵα(q, ω)〉 = (χ j)αβ(q, ω) ·Aβ(q, ω) . (1.80)

Due to the considered homogeneity and the isotropy of the system, it is immanent that
the longitudinal vector potential (q ·AL(q, ω) = 0) and the transverse vector potential
(AT(q, ω) = A(q, ω)−AL(q, ω)) cannot be coupled by the current and thus the response
can be split up in a longitudinal and a transverse part

χ jαβ(q, ω) = χL(q, ω)
qαqβ
|q|2 + χT(q, ω)

(
δαβ −

qαqβ
|q|2

)
. (1.81)

From the current-current density response function, another relevant physical quantities
can be derived. By assuming a spatially uniform electromagnetic field (∇Φ(r, t) = 0),
the electric field reads E(ω) = iωA(ω) and thus with

〈ĵα(0, ω)〉 = Eα(ω)σαβ(ω) , (1.82)

and with Eq. (1.80) the conductivity tensor σαβ is given by the Kubo formula (see Ref. [35],
p. 148) as

σαβ(ω) =
i

ω
χ jαβ(0, ω) . (1.83)

The general conductivity σαβ(q, ω) can thus be considered in different limits. The con-
ductivity derived above, σαβ(0, ω) is known as the optical conductivity because it assumes
q ≈ 0 which is usually an appropriate approximation for optical excitations. A conductiv-
ity with σαβ(q, 0) is called static conductivity since this determines the current’s response
to a static electromagnetic field.

The second relevant physical quantity is the density-density response function χnn(q, ω)
and with this the dielectric function ε(r, t) (see Eq. (1.8a)) for which the same limits
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1.3 Elements of response theory

(optical, static) apply. The density-density response function is the response of the electric
density in Schrödinger representation n(r, t) = 〈n̂(r)〉 = 〈∑i δ(r − ri)〉 to the potential

of an external charge with potential Vext(r, t) =
∫

d3r′ 4πe
2next(r′,t)
ε0|r−r′| (see Ref. [34, 35])

V̂ (t) =

∫
d3r′ Vext(r, t)ρ̂(r′) , (1.84)

leading to an induced charge density in a spatially homogeneous physical system

ρind(r, t) =

∫
dt′
∫

d3r′χnn(r− r′, t− t′)Vext(r
′, t′) , (1.85)

with

χnn(r− r′, t− t′) ≡ χn(r)n(r′)(t− t′) = − i

~
Θ(t− t′)〈[n̂(r), n̂(r′)]〉0 . (1.86)

Thus, in reciprocal and frequency space, Eq. (1.85) reads

ρind(q, ω) = χnn(q, ω)Vext(q, ω) . (1.87)

Comparing Eq. (1.85) with Maxwell’s equations (1.1), the electric polarization (1.7) and
the dielectric tensor (1.8a) and using ρ(r, t) = en(r, t), one realizes that Vi(q, ω) ∝
ρi(q, ω) ∝ q ·E(q, ω) and with this we can write

ε−1
r (q, ω) = 1 +

vq
ε0
χnn(q, ω) , (1.88)

where we introduce the prefactor of the Fourier transformed Coulomb potential vq =
e2/q2. Thus, ε−1

r (q, ω) is the true response function of the electron density. The dielectric
function itself can be related to a quasi density-density response function χ̃nn(r − r′, ω)
giving not the response of the charges in a material to an external charge but rather to
the already screened charges

ρscreened = ρext + ρind , (1.89)

where the response function is related to the dielectric function via

εr(q, ω) = 1− vq
ε0
χ̃nn(q, ω) =

1

1− vq
ε0
χnn(q, ω)

≈ 1 +
vq
ε0
χnn(q, ω) . (1.90)

In other words, the dielectric function εr(q, ω) is a constructed response function and with
this does not measure the response to an external charge but rather to a screened charge
and in consequence to an internal charge redistribution (compare also the mentioning of
the terminus “response” below Eq. (1.8)). This distinction helps also to understand the
difference between the dielectric displacement D and the electric field E: while the electric
field E is the field induced by all, free and induced, charges, the dielectric displacement
D only takes the effective external field into account.

For an easier readability and comparability to the macroscopic Maxwell’s equations,
we introduce the electromagnetic susceptibility

χ(q, ω) ≡ vq
ε0
χnn(q, ω) , (1.91)
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and find for the polarization (see Eq. (1.7))

P(q, ω) = ε0χ(q, ω)E(q, ω) . (1.92)

As pointed out in Ref. [35], the density-density response function is connected to the
longitudinal component of the current-current response function via

χnn(q, ω) =
q2

ω2
χL(q, ω) . (1.93)

When making use of the causal connection between the dielectric displacement vector and
the electric field (cf. also Eq. (1.8a)), we can furthermore state the important Kramers-
Kronig relations that connect the real and imaginary part of the dielectric function (see
Ref. [27], p. 386)

Re
[
εr(q, ω)

]
= 1 +

1

π
P
∞∫

−∞

Im
[
εr(q, ω)

]

ω′ − ω dω′ , (1.94a)

Im
[
εr(q, ω)

]
= − 1

π
P
∞∫

−∞

Re
[
εr(q, ω)− 1

]

ω′ − ω dω′ , (1.94b)

where Cauchy’s principal value P(x) is defined as

P
c∫

a

dx f(x) ≡ lim
η→0+




b−η∫

a

dx f(x) +

c∫

b+η

dx f(x)+


 , (1.95)

with

b∫

a

dx f(x) = −
c∫

b

dx f(x) = ±∞ .

The causality, leading to Kramers-Kronig relation, Eq. (1.94), is the reason that any
dielectric permittivity unequal from one (vacuum) always exhibits at least at some fre-
quencies an imaginary part and with this losses. Later in this thesis, this very funda-
mental relationship between the real and imaginary part of the dielectric permittivity
facilitates the determination of the functional dependence of the dielectric permittivity
(see section 5.5).

The final response functions of, e.g., an electron liquid to a perturbation also in-
cludes (depending on the approximations) all possible excitations of a material (see,
e.g., Ref. [34]). These include simple scattering processes, excitations of particles (such
as electron hole pair creation (single-particle excitation (SPE)) and the excitation of col-
lective modes. It is interesting to note that these collective modes in a response function
correspond to poles in the complex plane. For electrons, these collective modes are called
(bulk) plasmons. Since historically the materials are usually described by the dielectric
function εr(q, ω), but ε−1

r (q, ω) is the true response function of the material to a perturba-
tion by an electromagnetic potential, the condition for plasmons reads counter-intuitively
as

εr(qplasmon, ωplasmon) = 0 . (1.96)
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1.3 Elements of response theory

This corresponds to an infinitesimal small, point-like test charge that can already induce
such a collective excitation. It is important to note that plasmonic excitations lead to
D(q, ω) = 0 external field and a purely longitudinal electric field E(q, ω) (cf. Ref. [36]).
This can be understood when considering Eq. (1.13a) with ρfree = jfree = 0 and εr = 0
finding for the projection onto the transverse component

q× q× E(q, ω) = [q · E(q, ω)]q− |q|2E(q, ω) = 0 .

Thus, photons propagating in free space (εr = 1) and hence are purely transverse with
q · E(q, ω) = 0 cannot couple straight forwardly to these oscillating charges. Only when
breaking the symmetry as it, e.g., happens at an interface, polaritonic excitations can
be excited if the photonic wavevector matches the bulk plasmon’s. These excitations
are called surface plasmon polaritons (SPPs) (see, e.g., Refs. [36–39]). Surface plasmon
polaritons are the main source of losses in any plasmonic structure. In metallic nanostruc-
tures, these plasmonic modes are also the cause of significant altering of light scattering
and absorption and hence are of great importance in these structures. We discuss metallic
nanostructures and their collective excitations further in chapter 6.

1.3.2 Electronic and photonic propagators

Additionally to using the response theory to describe the response of any material to
an external electromagnetic field, one can relate these response functions to the particle
propagator that describes the creation and annihilation of excitations in a given system.
Oftentimes, a particle propagator is also referred to as the particles Green’s function.
In general, the knowledge of the particle propagator is crucial in order to compute the
time evolution and properties of a system containing these particles. For example, in
chapter 2, we use graphene’s particle propagator to compute the response of graphene
to an interaction with the electromagnetic field and obtain reflection and transmission
coefficients from this discussion. Since we only give a very short introduction into the
basic notation used within the thesis, we refer the reader to the variety of textbooks on
the topic of Green’s functions and particle propagators, such as Refs. [30, 31].

At finite temperatures, the electronic propagator for an electron in state p (see Ref. [31])
at real times (cf. Eq. (1.51)) using the Heisenberg representation reads

Ge(p; t− t′) = − i

~
〈Ttĉp,H(t)ĉ†p,H(t′)〉

= − i

~
Θ(t− t′)〈ĉp,H(t)ĉ†p,H(t′)〉 − i

~
Θ(t′ − t)〈ĉ†p,H(t′)ĉp,H(t)〉

= Geret(p; t− t′) +Geadv(p; t− t′) ,

(1.97)

with the fermionic annihilation operator ĉp annihilating an electron in state8 p. The
expectation value is defined as before as the thermodynamic average, where the thermo-
dynamic average at zero temperature corresponds to the expectation value of the ground
state. Above, the time ordering operator can be reformulated explicitly using the Heav-
iside function Θ and allowing for the definition of a retarded (forward propagating) and

8Here, the state can describe anything including the eigenvalue of the position operator r̂ or momentum
operator p̂.
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free electronic propagator Ge0(p; t− t′) = −i〈Ttĉp,we(t)ĉ†p(t′)〉
t′ t

p

free photonic propagator Gγ0(p; t− t′) = −i〈Ttâp,we(t)â†p(t′)〉
t′ t

p

Table 1.1: In the table above, we present the Feynman diagrams depicting the
photonic and electronic propagators in the single-particle limit.

an advanced (backwards propagating) propagator. Especially if the time evolution of the
unperturbed ground state is well known it is helpful to rewrite the propagator in the
interaction representation:

Ge(p; t− t′) = − i

~
〈Ttĉp,I(t)ĉ

†
p,I(t

′)S(−∞,∞)〉
〈S(−∞,∞)〉 , (1.98)

where we make use of the definition of the S-matrix in Eq. (1.40).

Analogously, we can also define the QFT propagator

Ge({p}; t− t′) = − i

~
〈Ttψ̂{p},I(t)ψ̂

†
{p},I(t

′)S(−∞,∞)〉
〈S(−∞,∞)〉 , (1.99)

where ψ̂{p} is a fermionic field operator, annihilating a field in state {p}. For the non-
interacting, free propagator with S(−∞,∞) = 1 this reads

Ge0({p}; t− t′) = − i

~
〈Ttψ̂{p}(t)ψ̂

†
{p}(t

′)〉 . (1.100)

The propagator above describes the excitation of an electron from the ground state at
time t′ and the annihilation of this electron at a later time t. In the case of the interacting
propagator, Eq. (1.99) the electron can in between the two processes interact with other
particles and be scattered. Comparing Eq. (1.97) with Eq. (1.75), one may realize that

the propagator agrees with the response function with B̂
(′)
k (r, t) = ψ̂

(†)
{p}.

Propagators do not only exist for electrons but for any particle (so also for photons
and phonons9). The particle propagators can be represented by an intuitive graphical
representation developed by Richard Feynman and called the Feynman diagrams. In
the Feynman diagrammatics, the electronic and photonic propagators are represented
according to table 1.1. Here, the physical meaning of the propagators can be understood
by realizing that at time t′ a particle (photon or electron) is created that is at a later
time t destroyed.

Last, the free propagator can be written in terms of its Hamiltonian Ĥ where the
expectation value in Eq. (1.99) is taken with respect to the eigenstate ψ{p} of the system

with Ĥ|ψ{p}〉 = ε{p}|ψ{p}〉. Therefore, the state is an eigenstate of the Hamiltonian and

9Phonons are quantized lattice vibrations as they appear, e.g., in solids. They are often considered as a
possible energy loss channel but in this thesis not of importance.
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the propagator reads (for Ω ∈ R)

Ge0,ret({p}; Ω) = − i

~

∫
dtei( Ω

~ +i0+)t〈ψ̂{p}(t)ψ
†
{p}(0)〉ret

= − i

~

∫
dtei( Ω

~ +i0+)t〈Û({p}, t; {p}, 0)〉Θ(t)

= − i

~

∫
dtΘ(t)e

i
~ (Ω−ε{p}+i0+)t =

1

Ω− ε{p} + i0+
.

(1.101)

Above, we insert the convergence factor 0+ and the time evolution operator introduced in
Eq. (1.34). Additionally, we shift the dependence t− t′ to t and use the Fourier transform
of the Heaviside step function Θ(t)

Ft[Θ(t)](ω) =

∞∫

−∞

dtΘ(t)eiωt = πδ(ω) +
i

ω
. (1.102)

1.4 Conclusions

Within the first chapter of this thesis, we laid the foundation of discussing the specific
electromagnetic responses to plasmonic nanostructures in the research chapters of this
thesis. More specifically, we introduced the notation of Maxwell’s equations used through-
out this work. Additionally, we discussed concepts related to the material’s response to an
external magnetic field such as response theory, Poynting’s theorem to determine losses
due to a photonic nanostructure and quantum field theoretical concepts that are neces-
sary for the description of electron liquids. Here, electron liquids are, e.g., the basis of the
description of graphene in the next chapter. In order to adequately describe the electron
liquid within graphene, we also reviewed the basics of propagators that can be used in the
quantum-field theoretical description of the response of graphene to an electromagnetic
field within the next chapter. Last, we discussed elements of quantum mechanics that
cannot only be used in quantum field theory but as well for the description of quantum
emitters in chapter 3.
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CHAPTER 2

Elements of the theory of graphene

“We call our world Flatland, not because we call it
so, but to make its nature clearer to you, my happy
readers, who are privileged to live in Space.” 10

Edwin A. Abbott

In this chapter, we first introduce and motivate the basic tight-binding Hamiltonian for the
description of graphene to then make the transition to the QFT description of graphene.
From here, we follow the literature to derive the electromagnetic response in terms of the
reflection coefficients for several physical conditions under which graphene exists.

2.1 Graphene’s Hamiltonian

2.1.1 The tight-binding description of graphene

Graphene is a two-dimensional (2D) allotrope of carbon where the carbon atoms are
arranged on a hexagonal lattice (see Fig. 2.1(a)). As such, it is part of the family of carbon
allotropes and the basic building block of graphite (stacked graphene layers interacting via
van-der-Waals forces, three-dimensional (3D)), carbon nanotubes (a rolled up graphene
layer, 1D) and fullerenes (a wrapped up graphene layer in which some pentagons are
introduced, zero-dimensional (0D)).

Since graphene is the basic component of these allotropes, a lot of theoretical research
has been done on graphene as early as 1947 (see Ref. [41]). In that time, graphite was
a material of high scientific interest due to its use in nuclear reactors (see Ref. [42]).
However, since the Mermin-Wagner theorem (see Ref. [43]) stated that 2D crystals were
not able to exhibit any long range order due to long wavelength fluctuations, graphene
was not considered a realistic and existing material for several decades. When in 2004
Novoselov and Geim (see Ref. [44]) first succeeded in isolating and detecting single layers
of graphene, this prepared the floor to a large field of research. In 2007, researchers were
finally able to lift the veil to the question why graphene as a material is stable even at

10Flatland: A Romance of Many Dimensions (1884)
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Figure 2.1: The Figure above shows in Panel (a) graphene with its unit cell (gray)
consisting of two atoms A and B. The vertical boundary condition is called zigzag
whereas the horizontal boundary condition is of type armchair. The three orange
arrows present the vectors δi connecting the atoms A with their three neighboring
atoms B. In Panel (b), we present graphene’s complete band structure including
besides from the π electrons also the σ electrons. The wavevector and energy region
approximated by the well-known Dirac cone is marked by the gray area. Panel (b)
is adapted from Ref. [40] with permission of the PCCP Owner Societies, doi:10.
1039/C003524F. The red dashed line present the solutions from the tight-binding
approximation Eq. (2.4).

room temperature when they found “intrinsic ripples”11 stabilizing the long-range order
in a graphene monolayer against thermal fluctuations (see Refs. [45, 46]).

In graphene, the carbon atoms are covalently σ-bond by its sp2 hybridized 2s, 2px and
2py-orbitals while the 2pz-orbital of all neighboring atoms are hybridized to create a π
orbital. The complete band structure due to the σ-π orbitals is shown in Fig. 2.1(b). In
this panel, the gray insets marks the relevant bands for excitations of energies less than
2 eV. These energies comprise not only optical but also magnetic transitions and thus
include all the cases discussed in this thesis. In the panel, it is well visible that the σ
bands are sufficiently far off in energy that they may be deemed unimportant for the
correct description of the band structure of graphene. Additionally, it is notable that the
only region of interest is the region around the K-point (also known as Dirac point, see
more later) where both π bands are degenerate and can – in first approximation – be
described by a linear dispersion relation, the famous Dirac cone.

This discussion justifies the treatment of graphene in a tight-binding approximation as
done already by Wallace (see Ref. [41]) since the 2pz orbitals of each atom are approxi-
mately orthogonal to the plane of the carbon atoms and have only a weak overlap to the
neighboring pz orbitals. As for any hexagonal lattice, the unit cell contains two atoms

(cf. gray shaded area in Fig. 2.1(a)) with the creation (annihilation) operators â
(†)
n,σ on

11In fact, graphene monolayers are stabilized via a coupling of bending and stretching phononic modes by
deforming the originally 2D crystal into all three dimensions (see Ref. [45]). Then, graphene becomes
thermally stable exhibiting local strain variations of up to 1% (see Ref. [45]). The deformations are
sufficiently small to still consider graphene a crystal exhibiting a long-range order.
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2.1 Graphene’s Hamiltonian

sites A and b̂
(†)
n+δi,σ

on sites B. The vectors n point to site A of each unit cell while the
the vectors δi represent the vectors connecting a carbon atom at site A to its three neigh-
boring carbon atoms at sites B [see the orange arrows in Fig. 2.1(a)). Lastly, σ = {↑, ↓}
denotes the two possible spin orientations. The undisturbed graphene tight-binding12

Hamiltonian then reads (according to Ref. [48])

Ĥ0 = −t
∑

n,δi,σ

[
â†n,σ b̂n+δi,σ + C.C.

]
. (2.1)

In the equation above, C.C. denotes the complex conjugate and t = 2.7 eV the near-
est neighbor hopping parameter (see Ref. [42, 47]) that can in general be computed by
calculating the overlap integral between the electronic wavefunctions of two neighboring
p-Orbitals. In momentum space, the Hamiltonian then reads

Ĥ0 =
∑

σ

∫

BZ

d2k

(2π)2
Υ†σ(k)

(
0 η(k)

η∗(k) 0

)
Υσ(k) , (2.2)

with the in-plane wavevector k = |k| = |(kx, ky)T | where the graphene layer is positioned

at z = z0, η(k) = −t∑δi
eik·δi and Υσ(k) = [âσ(k), b̂σ(k)]T .

The energy eigenvalues can be calculated by using the explicit expressions

δ1 = a(1, 0)T , δ2 =
a

2
(−1,

√
3)T and δ3 =

a

2
(−1,−

√
3)T , (2.3)

with the inter-carbon distance a = 1.42 Å.
The eigenvalues of the Hamiltonian matrix can then be obtained by

det



(

0 η(k)
η∗(k) 0

)
− ε(k)1


 = 0 ,

leading to

ε(k) ≡ ±|η(k)| = ±t

√

1 + 4 cos2

√
3kya

2
+ 4 cos

3kxa

2
cos

√
3kya

2
. (2.4)

The formula above is equal to the results presented in 1947 by Wallace [41] though derived
in analogy to Refs. [42, 48].

Here, one sees directly that the exact expression of the following discussed K points –
the points in the band structure at which the two energy bands are degenerate – depends
on the definition of the Cartesian coordinate system. The eigenenergies present a hexago-

nal symmetry with degenerate bands at the six K-points ±2π
3a

(
1, 1√

3

)T
, ±2π

3a

(
−1, 1√

3

)T
,

12The tight-binding Hamiltonian presented here only considers next neighbor wavefunction overlaps.
Further coupling such as second-nearest neighbor coupling can also be considered and is found to
be of order t′ ≈ 0.1 eV (see Ref. [47]). However, this coupling only leads to a fixed offset in the
eigenenergies while maintaining the gapless band structure presented in Fig. 2.1 (cf. Ref. [48]). Thus,
in this thesis we will not discuss any hopping parameters beyond nearest-neighbor. For further general
details see, e.g., Ref. [42].
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and ± 2π√
3a

(
0, 2

3

)T
. Due to the two atoms in the unit cell, two of those K-points cannot

be mapped onto each other, such as, e.g., K± = ± 2π√
3a

(
0, 2

3

)T
. Expanding Eq. (2.4)

around these K± point leads in first order to

ε(k) = ±~vF k , with vF =

√
3ta

2~
≈ c

300
, (2.5)

where the absolute value of the in-plane wavevector is as before given by k = |k| =√
k2
x + k2

y.

We compare the result of Eq. (2.4) to a complete band structure in Fig. 2.1(b) choosing
the points Γ = (0, 0)T , M = 2π

3a (1, 0)T and K = 2π
3a (1, 1√

3
)T . As one can see, in the energy

region of interest (gray region) the electronic dispersion relation is well described within
the tight-binding approximation. For larger excitation energies, one would have to take
additional terms into account to, e.g., describe the asymmetry between the π and the π∗

band appropriately.

2.1.2 The Dirac formalism

As it is discussed in Ref. [48], the Dirac (also known as spinor) representation can be
derived by using the approximation derived in Eq. (2.5) when expanding the Hamiltonian
in Eq. (2.2) up to first order around the two K± points. The K points are consequently
referred to as Dirac points. To connect the two representations and explain in section 2.1.3
the possible opening of a band gap in graphene in certain cases, we will follow along the
lines of Ref. [48] and repeat the arguments of the authors. Further reference of this will
not be mentioned in this section.

With ε(K±) = 0 and the use of Eq. (2.5) for small disturbances by the wavevector q =
(qx, qy)

T around the Dirac point, the complex off-diagonal elements of the Hamiltonian
matrix can be expanded as

η(K± + q) = −t
∑

δi

ei(K±+q)·δi ≈ ±~vF(qx ∓ iqy) ,

which leads for the Hamiltonian to (in order to later facilitate the recognizability of the
typical Dirac equation x→ 1 and y → 2)

Ĥ0 = ~vF

∑

σ

∫

DC

d2q

(2π)2

[
Υ†σ(K+ + q)

(
σ̂1q1 + σ̂2q2

)
Υσ(K+ + q)

+Υ†σ(K− + q)
(
−σ̂1q1 + σ̂2q2

)
Υσ(K− + q)

]
.

(2.6)

Above, we introduced the Pauli matrices

σ̂1 ≡ σ̂x =

(
0 1
1 0

)
, σ̂2 ≡ σ̂y =

(
0 −i
i 0

)
and σ̂3 ≡ σ̂z =

(
1 0
0 −1

)
, (2.7)

and limit the integration to wavevectors in the Dirac cone with cut-off |q| < W/(~vF).

We define the energy cutoff W = ~vF

√
ΩB
2π by use of the Brillouin zone area ΩB =

(2π)2/Ahexagon.

28



2.1 Graphene’s Hamiltonian

To finally rewrite Eq. (2.2) as a Dirac Hamiltonian, we introduce the matrices

α = (α1, α2, α3)T = ˆ̃σ3 ⊗ (σ̂1, σ̂2, σ̂3)T and β = ˆ̃σ1 ⊗ 12 =

(
0 12

12 0

)
, (2.8)

where the ˆ̃σi are matrices acting in the valley (K±) subspace and each of the αi then
results in

αi =

(
σ̂i 0
0 −σ̂i

)
.

The 4 × 4 matrices α1,2 and β span the Dirac algebra in (2 + 1) dimensions. These
definitions allow then for the definition of the γ matrices

γ0 = β and γ = βα , with
{
γµ, γν

}
= 2gµν14 , (2.9)

with gµν = diag(1,−1,−1,−1), {µ, ν} = 0, 1, 2, 3 and (γ0)2 = 14. In QED2+1 the γ3

matrix is not needed for the description of the particles’ time evolution. For completeness,
the last gamma matrix is given by γ5 = iγ0γ1γ2γ3.

The introduction of the α, β and γ matrices finally allows for rewriting Eq. (2.6) in
terms of one single spinor

Ψσ(q) =

(
ΥK+,σ(q)
ΥK−,σ(q)

)
=




âσ(K+ + q)

b̂σ(K+ + q)

b̂σ(K− + q)
âσ(K− + q)


 , (2.10)

and introducing13

Ψ̄σ(q) ≡ Ψ†σ(q)γ0 , (2.11)

we find

Ĥ0 = ~vF

∑

σ

∫

DC

d2q

(2π)2
Ψ†σ(q)

(
γ0
)2 (

α1q1 + α2q2

)
Ψσ(q)

= ~vF

∑

σ

∫

DC

d2q

(2π)2
Ψ̄σ(q)

(
γ1q1 + γ2q2

)
Ψσ(q) .

(2.12)

The action for of the (2 + 1)-Hamiltonian (see Eq. (1.51)) consequently reads

Sgraphene = − i

~

∫
d3xLgraphene(t)

= − i

~

∫
d3xΨ̄

[
γ0
(
i~∂t + µ

)
+ ~vF

(
i∂1γ

1 + i∂2γ
2
)]

Ψ ,

(2.13)

where we used the reformulation of the four-vector wavevector operator (see also Eq. (1.32))

{q̂µ} =
( Ĥ
c~
,−q̂

)T
= i
(∂t
c
,∇
)T

= i{∂µ} , (2.14)

and Eq. (1.51) for the QFT expression of the action.

13The recast from the complex wavefunction Ψ† to Ψ̄ is necessary since only the scalar Ψ̄Ψ is a Lorentz
scalar and thus invariant under Lorentz transform.
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2.1.3 The opening of a band gap in graphene

The pure tight-binding Hamiltonian leads to a degeneracy of the two energy bands at the
Dirac point K±. This in turn leads – as presented above – to the Dirac equation describing
the motion of massless fermions. In general, the degeneracy is lifted by breaking the
symmetries in graphene and with this effectively assigning a mass to the fermions. Besides
from magnetic catalysis14, long-range Coulomb interaction (see Ref. [49]), multilayer
graphene (see Ref. [50, 51]), included impurities in the graphene sample (see Ref. [52])
and many others, the placement of graphene on a material with an offset in lattice
spacing (e.g., placing graphene on hexagonal boron nitride (hBN) as shown in ab initio
calculations in Refs. [53, 54]) leads to the opening of such a gap.

As an example, we will consider this last case where due to the offset in lattice constant
the spatial inversion symmetry P is broken. This inversion we define with respect to the
center of the unit cell (cf. Fig. 2.1(a)). We then find in real and reciprocal space

ân,σ → P ân,σP−1 = b̂−n,σ and b̂n,σ → P b̂n,σP−1 = â−n,σ
m

âσ(k)→ P âσ(k)P−1 = b̂σ(−k) and b̂σ(k)→ P b̂σ(k)P−1 = âσ(−k)

m
Υσ(k)→ PΥσ(k)P−1 = σ̂1Υσ(−k) .

(2.15)

Assuming two different particle densities on sublattice A and B due to the lattice mis-
match between graphene and substrate, we can write a new Hamiltonian

Ĥ1 =
∑

σ

∫

BC

d2k

(2π)2

[
maâ

†
σ(k)âσ(k) +mbb̂

†
σ(k)b̂†σ(k)

]

=
∑

σ

∫

BC

d2k

(2π)2

[
m+

(
â†σ(k)âσ(k) + b̂†σ(k)b̂†σ(k)

)
+m−

(
â†σ(k)âσ(k)− b̂†σ(k)b̂†σ(k)

)]

=
∑

σ

∫

BC

d2k

(2π)2
Υ†σ(k)

[
m+σ̂0 +m−σ̂3

]
Υσ(k) , (2.16)

where we introduce m± = (ma±mb)/2 and the unit matrix σ̂0 = 12. Under transforma-
tion, we find then

Ĥ1 → PĤ1P =
∑

σ

∫

BC

d2k

(2π)2
Υ†σ(k)

[
m+σ̂0 −m−σ̂3

]
Υσ(k) . (2.17)

It is obvious that the Hamiltonian Ĥ1 is not symmetric under spatial inversion. Here,
m+ can be included into an effective chemical potential µ from Eq. (2.12), while m−, the
difference in carrier density on both sublattices, is responsible for the symmetry breaking.
Analogously, the symmetry breaking from the other band gap creation mechanisms listed
at the beginning of this section can be derived.

14Magnetic catalysis is the effect of electron-hole pairing in a magnetic field.
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2.2 The electromagnetic response of graphene

A symmetry breaking in one of the original Hamiltonian’s symmetries usually also
leads to the breaking of other symmetries. In the case of the specific symmetry breaking
from a difference in particle densities on the two sublattices, one can show that the
new Hamiltonian Ĥ1 is also not invariant under time reversal. Additionally, for the
undisturbed Hamiltonian Ĥ0 two additional symmetry conditions hold

σ̂3Ĥ0(k)σ̂3 = −Ĥ0(k) and σ̂2Ĥ∗(k)σ̂2 = −Ĥ0(k) , (2.18)

These two conditions are responsible for the symmetry of the energies around the K±
points where a state |ψ〉 with eigenenergy ε leads to states σ̂3|ψ〉 and σ̂2|ψ〉∗ of eigenenergy
−ε.

However, even in the case of m− 6= 0 the energy spectrum is still symmetric around
the Dirac points which one can see when considering the matrix in Eq. (2.2)

det



(
m− − ε(k) η(k)
η∗(k) −m− − ε(k)

)
 = 0 ,

leading to

ε(k) = ±
√
|η(k)|2 +m2

− → ε(K± + q) ≈ ±
√
~2v2

Fq
2 +m2

− . (2.19)

The last approximation is the approximation of the band structure in the proximity of the
Dirac point. This symmetry can be explained when realizing that even though the first
of the two symmetry conditions Eq. (2.18) is broken by the m−Υ†σσ̂3Υσ term, the second
(and more general) condition of Eq. (2.18) is still fulfilled. The symmetry around the
Dirac point is thus stable even under strong transformations such as inversion symmetry
breaking. The gap in graphene itself, however, is topologically protected (cf. Ref. [48],
p. 11), where the topological invariant is N(K±) = ±1 without a gap and N = 0 for a
band structure including a gap.

2.2 The electromagnetic response of graphene

The reflection coefficients of graphene are the main ingredient of the description of
graphene within this thesis since – as we will later show – they are the quantities that
determine the response of a graphene monolayer to an electric or magnetic dipole as well
as other electromagnetic excitations.

For the coupling of the electromagnetic field to graphene’s action Eq. (2.13), we use
the principle of minimal coupling

q̂µ → q̂µ −
e

~
Aµ(r, t) , (2.20)

with the definition of the four-vector wavevector operator Eq. (2.14) and the definition of
the four-vector electromagnetic potential Eq. (1.30). The principal of minimal coupling
above, replaces the kinetic momentum with the canonical momentum (see Ref. [55] for
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2 Elements of the theory of graphene

more details). For the resulting action, we therefore find (cf. Ref. [56] and Eq. (1.63))
with qµ = i∂µ (see Eq. (2.14))

S = SEM + Smin. coupl.
graphene

=
i

4~µ0

∫
d4xFµνF

µν − i

~

∫
d3xΨ̄ /DΨ ,

(2.21)

with

/D =
(
i~∂t + µ− eA0

)
γ0 + ~vF

[(
i∂1 −

e

~
A1

)
γ1 +

(
i∂2 −

e

~
A2

)
γ2

]
−m, (2.22)

where the gap m is defined as

m ≡ m−γ3 , (2.23)

for a band gap created by, e.g., a substrate (cf. Eq. (2.16)).

2.2.1 Reflection coefficients in a 2+1 Dirac model

With the total action given by Eq. (2.21), we can determine the reflection coefficients
in the 2 + 1 Dirac model for the electromagnetic field impinging out-of-plane onto the
graphene monolayer (cf. Fig. 2.3). In parallel to the derivation in Refs. [56, 57], we will
present the expressions for the reflection coefficients, including a general gap m, chemical
potential µ and temperature T where Ref. [57] presents expressions for real frequencies
at finite temperature.

The reflection coefficients of graphene are directly connected to the polarization tensor
of graphene. Since we focus on the effect of the electromagnetic fields, we can trace out
the fermionic degrees of freedom in the partition function (see Eq. (1.49)) that determines
the system’s physical quantities, i.e., free energy, charge current. With the action derived
in Eq. (2.21), the partition function reads

Z =

∫
D(A, Ψ̄,Ψ)e−S[Ψ̄,Ψ,A] ≡

∫
D(A)e

− i
4~µ0

FµνFµν−Seff(A)
, (2.24)

introducing the effective action15 (see Ref. [56, 59])

e−Seff(A) =

∫
D(Ψ̄,Ψ)e

i
~ /D = det

(
/D
)
. (2.25)

In the last step, we use the definition of a formal Gaussian integral16. With the identity
(see Ref. [60])

log [det (A)] = Tr [log(A)] ,

15The calculation of the effective action is of interest since it corresponds to the action stemming from
the interaction part of the Hamiltonian. In other words, the effective action usually contains the
interplay between different parts of a system such as of electrons and photons. The terminus was first
introduced by Julian Schwinger in 1951 for a constant electric field interacting with electrons (see
Ref. [58]).

16The n-dimensional complex Gaussian integral is given as∫ n∏
i=1

dzidz
†
i e
−z†jMjkzk = (2π)n

[
det (Ms)

]−1

,
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2.2 The electromagnetic response of graphene

that holds for any square non-singular matrix A, we find that the effective action can be
computed via

log ( /D) = log [(i~∂t + µ)γ0 + ~vF(i∂1γ
1 + i∂2γ

2)]

+ log [1− evFAµγ
µ 1

(i~∂t + µ)γ0 + ~vF(i∂1γ1 + i∂2γ2)
]

= log [(i~∂t + µ)γ0 + ~vF(i∂1γ
1 + i∂2γ

2)]

+

∞∑

k=1

(−evF)k

k

[
Aµγ

µ 1

(i~∂t + µ)γ0 + ~vF(i∂1γ1 + i∂2γ2)

]k
.

(2.26)

Above, we find that the interaction of the quasi particles17 in graphene is described by
the propagator [see Ref. [56] and Eq. (1.101)]

GgQP0,ret(x) =
1

(i~∂t + µ)γ0 + ~vF(i∂1γ1 + i∂2γ2) + i0+

m

GgQP0,ret(k) =
(k0 + µ)γ0 − vF(γ1k1 + γ2k2)

[k0 + µ+ i0+sgn(k0)]2 − v2
Fk2 −m2 + i0+

,

(2.27)

with the (2 + 1)-wavevector k = (k0,k). The first term in Eq. (2.26) corresponds to the
contribution due to the bare quasi particle propagation and can be neglected. Regarding
the sum in Eq. (2.26), literature finds that only even numbers of photon fields contribute
(see Ref. [61]) and in quadratic approximation (second order) this leads to

Seff(A) =
i

~

∫
d3k

(2π)3

∫
d3k′

(2π)3

e2v2
F

2
Tr
[
Aµ(k)γµGgQP0,ret(k

′)Aν(k)γνGgQP0,ret(k
′ − k)

]

≡ 1

2

∫
d3k

(2π)3
Aµ(k)Πµν(k)Aν(k) .

(2.28)

In the last reformulation of the effective action, we introduce the polarization tensor (see
Ref. [29, 56, 62–64])

Πµν(k) = i
e2v2

F

~

∫
d3k′

(2π)3
Tr
[
γµGgQP0,ret(k

′)γνGgQP0,ret(k
′ − k)

]

=

k′

k′ − k

.

(2.29)

with the symmetrized matrix Ms = (M + M†)/2. For complex Grassman variables, as it is the case
when integrating out fermionic degrees of freedom as done in Eq. (2.25), the complex Gaussian integral
is defined as ∫ n∏

i=1

dzidz
†
i e
−z†jMjkzk = det (Ma) ,

with the anti symmetric matrix Ma = (M−M†)/2. Since /D is itself antisymmetric, Eq. (2.25) follows.
17Here, we refer to the particles in graphene as quasi particles since due to the expansion of the Dirac

cone we do not describe the interaction with electrons any longer but rather obtain an effective quasi
particle Hamiltonian in which only electrons close to the Dirac point contribute (cf. Ref. [35], pp.
462). This way, the solid can be described as if it contained of weakly interacting particles in free
space allowing to only take first order interaction terms into account.
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2 Elements of the theory of graphene

The Feynman diagram can be understood as the creation and annihilation of a quasi
particle - anti quasi particle pair with momenta k′ and k − k′, respectively. With the
current operator (see Ref. [64])

ĵ
i
(r, t) = −evFΨ̄(r, t)γiΨ(r, t) , (2.30)

and the definition of the retarded Green’s function Eqs. (1.99) and (1.97), we arrive at
the relation (cf. Eqs. (1.78) and (1.92))

Πµν(k) = χjµν(k) = χjµν(k, ω) . (2.31)

The polarization tensor is the equivalent to the retarded current-current response function
which is related to the macroscopic polarization (see Eqs. (1.92) and (1.93)). The terminus
polarization tensor can therefore be motivated by the expression for the expectation value
of the current operator

〈ĵ (q, ω)〉 = Π(q, ω) ·A(q, ω) , (2.32)

where the coupling of the electromagnetic field to the quasiparticles in graphene and the
resulting charge current is determined by the polarizability of the prior.

As is shown in Ref. [65], for a medium of (2 + 1)-vector velocity u = (1, 0, 0) in its rest
frame the polarization tensor is fully described by the tensor structure

Πµν(k) =
1

ṽ2
F

η̃µi



(
gij − kikj

k2

)
A(k) +

(
kikj

k2
− kiuj + uikj

ku
+

uiuj

(ku)2
k2

)
B(k)


 η̃νj .

(2.33)

Above, we take into account the quasi relativistic nature of the excitation in graphene (cf.
Ref. [56]). This we do via the definition of η̃ = diag(1, ṽF, ṽF) introducing the normed
Fermi speed ṽF ≡ vF/c.. Throughout the rest of the thesis, we denote all quantities
normed to the speed of light c by

ã ≡ a

c
. (2.34)

With k0 = ω̃, q2
z ≡ −κ2 = ω̃2 − |k|2 and

y2 = ω̃2 − ṽ2
F|k|2 , (2.35)

the two functions A and B reads

A(k) = −κ
2

k2
Π00 + Πtr and B(k) =

1

ṽ2
Fk2

(
−κ2 + y2

k2
Π00 + Πtr

)
. (2.36)

Here, the choice of Π00 and Πtr is arbitrary and for convenience they are chosen as
Πtr = Πµ

µ (µ = {1, 2}) and Π00 (cf. Ref. [56]). The diagonal components Π1
1 = Π2

2 due to
symmetry reasons.
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2.2 The electromagnetic response of graphene

The reflection coefficients read, when considering the appropriate boundary conditions
(see Ref. [56] and Appendix B.2),

rTE
g = − k2Πtr − κ2Π00

k2Πtr − κ2Π00 + 2k2κ
, (2.37)

rTM
g =

κΠ00

κΠ00 + 2k2
, (2.38)

and tTM
g = 1− rTM

g while tTE
g = 1 + rTE

g (see Ref. [66, 67]). Above, qz = iκ.

Polarization tensor for graphene with finite band gap and µ = 0 at T = 0 K

The expressions for the polarization tensors Π00 and Πtr have been calculated for a variety
of cases in a number of references. Thus, we only state the outcomes here that base on
the above introduced notations and theory.

For the case of a finite band gap, zero chemical potential and zero temperature as it
is realized in the case of undoped but strained graphene, the literature (see Ref. [68] for
a first calculation with ṽF = 1 and Refs. [64, 69–73]) finds the general expression for the
shape of the polarization tensor components at zero temperature (see Ref. [69] for the
explicit notation)

Π00 = −αk
2

y2
Φ(y) , (2.39)

Πtr = α
2ω̃2 − (ṽ2

F + 1)k2

y2
Φ(y) , (2.40)

where

α =
e2

4πε0~c
≈ 137−1 , (2.41)

is the fine structure constant that governs the electromagnetic interaction strength with
graphene’s quasi particles. When applying the definition of y in Eq. (2.35), the function
Φ(y) reads as

Φ(y) = 8i y

1∫

0

dx
x(1− x)√

x(1− x)− ∆2

y2

= 2
[
∆−

(
1 +

∆2

y2

)
y atanh(

y

∆
)
]
, (2.42)

where we introduced the gap energy ∆ = 2m/(~c) with graphene’s quasi particle disper-

sion relation ε(k) = ±
√
~2v2

Fk2 +m2, opening a band gap of 2m (cf. Eq. (2.4)). For the

rest of the thesis we will handle all energies (and thus also the band gap) in units of the
wavevector k. This leads eventually to the reflection coefficients

rTE
g =

−αΦ(y)

2κ+ αΦ(ω, k)
, (2.43)

rTM
g =

ακΦ(y)

ακΦ(ω, k)− 2y2
. (2.44)
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Figure 2.2: The Figure above, shows the experimentally measured data presented in
Ref. [75]. It shows a photograph of a 50µm aperture where the center is covered with
monolayer graphene and the right part of the aperture with bilayer graphene. The
authors of Ref. [75] superimpose the spatially resolved transmission measurements.
Here the πα absorption for each additional graphene layer is well visible (cf. Eq. (2.50)
for the reflection coefficients in the optical regime). Figure from R. Nair et al.,
“Fine structure constant defines visual transparency of graphene”, Science 320, 1308
(2008), doi:10.1126/science.1156965. Adapted with permission from AAAS.

Polarization tensor for graphene without band gap and µ = 0 at T = 0 K

In the case of zero band gap and zero chemical potential, the quasi particle propagators
in general diverge. However, by applying the limit ∆ → 0 as late as in the integral of
Eq. (2.42) one arrives at

Φ(y) = iπy , (2.45)

and with Eqs. (2.39) and (2.40), we find

Π00 = απ
k2

i y
, (2.46)

Πtr = −απ2ω̃2 − (ṽ2
F + 1)k2

iy
. (2.47)

This results in the reflection coefficients

rTE
g = −απ y

απy − 2iκ
, (2.48)

rTM
g = απ

κ

απκ+ 2iy
, (2.49)

which correspond to the expressions found when taking renormalization procedures for
the initially diverging quasi particle propagators into account (see Refs. [72, 74] for more
details).
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2.2 The electromagnetic response of graphene

E(0),H(0) E(r),H(r)

E(−),H(−) E(t),H(t)

n

σ ≡ σ(q, ω)

ε1(q, ω) ≡ ε1

ε2(q, ω) ≡ ε2

x

z

Figure 2.3: The Figure above, shows the electric and magnetic field, E and H,
definitions for incident (F(0)), reflected (F(r)), transmitted (F(t)) and incident from
below (F(−)) fields. Here, we describe F = {E,H}. The material above (ε1) and
below (ε2: in the Figure ε2 > ε1) the tensorial sheet conductivity (σ) is assumed to
be in first approximation isotropic. For simplicity in notation the explicit wavevector
and frequency dependence is neglected. The normal on the sheet is denoted by n.

For the optical limit k → 0, Eqs. (2.48) and (2.49) become with κ =
√
k2 − ω̃2 = −iω̃

and y =
√
ω̃2 − ṽ2

Fk
2 = ω̃

rTE
g = rTM

g =
απ

απ + 2
, (2.50)

corresponding exactly to the theoretically predicted results from early optical conductivity
calculations (see Refs. [76, 77]) and the later experimentally measured results where Nair
and co-workers measured an absorption of πα = 2.3% for a single graphene layer and nπα
for n graphene layers stacked on top of each other (see Ref. [75] and Fig. 2.2 taken from
within). The connection between optical conductivity and polarization tensor calculation
we discuss further in section 2.2.3.

2.2.2 Reflection coefficients of a sheet conductivity

To be able to discuss the difference between polarization tensor and sheet conductivity, we
first derive the expressions for the reflection coefficients caused by an arbitrary, frequency
and wavevector dependent sheet conductivity (see Fig. 2.3) as it is, e.g., used in Ref. [78].
We split all electromagnetic fields F ∈ {E,H} into the incoming fields incident from above
F(0), the reflected fields F(r), the incoming fields from below F(−) and the transmitted
fields F(t) (see Fig. 2.3). The 3D time and space dependent fields are as before denoted
by bold letters.
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In their corresponding Fourier expansion the fields read

F(0)(r, t) =
∑

q(1),ω

F (0)(q, ω) ei(q
(1)
x x+q

(1)
z z) e−iωt ,

F(r)(r, t) =
∑

q(1),ω

F (r)(q, ω) ei(q
(1)
x x−q(1)

z z) e−iωt ,

F(−)(r, t) =
∑

q(2),ω

F (−)(q, ω) ei(q
(2)
x x−q(2)

z z) e−iωt ,

F(t)(r, t) =
∑

q(2),ω

F (t)(q, ω) ei(q
(2)
x x+q

(2)
z z) e−iωt ,

(2.51)

where we return to the in electromagnetics common choice of Cartesian variable names,
1 → x and 2 → y, while distinguishing between the fields above (1) and below (2) the
conductive sheet.

With this, the position is defined as r = (x, y, z)T and we sum over 3D wavevectors

q(1,2) = (q
(1,2)
x , q

(1,2)
y , q

(1,2)
z )T where with q

(1,2)
y = 0 we choose the incident plane as the

x-z plane without loss of generality.

The fields above have to fulfill Maxwell’s equations (1.1) with µ
r

= 1, εi = εi13

(neglecting the explicit wavevector and frequency dependence for sake of notation) and
ρfree = jfree = 0. Additionally, we have to take the boundary conditions for a surface
conductivity in the x-y plane at z = z0 into account (see Ref. [27] and Eq. (1.82))

n ·
[
D(2)(r, t)−D(1)(r, t)

]
z=z0

= 0 , (2.52a)

n ·
[
B(2)(r, t)−B(1)(r, t)

]
z=z0

= 0 , (2.52b)

n×
[
E(2)(r, t)−E(1)(r, t)

]
z=z0

= 0 , (2.52c)

n×
[
H(2)(r, t)−H(1)(r, t)

]
z=z0

= jtangential(r, t) =

∫

A

d2r′
∞∫

−∞

dt′ t·

[
σ(r′, t′) · E(r− r′, t− t′)

∣∣∣
z−z′=z0

]
, (2.52d)

where n describes the unit vector normal to the sheet as depicted in Fig. 2.3, t the vector
tangential to the sheet and d2r the integration along the conductive sheet. The fields are
defined as F1(r, t) = F(0)(r, t) + F(r)(r, t) and F(r, t) = F(−)(r, t) + F(t)(r, t).

For an isotropic, diagonal surface conductivity tensor σ ≡ diag
(
σ, σ, 0

)
, the problem

is separable into its Fourier components and two polarizations: transverse electric (TE)
and transverse magnetic (TM)

TM : H(i) = H(i)
y and E(i) = (E(i)

x , 0, E(i)
z )T , (2.53a)

TE : E(i) = E(i)
y and H(i) = (H(i)

x , 0, H(i)
z )T . (2.53b)

As discussed in 1.3.1, any response function of the electromagnetic field may be split up
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in a longitudinal and transverse part (see Eq. (1.81))

σµν(k, ω) =
qµqν
k2

σL(k, ω) +

(
δµν −

qµqν
k2

)
σT(k, ω) , (2.54)

with the previously introduced in-plane wavevector k = (qx, qy)
T leading to (for a sheet

at z = z0 and qy = 0)

σ(k, ω) = diag
(
σL(k, ω), σT(k, ω), 0

)
. (2.55)

This result can be understood, when realizing that in the specific choice of coordinate
system used in this work σyy couples to Ey which is always transverse to the in-plane
wavevector k = qxex while σxx couples to Ex which is parallel to k and thus acts with
respect to the conductive plane a longitudinal field.

From these considerations, we arrive at the following reflection and transmission coef-
ficients (see Appendix B.1 for a detailed derivation).

TE polarization:

rTE =
E(r)
y

E(0)
y

=
q

(1)
z − q(2)

z + µ0ωσ
T(k, ω)

q
(1)
z + q

(2)
z − µ0ωσT(k, ω)

, (2.56a)

tTE =
E(t)
y

E(0)
y

=
2q

(1)
z

q
(1)
z + q

(2)
z − µ0ωσT(k, ω)

. (2.56b)

TM polarization:

rTM =
H(r)
y

H(0)
y

=
ε2q

(1)
z − ε1q

(2)
z + q

(1)
z q

(2)
z

σL(k,ω)
ω

ε2q
(1)
z + ε1q

(2)
z + q

(1)
z q

(2)
z

σL(k,ω)
ω

, (2.57a)

tTM =
H(t)
y

H(0)
y

=
2ε2q

(1)
z

ε2q
(1)
z + ε1q

(2)
z + q

(1)
z q

(2)
z

σL(k,ω)
ω

. (2.57b)

2.2.3 The conductivity of graphene

When comparing the expressions for the reflection coefficients of graphene from a general
polarization tensor as described in Sec. 2.2.1 with the expressions for the reflection coef-
ficients from a sheet conductivity, we may relate the expressions for the longitudinal and
transverse conductivities with the polarization tensors using Eq. (2.41) (see also Refs. [79,
80] for similar discussions):

σL(k, ω) = iε0ω
Π00(k, ω)

k2
=

ie2

4πα~
ω

c

Π00(k, ω)

k2
, (2.58)

σT(k, ω) = − iε0c
2

ω

(
q2
z

k2
Π00(k, ω) + Πtr(k, ω)

)

= − ie2

4πα~
c

ω

(
q2
z

k2
Π00(k, ω) + Πtr(k, ω)

)
. (2.59)
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As presented in section 1.3.1, different limits to the conductivity exist. A relevant one is
the optical conductivity, for which k → 0. In consequence, qz ≈ ω̃ and with

Π00(0, ω)

k2
= −αΦ(0, ω)

ω2
,

Πtr(0, ω) = 2αΦ(0, ω) ,

the reflection coefficients at zero temperature read

rTE
g = rTM

g =
αΦ(0, ω)

αΦ(0, ω)− 2iω
, (2.60)

leading to an isotropic conductivity

σ(ω) = σL(0, ω) = σT(0, ω) = − iε0c
2

2ω
lim
k→0

[
Πtr(k, ω)

]
. (2.61)

2.2.4 The conductivity of graphene at finite temperatures and chemical
potential

Up to this point, we have only discussed the case in which graphene exhibits zero chemical
potential and is cooled down to the zero temperature. In real life, finite temperature
experiments are however much easier conducted. For a finite temperature setup, the
band gap only has an influence if it is much larger in energy than the temperature,
finding at room temperature (T = 300 K)

2m > kBT = 25.85 meV . (2.62)

However, when comparing this to standard values found in literature for a possible gap of
graphene, this is at the upper limit achievable by, e.g., breaking the sublattice symmetry
by a deposition onto hBN. Thus, for finite temperatures, in this work we only consider
(effectively) gapless graphene.

In addition, we can consider the influence of the chemical potential µ. Up to this point,
we have considered it to be µ = 0 in the explicit expressions for the reflection and trans-
mission coefficients and the conductivities. However, this parameter is experimentally
quite easily accessible and can be changed either by external electrostatic gating (see
Refs. [44, 81]) or by substituting carbon atoms in the graphene monolayer with electron
donors or acceptors (see Ref. [82] for a numerical ab-initio study and Refs. [83, 84] for
experiments in which the authors dope graphene with the electron donor nitrogen while
in Ref. [85] the authors present results where doping graphene with the electron acceptor
boron). While in the first case, the linear Dirac cone remains degenerate at the Dirac
point, in the second case, a band gap opens. We will in this work thus focus on the first
and more often applied method, the electrostatic gating. We refer to the corresponding
change of the Fermi energy as chemical doping (see Ref. [86]) since it leads to a change
in the chemical potential µ.

Using the same effective action Eq. (2.13) as for the previously discussed realizations
of graphene, literature (see Refs. [67, 87–89]) finds the optical conductivity of graphene
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at temperature T with chemical potential µ as

σ(ω) = − ie2

~π





1

~ω + iΓ

∞∫

−∞

dε
[
|ε|∂εf(ε)

]

+

∞∫

0

dε
~ω + iΓ

(
~ω + iΓ

)2 − 4ε2

[
f(ε)− f(−ε)

]



.

(2.63)

Here, the Fermi function (cf. Eq. (A.1))

f(ε) =
1

exp ε−µ
kBT

+ 1
,

describes the electron distribution at finite temperatures. Additionally, we introduce an
empirical (and temperature-dependent) decay rate Γ to account for intrinsic losses.

For the case of a finite chemical potential, we can distinguish in Eq. (2.63) between two
different contributions – the intraband and the interband part of the conductivity. The
intraband contribution describes the electron dynamics in which the electrons remain in
the same band while the interband contribution describes electron dynamics in which the
electrons change from one band to the other by being either excited into the conduction
band (and creating an electron-hole pair or corresponding multiple particle excitations)
or decays into the valence band. See Fig. 2.4(a) for the distinction between those two
processes in doped graphene. In Eq. (2.63), as before the conductivity is calculated in
the limit of single-particle processes and thus additional processes, governed, e.g., by
Coulomb-Coulomb interaction (cf. Ref. [90–92]18 and Fig. 2.4(b-e)) are not included in
Eq. (2.63).

The intraband conductivity (first integral in Eq. (2.63)) can be solved analytically and
for T 6= 0 K is equal to

σintra(ω) =
ie2

~π
1

~ω + iΓ
· 2kBT ln

[
2 cosh

(
µ

2kBT

)]
. (2.64)

while the interband conductivity reads

σinter(ω) = − ie2

~π

∞∫

0

dε
~ω + iΓ

(
~ω + iΓ

)2 − 4ε2

[
f(ε)− f(−ε)

]
. (2.65)

The intraband conductivity, Eq. (2.64) is thus effectively comprised out of a Drude term
(see section 5.4.1 for further discussions on this model and the effects described by it)
multiplied with a temperature dependent contribution. The interband conductivity is not
as easily integrated analytically but can be approximated further and then be included
into numeric, electromagnetic field solvers (see section 5.5).

18In Refs. [90, 92], the authors show that the inclusion of such higher-order processes is necessary when
describing, e.g., the ultrashort excitation of graphene by a laser light pulse. The non-equilibrium
situation leads to a long-time creation of excess charges in the conduction band. This is known as
carrier-multiplication (see Fig. 2.4(d)).

41



2 Elements of the theory of graphene

ε

µ

k
K±

(a)
intra-
band

inter-
band

Absorption

(b)

Intraband
scattering

(c)

Interband
scattering

(d)

Carrier
multiplication

(e)

Auger
recombination

Figure 2.4: Electronic transition processes in graphene. We depict the electron
dispersion relation in proximity of the two Dirac points k = K±. Panel (a) presents
an equilibrium electron distribution (blue) with finite chemical potential µ. Via the
interaction with the electromagnetic field (red arrow: photon) intra- and interband
absorption may occur. When pumping the electrons in graphene with an external
laser pulse, a non-equilibrium distribution builds up (blue: electrons in valence band,
orange: “hot” electrons in conduction band). Besides from photon absorption and
emission processes (analogously to panel (a)), electron- electron scattering processes
take place (b)-(e). In panels (b)-(e), each of the two transitions happen by scattering
of the two original electrons thus each panel presents one single process (opposite
to panel (a) where two different processes are depicted). While inter- and intraband
scattering conserve the number of excitations in valence and conduction band, the
carrier multiplication and auger recombination allow for a relative change of the
numbers of carriers in conduction and valence band (see also Ref. [91] from where
this figure is partially adapted by permission from Macmillan Publishers Ltd: Nature
Communications, Ref. [91], doi:10.1038/ncomms2987, © 2013). The processes (b)-
(e) are not part of this thesis but do have to be included when discussing ultrafast
optics in graphene.

2.3 Conclusions

In this chapter, we motivated the quantum-field theoretical description of electrons close
to the Dirac point by a discussion of a basic tight-binding theory. With the reflection and
transmission coefficients and surface conductivities for the different situations in which
graphene monolayers might exist in experiment (with and without band gap, at zero or
finite temperature, exhibiting a zero or finite chemical potential), we can study graphene
plasmonics in chapters 4 and 5.

Here, it is important to realize also the limitations of our models. For example, in
some of the models we will neglect phenomenological damping while in others we will
neglect the non-local effects, considering optical properties only. Depending on the specific
experimental realization these approximations are appropriate.
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CHAPTER 3

Theoretical description of quantum-mechanical and
classical emitters

“There are two ways of spreading light: to be the can-
dle or the mirror that reflects it.” 19

Edith Wharton

In the first two chapters of this thesis, we concentrated on the material’s interaction
with electromagnetic radiation. In this chapter, we focus on a source of electromagnetic
radiation: the emitter. It is first discussed as general two-level systems, distinguishing
between electric and magnetic transitions. This then lays the basis for the treatment of
different kind of emitters in the proximity of plasmonic nanostructures later in this thesis,
i.e., dipoles, nitrogen-vacancy (NV) centers and atoms.

3.1 The two-level system

The term emitter is a rather general expression and describes in this thesis every object
that may be described by at least two states where a transition between those states takes
place via coupling to some components of the electromagnetic field. Thus, this requires
either an electric or a magnetic dipole moment where the electric dipole moment operator
d̂ couples to the electric field operator Ê(r, t) via the interaction Hamiltonian

Ĥinteraction = −d̂ · Ê(r0, t) . (3.1)

Here, we assume the electric dipole moment distribution to be point-like such that the
electric field operator couples to the electric dipole moment only at the center of charge
distribution r0. This assumption is often considered appropriate if the electric field is
constant over the extension of the electric dipole distribution, i.e., the wavelength of the
electric field is much larger than mentioned spatial extension.

Under the equivalent assumption, the point-like magnetic dipole moment operator µ̂ at
position r0 couples to the magnetic fields by means of the magnetic flux density operator
B̂(r, t) via the interaction Hamiltonian

Ĥinteraction = −µ̂ · B̂(r0, t) . (3.2)

19“Vasalius in Zante (1564)”, North American Review, p. 625 (1902)
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sz

sx sy

0.50.5

0.5

S

Figure 3.1: The Figure above depicts the Bloch sphere with the expectation value
of the Bloch vector S = 〈Ŝ〉 and Ŝ = (σ̂x, σ̂y, σ̂z )T . The expectation values of the
single operators 〈σ̂i 〉 = si.

If one considers that two states – although possibly belonging to a more complex energy
scheme with a number of additional levels – are decoupled from every other level close by,
we can approximate the energy level scheme as a two-level system. This approximation
is appropriate in many physical systems such as the Sodium atom (see Ref. [93], p. 33).
In such a case, we can introduce a description in terms of the so-called Bloch sphere,
where we use operators from the SU(2) symmetry group to describe the transitions in
this system. The ground state |↓〉 is depicted as the south pole whereas the totally excited
state |↑〉 is depicted at the north pole (cf. Fig. 3.1). The operations on the sphere are
described by the set of Pauli matrices defined as (see also Eq. (2.7))

σ̂+ = |↑〉〈↓ | , σ̂− = |↓〉〈↑ | , and σ̂z = |↑〉〈↑ | − |↓〉〈↓ | , (3.3)

or as an equivalent complete set of Pauli matrices

σ̂x = σ̂+ + σ̂− , σ̂y = i(σ̂− − σ̂+) , and σ̂z = |↑〉〈↑ | − |↓〉〈↓ | . (3.4)

These Pauli matrices obey the commutator relations

[σ̂+, σ̂−] = σ̂z and [σ̂z , σ̂±] = ±2σ̂± ,

or [σ̂x, σ̂y] = 2iσ̂z and cyclic permutations .
(3.5)

In order to express the dipole moments in terms of these two-state eigenvectors’ system,
we have to take the general symmetry properties of both dipole moments into consider-
ation. The definition of the electric (see Ref. [93]) and magnetic (see Ref. [94]) dipole
operators is given by

d̂ = er̂ , (3.6a)

µ̂ = gFµBF̂ , (3.6b)

where r̂ is the position operator, e the electric charge, gF the nuclear g-factor, µB the
Bohr magneton and F̂ the total angular momentum of an atom. While the electric
dipole moment operator is odd in parity (vector), the magnetic dipole moment operator
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3.2 The electric dipole

is even in parity20 (pseudovector). Thus, for the case of the electric dipole operator only
transitions between states of different parity are allowed while for the case of the magnetic
dipole operator only transitions between states of equal parity are allowed.

For the electric dipole operator of an atom in its energy eigenstate, the dipole operator
is due to parity and time-reversal symmetry arguments purely off-diagonal (since coupling
to the same state obviously couples to two states of same parity) while for the magnetic
dipole operator also (possibly small) diagonal matrix entries exist

d̂ = d↑↓ σ̂+ + d∗↑↓ σ̂− , (3.7a)

µ̂ = µ↑↓ σ̂+ + µ∗↑↓ σ̂− +
µ↑↑ + µ↓↓

2
1 +

µ↑↑ − µ↓↓
2

σ̂z . (3.7b)

Here, we use d↓↑ = d∗↑↓ and µ↓↑ = µ∗↑↓, respectively, and dij = 〈i|d̂|j〉 and µij = 〈i|µ̂|j〉
connect the states |i〉 and |j〉 with each other. We note that Eq. (3.7a) forbids a permanent
electric dipole moment and that this is the topic of on-going research (see Refs. [95, 96]). If
any, however, only a very small permanent electric dipole moment exists and a discussion
goes well beyond the scope of this thesis.

3.2 The electric dipole

After the general introduction of transitions caused by the electromagnetic fields, in
the following we first solely focus on electric dipole transitions. Since these transitions
usually take place at optical frequencies and in most cases they couple strongly to the
electromagnetic field21 in nanooptical experiments these transitions are usually the once
excited, measured and used.

There are different systems exhibiting electric dipole transitions, e.g., atoms, quantum
dots and even small metallic nanoparticles. Very stable and experimentally well con-
trollable objects are the color-centers in diamond that in this work we often consider as
experimental application. Diamond itself is transparent over a wide range of frequencies
and can have a number of defects (cf. Ref. [97]). The two best known of these defects
are the nitrogen-vacancy (NV) and the silicon-vacancy (SiV) center. In both cases, one
carbon atom is replaced by either a nitrogen or a silicon atom, respectively. Besides these
two, more than 100 luminescent defects exist (see Ref. [98]).

When referring to the nitrogen-vacancy (NV) and the silicon-vacancy (SiV) center,
in the following, we always consider nanodiamonds including a single defect. These
nanodiamonds are even at room temperatures very photostable (almost no blinking or
bleaching is reported, see Refs. [99, 100]), can be placed with high precision (see, e.g.,
Ref. [W2]) and can be purchased commercially. In section 6.1.1, we will discuss the
specific properties of the NV center in a nanodiamond in larger detail.

20Depending on the strength of the magnetic flux density, the total magnetic moment of an atom is
different. In weak fields, however, the total angular momentum of the atom is mainly governed by the
electron’s orbital angular momentum L̂ = r̂× ĵ and in the ground state the spin Ŝ. Both of these are
pseudovectors and hence even in parity. For details on the specific expression of F̂, see Appendix C.2.

21Electric quadrupole transitions and magnetic dipole transitions are on the same order of magnitude
and magnitudes smaller than the electric dipole transition. Higher order multipole transitions of both
magnetic and electric coupling are even smaller in magnitude.
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3.2.1 Radiation pattern of an electric dipole in an isotropic dielectric
medium

Any emitter having an electric dipole moment (be it a classical or a quantum emitter)
radiates an electromagnetic field as long as it is not in the groundstate. In homogeneous
vacuum or in a loss-less, isotropic, non-dispersive material, the propagation of the radia-
tion of an emitter with the expectation value22 of the dipole moment p(r, t) = 〈d̂〉(r, t)
is well-known (see Ref. [27], pp. 471). Since the knowledge of this radiation pattern is
important later on in this work, we shortly sketch the derivation here.

Starting from Eq. (1.29), we can formulate the Green’s function (see section 1.3.2) for
the four-vector potentials in frequency domain reading

(∆ + q2)G(r, r′;ω) = 1δ(r− r′) , (3.8)

with the photon’s dispersion relation q =
√
εrµrω/c. For the Green’s function two solu-

tions – an advanced and a retarded – exist. However, out of these two only the retarded
solution fulfills the requirement of causality. Undoing the Fourier transform, we obtain

G±(|r− r′|; t− t′) =
δ(t′ − (t∓

√
εrµr
c |r− r′|))

4π|r− r′| , (3.9)

where “+” describes the retarded and “−” the advanced solution. The retarded Green’s
function can be used to calculate the vector potential

A(r, t) =
µ0µr
4π

∫
d3r′

∫
dt′

j(r′, t′)
|r− r′|δ

(
t′ − (t−

√
εrµr

c
|r− r′|)

)
. (3.10)

The current distribution j(r, t) describes the current stemming from a point-like charge
distribution and at position r0 such that the charge current can be written as

ṗ(r, t) ≡ j(r, t) = j0δ(r− r0)η(t) , (3.11)

with the time-dependence included in η(t) (see section 3.2.2 and section 3.2.3 for equations
of motion of the polarization). Here, the prefactor j0 is time and space independent and
only contains the dipole’s vector orientation.

Inserting the expression into Eq. (3.10) and defining r̃ =
√
εrµr
c (r − r0), r̃ = |̃r| and

t̃ = t− r̃ the magnetic field reads

H(r, t) =
εrµr
4πc2

(
j0 × r̃

)
[
η(t̃)

r̃3
+
η̇(t̃)

r̃2

]
. (3.12)

With Maxwell’s equation (1.1), the corresponding electric field reads

E(r, t) =−
√
εrε0(µ0µr)

3/2

4π
·
{

v1

[∫ t̃
0 η(t′)dt′

r̃3
+
η(t− r̃)
r̃2

]
+ v2

η̇(t− r̃)
r̃

}
. (3.13)

Thus the electric and magnetic fields caused by a point-like dipole are given by Eq. (3.13)
and Eq. (3.12).

22Here, I distinguish between the operator d̂ and the expectation value of the system that following the
Ehrenfest theorem (see Ref. [101]) corresponds to the classical value.
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3.2.2 Maxwell-Bloch equations

In the previous section, we discuss the radiation pattern stemming from an arbitrary
electric dipole that emits electromagnetic fields with a certain time dependence η(t).
This time dependence is caused by the specific time evolution that governs the emitter.

As mentioned above, in this thesis we only behold dipole transitions that are described
by an effective two-level system with the other levels sufficiently far off resonance or
forbidden. Whether or not the electromagnetic field couples to a dipole moment (allowed
transition) can be determined using the so-called selection rules. In Appendix C, we
discuss these in some detail.

Assuming an allowed transition, we derive the Maxwell-Bloch equations that describe
the time evolution of the atomic operators σ̂+ and σ̂z . Commonly, such an electric dipole
is described in terms of an unperturbed Hamiltonian

Ĥ0 =
~ω0

2
σ̂z , (3.14)

where we choose the energy of the ground state |↓〉 to be ε|↓〉 = −~ω0/2 and ~ω0 describes
the transition energy between the two levels. Together with the interaction Hamiltonian
(3.1), the complete Hamiltonian reads

Ĥ =
~ω0

2
σ̂z −

(
d↑↓ σ̂+ + d∗↑↓ σ̂−

)
· Ê(r0, t) . (3.15)

In the Heisenberg picture, the equation of motion for any operator Ô(t) (see Eq. (1.33)
with ∂tÔ(t) = 0) reads

i~dtÔ(t) = [Ô, Ĥ] ,

which leads with the commutator relations of the Pauli matrices (3.5) to

i~dtσ̂−(t) = ~ω0σ̂−(t) + d↑↓Ê(r0, t)σ̂z , (3.16a)

i~dtσ̂z (t) = −
[
d↑↓σ̂+ − d∗↑↓σ̂−

]
Ê(r0, t) . (3.16b)

From here, different approaches are possible. Within the quantum electrodynamics
(QED) research (see e.g. the research regarding waveguide QED in Refs. [21, 102, 103])
the electromagnetic field is kept as an operator and the quantized field interacts with
the two-level system. However, when we follow the discussion in Refs. [W1, 93] we can
assume that if quantum correlations decay on a time scale much shorter than the time
scales at which the system evolves, we can factorize the product of the expectation values

〈σ̂i (t) · Ê(r0, t)〉 ≈ 〈σ̂i (t)〉〈Ê(r0, t)〉 ≡ E(r0, t)si(t) . (3.17)

Above, the index i ∈ {+,−, z} and following the Ehrenfest theorem (see Ref. [101])

〈Ê(r0, t)〉 = E(r0, t) , (3.18)

the expectation value of the electric field operator equals the classical field vector. Ad-
ditional, we introduced the notation si ≡ 〈σ̂i 〉 for the expectation value of the Pauli
matrices.
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This then leads to the so-called Maxwell-Bloch equations that read

i~dts∓ = ±~ω0s∓ +
[
d↑↓ ·E(r0, t)

](∗)
sz , (3.19a)

i~dtsz = −
[
d↑↓s+ − d∗↑↓s−

]
·E(r0, t) . (3.19b)

3.2.3 Classical limit of the Maxwell-Bloch equations

The Maxwell-Bloch equations (3.19) can be written as a driven harmonic oscillator un-
der certain assumptions. First, rewriting Eqs. (3.6a) and (3.7a), we find for the charge
displacement vector

r̂ =
1

e

(
d↑↓σ̂+ + d∗↑↓σ̂−

)
=

1

e

(
drσ̂x − diσ̂y

)
, (3.20)

with the real valued vectors dr and di. To build up the equations of motion, we use
Eqs. (1.33) and (3.16)23 with the abbreviation dtr̂ ≡ ˙̂r

~2¨̂r =
~2

e

(
dr

¨̂σx − di
¨̂σy

)

=
~
e

{
dr

[
−~ω0

˙̂σy + 2(di · Ê) ˙̂σz

]
− di

[
~ω0

˙̂σx + 2(dr · Ê) ˙̂σz

]
+ 2
[
dr(di · ˙̂

E)− di(dr · ˙̂
E)
]
σ̂z

}

=
1

e

{
−(~ω0)2(drσ̂x − diσ̂y)− 2~ω0σ̂z

[
dr(dr · Ê) + di(di · Ê)

]

+2
[
dr(di · ˙̂

E)− di(dr · ˙̂
E)
][
~σ̂z − 2(drσ̂y + diσ̂x) · Ê

]}
.

By reintroducing the displacement vector and taking the expectation value of the equation
of motion (using assumption Eq. (3.17)), we find

r̈(t) + ω2
0r(t) =

−2ω0sz

e~

[
dr(dr ·E) + di(di ·E)

]

+
2
[
dr(di · Ė)− di(dr · Ė)

]

e~2

[
~sz − 2(drsy + disx) ·E

]
.

(3.22)

In order to recover from Eq. (3.22) the classically known driven, harmonic oscillator,
the following conditions have to be fulfilled (the first of those already discussed):

1. The decay of the quantum coherence has to be on a time scale much faster than
the time scale at which the two level system evolves.

23Equations (3.16) are formulated in terms of the operators σ̂± and σ̂z . Rewriting the dipole operator
in terms of σ̂i as done in Eq. (3.20), we can then formulate equivalent equations of motions for the
σ̂i splitting up real and imaginary parts:

~dtσ̂x(t) = −~ω0σ̂y(t) + 2di · Ê(r0, t)σ̂z , (3.21a)

~dtσ̂y(t) = ~ω0σ̂x(t) + 2dr · Ê(r0, t)σ̂z , (3.21b)

~dtσ̂z (t) = −2
[
drσ̂y + diσ̂x

]
Ê(r0, t) . (3.21c)
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2. The excitation of the two-level atom has to be rather small (sz ≈ −1) since only
in this limit, the transition described by Eq. (3.22) is not governed by saturation
effects. They stem from the fact that in the quantum- mechanical limit a fermionic
state cannot be occupied twice.

3. In order to be able to describe the two-level atom as a classical dipole whose dipole
moment is additionally fixed in orientation, the dipole transition has to be a one
coupling to linear polarized light ( mathematically the follows from the discussion
of the selection rules in appendix C.1: ∆m = 0→ di = 0). The spatial rotation of
the emitter in Eq. (3.22) is in the case of circularly polarized light coupling induced
by the non-vanishing complex phase of the dipole moment.

Fixing the global phase and with the three conditions mentioned above, we then obtain
as the dipole unit vector ed = dr/|dr|. With the definition of the “mass” of the harmonic
oscillator ~

2ω0|rmax|2 ≡ m (with rmax = dr
e ), we can write in conclusion

r̈(t) + ω2
0r(t) =

e2

m
(ed ·E(r, t))ed . (3.23)

3.2.4 Decay rate of an electric dipole

Since the spontaneous emission of a photon from an excited atom is a pure quantum
effect, we have to consider the total system including the emitter, the electromagnetic
fields and the coupling between the two from a quantum mechanical point of view. After
having discussed the emitter already in the last section as a quantum mechanical object,
in this section we need to make use of a quantized electromagnetic field and for this
reason introduce the explicit shape of the electric field operator Ê (see Eq. (3.1)). In
second quantization (cf., e.g., Ref. [93]) and in the Heisenberg picture, it reads

Ê(r, t) =
∑

q

1√
2Vε0~ωq

[
E∗q(r)â†q(t) + Eq(r)âq(t)

]
, (3.24)

where we sum over all possible modes q of the electric field with the electromagnetic mode
volume V (cf. Ref. [104]). With the Hamiltonian of the electromagnetic field ĤEM =∑

q ~ωqâ
†
qâq (for a derivation see, e.g., Ref. [105]) and the Hamiltonian of the atom

Eq. (3.15), the total Hamiltonian reads in rotating-wave approximation (see Ref. [93])

Ĥ =
Ω

2
σ̂z +

∑

q

~ωqâ
†
qâq −

∑

q

~
[
g∗qâqσ̂+ + gqâ

†
qσ̂−

]
, (3.25)

with the atom-field coupling strength gq = ω0[〈↓|d̂|↑〉 · E∗q]/
√

2ε0~Vωq.
Assuming an initially excited atom, any state can be expanded as

|ψ(t)〉 = Ce0(t)e−iω0t|0, ↑〉+
∑

q

Cg1q(t)|1k, ↓〉 , with |ψ(0)〉 = |0, ↑〉 , (3.26)

where in state |0, ↑〉 the two-level system is excited while no photons exist in free space
and in state |1k, ↓〉 the two-level system is in its ground state and a single-photon Fock
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state in mode q is excited. With the Schrödinger equation (1.32) the coupled equations
of motion for the amplitudes are

Ċg1q(t) = igqe−i(ωq−ω0)tCe0(t) ,

Ċe0(t) = i
∑

q

g∗qe−i(ωq−ω0)tCg1q(t) .

For a large volume V → ∞ resulting in
∑

q → V
∫

d3q/(2π)3, we arrive at (cf. Ref. [28,
104])

Ċe0(t) = − ω2
0|d|2

2ε0~(2π)3

t∫

0

dt′
∫

d3q
e−i(ωq−ω0)(t−t′)

ωq

|d · Eq(r)|2
|d|2 Ce0(t′) ,

= − ω2
0|d|2

2ε0~(2π)3

t∫

0

dt′
∞∫

0

dω
e−i(ω−ω0)(t−t′)

ω
Ce0(t′)

∫
d3q
|d · Eq(r)|2
|d|2 δ(ω − ωq) ,

≡ − ω2
0|d|2

2ε0~(2π)3

t∫

0

dt′
∞∫

0

dω
e−i(ω−ω0)(t−t′)

ω
Ce0(t′)Np(ed, r0, ω) ,

(3.27)
where as before d = 〈↑|d̂|↓〉 and we consider due to an appropriate choice of the energy
groundstate only positive frequency contributions. In the last line the photonic projected
local density of states equals

Np(ed, r, ω) =

∫
d3q |ed · Eq(r)|2δ(ω − ωq) , (3.28)

that describes the photonic mode density at position r and of polarization ed = d/|d|. By
averaging over all possible dipole orientations one can define the photonic local density
of states (see Ref. [104])

Nl(r, ω) =
3

4π
〈Np(ed, r, ω)〉θ =

∫
d3q |Eq(r)|2δ(ω − ωq) , (3.29)

while the total photonic density of states is defined as a sum over all available modes

N (ω) =

∫
d3q δ(ω − ωq) . (3.30)

To obtain the vacuum decay rate γ0, we apply the Weisskopf-Wigner approximation (see
Refs. [28, 106]) where two assumptions come into play:

1. Field modes exhibit a large spectral width with respect to the linewidth of the
dipole transition,

2. C0
e (t) changes slowly in time compared to the oscillation at frequency ω − ω0,
∀ω � ω0.
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3.2 The electric dipole

Then, the factors e−i(ω−ω0)(t−t′) are highly oscillatory for all contributions but t′ ≈ t and
thus it averages the integral to zero for all contributions but ω ≈ ω0:

Ċe0(t) ≈ − ω2
0|d|2

2ε0~(2π)3
Ce0(t)

∞∫

0

dω

∞∫

0

dt′
e−i(ω−ω0)(t−t′)

ω
Np(ed, r0, ω)

= − ω2
0|d|2

2ε0~(2π)3
Ce0(t)

∞∫

0

dω
Np(ed, r, ω)

ω

[
πδ(ω − ω0) + iP

(
1

ω − ω

)]

= −
(
γd
2

+ i∆ωd

)
Ce0(t) .

(3.31)

Above, we make use of Sokhotsky formula (see Ref. [107])

lim
η→0+

1

x± iη
= P 1

x
∓ iπδ(x) , (3.32)

where Cauchy’s principal value P(x) is defined in Eq. (1.95). Additionally, we introduce
the causality creating factor η that ensures that the events happening at one time only
affect other events at later times. With Eq. (3.31), we then find the decay rate of an
emitter with orientation ed

γd =
ω0|d|2
8π2ε0~

Np(ed, r, ω0) , (3.33)

the averaged decay rate

γ = 〈γd〉 =
ω0|d|2
6πε0~

Nl(r, ω) , (3.34)

and the Lamb shift

∆ωd =
ω2

0|d|2
2ε0~(2π)3

P
∞∫

0

dω
Np(ed, r, ω)

ω(ω − ω0)
. (3.35)

Calculating the decay rate from the Green’s function

To explicitly calculate the photonic local density of states, we turn back to Eq. (1.14a)
and make use of the frequency dependent dyadic Green’s function G(r, r′;ω) to the electric
field E(r, ω) (see Eq. (3.8)). For a point-like dipole placed in a medium of permittivity
εr, the Green’s tensor then solves the equation

∆G(r, r′;ω) + εr
ω2

c2
G(r, r′;ω) = 1δ(r− r′) , (3.36)

choosing the Ansatz

G(r, r′;ω) =
1

(2π)3

∫
d3q aq(r′, ω)Eq(r, ωq) , (3.37)

51



3 Theoretical description of quantum-mechanical and classical emitters

where due to the choice in Eq. (3.24), in a closed space V the mode amplitudes Eq

are orthogonal to each other in a non-dissipative medium. Inserting the expansion in
Eq. (3.36), multiplying both sides of the equation with E∗q and using the orthogonality,
we find

G(r, r′;ω) =

∫
d3q

c2

εr

E∗q(r′, ωq)Eq(r, ωq)

ω2
q − ω2

. (3.38)

Using Eq. (3.32) we obtain

lim
η→0



Im

[∫
d3q

f(r, r′, ωq)

ω2
q − (ω + iη)2

]
 =

∫
d3q

π

2ωq
[δ(ω − ωq)− δ(ω + ωq)]f(r, r′, ωq) ,

where the factor η is introduced to guarantee causality as it is a necessary physical
requirement for a response function, we can rewrite the decay rate Eq. (3.33) as

γd =
2ω2

0|d|2
ε0~c2

{
ed · Im

[
G(r, r;ω0)

]
· ed
}
. (3.39)

With this, we can then calculate the vacuum decay rate (with the vacuum dyadic Green’s

function ed · Im
[
G0(r, r;ω0)

]
· ed = ω0/6πc, e.g., Ref. [28], p. 241)

γ0 =
ω3

0|d|2
3πε0~c3

. (3.40)

Additionally, by definition of the dyadic Green’s function (assuming all fields are caused
by the electric dipole moment and since for a point-like dipole j(r, ω) given by Eq. (3.11)),
the classic electromagnetic fields relate to the dyadic Green’s function as

E(r, ω) = 〈Ê(r, t)〉 = ω2µ0G(r, r0;ω) · d ,
H(r, ω) = 〈Ĥ(r, t)〉 = −iω[∇× G(r, r0;ω)] · d ,

(3.41)

such that the decay rate of a dipole of orientation ed and at position r0 is given by

γd =
2

~
Im
[
d∗ ·E(r0, ω0)

]
= γ0

(
1 +

6πε0c
3

|d|2ω3
0

Im
[
d∗ ·Escat(r0, ω0)

]
)
. (3.42)

The last equality is obtained by splitting the electric field emitted by the dipole into
E(r0, ω0) = E0(r0, ω0) + Escat(r0, ω0) where the field E0 corresponds to the field emitted
by the dipole in vacuum and via its self-interaction causes the vacuum decay rate γ0 while
the field Escat is the field back scattered from the surrounding photonic environment
different from vacuum.

Relating the quantum-mechanical and classical decay rate

Following the classical equation (1.16) and assuming the emitter embedded in a harmonic,
linear, local and non-dispersive material, the Poynting theorem Eq. (1.21) becomes

P (ω) ≡
∮

dV
d2r〈S〉 · n = −1

2

∫

V

d3rRe
[
j∗(r, ω) · E(r, ω)

]

=
ω

2
Im
[
p∗(r, ω) · E(r, ω)

]
,

(3.43)
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3.2 The electric dipole

where here, as in section 3.2.1, p describes the classical dipole moment of a point emitter.
Using Eq. (3.41) in the classical limit, we arrive at

P (ω) =
ω3|p|2
2c2ε0εr

{
ed · Im

[
G(r, r;ω0)

]
· ed
}
. (3.44)

Comparing Eq. (3.44) to Eq. (3.39), one actually realizes that this corresponds to an
equivalence of the decay process. This is due to the fact that the decay of a two-level
system can in general be split into a radiative and a non-radiative contribution. In the
case of a two-level system, the radiative contribution here describes the energy loss of the
system due to far-field emission of the electromagnetic radiation. On the other hand in
the case of non-radiative losses of a two-level system, optical modes such as the surface
plasmon polaritons discussed in section 1.3.1 and other collective excitations lead to
further energy losses. There the energy is eventually dissipated into heat. At this point,
it is important to mention that in the case of multilevel systems, additional non-radiative
energy transitions within the atom contribute to the total loss rate.

The connection of the radiative decay and the flux radiated into all directions eventually
leads to the possibility to obtain a measure on the spontaneous emission by the use of
classical computations

P (ω)

P0(ω)
=

γ

γ0
, (3.45)

where P0(ω) describes the power radiated from an emitter in vacuum analogously to the
decay rate of an emitter in vacuum γ0. Here, the analogy requires the equivalence of the
classical dipole moment and the QM matrix element p ≈ d which is – as discussed before
– only true in the limit of low excitation.

3.2.5 Local field correction

In the case of an emitter embedded in a lossless, infinite dielectric, we have to take
into account a local-field correction factor ξ to the dipole decay rate to calculate the
spontaneous emission decay rate from the vacuum decay rate γ0

γSE =
√
εr ξ γ0 , (3.46)

as discussed in Ref. [108]. This is caused by the fact that in reality the atom is not “only”
situated in a continuous dielectric as described within macroscopic electrodynamics (cor-
responding to a dressing of γSE =

√
εr γ0, cf. Eq. (3.39)) but actually is in vacuum and

surrounded by the atoms that the dielectric consists of. In the macroscopic electrody-
namic picture, this corresponds to an effective cavity for the emitter. It has actually been
a question in research how to describe those cavities finding experimental proof for two
different models: the virtual cavity (VC) and the real cavity (RC) local-field correction
factor

ξVC =

(
εr + 2

3

)2

, (3.47a)

ξRC =

(
3εr

2εr + 1

)2

, (3.47b)
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5 2S1/2

F = 1

gF = −1/2
mF = 0
mF = 1

mF = −1

F = 2

gF = 1/2
mF = 0

mF = −2
mF = −1

mF = 1
mF = 2

6.8347 GHz

ground state hyperfine splitting Zeeman splitting

Figure 3.2: Above, we present the level scheme of a 87
37Rb atom (adapted from

Ref. [114]). Rubidium as an alkali metal possesses one electron in the 5 2S1/2 orbital.
Its degenerate ground state is split into two distinct states by the coupling of the
nucleus momentum to internally created electric and magnetic field. When applying
an external magnetic field, the still degenerate states split up into 2F + 1 states that
are eigenstates to the projection of the total momentum operator onto the direction
of the external field (space quantization). The Zeeman transition is determined by
the external magnetic field and reads for all transitions with ∆F = 0 and ∆mF = ±1,
∆ε = 0.7 MHz/G (adapted from Refs. [114–116]).

derived in Ref. [109] and Ref. [110], respectively. These correction factors have been
determined for non-dissipative materials which is also the case considered in this thesis.
For the case of dissipative materials, see Refs. [108, 111]. In Ref. [112], the authors
develop a microscopic theory unifying both local-field factors as limiting cases and find
as a practical rule that ξVC is the appropriate local-field correction when an emitter acts
as an interstitial ion. This is the case, e.g., when the emitter is of the same species as
the atom or molecule it replaces. However, in the case in which the emitter expels the
dielectric material and thus creates a true real cavity (also known as substitution) the
real cavity description is appropriate.

These rules were finally validated by the authors of Ref. [113] who show that some
experiments contradicting the practical rules from Ref. [112] were actually misinterpreted.
Thus, whenever choosing a local-field correction factor, one has to take into account the
specific material the emitter is embedded in and whether or not a real cavity is created by
the emitter. In this work we will only use the local-field correction factor ξ not specifying
the specific expression. This is appropriate since for non-dispersive materials the local-
field correction is a simple and frequency independent prefactor scaling the decay rate for
all parameters uniformly.

3.3 The magnetic dipole

As discussed in Eq. (3.6b), any atom possessing a total angular momentum F̂ with
quantum number mF , exhibits a magnetic dipole moment to which the electromagnetic
field can couple via Eq. (3.2). A transition between the states take place if allowed due
to symmetry and algebraic arguments (for a detailed discussion of the magnetic selection
rules see Appendix C.2).
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3.3 The magnetic dipole

An atom typically used in cold atom experiments (see, e.g., Refs. [117, 118]) is the
rubidium allotrope 87

37Rb. The atom’s groundstate is degenerate. By taking the coupling
between the internal electric and magnetic fields and the nucleus’ spin into account, this
degeneracy can be partially lifted (see Fig. 3.2). When considering that the nucleus itself
exhibits a magnetic moment µI via its spin and the motions of the atom’s electrons lead
to a magnetic field, the internal interaction Hamiltonian reads (see Ref. [119], p. 663)

ĤHFS = −µ̂I · B̂e−(r0) = AJ Î · Ĵ , (3.48)

where the factor AJ is the hyperfine structure constant. Additionally, smaller contribu-
tions to the lifting of the degeneracy arise also from higher order electric and magnetic
multipole interactions. Here, the multipole contribution is due to the finite size of the
nuclear charge distribution. These couplings lead to the hyperfine splitting (see Fig. 3.2)
and are independent of an additional external magnetic flux density.

When additionally applying an external magnetic field which is done when, e.g., trap-
ping the atom in a magnetic trap, the last degeneracy with respect to its quantization
axis is lifted by the Zeeman interaction. The external magnetic field couples to the total
electron angular momentum Ĵ and the nucleus’ spin Î such that the Zeeman interaction
Hamiltonian here reads

ĤZeeman = −gJµBĴ ·B(r0, t)− gIµnÎ ·B(r0, t) , (3.49)

with the spin g-factor gI/|gF | � 1 and the total angular momentum g-factor that is also
known as the Landé factor. The resulting Zeeman splitting can be tuned via the strength
of the external magnetic field and is also shown in Fig. 3.2.

Depending on the strength of the magnetic flux density B, different set of quantum
numbers are considered as good quantum numbers for the description of the physical
problem. This is due to the case that sufficiently strong magnetic fields, nuclear spin Î
and the electron’s total angular momentum Ĵ decouple. However, for the case of weak
magnetic fields, gJµBB � AJ , where the approximation holds for B < 1 mT, the nuclear
spin Î and the electron’s total angular momentum Ĵ remain coupled and |F,mF 〉 are good
quantum numbers. In this thesis, we exclusively consider magnetic fields fulfilling this
condition.

The strong I-J coupling leads to the fact that the total angular momentum F̂ and the
projection onto the magnetic field mF = mi +mj describe the system fully. Then, with
Eq. (3.2), an external magnetic field only leads to an additional Hamiltonian term

Ĥinteraction = −µ̂ · B̂(r0, t) = −gFµBF̂ ·B(r0, t) = −gFµBmF |B(r0, t)| , (3.50)

with the g-factor (see Ref. [119], p. 670)

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
− gIµn

µB

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
,

with the nuclear magneton µn with 1836µB = µn. Thus, the second term is suppressed
and depending on the relative orientation of electron and total spin, the nuclear g-factor
can be either positive or negative.
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Figure 3.3: The Figure displays three wire traps. In panel (a) the magnetic field
lines resulting from an infinite wire overlaid with a bias field Bbias. When a current
of I flows through the gold wire, a magnetic flux density minimum at the blue dashed
line parallel to the wire is created. For finite wire trap realizations (see panel (b,c))
the easiest realizations can be divided into two different kinds. The depiction in
panel (b) represents a so-called U trap exhibiting a quadrupole potential while the
depiction in panel (c) represents a Z trap exhibiting a harmonic potential. The
potential created by the latter is equivalent to the potential of a Ioffe trap consisting
of large-scale magnetic coils and commonly used for the trapping of cold atoms in
3D (see Ref. [120]). Depiction adapted with permission from J. Fortágh and C.
Zimmermann, “Magnetic microtraps for ultracold atoms”, Rev. Mod. Phys. 79, 235
(2007), doi:10.1103/RevModPhys.79.235. © 2007 by the American Physical Society.
The magnetic flux density lines are given by Eq. (3.52).

The Zeeman term additionally leads to the precession of the total angular momentum
F around the field direction with frequency

ωL =
gFµB
~

B , (3.51)

and can thus not lead to a transition between two states with opposite orientation of the
magnetic moment.

3.3.1 Trapping of an atom cloud

An atom with a magnetic dipole moment can be trapped via a magnetic trap described
by the trapping Hamiltonian Eq. (3.50). Depending on the state an atom (cloud) is
prepared in, one can distinguish between low-field-seeking states and high-field-seeking
states where the prior can be trapped at a minimum of the magnetic flux density while
the latter can be trapped at a maximum of the magnetic flux density. A minimum in the
eigenenergy of the trapping Hamiltonian Eq. (3.50) occurs at the position of a magnetic
flux minimum for states with gFmF > 0 , while they occur at a maximum of the magnetic
flux density for states with gFmF < 0.

Since according to the Earnshaw theorem (see Ref. [122]) local maxima and minima
of the magnetic flux density are forbidden in free space, magnetic traps have to exhibit
magnetic flux density minima of the modulus and the atoms are prepared in a low-field-
seeking state in order to be trapped. Thus, for the case of rubidium (see Fig. 3.2),

56

http://dx.doi.org/10.1103/RevModPhys.79.235


3.3 The magnetic dipole

the trapping state with the strongest spatial confinement is the state |F,mF 〉 = |2, 2〉
(see Ref. [94]). This is due to the fact that the electron and nuclear spin are oriented
parallel to each other for F = 2. Two more trapping states are |F,mF 〉 = |2, 1〉 and
|F,mF 〉 = |1,−1〉 since for F = 1 in 87Rb, gF < 0 (cf. Ref. [123]). In the very center of
the trap, the atom can be prepared in any of these states to not leave magnetic trap.

Magnetic traps can have different forms. One form that is used on atom chips are
metallic wires, specifically gold wires. A current I flowing through this (infinite) wire
(oriented in z direction) then leads to a magnetic flux density B(r, t) (see Ref. [121] and
Fig. 3.3(a))

B = Bbiasex +
Iµ0

2π(x2 + y2)
ez × r . (3.52)

The modulus of the magnetic flux density exhibits a minimum at the line of vanishing
field given by

x = 0 and y =
µ0I

2πBbias
, (3.53)

and displayed as the blue dashed line in Fig. 3.3(a). Alongside with this, in black lines the
solutions to Eq. (3.52) are plotted. For a finite length wire, two possible end conditions
are presented in panels 3.3(b,c). For further details on the difference in potential between
the two configurations see the caption and section 3.3.2.

3.3.2 Loss channels in an atom trap

For an atom in an atom trap different loss channels exist. Some of those are governed by
the dielectric and metallic environment others rather by the specific shape of the trap’s
potential.

Spin flips

In general, losses of atoms occur in a trap when an atom changes its state from a low-field
seeker to a high-field seeker. This happens, when the magnetic moment µ̂ changes sign
when undergoing a transition from the state it is originally prepared in |i〉 into a state
|f〉 with quantum number mF of opposite sign.

Since all the magnetic trap states (|1,−1〉, |2, 1〉 and |2, 2〉) are not the electronic ground-
state of the rubidium atom (cf. Fig. 3.2), flips of the total angular momentum can occur.
Since it is appropriate to consider the cold atom in its groundstate (cf. Ref. [124]), l = 0,
these flips are commonly referred to as spin flips. These are highly influenced by the pro-
jected local density of states (see in analogy Eq. (3.42)). When an atom is, e.g., trapped
in the proximity of a gold wire the decay rate and with this the spin flip rate increases
enormously (see Refs. [124, 125]).

In chapter 4, the influence of graphene onto the spin flip rate in dependence of distance
from the graphene layer and transition frequency is thus discussed in great detail. There,
we discuss that these loss processes can be wanted since they allow for studying the
surrounding photonic environment at the transition frequency of the atoms and spatially
resolved (see, e.g., Ref. [126]).
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Majorana losses

Majorana losses (also known as Majorana spin flips) are losses of the atom from the trap
near a zero crossing of the magnetic field lines. For an atom in a slowly changing magnetic
field, the magnetic moment of the atom precesses around the magnetic quantization
axis with the Larmor frequency (see Eq. (3.51)). However, when the rate of change of
the magnetic field is comparable to the Larmor frequency (see Ref. [121]) violating the
approximation of an adiabatically changing magnetic field given by

dtωL � ω2
L , (3.54)

the magnetic moment of the atom cannot adapt to the change to the magnetic quantiza-
tion adiabatically any longer and a transition into a high-field seeker can occur.

Condition (3.54) is most likely violated close to zero crossings of the magnetic field.
Thus, to prevent this effect, in experimental setups those trap realizations are preferred
that do not exhibit a zero crossing. For finite wires, this is, e.g., a Ioffe trap as shown
in Fig. 3.3(c). The U trap in Fig. 3.3(b) has a value of zero magnetic flux density at its
minimum and is thus experimentally not favorable.

Losses through vibrational states, decoherence and heating

Atoms above a substrate or nanostructure cannot only be lost from their state by coupling
to electrons in the material or by influence of the external magnetic field but also by
internal and external loss mechanisms. These are, e.g., coupling to internal degrees of
freedom, such as vibrational states, by decoherence of the atom and by heating.

Dispersion forces

Another important loss channel for atoms very close to surfaces are dispersion forces. In
the very proximity of a surface (< λ/2π, where λ is the atomic transition wavelength) the
van-der-Waals potential adds to the trap potential. In this case, an attractive potential
U ∝ d−n (n = 3 for an atom - halfspace system) is created by an unretarded response
of the surface to virtual dipole fluctuations of the atom. At larger distances, retardation
effects are important leading to an attractive potential U ∝ d−(n+1) named the Casimir-
Polder interaction (see Refs. [127–129]). In this limit, additional to the quantum and
thermal fluctuations of the quantum dipole and the constituents of the substrate, quantum
and thermal fluctuations of the electromagnetic field have to be taken into account.

The addition of this attractive force in consequence deforms the trapping potential
such that it becomes anharmonic. The closer the atom is trapped to the surface, the
shallower the potential well towards the surface becomes until at very small distances the
well disappears such that the atom is attracted to the surface. Therefore, the dispersion
forces limit the maximal allowed distance between atom and surface and have to be taken
into account for a complete description of atoms in a magnetic trap. Although they are
not a subject of discussion in this thesis, these effects have been considered for different
atom trap setups (see Refs. [124, 130]) and for graphene (see Refs. [56, 66, 69, 79]) by
other authors.
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3.4 Conclusions

The theoretical description given in this chapter, is a simplified description of natural
emitters studied in this work. The description of the different experimental realizations
and the influence of the photonic local density of states onto the radiation dynamics of
the emitters is at the core of this thesis. In chapter 4, we will discuss the dynamics of both
electric and magnetic emitters near graphene monolayer. There, a special focus will be
placed on the magnetic emitter due to its presence in atom chips and the small transition
energy as compared to electric dipole transitions. This small transition energies allows for
the probing of energy ranges and time scales different from the ones of optical transitions.

In chapter 6, we discuss exclusively different electric dipole transitions and focus on the
dynamics of these close to plasmonic nanostructures discussing these emitters as possible
probes for the plasmonic nanostructures.
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CHAPTER 4

Magnetic and electric emitters above graphene

“Equipped with his five senses, man explores the uni-
verse around him and calls the adventure science.” 24

Edwin Hubble

In this chapter, we discuss the impact of a graphene monolayer onto the lifetimes of
magnetic and electric emitters. For this, we first present a study on the modes in a
dielectric-graphene-dielectric slab system (published in and adapted from Ref. [W3]), sec-
ond we discuss the influence of band gapped graphene on the decay rates of magnetic and
electric emitters (published in and adapted from Ref. [W4]) and in the third part of this
chapter, we compare the decay rates obtained in the limit of zero band gap to previously
published results.

4.1 Introduction

In this chapter, we show how the high degree of control and accuracy available nowadays
in quantum systems (such as cold atoms, SiV and NV centers in nanodiamonds) can be
used for detailed investigations of graphene’s optoelectronic properties (see Refs. [11, 12,
131, 132]). The focus on both electric and magnetic emitters in this chapter, stems from
the fact that with the very different transition frequencies, magnetic emitters in the MHz
and GHz and electric emitters in the THz regime, a combination of the two allows for
the detection of physical effects over a broad range of frequencies. This allows to explore
a wide range of physical properties on the nanoscale.

As shown in chapter 3, the determination of the decay rates allows for conclusions
on the photonic local density of states and with this on the photonic properties of the
environment. Here, we specifically focus on the physical properties of graphene.

Besides from the opportunity to detect optoelectronic properties of graphene, graphene
as a material is also of high interest for its application in hybrid “condensed matter -
atom” systems such as in atom traps. Atom traps with atoms trapped over a set of wires
have been proven to be detectors for spatially varying magnetic flux density fluctuations
imaging these with µm resolution (see Ref. [126]). The spatial accuracy is mainly limited

24E. Hubble, “The Exploration of Space”, Harpers Magazine 158, 732 (1929).
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by the atom-probe distance that is determined by (i) the dispersive forces between atom
and surface (see section 3.3.2), (ii) thermal fluctuations (see section 3.3.2) and (iii) the
spin flip rate due to the modification of the photonic local density of states by the probe
and the trap (see section 3.3.2). If this trap is constructed from gold wires, at most
distances (z0 > 3µm at ω0/2π = 1.1 MHz, see Ref. [125]) the third contribution is the
only important contribution influencing the lifetimes of the atoms in the trap and does
not allow for long-time trapping of the atomic cloud at distances below the metallic skin
depth (see Refs. [121, 133]). Thus, new materials are necessary to overcome the current
limitations and approach the probe and surface. This then leads to a better spatial
resolution and additionally will allow to probe controlled and with high accuracy new
physical regimes (i.e., Casimir Polder effects).

In this part of the thesis, we mainly focus on graphene exhibiting a band gap. This is
due to two reasons. First, it has been shown in ab-initio studies (see Refs. [53, 54]) and
experimental measurements (see Refs. [134]) that the deposition of graphene onto, e.g.,
hBN or silicon carbide (SiC) substrate can open such a band gap of 2m ≈ 5 − 50 meV
and 2m ≈ 260 meV, respectively (compare Fig. 4.1). The underlying theory we present in
section 2.1.3 where we show that the band gap is caused by lifting the symmetry between
the two sublattices in graphene. In the case of hBN substrate, while the atoms of one
sublattice couples to the boron atoms, the other atoms of the other sublattice couple to
the nitrogen atoms. Here, it depends highly on the way in which graphene is positioned
on the hBN substrate. In the case of a SiC substrate, a band gap was only measured
in the case of annealing where the different lattice spacing causes the symmetry break
between the two sublattices in graphene (cf. Ref. [135]).

Since the first measurements in 2007 by means of angle-resolved photoemission spec-
troscopy (ARPES)25, to the best of our knowledge no additional experimental evidence
of this band gap has been reported. However, in 2007 it has been argued that further
independent measurements of this band gap are necessary in order to determine that
no experimental misinterpretations have occurred (see Ref. [135]). In low temperature
experiments and at low frequencies the influence of the band gap on the photonic local
density of states is not negligible. Since in experiments, graphene is often deposited on
a substrate, such a small band gap might occur and its experimental implications should
not straight-forwardly be neglected. Thus, in this part of the thesis we discuss specifically
the influence of this band gap on the waveguide modes in section 4.2. The influence of
this band gap on the decay rates we then discuss in section 4.3 and compare it to the
decay rate modifications of emitters above a graphene monolayer without a band gap in
section 4.4.

Additionally to the opening of a band gap by placing graphene on a substrate, breaking
of the lattice symmetry due to externally applied strain has been discussed as well (see
for the case of graphene nanoribbons Ref. [137]). Here, due to the topological protection
of the band gap (cf. section 2.1.3), this strain has to be comparably strong in order to
actually open such a band gap. However, besides from an experimental measurement of,
e.g., spatially resolved strain fluctuations in graphene by the use of Raman spectroscopy

25ARPES is a method in which a sample is irradiated with high-energy photons (usually X-rays) and
from which the photoemitted electrons are detected. Here, one can obtain information on both energy
and momentum of these electrons allowing for the detection of the electronic structure of a solid (see
Ref. [136] for a review).
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d1

d2

ε1

ε2

2m
ε−

ε+

Figure 4.1: The Figure above represents the dielectric-graphene-dielectric slab struc-
ture considered in this section. For graphene, we consider a realization with a band
gap (see Eq. (2.19)) that can be, e.g., caused by the lattice mismatch between
the dielectrics and graphene. In general two different dielectric materials ε1 and
ε2 of two different thicknesses d1 and d2 are considered. Graphene is not chemi-
cally doped (see band structure inset). Adapted with permission from Ref. [W3],
doi:10.1088/2040-8978/18/3/034001. © IOP Publishing. All rights reserved.

(see Ref. [138]) and theoretical ab initio studies for the induced opening of the corre-
sponding band gap (see Refs. [139–141] and Ref. [142] where the authors additionally
discuss the interaction between externally applied strain and resulting nanometer-scale
strain variations) no direct measurement of both strain and band gap has been conducted.
The active tuning of graphene’s band gap as it might be possible, e.g., by actively ap-
plying external mechanical strain, would, however, allow to use graphene not only as a
material for analog computer chips where the transistor channels consist of graphene26

(see Refs. [143, 144]) but also as a material for a digital computer chip, where the band
gap in graphene allows for the storage of data (see also the investment program by IBM,
Ref. [145]). Even if graphene does not turn out to be the optimal suited material with
regard to computer chips, mapping out the band gap in graphene (as presented in this
work) or other alike materials precisely and spatially resolved by magnetic and electric
emitters might allow to lead the community closer to the understanding of the interplay
between different external influences and the band gap which is a cornerstone in order to
succeed switching graphene’s band gap at will.

4.2 Electromagnetic modes in dielectric-graphene-dielectric
slab systems

In this section, we now discuss the waveguiding and plasmonic modes present in a
dielectric-graphene-dielectric structure (see Fig. 4.1). The knowledge of these modes
allows us in the following to calculate the lifetime of an emitter in the direct proximity
of graphene and to enhance our understanding of the role of the optical modes involved
in the modification of the photonic local density of states.

26Graphene field effect transistors have been studied since graphene as a material exhibits a few very
interesting properties for these transistors: it is much thinner and more heat resistant than common
silicon transistors. Additionally, it can operate at much wider frequencies and thus might in the future
provide much faster networks.
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Figure 4.2: The Figure above represent the general setup of the transfer matrix
method (adapted with permission from Ref. [158], p. 291, © Wiley-VCH Verlag
GmbH & Co. KGaA).

Especially the plasmonic properties of graphene have caused high interest into the use
of this material (see Refs. [89, 146]). Besides from lossless plasmonic TM modes in doped
graphene (see Refs. [147, 148]), for finite graphene flakes, plasmonic resonances in the
visible including quantum and edge effects have been computed (see Refs. [149–154]) and
measured (see Ref. [10]). Even more interesting, opposite to common metals graphene
exhibits a TE plasmonic mode (see Ref. [155]) to which, e.g., a magnetic emitter would
couple. However, as has been discussed in later works, this mode is highly sensitive to a
difference in refractive index between the two materials (see Refs. [146, 156]). These dis-
cussions and also the computation of dielectric-graphene-dielectric slab waveguide modes
(see, e.g., Ref. [78, 157]) has only been conducted in the case of zero band gap. As dis-
cussed in the introduction to this chapter, we take into account that the interaction of
graphene with the surrounding dielectrics (or other physical mechanisms) opens a band
gap, such that the setup has to be reconsidered taking a finite band gap into account.
Since we do not consider any external electrostatic gating or chemical doping, we assume
a monolayer with chemical potential µ = 0 eV (see inset in Fig. 4.1).

In order to compute the reflection and transmission coefficients for the dielectric-
graphene-dielectric setup, we make use of the transfer matrix formalism (see Ref. [158]

and Fig. 4.2) that connects incoming (F (+)
1 , F (−)

2 ) and outgoing (F (−)
1 , F (+)

2 ) electric
and magnetic fields (F = {Ei,Hi} for the Cartesian coordinates i ∈ {x, y, z} with the
graphene monolayer orthogonal to the z-axis)


F

(+)
1

F (−)
1


 = T


F

(+)
2

F (−)
2


 =

(
T11 T12

T21 T22

)
F

(+)
2

F (−)
2


 , (4.1)

where rij and tij are the different reflection and transmission coefficients for forward and
backward propagation. For an infinite setup, where no light is introduced into the system

from the back plane F (−)
2 = 0, we define

r =
T21

T11
and t =

1

T11
. (4.2)

For the specific dielectric-graphene-dielectric slab system, the transfer matrix consists
of the transfer matrices of each of the two dielectric slabs Tslab and the transfer matrix
of the monolayer graphene Tg

T = Tslab,2 · Tg · Tslab,1 . (4.3)
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Following Ref. [158], the transfer matrix of the slab i of dielectric εr = εi embedded in an
infinite dielectric εr = ε0

27 is given as (please note the changed minus in the propagation
matrix with respect to [158] due to the different definition of the Fourier component)

Tslab,i = Ti0 · Tprop.,i · T0i ≡
1

ti

(
|ti|2 − |ri|2 ri
−ri 1

)
, (4.4)

where we can define the slab’s reflection and transmission matrix, ri and ti respectively,
taking into account the symmetry of the slab. Here, the transfer matrix for the dielectric-
dielectric interface (i→ j) is given as (cf. Ref. [158])

Tij =
1

tij

(
tijtji − rijrji rji
−rij 1

)
, (4.5)

and the propagation matrix for a plane wave with wavevector q = (k, qz)
T in the dielectric

εi is given as

Tprop. =

(
eiqz,id 0

0 e−iqz,id

)
.

From these Equations, we obtain the expressions for the reflection and transmission co-
efficient of the slab

rTE
i =

(κ0 − κi) (κ0 + κi) sinh
(
dκi
)

2κ0κi cosh
(
dκi
)

+ (κ2
0 + κ2

i ) sinh
(
dκi
) ,

tTE
i =

2κ0κi

2κ0κi cosh
(
dκi
)

+ (κ2
0 + κ2

i ) sinh
(
dκi
) ,

rTM
i =

(εiκ0 − ε0κi) (εiκ0 + ε0κi) sinh
(
dκi
)

2ε0εiκ0κi cosh
(
dκi
)

+ (ε2
iκ

2
0 + ε2

0κ
2
i ) sinh

(
dκi
) ,

tTM
i =

2ε0εiκ0κi

2ε0εiκ0κi cosh
(
dκi
)

+ (ε2
iκ

2
0 + ε2

0κ
2
i ) sinh

(
dκi
) .

(4.6)

where, as in chapter 2.2.1, qz,i = iκi =
√
εiω̃2 − k2 and, as introduced above, qz,0 = iκ0 =√

ω̃2 − k2. For later discussions, it is important to note that

(
tTE
slab

)2
−
(
rTE

slab

)2
=

2κ0κi cosh
(
dκi
)
− (κ2

0 + κ2
i ) sinh

(
dκi
)

2κ0κi cosh
(
dκi
)

+ (κ2
0 + κ2

i ) sinh
(
dκi
) ,

(
tTM
slab

)2
−
(
rTM

slab

)2
=

2ε0εiκ0κi cosh
(
dκi
)
− (ε2

iκ
2
0 + ε2

0κ
2
i ) sinh

(
dκi
)

2ε0εiκ0κi cosh
(
dκi
)

+ (ε2
iκ

2
0 + ε2

0κ
2
i ) sinh

(
dκi
) ,

(4.7)

such that a pole in rTX
slab (tTX

slab) is of same order as the pole in
(
tTX
slab

)2
−
(
rTX

slab

)2
with

X ∈ {E,M}.
27Here, we change the notation as compared to chapter 1. In chapter 1, we introduced the dielectric

permittivity as ε = ε0εr. In this chapter, we do include ε0 into the speed of light c and instead only
use εr. Thus, the notation ε0 refers to the surrounding medium that can in general be any but in all
Figures is considered to be vacuum ε0 = 1.
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4 Magnetic and electric emitters above graphene

When inserting Eq. (4.4) for the slabs and Eq. (4.5) for the transfer matrix for graphene
where the reflection and transmission coefficients of graphene are given by Eqs. (2.43)
and (2.44), this finally leads to the reflection and transmission coefficients of the total
system. They read

r = r1 + t21

rg + r2

(
t2g − r2

g

)

(r2rg − 1)(r1rg − 1)− r1r2t2g
, (4.8a)

t = − t1tgt2

−1 + rg (r1 + r2) + r1r2

(
t2g − r2

g

) , (4.8b)

which correspond to the reflection and transmission coefficients determined in Refs. [66,
159] when taking ε1 = ε2 and d→∞.

The resonances and modes28, in response to electromagnetic radiation are determined
via the poles of the response functions (see section 1.3.1) where a branch cut corresponds
to a many-particle continuum. These poles are equivalent to the poles in the reflection
coefficients. In Eq. (4.8a), r1, r2 and rg intrinsically exhibit poles. These poles, however,
are no poles of the total reflection coefficient r. One can understand this fact, when
considering that tTX

g = 1 ± rTX
g such that t2g − r2

g = 1 ± 2rg in the numerator and
denominator of Eq. (4.8a). In proximity of the poles of rg, leading order terms are of
order rg in both the numerator and denominator. Hence, they cancel and r does not
exhibit the same resonances as graphene in vacuum. In proximity of the resonances of
r2, denominator and numerator both have terms of leading order one that in return also
cancel. Last, for the resonance due to slab ’1’, we can rewrite Eq. (4.8a)

r =

(
t21 − r2

1

)[
rg + r2

(
t2g − r2

g

)]
+ r1

(
1− r2rg

)

(r2rg − 1)(r1rg − 1)− r1r2t2g
,

where the pole in t21 − r2
1 is of same order as the pole in r1 as shown above in Eqs. (4.7)

for TE and TM polarization and hence also cancels.

With these considerations, the only resonance that remains is described by the condi-
tion

1

r
= 0 ⇔ (r1rg − 1)(r2rg − 1) = r1r2t

2
g . (4.9)

4.2.1 Graphene embedded in an infinitely extended dielectric

To gain a deeper understanding of the different modes present in a dielectric-graphene-
dielectric setup, we start by discussing the case of graphene embedded in an infinite
dielectric distinguishing between TE and TM polarization.

28Oftentimes, modes are considered to be the lossless eigenvalues of a system such that the system can
be in the specific state described by the eigenvalue without having to insert additional energy into the
system to compensate for losses. When we discuss the existence of modes in this section, we extend
the terminus and also discuss lossy modes. These are sometimes instead called resonances or quasi
normal modes (see Ref. [160]).
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Figure 4.3: TE plasmonic resonances in graphene embedded in an infinite dielec-
tric εm where graphene exhibits a band gap of 2m (compare section 2.2.1). For

wavevectors k̂ <
√
εm/(1− εmṽ2

F) the TE plasmonic resonance shows a disper-

sion relation very close to the light cone (see Eq. (4.15)), while for wavevectors

k̂ >
√
εm/(1− εmṽ2

F) the phase velocity changes drastically and becomes dielec-

tric independent (see Eq. (4.17)]) Due to the smallness of the fine structure constant
α the transition between the two regimes appears abrupt. The green region marks
the single-particle excitation (SPE) region where a photon of energy ~ω carries suffi-
cient energy to excite an electron-hole pair. Adapted with permission from Ref. [W3],
doi:10.1088/2040-8978/18/3/034001. © IOP Publishing. All rights reserved.

TE polarization:

For the case of TE polarization, the reflection coefficient of graphene is given by Eq. (2.43)
and Eq. (4.9) accordingly corresponds to

αΦ̂(ŷ) + 2κ̂m = 0 , (4.10)

where we use the definition of Φ(y) given by Eq. (2.42) and introduce the general notation
in dimensionless units

â =
a

∆
, while ǎ = a ·∆ . (4.11)

With ˆ̃ω2 = ŷ2 + ṽ2
Fk̂

2 (cf. Eq. (2.35)) and κ̂2
m = k̂2 − εm ˆ̃ω2, we can rewrite

α2Φ̂(ŷ)2 = 2(1− εmṽ2
F)k̂2 − 2εmŷ

2 ,

and with the parametrization ŷ = tanh (q), we find

k̂p[q] =
1√

1− εmṽ2
F

√√√√εm tanh (q)2 + α2

(
q

tanh (q)2 + 1

tanh (q)
− 1

)2

, (4.12a)

ˆ̃ωp[q] =
1√

1− εmṽ2
F

√√√√tanh (q)2 + α2ṽ2
F

(
q

tanh (q)2 + 1

tanh (q)
− 1

)2

. (4.12b)
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The Equations above present the TE plasmonic resonance in graphene (for further ex-
pressions and reformulations of the TE plasmonic mode that come handy in the rest of
this chapter, see appendix D.1). In Fig. 4.3, we depict these for two different values of εm,
one for vacuum (εm = 1) and the other one for hBN (εm ≈ 4). This parametrized solution
has been presented for the first time in Ref. [W3] and for the vacuum case corresponds
well with the numeric results obtained in Refs. [57, 71]. It will be made use of later in
this chapter when determining analytically the TE plasmonic resonance’s contributions
to the photonic local density of states.

From Fig. 4.3 it is not obvious that the resonance of the reflection coefficient r is indeed
for all wavevectors of plasmonic nature. One possible definition a TE plasmon that is
commonly applied in literature (and thus leads to the term TE plasmon) is that

κ̂2
m > 0 , (4.13)

being that a plasmonic mode is of evanescent nature. In general, all resonances ω(k)
can be either evanescent (qz,m ∈ iR, also often termed non-radiative) such that the elec-
tromagnetic modes excited on the graphene monolayer fall off exponential perpendicular
to the layer or radiative (qz,m ∈ R) such that the electromagnetic modes excited on
the graphene monolayer exhibit a propagative component perpendicular to the layer. In
Fig. 4.3, these two regimes are separated by the light cone (gray dashed line) of the
material in which graphene is embedded in. Then, the radiative (evanescent) region is
above (below) this light cone. In order to determine whether the plasmonic resonance is
indeed situated in the evanescent regime, we distinguish between two limiting cases: in
the small wavevector regime, we can expand the parametric solution into

k̂p[q]2 ≈
εmq

2 −
(
εm

2
3 − 24

9 α
2
)
q4

1− εmṽ2
F

,

ˆ̃ωp[q]2 ≈
q2 −

(
2
3 − 24

9 α
2ṽ2

F

)
q4

1− εmṽ2
F

,

(4.14)

where we can assign an approximate phase velocity ˆ̃ω[k] ≈ β̃(k) k with

β̃(k) ≈

√
1− 16

9 α
2

(
1−εmṽ2

F
εm

)2

k2

√
εm

⇒ β̃(k) ≈ 1√
εm

but β̃(k) < 1/
√
εm . (4.15)

In the large wavevector limit (q � 1, thus approximating tanh (q) ≈ 1− x with x� 1
but nonetheless x > 0), we find the approximative expressions

k̂p[q] ≈
√
εm(1− 2x) + α2(2q − 1)2

1− εmṽ2
F

,

ˆ̃ωp[q] ≈
√

1− 2x+ α2ṽ2
F(2q − 1)2

1− εmṽ2
F

.

(4.16)
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Inserting Eqs. (4.16) into each other, the TE plasmon dispersion relation for q � 1 is
completely independent of the material εm the graphene monolayer is embedded in and
reads

ω̃p[k] ≈
√

∆2 (1− 2x) + ṽ2
Fk

2
p <

√
∆2 + ṽ2

Fk
2
p . (4.17)

Equation (4.17) corresponds to the fact that the TE plasmon dispersion is situated outside
the single-particle excitation (SPE) region. This is the energy range in which a photon
carries a sufficient amount of energy

ˆ̃ω > ˆ̃ωSPE(k) =

√
1 + ṽ2

Fk̂
2 , (4.18)

to excite an electron-hole pair in graphene (green region, Fig. 4.3). Hence in this region,
the creation of electron-hole pairs present an additional loss channel in graphene, the fact
that the TE plasmon resonance is situated outside the SPE region leads to the TE plasmon
resonance being not only purely evanescent but also lossless. In the SPE region actually
the additional damping due to the electron-hole creation would govern the plasmonic
resonance and thus lead to very small lifetimes (cf. Ref. [34]). In this specific case,
standard literature does not consider this plasmonic mode as a real collective excitation
any longer (see discussion in Ref. [34]).

We can then determine the intersection of Eq. (4.15) and Eq. (4.17) and find for the
“kink” marked by red arrows in Fig. 4.3

ˆ̃ω∆ =
ˆ̃ω∆√
εm

=
1√

1− εmṽ2
F

. (4.19)

The kink that is well visible in Fig. 4.3 is in fact a smooth transition between the low
and high wavevector regime. This is well visible in the case of artificially large values of
the fine structure constant α (see also Refs. [57, 71] and the red dashed lines in Fig. 4.4
for different values of εm and α). In the next subsections, we will thus – in parallel
to standard literature – use larger values for α in order to better visualize the distinct
features of the structure’s modes.

TM polarization:

When we consider the modes in TM polarization, the reflection coefficient of graphene is
given in Eq. (2.44) and accordingly Eq. (4.9) leads to

−2εmŷ
2 + αΦ̂(ŷ)κ̂m = 0 . (4.20)

It can be shown that no solution exists to the equation above since for all ŷ both parts
of the equation exhibit the same sign (compare derivation in appendix D.2).

Since the TM plasmon only exists at finite doping (see Refs. [146, 147]) but not in
the case of zero the chemical potential µ = 0 (independent of the existence of a band
gap, see, e.g., for the zero band gap case Ref. [146]), this results in the insight that the
TM plasmon is an intraband plasmon. Particularly, it is a collective excitations of the
electrons in the conduction band and exists only at finite doping.
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Figure 4.4: Waveguiding and plasmonic modes for TE polarized light propagating
through a dielectric-graphene-dielectric slab waveguide. We consider a symmetric
setup with ε1 = ε2 = εm = 4.0 and d1 = d2 = d. The dashed green lines are the
waveguide solutions for a dielectric slab waveguide of d′ = 2d and the dashed red
lines are the solutions of Eq. (4.10) for εm = 1 (upper) and εm = 4.0 (lower). Panels
(a-d) represent results for different slab thicknesses ď = ∆ · d and values of α. The
crossover of the zeroth mode to the evanescent (non-radiative) region k̂εm and the
crossing of the even modes from the waveguiding to the SPE region k̂2n are depicted in
Fig. 4.5(a) and (b), respectively, and given by Eq. (4.27) and Eq. (4.30). Adapted with
permission from Ref. [W3], doi:10.1088/2040-8978/18/3/034001. © IOP Publishing.
All rights reserved.

4.2.2 Graphene embedded between two identical dielectric slabs of finite
thickness

When considering the finite width of the substrate in which graphene is embedded, ad-
ditional guided modes due to the vacuum-dielectric interface appear. In general, besides
from the region of propagating and evanescent modes in both vacuum and dielectric,
so-called waveguiding modes – propagating in the dielectric while evanescent in the sur-
rounding vacuum – exist.

70

http://dx.doi.org/10.1088/2040-8978/18/3/034001


4.2 Electromagnetic modes in dielectric-graphene-dielectric slab systems

0 5 10 15 20 25
1

1.5

2

Slab thickness ď
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Figure 4.5: Panel (a) shows the thickness dependence of the TE cutoff wavevec-
tors k2n[d] Eq. (4.27) (solid) and of the TM cutoff wavevectors k2n−1[d] Eq. (4.34)
(dashed) for n = 1 . . . 4. In panel (b), we display the crossover wavevector kεm [d]
Eq. (4.30) where the mode n = 0 crosses from the waveguiding region into the
evanescent region becoming plasmonic for both graphene embedded between two
identical dielectric slabs (solid) and deposited on top of a dielectric slab (dashed).
The vertical gray dotted lines in both panels correspond to the wavevector values
marked in Fig. 4.4(b,d) with the crossing at ď = 3.5 with the horizontal gray dotted
line. Adapted with permission from Ref. [W3], doi:10.1088/2040-8978/18/3/034001.
© IOP Publishing. All rights reserved.

TE polarization:

For the case of the TE polarized light, Eq. (4.9) leads to two different sets of modes. The
first set is defined by the solutions to

rTE
m + 1 = 0 , (4.21)

which corresponds to the mode condition for the odd modes of a dielectric waveguide
with εm and d′ = 2d. Thus, the odd modes are not modified by the graphene layer. This
is due to the thickness of the monolayer and the symmetry of the waveguide: odd modes
of a dielectric slab waveguide have vanishing field value at the center and hence do not
couple to graphene’s conductivity (compare also Eq. (2.52d)). In Fig. 4.4, we present the
solutions to Eq. (4.21) and compare them (yellow part of colorbar) to the undisturbed
dielectric waveguide solutions (dashed green lines). In panel (b,d), we show that the
first and third modes interfere exactly (note the green dashed lines falling exactly on the
yellow odd dielectric-graphene-dielectric waveguide modes).

The second set of modes is given by

αΦ̂(ŷ)
[
κ̂0 sinh (ďκ̂m) + κ̂m cosh (ďκ̂m)

]

+ 2κ̂m

[
κ̂0 cosh (ďκ̂m) + κ̂m sinh (ďκ̂m)

]
= 0 ,

(4.22)

using the notation introduced in Eq. (4.11). The first trivial solution of Eq. (4.22),
κ̂m = 0, stems from the reformulation of the slab’s reflection coefficient and due to (cf.
Ref. [161])

rm(κ̂m = 0)
L′Hospital−−−−−−→ dκ̂0

dκ̂0 + 2
, (4.23)
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the singularity is liftable. Equation (4.22) can then be rewritten in the more convenient
form

ď =
1

2κ̂m
ln

[
(κ̂0 − κ̂m)(αΦ̂(ŷ)− 2κ̂m)

(κ̂0 + κ̂m)(αΦ̂(ŷ) + 2κ̂m)

]
, (4.24)

with the branch cut of the logarithm ln (x) along the negative real axis.

Solutions to the slabs’ thickness have always to be a positive, real numbers which fixes
our choice of the logarithm and determines the correct Riemann sheet. Here, we have to
distinguish between different regions. First for k̂ < ˆ̃ω (waves propagating in the dielectric
and vacuum), no undamped waveguide modes exist (remember: κ̂i = −iq̂i,z)

ď =
1

−2iq̂z,m
ln




(
q̂z,0 − q̂z,m

)(
αΦ̂(ŷ) + 2iq̂z,m

)

(
q̂z,0 + q̂z,m

)(
αΦ̂(ŷ)− 2iq̂z,m

)


 . (4.25)

In appendix. D.3, we discuss the details of damped modes existing in the propagating
region. As known from the case of common dielectric slab waveguides, they start at
k̂ = 0 for finite values of ˆ̃ω and connect to the corresponding undamped waveguide mode
at ˆ̃ω = k̂. These modes are only very weakly dependent on the graphene monolayer.
Instead, they are caused by the dielectric slab waveguide and of the same nature as the
damped modes in a regular dielectric slab waveguide. Thus, they are not considered
further.

The second region in which no undamped solutions can exist is the SPE region with ŷ >
1. In this region, damped solutions exist that we discuss in greater detail below. First, we
concentrate on the undamped waveguide solutions that appear in this specific waveguide.
In the dielectric slabs’ waveguiding region where ˆ̃ω < k̂ <

√
εm ˆ̃ω, the electromagnetic

fields are evanescent in the surrounding vacuum while propagating in the waveguide.
Assuming only energies below the SPE threshold (Eq. (4.18)), we can rewrite Eq. (4.24)
considering κ̂m = −iq̂z,m ∈ iR and κ̂0 ∈ R

ď =
1

−2iq̂z,m
ln




(
κ̂0 + iq̂z,m

)(
αΦ̂(ŷ) + 2iq̂z,m

)

(
κ̂0 − iq̂z,m

)(
αΦ̂(ŷ)− 2iq̂z,m

)




=

atan

(
2q̂z,m

−αΦ̂(ŷ)

)
− atan

(
2q̂z,m
2κ̂0

)
+ πn

q̂z,m
> 0 ,

(4.26)

which leads to positive, real-valued slab thicknesses for n = 1, 2, 3, . . . . Each of the values
of n correspond to a different, even waveguide mode 2n. In Fig. 4.4, we display these even
modes in addition to the before mentioned undisturbed, odd modes. Here, one notices
that the inclusion of the mono-atomic graphene layer has a strong effect on the even
waveguide modes introducing a cutoff of the dispersion relation of the lossless modes at
the SPE region threshold ŷ = 1. In terms of the parameter q̂z,m and taking into account
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Figure 4.6: Damped modes for k̂ = 2.05 for two dielectric (εm = 4.0) slab thicknesses
ď and varying the value of α. Panels (a,b) present the resonances for graphene
embedded between two of these dielectric slabs (|l.h.s. of Eq. (4.21)|−10 + | l.h.s. of
Eq. (4.22)|−10) while panels (c,d) present the resonances for graphene positioned on
top of one of these slabs (|l.h.s. of Eq. (4.40)|−10). The gray dashed lines present
the SPE region threshold Eq. (4.18). In the evanescent region (ˆ̃ω < ˆ̃ωSPE), we
mark several distinct resonances, the TE plasmons TEpl. In the SPE region itself,
the α = 0 represents the mode solutions without graphene, showing very sharp
resonances. For increasing values of α the damping becomes larger. Adapted with
permission from Ref. [W3], doi:10.1088/2040-8978/18/3/034001. © IOP Publishing.
All rights reserved.

lim
ŷ→1

Φ̂(ŷ)→ −∞, the relation k(d2n) reads

k̂2n[q̂z,m] =

√
εm − q̂2

z,m

1− εmṽ2
F

, (4.27a)

ď[q̂z,m] =

πn− atan




√
1−εmṽ2

Fq̂z,m√
(εm−1)−

(
1−εmṽ2

F

)
q̂2
z,m




q̂z,m
. (4.27b)

At ŷ = 1, the even modes thus coincide with the condition of the odd mode 2n − 1
(compare also Fig. 4.4(b,d)). For values ŷ > 1, the even waveguide modes become
lossy. In fact, as soon as graphene’s pair-creation threshold is reached, a decay channel
is introduced into the optical response of the system. To understand the influence of the
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graphene monolayer on the waveguide modes, we assume an effective medium description
where we replace the slab-graphene-slab system with an effective dielectric waveguide of
dielectric permittivity εeff = εm + iε(1) with εm ∈ R . Then, the perturbation ε(1) � ε
is the complex loss introduced by the monolayer graphene and with this we find (see
appendix D.4)

ε(1) ∝ α , (4.28)

which means that the damping itself is also proportional to α (compare Fig. 4.6). Due to
the choice for α in Fig. 4.4, these damped modes are not visible in the panels (a-d). For
a fixed value k̂ = 2.05, we display the resonances in Fig. 4.6(a,b) where this dependence
is well visible.

Returning to Eq. (4.27), a solution for n = 0 is only allowed if 2κ̂0 + αΦ̂(ŷ) > 0. This
condition requires the zeroth mode to be always located below the vacuum TE plasmonic
resonance (see Eq. (4.12) and upper red dashed line in Fig. 4.4(a,c)). This leads to the
very interesting situation that the zeroth mode has a crossing from the waveguiding region
to the evanescent region which is for a pure dielectric waveguide forbidden. The crossing
can be found by solving

ď = lim
κ̂m→0





1

2κ̂m
ln




(
κ̂0 − κ̂m

) (
αΦ̂(ŷ)− 2κ̂m

)

(
κ̂0 + κ̂m

) (
αΦ̂(ŷ) + 2κ̂m

)








= −αΦ̂(ŷ) + 2κ̂0

ακ̂0Φ̂(ŷ)
, (4.29)

leading to the parametric solution (ŷ = tanh q)

k̂εm [q] =

√
εm

1− εmṽ2
F

tanh (q) , (4.30a)

ď[q] = −
αΦ̂[tanh (q)] + 2

√
εm−1

1−εmṽ2
F

tanh (q)

α
√

εm−1
1−εmṽ2

F
tanh (q)Φ̂[tanh (q)]

, (4.30b)

that we show in Fig. 4.5(b). For the large wavevector limit (κ̂m > 0), we find from
Eq. (4.29) that for real solutions of ď the argument of the logarithm has to be positive.
For κ̂m > 0, specifically κ̂0 − κ̂m > 0, κ̂i > 0 and αΦ̂(ŷ) < 0 lead to

αΦ̂(ŷ) + 2κ̂m < 0 ,

such that for large wavevectors the zeroth mode is always above the TE plasmonic res-
onance of graphene embedded in an infinite dielectric εm (see lower red dashed line in
Fig. 4.4(a,c)). On the other hand, for k̂0 → 0 we can show that due to α � 1, the
condition αΦ̂(ŷ) + 2κ̂0 = 0 is the upper limit of the zeroth order TE mode. Additionally,
when κ̂0 → 0 while κ̂0 > 0, the vacuum TE plasmonic resonance and with it the zeroth
order TE slab-graphene-slab mode approach the vacuum light cone from below.

The transition from graphene embedded between the finite dielectric slabs to graphene
embedded in an infinite dielectric (d→∞) can be understood as follows: The larger the
thickness of the slab the denser the waveguiding modes in the waveguiding region. This
is caused by the fact that the number of modes increases while their dispersion relation
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α = 1.0, ď = 2.0 α = 1.0, ď = 4.0

Figure 4.7: TM modes for graphene embedded between two slabs (a) and graphene
embedded on one single slab (b) of dielectric εm. In panel (a) we depict in the

color bar
32∑
i=31
|l.h.s. Eq. (4.i)|−10 while in panel (b) we depict in the color bar

|l.h.s. Eq. (4.47)|−10. The inverse of these equations leads to a value approaching
infinite at the position of the modes which are in turn clearly visible (yellow part of
colorbar). The gray lines correspond to the wavevector k̂2n+1 (k̂n) given by Eq. (4.34)
(Eq. (4.50)) for the graphene monolayer embedded between two slabs (on a single
slab). The slab thickness dependence of those we display in Fig. 4.5(a) by the dashed
lines.

remains confined in the region ˆ̃ω < k̂ <
√
εm ˆ̃ω. In this process, the modes tend to the

scattering waves of the infinite system (mathematically corresponding to a branch cut in
the equations). The singularity with n = 0, however, remains isolated and turns into the
TE plasmon resonance condition Eq. (4.12).

TM polarization:

Next we discuss the modes of TM electromagnetic fields: with tTM
g = 1− rTM

g once more
two sets of modes arise from Eq. (4.9). The first,

rTM
m − 1 = 0 , (4.31)

corresponds to the slab waveguide conditions of the even modes of a slab waveguide of
thickness ď′ = 2ď. This is analogous to the TE case with the only condition that here for
TM polarization the even mode exhibit a vanishing electric field value at the position of
the graphene layer and thus remain unaffected. The second condition reads

αΦ̂(ŷ)κ̂m

[
κ̂m sinh (ďκ̂m) + εmκ̂0 cosh (ďκ̂m)

]

− 2εmŷ
2
[
εmκ̂0 sinh (ďκ̂m) + κ̂m cosh (ďκ̂m)

]
= 0 ,

(4.32)
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which then leads in terms of the slab thickness ď to

ď =
1

2κ̂m
ln




(
κ̂m − εmκ̂0

) (
2εmŷ

2 + αΦ̂(ŷ)κ̂m

)

(
κ̂m + εmκ̂0

) (
−2εmy2 + αΦ̂(ŷ)κ̂m

)


 . (4.33)

As in the case of the TE polarization, we can distinguish between propagating (k̂ < ˆ̃ω),
SPE (ŷ > 1 and k̂ > ˆ̃ω), waveguiding (ˆ̃ω < k̂ <

√
εm ˆ̃ω and ŷ < 1) and evanescent region

(k̂ >
√
εm ˆ̃ω and ŷ < 1). For the first two regions in analogy to TE polarization no or

only damped modes exist. In the waveguiding region, undamped odd and even modes
exist. The interesting mode, however, is the zeroth order mode that in the case of the TE
polarization exhibits a crossover from the waveguiding to the evanescent region. Since
for undoped graphene no TM plasmon exists (compare Eq. (4.20)), one would expect the
zeroth TM mode to lie completely in the waveguiding region not allowing modes in the
evanescent region (since as mentioned above in TM polarization the even modes exhibit
zero electric field at the graphene monolayer and are therefore unaffected by the graphene
sheet).

However, to exclude the possibility of an additional, evanescent mode appearing, we
consider in Eq. (4.33), whether the argument of the logarithm is larger or smaller than
one. A mode can only exist if for a pair (k̂, ˆ̃ω) a solution with a positive slab thickness
exist.

For most parts of the evanescent region, 0 < ŷ2 < 1 and then Φ̂(ŷ) < 0 (see also
appendix D.2). With the fact that in the evanescent region both wavevectors κ̂0 > 0 and
κ̂m > 0 leading to 2εmŷ

2 + αΦ̂(ŷ)κ̂m < 0, we find in this first region




(
κ̂m − εmκ̂0

) (
2εmŷ

2 + αΦ̂(ŷ)κ̂m

)

(
κ̂m + εmκ̂0

) (
−2εmŷ2 + αΦ̂(ŷ)κ̂m

)


 ≷ 1

m
(
κ̂m − εmκ̂0

) (
2εmŷ

2 + αΦ̂(ŷ)κ̂m

)
≶
(
κ̂m + εmκ̂0

) (
−2εmŷ

2 + αΦ̂(ŷ)κ̂m

)

m
4εmŷ

2κ̂m ≶ 2εmαΦ̂(ŷ)κ̂0κ̂m

m
2ŷ2 ≶ αΦ̂(ŷ)κ̂0 ,

where the last inequality leads to ď < 0 since 2ŷ2 > 0 and 0 > αΦ̂(ŷ)κ̂0 for ŷ < 1.

For the remaining regions of the evanescent (k̂, ω)-space, ŷ2 < 0 and Φ̂(ŷ) > 0 while
κ̂0 > 0 and κ̂m > 0 remain (see also appendix D.2). Then in the second to fourth line
of the above inequalities, the inequality signs interchange and with ŷ2 < 0 < Φ̂(ŷ), again
the lower inequality is valid.

Thus in the complete evanescent region, only unphysical solutions with ď < 0 exist.
This in turn also requires that not a single mode crosses the border to the evanescent
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region

ďκ̂m=0 = lim
κ̂m→0





1

2κ̂m
ln




(
κ̂m − εmκ̂0

) (
2εmŷ

2 + αΦ̂(ŷ)κ̂m

)

(
κ̂m + εmκ̂0

) (
−2εmŷ2 + αΦ̂(ŷ)κ̂m

)








=
1

2
lim
κ̂m→0

{
1

κ̂m − εmκ̂0
− 1

κ̂m + εmκ̂0
+

αΦ̂(ŷ)

2εmŷ2 − αΦ̂(ŷ)κ̂m
+

αΦ̂(ŷ)

2εmŷ2 + αΦ̂(ŷ)κ̂m

}

=
1

εm

αΦ̂(ŷ)κ̂0 − ŷ2

κ̂0ŷ2
< 0 ,

where the second line is obtained by the use of the rule by L’Hospital (see Ref. [161]).
In Fig. 4.7(a), we display the TM modes for a slab of thickness ď = 2.0, εm = 4 and
α = 1. Equivalently to Eq. (4.27), we can determine the crossover wavevectors where the
originally undamped, odd waveguide modes become damped as

k̂2n−1[q̂z,m] =

√
εm − q̂2

z,m

1− εmṽ2
F

, (4.34a)

ď[q̂z,m] =

π(n− 1
2)− atan




√
1−εmṽ2

Fq̂z,m

εm

√
(εm−1)−

(
1−εmṽ2

F

)
q̂2
z,m




q̂z,m
. (4.34b)

In dashed lines, we present these solutions in Fig. 4.5(a) and mark the specific value of
k̂ in Fig. 4.7(a) by the dashed, gray line. Again, these values correspond to the value of
the undisturbed even mode 2n at ŷ = 1.

4.2.3 Graphene on a substrate

One of the driving research questions of this project was motivated by Ref. [156] where the
authors found that the TE plasmonic resonance vanishes for even very tiny mismatches
between the dielectric permittivity of the two materials above and below the graphene
monolayer. Thus, we discuss in the following the modes for graphene on a(n) (in)finite
substrate with air surrounding the sample.

TE polarization:

To better understand the TE plasmons when graphene is deposited on a single slab, we
first discuss the solution for TE plasmons when the graphene layer is sandwiched between
two different dielectric infinite half space and only later focus on the effect of a finite slab
thickness. For the case of TE polarization, Eq. (4.9) becomes

αΦ̂(ŷ) + κ̂0 + κ̂m = 0 . (4.35)
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Figure 4.8: TE plasmonic resonances for graphene in vacuum deposited on different
infinite dielectric substrates. we compare the solution to the solution for graphene in
vacuum (red line) and indicate the substrate’s light cone κ̂m = 0 by the orange dashed
line. Adapted with permission from Ref. [W3], doi:10.1088/2040-8978/18/3/034001.
© IOP Publishing. All rights reserved.

After some algebraic reformulations, we find the parametric solution

k̂2[ŷ] =
ˆ̃ω[ŷ]2 − ŷ2

ṽ2
F

(4.36a)

ˆ̃ω2[ŷ] =

4ŷ2+α2ṽ2
FΦ̂(ŷ)2

2−(εm+1)ṽ2
F

1 +

√
1−

(
εm−1

2−(εm+1)ṽ2
F

)2
4ŷ2+α2ṽ2

FΦ̂(ŷ)2

α2ṽ2
FΦ̂(ŷ)2

. (4.36b)

Equation (4.36) is accompanied by the additional condition

α2Φ̂(ŷ)2 ≥ κ̂2
0 + κ̂2

m , (4.37)

which is lost from Eq. (4.35) when squaring it and stems from the fact that for all ŷ < 1
Φ̂(ŷ) < 0 while in the evanescent region κ̂i > 0 and thus Eq. (4.35) always allows for a
solution.
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In Fig. 4.8, we display the solutions to Eq. (4.36) for different values of the lower half
space dielectric εm. Here, it is obvious that indeed TE plasmons exist even for very large
offsets between the dielectric permittivity above the layer of graphene (vacuum) and the
substrate (see, e.g., Fig. 4.8(f)). In fact, a TE plasmonic resonance exists for all

εm < ṽ−2
F ≈ 90.000 . (4.38)

This is opposite to the case of zero band gap (compare Ref. [156]) and caused by the
two very different regimes in the TE plasmonic mode’s dispersion relation. Since for large
wavevector values the phase velocity is mainly independent of the surrounding material

(compare also Eq. (4.16)), in this region (k̂ >
√
εm/(1− εmṽ2

F)) a TE plasmonic mode

survives. In the case of zero band gap graphene, the TE plasmonic resonance only exhibits
a mode structure where the mode is close to the surrounding dielectric’s light cone (see
also Refs. [57, 71]). Intuitively, the TE plasmonic mode disperses due to the different
phase velocities (compare Eq. (4.14)) on both sides of the layer.

Having understood the appearance of a TE plasmonic resonance for a graphene-half
space setup, we now turn to the more realistic case of graphene on a finite dielectric slab.
This is the case, when in the experiment one studies graphene on a waver or a microscope
slide. The mode condition reads as

rmrg − 1 = 0 , (4.39)

thus concluding in

−
(
αΦ̂(ŷ) + 2κ̂0

)
κ̂m cosh

(
ďκ̂m

)

−
[(
αΦ̂(ŷ) + 2κ̂0

)
κ̂0 +

(
κ̂2
m − κ̂2

0

)]
sinh

(
ďκ̂m

)
= 0 .

(4.40)

Due to the asymmetry of the setup, only one set of solutions exist which contains exclu-
sively modes altered by the inclusion of the graphene layer.

As seen in the two-slab setup it is helpful to study the existence of solutions by requiring
a real and positive thickness of the substrate

ď =
1

2κ̂m
ln




(
αΦ̂(ŷ) + κ̂0 − κ̂m

) (
κ̂0 − κ̂m

)
(
αΦ̂(ŷ) + κ̂0 + κ̂m

) (
κ̂0 + κ̂m

)


 . (4.41)

When comparing Eq. (4.41) with Eq. (4.24), we realize that only small differences exist.
This is due to the general similarity of both setups and the discussion for solutions in the
propagating and SPE region still holds. The altered waveguiding solutions n ≥ 1 lead
to the exact same cutoff wavevector k̂n as for the two-slab waveguide Eq. (4.27) with
k̂n = k̂2n where in the SPE region the modes become damped.

As seen in the case of graphene deposited on an infinite half space, the asymmetry in
dielectric materials leads to a significant change of the TE plasmonic mode. Thus, we
study the solutions to Eq. (4.41), requiring the argument of the logarithm to not only be
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α = 1.0, ď = 3.5
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Figure 4.9: TE modes that exist in a waveguide consisting of graphene on top of
a single dielectric slab εm. As in Fig. 4.4, we vary the value of α. The dashed, red
curves present the solution for graphene in vacuum (upper curve) and graphene on
top of an infinite dielectric substrate (lower curve), presented in Fig. 4.8. The cutoff
values k̂2n correspond to Fig. 4.5(a), solid lines, while the crossover wavevector values
for which the zeroth mode’s turn into an evanescent mode we present in Fig. 4.5(b),
dashed lines. The green dashed lines present the pure dielectric waveguide solutions
for a dielectric slab waveguide with εm = 4.0 and ď′ = ď. Adapted with permission
from Ref. [W3], doi:10.1088/2040-8978/18/3/034001. © IOP Publishing. All rights
reserved.

positive but also
(
αΦ̂(ŷ) + κ̂0 − κ̂m

) (
κ̂0 − κ̂m

)
(
αΦ̂(ŷ) + κ̂0 + κ̂m

) (
κ̂0 + κ̂m

) > 1

(
αΦ̂(ŷ) + κ̂0 − κ̂m

) (
κ̂0 − κ̂m

)
≷
(
αΦ̂(ŷ) + κ̂0 + κ̂m

) (
κ̂0 + κ̂m

)

αΦ̂(ŷ) + 2κ̂0 ≶ 0 .

(4.42)

With the fact that in the evanescent region κ̂0 ± κ̂m > 0, the two different cases in the
second line above are caused by

αΦ̂(ŷ) + κ̂0 ± κ̂m ≷ 0 ,

where we request the minimum condition of a real slab thickness. In Eq. (4.42), αΦ̂(ŷ) +
2κ̂0 < 0 leads to a positive thickness when αΦ̂(ŷ) + κ̂0 ± κ̂m > 0. However, simply from
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αΦ̂(ŷ) + 2κ̂0 < 0 follows that

αΦ̂(ŷ) + κ̂0 < −κ̂0

m
αΦ̂(ŷ) + κ̂0 − κ̂m < −(κ̂0 + κ̂m) < 0 and αΦ̂(ŷ) + κ̂0 + κ̂m < −(κ̂0 − κ̂m) < 0 .

This is a contradiction and does therefore not lead to a physical solution. The TE plasmon
therefore exists for the pairs (k̂, ˆ̃ω) for which

αΦ̂(ŷ) + 2κ̂0 > 0, αΦ̂(ŷ) + κ̂0 + κ̂m < 0 , (4.43)

where the last condition automatically leads to αΦ̂(ŷ) + κ̂0 − κ̂m < 0. In other words,
since κ̂0 is monotonically growing and Φ̂(ŷ) < 0, the condition αΦ + 2κ̂0 > 0 is always
fulfilled in the area below the TE plasmonic resonance for graphene in vacuum.

The condition αΦ̂(ŷ) + κ̂0 + κ̂m < 0 is with the same line of argument only fulfilled
in the area above the TE plasmonic dispersion relation for graphene on an infinite sub-
strate. Thus, the TE plasmonic resonance for graphene deposited on a finite substrate
lies between the TE plasmonic dispersion for graphene in vacuum and graphene on an
infinite substrate.

This, we present in Fig. 4.9 where the zeroth waveguide mode lies between the two
dashed, red lines representing these two solutions. Additionally, the slab’s thickness in
the waveguiding region is given by

ď = −
atan

(
k̂z,m
κ̂0

)
+ atan

(
k̂z,m

αΦ̂(ŷ)+κ̂0

)
+ nπ

k̂z,m
, (4.44)

for n = 1, 2, . . . and for n = 0 with the additional condition αΦ̂(ŷ) + 2κ̂0 > 0 applies
(compare also Eq. (4.43) and following discussion) the crossover between waveguiding
and evanescent regime is given by

k̂εm [q] =

√
εm

1− εmṽ2
F

tanh q (4.45a)

ď[q] = −
2 + αΦ̂[tanh (q)]

tanh (q)

√
1−εmṽ2

F
εm−1

αΦ̂[tanh (q)] +
√

εm−1
1−εmṽ2

F
tanh (q)

, (4.45b)

and displayed in Fig. 4.5(b) by the dashed lines.

TM polarization:

As before, for the case of graphene deposited on a substrate also TM modes exist. Addi-
tionally, also as in the case of a graphene layer on top of a dielectric half space, the TM
plasmon condition following from Eq. (4.9)

αΦ̂(ŷ) = ŷ2

(
εm
κ̂m

+
1

κ̂0

)
, (4.46)
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can never be fulfilled. Again (cf. appendix D.2) we can split the evanescent region into
two regions with (a) 0 < ŷ2 < 1 (then Φ̂(ŷ) < 0) and (b) ŷ2 < 0 (then Φ̂(ŷ) > 0). With(
εm
κ̂m

+ 1
κ̂0

)
> 0, this always leads to an opposite sign between the l.h.s and the r.h.s of

Eq. (4.46). As discussed in Eq. (D.8), the solution ŷ = 0 does indeed fulfill Eq. (4.46)
but corresponds to a liftable singularity of rTM

g (see Eq. (2.44)).

When considering the TM modes supported by a graphene monolayer on top of a finite
dielectric slab given by

αΦ̂(ŷ)κ̂0κ̂m

[
εmκ̂0 sinh (ďκ̂m) + κ̂m cosh (ďκ̂m)

]

− ŷ2
[
(ε2
mκ̂

2
0 + κ̂2

m) sinh (ďκ̂m) + 2εmκ̂0κ̂m cosh (ďκ̂m)
]

= 0 ,
(4.47)

the mode condition in terms of the slab thickness reads

ď =
1

2κ̂m
ln

{
(κ̂m − εmκ̂0)[(−αΦ̂(ŷ)κ̂0 + ŷ2)κ̂m − εmκ̂0ŷ

2]

(κ̂m + εmκ̂0)[(−αΦ̂(ŷ)κ̂0 + ŷ2)κ̂m + εmκ̂0ŷ2]

}
. (4.48)

In the evanescent region, with

(−αΦ̂(ŷ)κ̂0 + ŷ2)κ̂m + εmκ̂0ŷ
2




> 0 for ŷ2 > 0

< 0 for ŷ2 < 0
, (4.49)

we start by excluding the existence of a TM mode in the evanescent region for which
ŷ2 > 0 since that is the valid condition for most of the (k, ω)-parameter space (cf. ap-
pendix D.2). With

(κ̂m − εmκ̂0)[(−αΦ̂(ŷ)κ̂0 + ŷ2)κ̂m − εmκ̂0ŷ
2]

(κ̂m + εmκ̂0)[(−αΦ̂(ŷ)κ̂0 + ŷ2)κ̂m + εmκ̂0ŷ2]
≷ 1

(κ̂m − εmκ̂0)[(−αΦ̂(ŷ)κ̂0 + ŷ2)κ̂m − εmκ̂0ŷ
2] ≷ (κ̂m + εmκ̂0)·

· [(−αΦ̂(ŷ)κ̂0 + ŷ2)κ̂m + εmκ̂0ŷ
2]

−αΦ̂(ŷ)κ̂0 + 2ŷ2 ≶ 0 ,

we find that since −αΦ̂(ŷ)κ̂0 + 2ŷ2 > 0 no mode exists (ď < 0). Also for the (k, ω)-values
for which ŷ2 < 0, we find that the upper and lower inequality signs in lines two and three
switch such that the last inequality reads

−αΦ̂(ŷ)κ̂0 + 2ŷ2 ≷ 0 ,

which is in the region with ŷ2 < 0 only true for the lower of the two cases. Thus, since
ď < 0 for all ŷ2 ∈ R, no TM mode is allowed in the evanescent region.

As in Eq. (4.34a), we can also show that for κ̂m = 0 no positive and thus physical slab
thickness is allowed. Last, as in the TE polarization case, we can determine the crossing
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of the waveguiding modes into the SPE region that correspond to Eq. (4.34)

k̂n[q̂z,m] =

√
εm − q̂2

z,m

1− εmṽ2
F

, (4.50a)

ď[q̂z,m] =

πn− atan




√
1−εmṽ2

Fq̂z,m

εm

√
(εm−1)−

(
1−εmṽ2

F

)
q̂2
z,m




q̂z,m
. (4.50b)

As for the TE modes, this crossover condition corresponds to the crossover condition
for the graphene monolayer embedded between two identical dielectric slabs. Thus, the
dashed lines in Fig. 4.5(a) also presents the solutions to Eqs. (4.50). The TM modes
for a graphene monolayer deposited on top of a dielectric slab, we display in Fig. 4.7(b).
There, we show the exemplary result for α = 1 and ď = 4 for a non-dispersive dielectric
slab with εm = 4.0.

4.2.4 Conclusions

In this section (in main parts published in Ref. [W3]), we show that TE plasmonic res-
onances actually remain when graphene with a band gap in its energy level structure is
sandwiched between two dielectrics with a large contrast in refractive index. Addition-
ally, these TE plasmonic resonances even remain in existence when instead of an infinite
half space, experimentally more reasonable finite slabs are considered. The influence of
the finite slab thickness is especially large for wavevectors at which the TE plasmonic
resonance is close to the vacuum’s and medium’s light cone since in this cases the decay
length ∝ q̂−1

i,z is much larger than for metallic TM plasmons.
Additionally, we show that for TM polarization in undoped graphene indeed no TM

plasmonic resonance crossing the slab’s light cone can be excited. From the modes ap-
pearing in a finite slab waveguide, only the isolated, TE plasmonic mode survives in
graphene embedded in an infinite sized medium.

Of special interest is the influence of graphene’s SPEs. They lead to a cut-off frequency
at which the lossless waveguide modes become damped modes. This is due to the loss
mechanisms induced by the electron-hole creation. In conclusion the quantum properties
of graphene effect not only the TE plasmonic mode (that in the case of gapless graphene
sandwiched between two dielectrics only can be excited for small refractive index offsets)
but also the remaining waveguide modes.

The detailed knowledge of the dispersion relation of the modes in dielectric-graphene-
dielectric systems, we use in the next section for a discussion of the influence of the
photonic local density of states on the lifetimes of electric and magnetic emitters.

4.3 Determining the band gap of graphene using electric and
magnetic emitters

As we mention in the introduction to this chapter, some of the exotic properties of
graphene, especially the band gap and the influence of external factors on it, are still
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Figure 4.10: Sketch of an emitter above graphene. In this section, we exclusively
consider graphene exhibiting a band gap with the electronic dispersion relation ε±
given in Eq. (2.19). As in the previous section, the band gap ∆ = 2m/(~c) is
normalized. The electronic states are filled up to a chemical potential µ = 0 where
the filled band is marked by the yellow area. The emitter is positioned at a distance
z0 from the graphene monolayer at z = 0. Adapted with permission from J. F. M.
Werra et al., “Determining graphene’s induced band gap with magnetic and electric
emitters”, Phys. Rev. B 93, 081404(R) (2016), doi:10.1103/PhysRevB.93.081404.
© 2016 by the American Physical Society.

subject of discussion in the scientific community. The understanding and mapping of
this band gap and other electronic properties are of interest since the special features of
graphene’s band structure lead to a wide range of unusual phenomena such as the obser-
vation of ballistic transport (see Ref. [162]), the quantum Hall effect (see Refs. [163, 164]),
and the specifics of its thermal (see Ref. [165]) and electric conductivity (see Refs. [147,
166]). Here, as well as published in Ref. [W4], we thus show how magnetic and elec-
tric emitters can be used to determine specifically the exact band gap of a monolayer
of graphene with high spectral and spatial precision. Additionally, we can validate the
limits of the models applied to the description of graphene within this section by testing
the scaling behavior of the lifetime modifications with respect to the emitter’s transition
frequency and distance variations.

For emitters above an atomic monolayer, small lifetime modifications as compared to
plasmonic nanostructures (e.g., a factor 10−3 of lifetime reduction for a dipole 1 nm dis-
tant from a 10 nm silver sphere, cf. Ref. [167]) might be expected. This expectation
corresponds to the small optical response of the system as measured by Nair and co-
workers (see Ref. [75], Eq. (2.50) and Fig. 2.2, with a transmission of ≈ 98%). On the
other hand, considering the fact that graphene is a mono-atomic layer it is promising
for the light-matter coupling that nonetheless the monolayer has a visible effect on the
transmitted light. As discussed in the previous section of this work, the electromagnetic
mode density is highly altered when considering graphene with a band gap in between two
dielectrics. There, the strongest influence due to the graphene monolayer is caused by the
TE plasmonic resonance and the additional loss channel by the SPE region when the elec-
tromagnetic fields impinging carry sufficient energy to excite electron-hole pairs. Thus,
for a better understanding of the basic mechanisms induced by the graphene monolayer
we study in this section explicitly the lifetime modifications due to graphene embedded
in an infinite, linear, non-dissipative, non-dispersive, isotropic and local dielectric of di-
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electric permittivity εm (see Fig. 4.10 for a sketch of the setup). This way, we exclude
well-known effects caused by, e.g., the waveguide modes due to the finite thickness of the
dielectric substrate (see, e.g., Ref. [124]).

In order to analyze the lifetime modifications in detail, we define the decay rate (cf.
Eq. (3.42))

γ

γ0
= 1 + L


 α2

‖
|α|2 Γ‖ +

α2
⊥
|α|2 Γ⊥


 , (4.51)

with the decay rate γ0 of an emitter surrounded exclusively by the dielectric (εm), the
correction L due to the local field correction ξ discussed in section 3.2.5 (for εm = 1:
L = 1) and the matrix elements of the electric (magnetic) dipole moments α = d (α =
µ) where in the case of α⊥ the dipole moment is oriented orthogonal to the graphene
monolayer while for α‖ it is oriented parallel to the graphene monolayer. The total dipole
moment is then given by |α|2 = α2

‖ + α2
⊥ that lead to α2

‖ = α2
x + α2

y and α⊥ = αz when
we employ the Cartesian coordinate system defined in Fig. 4.10.

Since the magnitude of the dipole moments depends on the emitter used in the spe-
cific experimental setup and, additionally, when we only consider lossless, dispersionless,
isotropic and local dielectrics the correction L is dispersionless, we will in the following
only discuss Γi where i = {‖,⊥}.

The graphene monolayer modifies the photonic local density of states with respect to
three different regions (compare also the previous section and Fig. 4.3 ): the propagating

(ω̃0 ≥ k), the evanescent (ω̃ < k) and the SPE (ω̃0 >
√

∆2 + ṽ2
Fk

2) regime. Due to the

overlap of these three regions, for the contributions to the modifications of the decay rate
we add up both SPE and non-SPE region for the propagating electromagnetic modes
calling the contribution radiative (Γir) while additionally distinguishing between SPE
(ΓiSPE) and plasmonic (Γip) contribution for the evanescent regimes. Accordingly, we find
for i = {‖,⊥}

Γi = Γir + ΓiSPE + Γip . (4.52)

4.3.1 Lifetime modifications of a magnetic emitter

Following Ref. [124, 129], the lifetime modifications of a magnetic emitter placed above
a 2D infinitely extended, electromagnetic boundary condition is obtained by exchanging
with each other the TE and TM reflection coefficients for the altered decay rate of an
electric emitter. Such a 2D infinitely extended, electromagnetic boundary condition is
oftentimes the interface between two dielectric or metallic half spaces but in our case ob-
viously the graphene monolayer embedded in the infinite dielectric εm. With the electric
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emitter’s decay rate modification (see Ref. [28]), we then arrive at

Γ‖magn.(ˆ̃ω, ž0) =
3

4

1

ε
3/2
m

ˆ̃ω3
0

Im




∞∫

−i
√
εm ˆ̃ω

[
εm ˆ̃ω2rTM + κ̂2

mr
TE
]

e−2κ̂mž0dκ̂m


 , (4.53)

Γ⊥magn.(ˆ̃ω, ž0) =
3

2

1

ε
3/2
m

ˆ̃ω3
Im




∞∫

−i
√
εm ˆ̃ω

(
εm ˆ̃ω2 + κ̂2

m

)
rTEe−2κ̂mž0dκ̂m


 , (4.54)

where we use as before normalized quantities (cf. Eqs. (2.34) and (4.11)) with the emitter-
graphene distance ž0 = ∆ z0 (cf. Fig. 4.10). The emitter’s transition (angular) frequency
is ˆ̃ω = ˆ̃ω0, the dielectric out-of-plane wavevector is κ̂2

m = k̂2 − εm ˆ̃ω2 and the reflec-
tion coefficients for a graphene monolayer embedded in a dielectric medium follow from
Eq. (4.8a) and read as

rTM =
αΦ̂(ŷ)κ̂m

αΦ̂(ŷ)κ̂m − ŷ2
, (4.55)

rTE = − αΦ̂(ŷ)

2κ̂m + αΦ̂(ŷ)
. (4.56)

Above, we additionally use the definitions ŷ =
√

ˆ̃ω2 − ṽ2
Fk̂

2 given in Eq. (2.35) and

Φ̂(ŷ) = 2

[
1− ŷ2 + 1

ŷ
atanh(ŷ)

]
,

introduced in Eq. (2.42).
Besides from a direct computation of the corresponding integrals (with appropriate

integral limits for the three different regions) utilizing the commercial software Math-
ematica (see Ref. [168], lines in all following Figures), we present in the following the
limiting cases for small and large distances and frequencies, respectively. From this we
are able to determine the power laws for the distance and frequency dependence of the
magnetic decay rates.

TE plasmonic contribution

Starting with the contribution due to the TE plasmonic resonance, we define a function
of the denominator of rTE in Eq. (4.56)

Ψ(ŷ) ≡ 1

ṽF

√
ˆ̃ω2

ˆ̃ω2
∆

− ŷ2 + α

[
1− ŷ2 + 1

ŷ
atanh(ŷ)

]
, (4.57)

where we reformulate ṽFκ̂m =
√

ˆ̃ω2/ˆ̃ω2
∆ − ŷ2. In the proximity of the plasmonic mode

ŷ ≈ ŷp (cf. Eq. (4.12)), we write

Ψ(ŷ) = Ψ′(ŷp) · (ŷ − ŷp) +O[(ŷ − ŷp)2] , (4.58)
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approximating in the following the denominator to first order in ŷ − ŷp (for a collective
resonance, the denominator Ψ(ŷp) = 0) with

Ψ′(ŷ) =
−ŷ

ṽF

√
ˆ̃ω2/ˆ̃ω2

∆ − ŷ2
− α

[
ŷ2 − 1

ŷ2
atanh(ŷ) +

ŷ2 + 1

ŷ(1− ŷ2)

]
. (4.59)

Here, we have to distinguish between the TE plasmonic modes for frequencies below
ˆ̃ω < ˆ̃ω∆ (ŷ � 1) and above ˆ̃ω > ˆ̃ω∆ (ŷ → 1−). Doing so, we can then estimate the
derivative of the denominator as

Ψ′ŷ<1(ŷ) ≈ −ŷ
ṽF

√
ˆ̃ω2/ˆ̃ω2

∆ − ŷ2
, (4.60)

Ψ′ŷ→1−(ŷ) ≈ α
[

(1− ŷ) ln
(1− ŷ

2

)
+

1

1− ŷ −
1

2

]
≈ α

1− ŷ , (4.61)

where we obtain the approximation in the last line by expanding Eq. (4.59) with

ŷ2 − 1

ŷ2
atanh(ŷ)

ŷ→1−≈ (1− ŷ) ln
(1− ŷ

2

)

ŷ2 + 1

ŷ(1− ŷ2)

ŷ→1−≈ 1

1− ŷ −
1

2
.

Further on employing Sokhotsky’s formula (see Eq. (3.32)), we can express the reflection
coefficient as

rTE ≈ αΦ̂(ŷ)

Ψ′(ŷp) · (ŷ − ŷp)
= P αΦ̂(ŷ)

Ψ′(ŷp)

1

ŷ − ŷp
− iπ

αΦ̂(ŷ)

Ψ′(ŷp)
δ(ŷ − ŷp) .

In conclusion, we insert this expression into the modified lifetime Eqs. (4.53) and (4.54)
for which we choose the lower boundary of the integrals to be zero since the TE plasmonic
mode is located exclusively in the evanescent region (cf. section 4.2.1). Since we have
shown previously that rTM is purely real in this region (see also section 4.2.1), we find
with ŷp < 1 (see Eq. (D.3) for the explicit expression for ŷ2

p)

Γ‖magn.,p(ˆ̃ω < ˆ̃ω∆, ž0) =
3

4

∞∫

0

κ̂2
m

ε
3/2
m

ˆ̃ω3
0

Im
[
rTE

]
e−2κ̂mž0dκ̂m ≈

16α3π

9ε
3/2
m

ˆ̃ω3
0

ˆ̃ω3
∆

e−ž0/ζ̌ , (4.62a)

Γ⊥magn.,p(ˆ̃ω < ˆ̃ω∆, ž0) =
3

2

∞∫

0

εm ˆ̃ω2 + κ̂2
m

ε
3/2
m

ˆ̃ω3
Im
[
rTE

]
e−2κ̂mž0dκ̂m

≈ 2απ√
εm

ˆ̃ω0

ˆ̃ω2
∆

e−ž0/ζ̌ , (4.62b)

where the characteristic decay length is defined as

ζ̌ =
3

8α

ˆ̃ω2
∆

ˆ̃ω2
. (4.63)
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Figure 4.11: Modification of the magnetic emitter’s decay rates when varying
the emitter-graphene distance. The emitter is dispersed in vacuum (εm = 1). In
panel (a), we present results for ˆ̃ω0 = 0.2 on a double-logarithmic scale, extending
this scale to a semilogarithmic (b) and linear (c) scale to depict the characteristics of
the distance dependence for plasmonic as well as perpendicular radiative and parallel
radiative, respectively. The analytical values for negative contributions are depicted
by dashed lines. Adapted with permission from J. F. M. Werra et al., “Determining
graphene’s induced band gap with magnetic and electric emitters”, Phys. Rev. B
93, 081404(R) (2016), doi:10.1103/PhysRevB.93.081404. © 2016 by the American
Physical Society.

Due to the magnitude of ζ̌, this brings about a very weak exponential distance dependence
(cf. blue and black lines in Fig. 4.11(a-c)).

Moving from the small frequency limit to the limit of large transition frequencies (cor-
responding to ŷ → 1−) where ŷp is defined in Eq. (D.2), we obtain the following decay
rates:

Γ‖magn.,p(ˆ̃ω > ˆ̃ω∆, ž0) ≈
3π

(
ˆ̃ω2

ˆ̃ω2
∆

− 1

)
e
−(1+

√
ˆ̃ω2− ˆ̃ω2

∆
αṽF

ˆ̃ω∆
)

2αṽ4
F(
√
εm ˆ̃ω)3

exp (−2ž0

√
ˆ̃ω2 − ˆ̃ω2

∆

ṽF
ˆ̃ω∆

) , (4.64a)

Γ⊥magn.,p(ˆ̃ω > ˆ̃ω∆, ž0) ≈
3π
(

ˆ̃ω2 − 1
)

e
−(1+

√
ˆ̃ω2− ˆ̃ω2

∆
αṽF

ˆ̃ω∆
)

αṽ4
F(
√
εm ˆ̃ω)3

exp (−2ž0

√
ˆ̃ω2 − ˆ̃ω2

∆

ṽF
ˆ̃ω∆

) . (4.64b)

When we insert explicit numbers into the expressions above, we obtain values on the order
of 1e−100 unless ˆ̃ω ≈ ˆ̃ω∆ which is due to the small values ṽF ≈ 300−1 and α = 137−1.

Thus, for transition frequencies ˆ̃ω0 > ˆ̃ω∆, the modification of the decay rate due to
the TE plasmonic mode is much smaller than the alteration due to all other contribu-
tions (see below and Figs. 4.12 and 4.13). From a physical point of view, this can be
understood when realizing that indeed the TE plasmonic mode deviates largely from the
material’s light cone

√
εm ˆ̃ω = k. Even though an emitter of transition frequency ˆ̃ω0 emits

electromagnetic radiation with a broad range of wavevector values, the emission intensity
with these wavevector components that couple to the TE plasmonic mode decreases the
further the mode deviates from the material’s light cone. In the very proximity of the
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kink ˆ̃ω0 ≈ ˆ̃ω∆, the TE plasmonic mode is still in the proximity of the material’s light
cone and thus not as strongly suppressed.

Radiative contribution

Next we focus on the radiative contributions to the changes in the magnetic emitter’s
lifetime. Here, we change the integral limits in Eqs. (4.53) and (4.54) to

Γ‖magn.,r(ˆ̃ω, ž0) =
3

4

1

ε
3/2
m

ˆ̃ω3
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


0∫
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e−2κ̂mž0dκ̂m




=
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ε
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m

ˆ̃ω3
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


√
εm ˆ̃ω∫

0

dq̂m,z(εm ˆ̃ω2rTM − q̂2
m,zr

TE)e2iq̂m,z ž0


 , (4.65)

Γ⊥magn.,r(ˆ̃ω, ž0) =
3

2

1

ε
3/2
m

ˆ̃ω3
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


0∫

−i
√
εm ˆ̃ω

(
εm ˆ̃ω2 + κ̂2

m

)
rTEe−2κ̂mž0dκ̂m




=
3

2

1

ε
3/2
m

ˆ̃ω3
0

Re




√
εm ˆ̃ω∫

0

dq̂m,z(εm ˆ̃ω2 − q̂2
m,z)r

TEe2iq̂m,z ž0


 , (4.66)

where we in the following distinguish once more between ˆ̃ω ≶ 1 for the approximation of
these integrals.

First focusing on transition frequencies with ˆ̃ω ≤ 1, we find atanh(ŷ) ∈ R such that
Φ̂(ŷ) ∈ R. We consequently split the reflection coefficients into real and imaginary part

rTE =
−α2Φ̂2(ŷ)− iαΦ̂(ŷ)q̂m,z

α2Φ̂2(ŷ) + q̂2
m,z

≈ −4

3
α ˆ̃ω2

4
3α

ˆ̃ω2 − iq̂m,z(
4
3α

ˆ̃ω2
)2

+ q̂2
m,z

,

rTM =
α2Φ̂2(ŷ)q̂2

z + iαΦ̂(ŷ)q̂m,z ŷ
2

α2Φ̂2(ŷ)q̂2
m,z + ŷ4

≈ 4

3
α

4
3αq̂

2
m,z − iq̂m,z

α2
(

4
3

)2
q̂2
m,z + 1

,

where we use the approximations 1− (ŷ + ŷ−1)atanh(ŷ) ≈ 4ŷ2/3 and ŷ ≈ ˆ̃ω for ŷ � 1.

Additionally rewriting exp (i2q̂m,z ž0) = cos (2q̂m,z ž0) + i sin (2q̂m,z ž0), we obtain the
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following three integrals (splitting up TE and TM contribution for the parallel orientation)

Γ⊥r (ˆ̃ω < ˆ̃ω∆, ž0) ≈ − 3d′

2b3

b∫

0

dx
b2 − x2

d′2 + x2

[
x sin (ax) + d′ cos (ax)

]
, (4.67)

Γ
‖
TE,r(

ˆ̃ω < ˆ̃ω∆, ž0) ≈ 3d′

4b3

b∫

0

dxx2d
′ cos (ax) + x sin (ax)

x2 + d2

d�1≈ 3d′

4b3

b∫

0

dx
[
d′ cos (ax) + x sin (ax)

]
, (4.68)

Γ
‖
TM,r(

ˆ̃ω < ˆ̃ω∆, ž0) ≈ 3d

4b

b∫

0

dx
x2d cos (ax) + x sin (ax)

d2x2 + 1

d�1≈ 3d

4b

b∫

0

dx
[
x2d cos (ax) + x sin (ax)

]
, (4.69)

where for an easier readability we define the four parameters

a = 2ž0 , b =
√
εm ˆ̃ω , d =

4α

3
, and d′ =

4α

3
ˆ̃ω2 .

and substitute x = q̂m,z. By use of Eqs. (4.67), (4.68) and (4.69) and by identifying
ξ = 2ž0x, we finally arrive at

Γ‖magn.,r(ˆ̃ω < ˆ̃ω∆, ž0) ≈ α(εm + 1)

2εmž0

[
4α ˆ̃ω(ε2

m + 3)

9
√
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2
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εm ˆ̃ωž0

)

+
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(

2
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)

2
√
εm ˆ̃ωž0

− cos
(

2
√
εm ˆ̃ωž0

)

 (4.70a)

ž0�(
√
εm ˆ̃ω)−1

≈ 4α(ε2
m + 3)

9εm
ˆ̃ω2, (4.70b)

Γ⊥magn.,r(ˆ̃ω < ˆ̃ω∆, ž0) ≈ −
ˆ̃ω2

∆ž0

2ζ̌

2
√
εm ˆ̃ωž0∫

0
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[
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(
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εm ˆ̃ωž0

)2
][

ξ sin (ξ)
2
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εm ˆ̃ωž0
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∆ cos (ξ)
2
√
εm ˆ̃ωζ̌

]

(
ˆ̃ω2

∆ž0

ζ̌

)2

+ ξ2

(4.70c)

ž0�(
√
εm ˆ̃ω)−1

≈ − πα√
εm

ˆ̃ω

(
1 +

8
√
εm ˆ̃ωž0

3π

)
. (4.70d)

In Fig. 4.11, we display the analytical expressions presented above by the green and
red line, respectively. For the parallel radiative modification, the contribution, which
is constant at small distances, increases the decay rate and the oscillatory terms begin
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to dominate at larger distances. Additionally, Eq. (4.70a) exhibits an envelope function
α/ž0 for εm = 1 (see gray line in Fig. 4.11(a)). For the perpendicularly to the graphene
monolayer oriented magnetic dipole, the radiative modification suppresses the decay rate
(cf. Eq. (4.70c)). For larger distances than the one presented in Fig. 4.11, the radiative
perpendicular decay rate oscillates as the parallel decay rate.

For the case ˆ̃ω > 1 and small distances 2ž0
ˆ̃ω � 1, we can assume the following approx-

imations in the limiting case:

2ž0
ˆ̃ω � 1 → e2iq̂m,z ž0 ≈ 1 ,

ṽF � 1 → ŷ ≈ ˆ̃ω and

ŷ ≈ 1 → ŷ2 + 1

ŷ
Re
[
atanh(ŷ)

]
≈ − ln

( ˆ̃ω − 1

2

)
.

which leads to an orthogonal contribution of
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(
1

2
+ ln

(
α
π

2

))
≈ − 3απ√

εm

ˆ̃ω2 + 1

ˆ̃ω2
→ − 3απ√
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(4.71)

and the parallel contributions of

Γ
‖
magn.,TE,r(

ˆ̃ω > ˆ̃ω∆, ž0) ≈ 3

4ε
3/2
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· f(α
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1 + ln
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2

)
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) , (4.72)

Γ
‖
magn.,TM,r(

ˆ̃ω > ˆ̃ω∆, ž0) ≈ − 3
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)
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ˆ̃ω
) . (4.73)
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Figure 4.12: Distance dependence of the lifetimes of magnetic emitters for ˆ̃ω0 > ˆ̃ω∆.
The analytical approximations (lines) we present in Eqs. (4.81b), (4.82b) and (4.83b),
the asymptotic expressions (gray lines) in Eqs. (4.81c) and (4.82c). The discrete
marks are numerically computed values. Adapted with permission from J. F. M.
Werra et al., “Determining graphene’s induced band gap with magnetic and electric
emitters”, Phys. Rev. B 93, 081404(R) (2016), doi:10.1103/PhysRevB.93.081404.
© 2016 by the American Physical Society.

Once more, we introduce auxiliary functions that in this case read as

f(a, b, d) =

b∫

0

dxx2a
2 + d2 + d · x
a2 + (d+ x)2

≈
b∫

0

dxx2 d

(d+ x)

= d


b

2 − 2db

2
+ d ln

(
1 +

b

d

)
 ≈ d

2
b2 ,

g(a, b, d) =

b∫

0

dx
(d2 + a2)x2 − b2d · x
[
d · x− b2

]2
+ a2x2

≈
b∫

0

dx
d · x

d · x− b2 = b


1 +

ln
(

1− d
b

)

d
b


 ≈ −d

2
,

where in the last step we approximate d/b = απ/2 � 1 and ln (1− x)/x ≈ −(1 + x/2).
Therefore, we find at small distances of the emitter from the graphene monolayer (in
parallel to Eq. (4.71)),

Γ
‖
magn.,TE,r(

ˆ̃ω > ˆ̃ω∆, ž0) ≈ Γ
‖
magn.,TM,r(

ˆ̃ω > ˆ̃ω∆, ž0) ≈ 3απ

16
√
εm

ˆ̃ω2 + 1

ˆ̃ω2
→ 3απ

16
√
εm

. (4.74)

For the specific case of large distances, we subsume the radiative contribution into the
SPE contribution and discuss the results below. This can be motivated both by the fact
that the evanescent SPE contribution is the dominating contribution and that both the
propagating and evanescent contribution are driven by SPE effects.
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SPE contribution

For the last contribution, the excitation of electron-hole pairs by the emitter’s radiation,
the decay rate modifications in Eqs. (4.53) and (4.54) can be rewritten as

Γ
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magn.,SPE(ˆ̃ω, ž0) =
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 , (4.75)
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 , (4.76)

where the upper bound

ŷ =

√
ˆ̃ω2 − ṽ2

Fk
2 =

ˆ̃ω

ˆ̃ω∆

⇔ εm ˆ̃ω2 = k2 , (4.77)

corresponds to the material’s light cone and the lower bound

ŷ =

√
ˆ̃ω2 − ṽ2

Fk
2 = 1 ⇔ ω̃ =

√
∆2 + ṽ2

Fk
2 , (4.78)

corresponds to the boundary between SPE region and purely evanescent region. In the
SPE region with ŷ > 1 and the purely real exponential function in Eqs. (4.75) and

(4.76), we can rewrite the imaginary parts of the reflection coefficients with Im
[
Φ̂(ŷ)

]
=

−π(ŷ2 + 1)/ŷ for ŷ > 1,

Im
[
rTE

]
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])2

+
(
απ ŷ
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Here, we notice a significant difference between the expressions for rTE and rTM. Due to
the factor α/ṽF in the latter, no approximations to the denominator are possible that cast
off the dependence on Re

[
Φ(ŷ)

]
. For rTE, we can however obtain the last approximation

due to α� 1.
Due to the smallness of the Fermi velocity ṽF, we can approximate ˆ̃ω∆ ≈ 1 effectively

extending the upper limit

ˆ̃ω

ˆ̃ω∆

→ ˆ̃ω , (4.80)
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such that the resulting integrals contains both the radiative and the evanescent contri-
butions to the SPE region. In result, we obtain the two contributions

Γ⊥magn.,SPE(ˆ̃ω > ˆ̃ω∆, ž0 � (2q̂m,z)
−1) ≈ 3
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≈ 3απ ˆ̃ω2
∆

16
√
εm

3ž2
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ž0

ṽF
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≈ 3
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εm
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απ
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ˆ̃ω4
∝ ž−2

0 . (4.82c)

Above, we assume in the second approximation (second lines) of both of the decay rate
modifications that for x =

√
1− χ2 only the integrand with χ � 1 contributes signifi-

cantly to the integral. We display Eqs. (4.81b) and (4.82b) by the orange and red lines in
Fig. 4.12 for the decay rate modification of an emitter embedded in vacuum and above a
graphene monolayer. The asymptotic solutions for very large ž0, Eqs. (4.81c) and (4.82c),
we illustrate by the two gray lines, showing a clear asymptotic behavior with ž−2

0 . This
distance behavior for the magnetic emitter does not agree with the non-radiative distance
behavior for electric emitters. In experiments including electric emitters (see Refs. [169,
170]), a scaling behavior with respect to ž−4

0 has been found for intermediate distances be-
tween the graphene monolayer and the electric emitter. However, as we see clearly above,
this discussion does not hold in the case of magnetic emitters leading for all orientations
of a scaling behavior of ž−2

0 .
However, the results obtained above only hold for medium range distances. For even

larger distances, the radiative contributions start to govern the decay rate modifications
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due to the long-range nature of radiative electromagnetic modes. This effect is clearly
visible for ž0 � 0.1. Then, we cannot calculate the correct lifetime modification by
assuming ˆ̃ω∆ ≈ 1 but rather have to compute both contributions separately taking care
of complex exponential in the case of the radiative contribution. Then, however we cannot
obtain a closed-form solution for the evanescent SPE region any longer. On top of this,
at, e.g. ω = ∆ = 2πMHz the distance of ž0 � 0.1 corresponds to a distance of z0 = 5 m
which is not of experimental interest and thus not further discussed in this work.

In the case of the parallel, TM, SPE contribution, we can obtain an analytical so-

lution (under the same limitations as discussed above), by approximating Re
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]
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]
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2ṽ2
F

√
1− 1

b2∫

0

dχ
π
4χe−d·χ

(
aχ− b

)2
+ e2χ2

, (4.83b)

where again we assume that for x =
√

1− χ2 only the integrand with χ� 1 contributes
significantly to the integral and using the abbreviations

a =
α

ṽF
Re

[
1−

ˆ̃ω2 + 1

ˆ̃ω
atanh(ˆ̃ω)

]
, b = ˆ̃ω , d = 2

ˆ̃ωž0

ṽF
, and e =

α

ṽF

π

2

ˆ̃ω2 + 1

ˆ̃ω
.

Furthermore, we obtain the last expression in Eq. (4.83b) by approximating

√
1− χ2 ≈

1∫

0

dχ
√

1− χ2 =
π

4
,

which is equivalent to taking the mean value over the integral domain. We display
Eq. (4.83b) in the green line in Fig. 4.12. As for the orthogonal and TE parallel contribu-
tion, also for the TM parallel lifetime modifications these approximations break down for
ž0 > 0.1. Again, for a hyperfine splitting of typically ω ≈ 2πMHz these distances corre-
spond to a distance of z0 > 5 m and therefore we will once more exclude these distances
from our discussion.
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Figure 4.13: Decay rate modification of orthogonal (a) and parallel (b) oriented
magnetic dipole moments situated in vacuum (εm = 1) at a distance ž0 = (3e8)−1

above the graphene monolayer. Due to the logarithmic scale, we plot the absolute of
negative contributions (e.g., −Γ⊥r > 0) where we depict negative analytic approxima-
tions by dashed lines. The inset in panel (a) shows the dominating SPE contribution
with a maximum at ˆ̃ω0 ≈ 2ˆ̃ω∆. Additionally, the condition ω̃0 = ∆ is denoted.
Adapted with permission from J. F. M. Werra et al., “Determining graphene’s in-
duced band gap with magnetic and electric emitters”, Phys. Rev. B 93, 081404(R)
(2016), doi:10.1103/PhysRevB.93.081404. © 2016 by the American Physical Society.

Frequency dependence of lifetime modification

Besides from focusing on the distance dependence, we can also study the frequency de-
pendence of the lifetime modification. Especially in the case of a magnetic emitter where,
e.g., the Zeeman of Hyperfine transitions can be tuned via the applied external field, this
information bares relevant tests for the physical properties of the environment. In our
case, these are, e.g., the validity and limitations of the QFT model applied for the de-
scription of the graphene monolayer. In Fig. 4.13, we show the results for a distance
ž0 = (3e8)−1.

From Eqs. (4.62), we find that for physical reasonable distances the plasmonic modifica-
tion of the decay rate has a strongly suppressed distance dependence with exp (−ž0/ζ̌) ≈ 1
leading to a linear frequency dependence for the perpendicular lifetime modification (cf.
Fig. 4.13(a), purple line) and a cubic frequency dependence for the parallel lifetime mod-
ification (cf. Fig. 4.13(b), purple line). For frequencies ˆ̃ω0 > ˆ̃ω∆, as discussed above the
plasmonic contribution vanishes.

The radiative modes contribute for both frequencies below and above graphene’s gap.
From Eqs. (4.70) we see that in the case of frequencies smaller than the band gap, this
dependence is linear in the orthogonal case and quadratic in the parallel case with

Γ
‖
magn.,TM,r(

ˆ̃ω < ˆ̃ω∆, ž0) =
ε2
m

3
Γ
‖
magn.,TE,r(

ˆ̃ω < ˆ̃ω∆, ž0) . (4.84)

Furthermore, in the case of an emitter with its magnetic dipole moment oriented orthog-
onal to the graphene monolayer the decay rate is suppressed with respect to the vacuum
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decay rate (as compared to the enhancement in the case of parallel orientation). It is also
interesting to note that for the perpendicular magnetic dipole moments, the plasmonic
contribution relates to the radiative contribution as

Γ⊥magn.,p ≈ −2Γ⊥magn.,r , (4.85)

over a very large range of frequencies.

For frequencies larger than graphene’s band gap, all the radiative decay rate modifica-
tions are almost frequency independent with

Γ
‖
magn.,TM,r(

ˆ̃ω < ˆ̃ω∆, ž0) = Γ
‖
magn.,TE,r(

ˆ̃ω < ˆ̃ω∆, ž0) = −
Γ⊥magn.,r(ˆ̃ω < ˆ̃ω∆, ž0)

16
, (4.86)

(compare gray dashed lines in Fig. 4.13).

For relatively small distances ž0κ̂m � 1, we can opposite to Eqs. (4.81b), (4.82b) and
(4.83b) obtain analytical closed form solutions even for only the evanescent SPE region.
For ˆ̃ωž0 < ṽF/2, we can approximate the integrals Eqs. (4.81a) and (4.82a) by evaluating
the exponential in the integrands at the integrals’ center point

xc =
ˆ̃ω−1

∆ − ˆ̃ω−1

2
, (4.87)

and then computing the remaining integral. This results in

Γ
‖
magn.,TE,SPE(ˆ̃ω > ˆ̃ω∆, ž0 � κ̂−1

m ) ≈ απ

8ṽ2
F

√
εm

3 ˆ̃ω3
∆

(
−4ˆ̃ω3

∆

ˆ̃ω3
+

3ˆ̃ω2
∆

ˆ̃ω2
+ 1

)
· Ξ(ˆ̃ω) , (4.88a)

Γ⊥magn.,SPE(ˆ̃ω > ˆ̃ω∆, ž0 � κ̂−1
m ) ≈ 2Γ

‖
magn.,TE,SPE(ˆ̃ω > ˆ̃ω∆, ž0 � κ̂−1

m ) , (4.88b)

with Ξ = exp[−
√

(4ˆ̃ω2
∆ − 1)ˆ̃ω2 + 2ˆ̃ω ˆ̃ω∆ − ˆ̃ω2

∆
ž0

ṽF
ˆ̃ω∆

]. Equation (4.83a) on the other hand

can still not be solved analytical due to the fact that Re
[
Φ̂(ŷ)

]
cannot be neglected. The

remaining numerical integral of Eq. (4.83a) together with Eqs. (4.88) (further neglecting
the exponentials), we present in Fig. 4.13.

The negligence of the exponential in Eqs. (4.88) is appropriate for sufficiently small
distances ž0 � ṽF

ˆ̃ω∆. Due to the weak distance dependence, this approximation holds
for a large range of experimental distances (cf. Fig. 4.14). Then, the SPE contribution
is the dominating contribution for frequencies ˆ̃ω > ˆ̃ω∆ (cf. Fig. 4.13) and with this the
total decay rate exhibits a maximum (see Fig. 4.13(a), inset) at

Γ⊥magn.,SPE(ˆ̃ωmax = 2ˆ̃ω∆, ž0) =
Γ
‖
magn.,TE,SPE(ˆ̃ωmax = 2ˆ̃ω∆, ž0)

2
≈ 645 . (4.89)

On the other hand, the decay rate contribution Γ
‖
magn.,TM,SPE is monotonically growing

and thus not exhibit such a maximum. Since it is suppressed as compared to the TE
contribution, the total parallel decay rate however does exhibit a maximum.
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Figure 4.14: Above, we show the validity of the approximation of Γ⊥magn.,SPE where

the approximation is valid for various dipole transition frequencies ˆ̃ω0 over a wide
range of experimentally accessible

4.3.2 Lifetime modifications of an electric emitter

Analogously to the derivations for magnetic emitters, the decay rate modifications of
an electric emitter due to the existence of a graphene monolayer can be obtained. As
mentioned at the beginning of section 4.3.1, the decay rate of such an electric emitter
can simply be obtained from the interchange of rTE with rTM. This then results in the
textbook expression for the decay rate of electric emitters (see Ref. [28])

γel.

γ0
(ˆ̃ω, ž0) = 1 +

3

2|d|2
1

ε
3/2
m

ˆ̃ω3



d2
‖

2
Im





∞∫

−i
√
εm ˆ̃ω

[
εm ˆ̃ω2rTE + κ̂2

mr
TM
]

e−2κ̂mž0dκ̂m





+ d2
⊥Im





∞∫

−i
√
εm ˆ̃ω

(
εm ˆ̃ω2 + κ̂2

m

)
rTMe−2κ̂mž0dκ̂m






 . (4.90)

As for the magnetic case, we will split up the contributions into TE plasmonic, ra-
diative and SPE contribution. With the strongest feature, the possible detection of a
band gap in graphene and due to the opportunity to use additionally to the magnetic
transition of a given emitter (such as, e.g., an NV center) also the electric transitions at
a different frequency, we will exclusively focus on the frequency dependence of the decay
rate modifications. The opportunity to make use of electric transitions additionally to
the magnetic transitions allows to study a whole new range of energies and thus physical
phenomena.

TE plasmonic contribution

As for all of the following contributions, the approximations applied in the magnetic case
carry through to the electric case. However, due to the interchange of rTE and rTM only
the parallel component couples to the TE polarized modes of the electromagnetic fields
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Figure 4.15: Decay rate modification of orthogonal (a) and parallel (b) oriented
electric dipole moments situated in vacuum (εm = 1) at a distance ž0 = (3e8)−1

above the graphene monolayer. Adapted with permission from J. F. M. Werra et al.,
“Determining graphene’s induced band gap with magnetic and electric emitters”,
Phys. Rev. B 93, 081404(R) (2016), doi:10.1103/PhysRevB.93.081404. © 2016 by
the American Physical Society.

and with this show a modification due to the TE plasmonic resonance. Thus, with the
prior approximations, we arrive at

Γ
‖
el.,p(ˆ̃ω < ˆ̃ω∆, ž0) ≈ πα√

εm
ˆ̃ωe−ž0/ζ̌ , (4.91)

where due to the small distance dependence, exp(−ž0/ζ̌) ≈ 1. The characteristic decay
length ζ̌ is given by Eq. (4.63).

We present this asymptotic solution in Fig. 4.15, by the black line. For frequencies
ˆ̃ω > ˆ̃ω∆, as in the magnetic case, the plasmonic contribution is tens of orders of magni-
tudes smaller than the remaining phenomena. It is worth mentioning that although the
influence of rTE is suppressed with a factor c−2 in the case of the electric emitter, the
plasmonic contribution is only a factor 2ˆ̃ω−2

∆ smaller (see gray line in Fig. 4.13).

Radiative contribution

As before, we follow the approximations from the magnetic case and arrive for frequencies
ˆ̃ω < ∆ at

Γ⊥el.,r(ˆ̃ω < ˆ̃ω∆, ž0) ≈ 16

45
α2εm ˆ̃ω2 , (4.92)

Γ
‖
el.,r(

ˆ̃ω < ˆ̃ω∆, ž0) = Γ
‖
el.,TE,r(

ˆ̃ω < ˆ̃ω∆, ž0) + Γ
‖
el.,TM,r(

ˆ̃ω < ˆ̃ω∆, ž0)

≈ −α
(

π

2
√
εm

ˆ̃ω + α
4εm
15

ˆ̃ω2

)
≈ − απ

2
√
εm

ˆ̃ω . (4.93)

In the case of a parallel orientation of the electric dipole moment, the TE contribution
dominates due to the additional term of the fine structure constant α in the TM contri-
bution.
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For frequencies ˆ̃ω > ∆, we find

Γ⊥el.,r(ˆ̃ω > ˆ̃ω∆, ž0) ≈ 3

16
α
√
εmπ

ˆ̃ω2 + 1

ˆ̃ω2
, (4.94)

Γ
‖
el.,r(

ˆ̃ω > ˆ̃ω∆, ž0) = Γ
‖
el.,TE,r(

ˆ̃ω > ˆ̃ω∆, ž0) + Γ
‖
el.,TM,r(

ˆ̃ω > ˆ̃ω∆, ž0)

≈ − 3

8
√
εm

απ
ˆ̃ω2 + 1

ˆ̃ω2


ln

[
2
√
εm ˆ̃ω2

απ(ˆ̃ω2 + 1)

]
+
εm
4


 . (4.95)

These contributions, Eqs. (4.92), (4.93), (4.94) and (4.95), we display in Fig. 4.15 by the
green and orange lines. Here, we once more stress the suppression of the decay rate due
to the parallel scattering contribution from both TE and TM modes.

SPE contribution

As in the magnetic case, at frequencies ˆ̃ω > ∆ the largest contribution in Fig. 4.15 is
conduced by the excitation of electron-hole pairs (SPE). The determination of analytic
closed form solutions is as in the magnetic case not as straight-forward than for the
plasmonic and radiative contribution. Thus, we end up with the approximated integrals

Γ⊥el.,SPE(ˆ̃ω > ˆ̃ω∆, ž0) ≈ 3

2
√
εm

3 ˆ̃ω3

απ

2ṽ4
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)
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−ŷ2

ṽF
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]
− ŷ2




2

+


α

√
ˆ̃ω2
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∆

−ŷ2

ṽF

π
2
ŷ2+1
ŷ




2 , (4.96)

Γ
‖
el.,TE,SPE(ˆ̃ω > ˆ̃ω∆, ž0) ≈ 3

4
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απ

2ṽ2
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(4.97)

≈ 3απ
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αṽFπ
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dŷ

(
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2 , (4.98)

that are presented by the lines in Fig. 4.15. The solutions above, we present for small
distances ž0 � ṽF/2ˆ̃ω. Still, we once more could not make use of the small parameters
ṽF and α due to the fraction of both entering in Eqs. (4.96) and (4.98). However, in the
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Figure 4.16: Dependence of the non-radiative decay rate modifications for different
magnitudes of the band gap (∆0 = 0, ∆1 = 10−12ω̃0 and ∆2 = 0.5ω̃0 with λ = 2π/ω̃0)
of a magnetic (a) and electric (b) emitter. For large distances, only a small difference
between ∆1 and ∆2 but no difference between ∆0 and ∆1 is visible. For small
distances, the influence of the band gap is more apparent. For a discussion, see the
text. The case ∆0 = 0 corresponds in panel (b) to the results presented in Ref. [131]
with the asymptotic solutions presented within that work displayed by the dashed,
black lines (see Eq. (4.100)).

case of Eq. (4.97) where we introduce for better readability the parameter

e = αṽF
π

2

ˆ̃ω2 + 1

ˆ̃ω

ˆ̃ω� ˆ̃ω∆≈ π

2
ˆ̃ω , (4.99)

where we as for all cases with ω̃ > ∆ use the approximation ŷ ≈ ˆ̃ω, we are able to obtain
for large frequency values ˆ̃ω � ˆ̃ω∆ ≈ 1 the last approximations of Eqs. (4.97) and (4.99).
Opposite to a magnetic emitter, the SPE contribution does not exhibit a maximum in
decay rate but is monotonically increasing. Thus, the only possibility to determine the
size of a band gap is by measuring electric transitions slightly above and slightly below
the band gap itself. It is not possible to determine the band gap at a multiple of the
band gap’s frequency by the use of electric emitters.

4.4 Lifetimes of electric and magnetic emitters above
undoped graphene without a band gap

Especially when graphene is freely suspended, its band structure does not necessarily
need to exhibit a band gap. In this context, the authors of Ref. [131] discuss the lifetime
of electric emitters over graphene.

In order to embed the results presented in the previous section into existing literature,
we extend the results of the previous sections to ∆→ 0. Here, we can compare the results
for the electric emitter straight-forwardly with the existing literature (see Refs. [131, 169,
170]) while for the magnetic emitter we present not so far published results. In parallel to
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Figure 4.17: Non-radiative decay rate modifications of a magnetic (a) and electric
(b) emitter. The difference between the complete conductivity and the optical con-
ductivity σopt(ω) = σ(k = 0, ω) for a small band gap ∆1 = 10−12ω̃ is displayed. For
emitter distances smaller than the gray lines (z0 < 0.006 · 2λ and z0 < 0.002 · 2λ
for the magnetic and electric emitter, respectively) the influence of the wavevector
dependence and with this of the evanescent region is clearly detectable.

Ref. [131] and due to the magnitude of the SPE contribution as compared to the radiative
contribution for ˆ̃ω → ∞, we exclusively focus on the non-radiative contributions (SPE
and plasmonic contributions). The limit ˆ̃ω →∞ is equivalent to the limit ω̃ � ∆→ 0. In
this case, one free parameter of the system vanishes and we present the results as distant
dependent lifetimes.

As a first step, we use the expressions from the previous section and consider a band
gap much smaller than the electric and magnetic transition frequency ∆� ω̃0. For three
different values (∆1 = 10−12ω̃0, ∆2 = 0.5 ω̃0 and ∆0 = 0), we present the results for the
magnetic and electric non-radiative contributions in Fig. 4.16(a) and (b), respectively. In
the case ∆ = 0, we make use of the expressions of the reflection coefficients Eqs. (2.48)
and (2.49). Then, for ∆ = 0, in the electric case the results correspond exactly to the
results presented in Ref. [131]. In Fig. 4.16, we show the large distance behavior that is
derived in Ref. [131] and given by

Γ⊥nr(z0 > 1) ≈ 3α

26π

λ2

z2
0

(
1 +

3

8

λ2

z2
0

)
≡ Az−4

0 + Bz−2
0 , (4.100a)

Γ
‖
TE,nr(z0 > 1) ≈ 3

25π3α

λ2

z2
0

, Γ
‖
TM,nr(z0 > 1) ≈ 9α

210π3

λ4

z4
0

, (4.100b)

by the gray dashed lines. It is clearly visible that the decay rates are of equal order
of magnitudes even at frequencies ω̃ = 2 ∆2 compared to smaller gaps. However, this
difference becomes larger the smaller the distance from the graphene monolayer. This
can be understood when assessing the contributions from the SPE region with respect to
the distance of these contributions from the material’s light cone, both denoted within
Fig. 4.3. For the dimensionless units used in this figure, the limit ∆→ 0 does correspond
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to the limit ˆ̃ω0 → ∞. Then, the part of the SPE region becomes larger in which the
contributions stem from the evanescent region further away from the material’s light
cone. The more evanescent a wave, the more confined it is. Thus, the contributions
originating from the increased SPE region can only be felt by the emitter at very small
distances. Since for a vanishing gap, the SPE region extends over all wavevectors while at
a finite but small band gap the SPE region only spans over a finite number of wavevectors,
this explains the visible difference in decay rate at very small distances between band gaps
of ∆0 = 0 and ∆1 = 10−12ω̃0, respectively.

Furthermore, it is important to note that even for the electric emitter the distance
scaling of ž−4

0 that has been measured experimentally (cf. Ref. [169, 170]) is only valid for
intermediate distances between emitter and the graphene monolayer. For large distances
independent of the emitter’s orientation, a distance dependence of ž−2

0 starts to govern the
decay rate modifications. These distances, however have not been measured in Ref. [169,
170] but our computations agree well with the theoretically predicted scaling behavior
Eq. (4.100) (see Ref. [131]).

In the last part of this chapter, we show the influences of different models of the
electromagnetic response and focus on a purely optical response. Hither, we focus on
the limits of the applicability of an optical conductivity σopt(ω) = σ(k → 0, ω) to the
description of an experimental setup. In Fig. 4.17(a) and (b), we compare in the limiting
case ∆1 = 10−12ω̃0 the most strongly influenced non-radiative decay rate contribution of
parallel and orthogonal oriented magnetic and electric emitters, respectively. Here, we can
see that in the magnetic case for z0 > 0.006 ·2λ and for the electric case for z0 > 0.002 ·2λ
the decay rates computed from the optical conductivity match the results for the complete
description. In other words, at these distances the electromagnetic response of graphene
can be approximated as the effects at very small wavevectors with the effects stemming
from large wavevectors having decayed away. The largest difference between the magnetic
and electric emitter is however the actual transition wavelength λ. Magnetic transitions
usually take place at ω0 = 2πMHz corresponding to z0 > 3.6 m while electric transitions
take place in the optical (e.g., λ = 700 nm) corresponding to z0 > 2.8 nm. Thus, we can
sufficiently describe the decay characteristics of electric emitters at a distance of several
nanometers apart from the graphene monolayer when applying the optical conductivity
while this approach is for the magnetic emitter only valid at several meters distant. This
last requirement is usually not of physical interest and in conclusion we always have to
take the complete wavevector dependent conductivity into account when computing the
decay rate modification of a magnetic emitter.

4.5 Conclusions

We have shown in the previous sections that atoms, such as Rubidium (see section 3.3),
or atom-like emitters, such as quantum dots or an NV center, with their electric and
magnetic transitions are suited probes to determine characteristics of a graphene mono-
layer. By making use of the different transition frequencies and with this temporal scales
of both electric and magnetic dipole allowed transitions a wide range of energies can be
covered. Here, we have focused mainly on the existence of a band gap that alters the
electronic and optical properties of graphene. As discussed in the introduction to this
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chapter, by using atom microtraps this high sensitivity of the emitter’s decay rate to the
band gap can be used to measure even with spatial resolution the band gap of a mono-
layer at hand. This can then, e.g., compared to spatially resolved strain measurements
(see Ref. [138]) such that the question on whether or not mechanical strain is sufficient to
open a band gap in graphene might be unambiguously answered. Since here one would
expect band gaps in and slightly below the meV, a cooling of the graphene monolayer to
mK temperatures is necessary for the determination of the exact band gap.

Additionally, as we show by the study of distance and frequency dependence of the
decay rate modifications, the measurement of the decay rate modifications may be also
used to validate and determine the limits of the models applied in this work. This
understanding would also allow for the engineering of better designs of hybrid graphene
- emitter systems, such as atom-chips. Here, due to the relative smallness of all magnetic
decay rate modifications as compared, e.g., to gold (see Refs. [28, 124, 171]), graphene
monolayers and nanoribbons indeed seem to be appropriate candidates to trap atoms as
suspected in Ref. [172].
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CHAPTER 5

The Discontinuous Galerkin Time-Domain Method

“The good news about computers is that they do what
you tell them to do. The bad news is that they do what
you tell them to do.” 29

Ted Nelson

In this chapter, we present a numerical algorithm – the Discontinuous Galerkin Time-
Domain method that allows us to calculate the propagation of electromagnetic fields in
dielectric and plasmonic environments. In section 5.1, we introduce the basic method and
explain how electromagnetic fields are inserted into (see section 5.2) and terminated in
(see section 5.3) a calculation. In section 5.4 we show how plasmonic nanostructures
are modeled within the framework of the Discontinuous Galerkin Time-Domain method
(DGTD). In the following section 5.5, we transfer the modeling of metals to the rep-
resentation of graphene at finite temperatures and given chemical potential within the
framework of DGTD. The implementation has been published in Ref. [W7] and is in this
chapter adapted from there. Last, in section 5.6 we conclude with another important nu-
merical tool in electromagnetic computations: the implementation of oblique incidence in
periodic structures. The application of this technique we show at the example of stacked
graphene layers.

5.1 The Discontinuous Galerkin Time-Domain Method (DGTD)

The Discontinuous Galerkin Time-Domain method (DGTD) is a finite element method
and suited to solve partial differential equations. It was applied to the solution of
Maxwell’s equations by Hesthaven and Warburton (see Ref. [173]) and has since then
gained a lot of impact in the community of nanophotonics (see, e.g., Refs. [174–178]).
When comparing it to the well-established Finite Difference Time-Domain method (FDTD)
that is commonly applied to solve Maxwell’s equations (see Ref. [179]), the DGTD exhibits
the advantage in its variability of unstructured tessellation due to the well-established
choice of a triangular or tetrahedral discretization in two and three dimensions, respec-
tively (cf. Ref. [180]). This allows for a much more accurate modeling of geometric

29J. Demakis, “The Ultimate Book of Quotations” (Lulu Enterprises, Inc., 2012).
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structures avoiding artificially introduced stair-casing of the structure. Additionally, the
DGTD scales more favorably than the FDTD with respect to its spatial convergence.

When utilizing the DGTD to solve Maxwell’s equations (for a review see Ref. [180]),
the partial differential equations of interest are Maxwell’s curl equations in time and 3D
space (cf. Eqs. (1.1))

ε0εr(r)∂tE(r, t) = ∇×H(r, t)− j(r, t) , (5.1a)

µ0µr(r)∂tH(r, t) = −∇×E(r, t) , (5.1b)

where j(r, t) opposite to Eq. (1.1c) may contain both external and material charge cur-
rents. Equations (5.1) are then reformulated into a conservation law

D(r) ∂t~q (r, t) + ∇ · F[~q (r, t)] = ~Q (r, t) . (5.2)

Above, we introduce the material matrix

D(r) =

(
ε0εr(r)13 0

0 µ0µr(r)13

)
, (5.3)

the six-dimensional state vector ~q (r, t) = (E(r, t),H(r, t))T and 3D flux F = (~F x, ~F y, ~F z)
T

consisting of the six-dimensional components

~F i =

(
−ei ×H(r, t)

ei ×E(r, t)

)
, (5.4)

and the source terms ~Q (r, t) = (−j(r, t), 0)T .
As discussed in Refs. [173, 180], the divergence conditions of Maxwell’s equations,

Eqs. (1.1a) and (1.1b), are conserved within the DGTD and are thus fulfilled for all times
when they are fulfilled at the start of the computation t = t0.

By tessellation of the computational domain into individual elements ∆ (e.g., in 3D
tetrahedrons and in 2D triangles) and when then locally expanding the ith component of
the state vector ~q into a set of n Lagrange polynomials Li(r)30 on each of these elements
∆, we obtain

~q ∆
i,N (r, t) =

n∑

j=1

~q ∆
i,j (t) · Lj(r) ≡ ~q ∆

i,j (t) · Lj(r) , (5.5)

30Since a Lagrange polynomial of order p is given by (cf. Ref. [181])

Li(r) =

k+l+m≤p∑
k,l,m=0

a
(i)
klm x

kylzm ,

with the expansion coefficients a
(i)
klm, the number of Lagrange polynomials (and with this nodes) on

an element for order p, is for the different dimensionalities of the system given by

n = p + 1 (1D)

n =
1

2
(p + 1)(p + 2) (2D)

n =
1

6
(p + 1)(p + 2)(p + 3) (3D) .
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with Li(rj) = δij for a given set of spatial discretization (nodal) points {rj} on each
element ∆. With this property of the Lagrange polynomials, we find that the field value at
each discretization point rk corresponds to the expansion coefficient for the corresponding
Lagrange polynomial Lk

~q ∆
N (rk, t) = ~q ∆

k (t) . (5.6)

This is the reason why this specific DGTD scheme is also termed a nodal method.
For a better readability, we omit the superscript ∆ of the local quantities ~qN . We can

then formulate the discretized version of Eq. (5.2) for the discretized state vector ~qN (r, t)
(see Eq. (5.5))

D(r)∂t~qN (r, t) + ∇ · F[~qN (r, t)]− ~Q (r, t) = residual 6= 0 . (5.7)

This non-vanishing equation for the discretized states is then projected onto the set of
expansion functions. By requiring orthogonality of the residual and these functions, we
arrive at

∫

V∆

{
D(r)∂t~qN (r, t) + ∇ · F[~qN (r, t)]− ~Q (r, t)

}
· Li(r) d3r ≡ 0 , (5.8)

where V∆ is the volume of one element. Equation (5.8) thus describes the purely local
propagation of the state vector. As presented in Ref. [173, 182], we can add a coupling
between the two elements that additionally enforces the physical boundary conditions.
This is done via the numerical flux whose introduction we can motivate by first integrating
Eq. (5.8) by parts

∫

V∆

[
D(r)∂t~qN (r, t)− ~Q (r, t)

]
· Li(r) d3r

= −
∫

∂V∆

{
n̂ · F[~qN (r, t)]

}
· Li(r) d2r ,

(5.9)

with the integration d2r over the faces ∂V∆ of the element and the normal vector n̂ on
those faces. We next replace the physical flux by the numerical flux

F[~qN (r, t)]→ F∗[~qN (r, t)] , (5.10)

and then undo the integration by parts applied in Eq. (5.9)

∫

V∆

{
D(r)∂t~qN (r, t) + ∇ · F[~qN (r, t)]− ~Q (r, t)

}
· Li(r) d3r

=

∫

∂V∆

{
n̂ ·
[
F[~qN (r, t)]− F∗[~qN (r, t)]

]}
· Li(r) d2r .

(5.11)

To complete the numerical scheme, we need an explicit expression for the numerical flux
is still missing. Its form is – not surprisingly due to the artificial introduction of it – not
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Boundary condition E+ H+

perfect electric conducting −E− H−

perfect magnetic conducting E− −H−

Silver-Müller −E− −H−

Table 5.1: Altered face boundary conditions Eq. (5.15) that allow for the termination
of the computational domain. For a detailed discussion, see Ref. [181, 183].

unique but as shown in Ref. [173] the so-called upwind flux leads to a numerically stable,
consistent and convergent scheme for the choice of Lagrange polynomials as expansion
function:

n̂·
[
F[~qN (r, t)]− F∗[~qN (r, t)]

]

=




1
Z̄

{
α
[
∆E− n̂

(
n̂ ·∆E

)]
+ Z+n̂×∆H

}

1
Ȳ

{
α
[
∆H− n̂

(
n̂ ·∆H

)]
− Y +n̂×∆E

}


 .

(5.12)

In the expression above, we define the impedance Z and admittance Y as

Z± =

√
µ0µ

±
r

ε0ε
±
r
, and Y ± =

√
ε0ε
±
r

µ0µ
±
r
, (5.13)

with the local element referred to by the index ’−’ and the neighboring element referred
to by ’+’ and the averaged values

Z̄ = Z+ + Z− and Ȳ = Y + + Y − . (5.14)

The boundary conditions are introduced via ∆E(r, t) and ∆H(r, t). For a source-free
face connecting two elements, each of these elements either metallic or dielectric, these
conditions read

∆E = E+ −E− and ∆H = H+ −H− . (5.15)

At this point, we can now additionally include any physically required boundary condition
into Eq. (5.15). These can be, e.g., boundary conditions to terminate the computational
domain, such as Silver-Müller boundary condition, perfect electric conducting (PEC)
boundary conditions or perfect magnetic conducting (PMC) boundary conditions. In
these three cases, the neighboring element do not exist and with this E+ and H+ have to
be a priori defined. In the case of Silver-Müller boundary conditions, spherical waves are
perfectly absorbed when impinging on a priori designed spherical outer boundaries. In
the case of PEC boundary conditions the electric fields vanish at the boundary while in
the case of PMC boundary conditions the magnetic fields vanish. For the specific values,
see table 5.1. Additionally, Z+ = Z− and Y + = Y −.

Besides from the terminating boundary conditions, additional boundary conditions are
required, e.g. to implement current sheets (see section 5.5 and Ref. [W7]) or hydro-
dynamic material descriptions (see Ref. [184]). Between neighboring elements without
additional requirements, condition (5.15) however suffices.
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Finally, the spatially discretized Eq. (5.11) is then reformulated as ordinary differential
equation (ODE) (see Ref. [180] for details)

~̇q∆
N (t) = f

[
~q ∆
N (t), t

]
, (5.16)

where we have reintroduced the reference to the local element ∆. The exact shape
of the function f has been discussed in detail elsewhere (see Refs. [180, 181]). This
ODE can finally be solved using any ODE solver. Throughout this work, we apply a
low storage Runge Kutta (LSRK) of order π = 4 with s = 14 stages (cf. Ref. [185]).
Its stability region (see Ref. [186]) is for the case of a linear problem optimized to a
general eigenvalue spectrum of a nanophotonic computation described by the linear set
of equations Eq. (5.16).

5.2 Initializing electromagnetic fields in the DGTD

One possibility to introduce electromagnetic fields in the calculation are sources of elec-
tromagnetic radiation. The two best known types of sources are probably the so-called
scattered-field (Sf) and the total-field/scattered-field (TfSf) source (see Ref. [179]). In
this work, we used the TfSf source description to induce, e.g., the emitter’s field (compare
Eqs. (3.13) and (3.12)). The general formalism, however, works for the Sf source in the
same general manner.

When applying the TfSf source in order to introduce electromagnetic fields into the
computation, we split the computational domain into to regions: the total field region
and the scattered field region. In the scattered field region, we only compute the scattered
fields that are scattered from nanophotonic structures, while in the total field region, we
compute the total electric (and accordingly magnetic) fields defined as

Et(r, t) = Es(r, t) + Ei(r, t) . (5.17)

Here, the total field (t) is a sum not only of the scattered field (s) but also of the incident
field (i). The incident field is an electric and magnetic field to which the solution in
an isotropic material (i.e., vacuum) is analytically known on the complete TfSf contour
when considering no scatterer within the total-field (Tf) region. The incident field is then
added to the numerical flux at all boundaries (faces) between two elements, out of which
one belongs to the Sf region and the other element to the Tf region.

The incident field enters into the numerical flux via the jump condition, Eq. (5.15).
When a face is situated either between two total or two scattered field elements, Eq. (5.15)
can be applied without modification. If, however, the face is touched by one scattering
and one total field element (remember that the index ’−’ labels the fields on the local
and the index ’+’ labels the fields on the neighboring element) we find that Eq. (5.15)
becomes (analogously for the magnetic fields):

∆Et(r, t) = E+
s (r, t) + Ei(r, t)−E−t (r, t) , (5.18a)

∆Es(r, t) = E+
t (r, t)−E−s (r, t)−Ei(r, t) , (5.18b)

where ∆Et is the boundary condition for the fields on the total field’s element side of the
face and ∆Es the boundary condition for the fields on the scattered field’s element side.
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The incident field that is known analytically is in our case a dipole’s electric and mag-
netic field distribution (cf. Ref. [27] and Eqs. (3.12) and (3.13) for the explicit expressions)
allowing for an arbitrary temporal profile η(t) or a plane wave of polarization E0 and also
with arbitrary temporal profile η(t) for which the electric field reads

E(r, t) = E0η(t− k · r) . (5.19)

The alternative to a TfSf source is the aforementioned Sf source. Here, we use the
same distinction between the total, scattered and incident fields as before, while defining
incident regions in which the solution of an incident field is known for all times and
regions in which these fields differ. In this case, instead of the total field in some and the
scattered field in other regions, only the scattered fields are computed throughout the
computational domain. For the incident fields, the equations of motion for the analytically
known electromagnetic fields read

∂tEi(r, t) =
1

ε0εbackg
∇×Hi(r, t) , (5.20a)

∂tHi(r, t) = − 1

µ0µbackg
∇×Ei(r, t) , (5.20b)

at all times and assuming a constant background material (εbackg, µbackg). Here we
assume that no external charges or currents exist since this usually leads to a not ana-
lytically solvable field propagation. However, for appropriate cases, the approach can be
generalized.

For, e.g., a scatterer consisting of a non-dispersive, local, isotropic, lossless, linear
dielectric different from the background dielectric, the equation of motion for the scattered
fields reads

∂tEs(r, t) =
1

εrε0
∇×Hs(r, t) +

εbackg − εr
εr

∂tEi(r, t) , (5.21a)

∂tHs(r, t) =− 1

µrµ0
∇×Es(r, t) +

µbackg − µr
µr

∂tHi(r, t) . (5.21b)

Here, the second terms on the right hand side of the above equations are then volumetric
source terms. Similar equations can be derived for a large variety of linear and even some
nonlinear materials. See Ref. [179] for further details.

5.3 Terminating electromagnetic fields in the DGTD

In section 5.1, we presented different boundary conditions, such as PEC, PMC and most
importantly the Silver-Müller boundary conditions, that are usually applied to the outer
boundary of the computational domain and constitute constraints to the electromagnetic
waves that impinge on this outer boundary.

Without any additional boundary condition, the boundary condition reads E+ = H+ =
0 and the electromagnetic waves are simply reflected. For the case of perfectly spherical
waves, Silver-Müller boundary conditions applied to a spherical outer boundary present
in theory perfect absorbers in theory since they reflect no fields back into the computa-
tional domain. Thus they mimic an infinite computational domain and allow to compute
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electromagnetic scattering problems more efficiently by choosing a finite computational
domain.

However, in general the scattered electromagnetic fields may be almost spherical waves
but are seldom complete spherical waves. For this reason, a method was developed in
which the total computational domain is split into the physical domain and an outer
artificial layer, the so-called perfectly matched layer (PML) (see Ref. [187]). In the PML
fields are attenuated such that , when they are reflected back, they are sufficiently small
meaning they barely interfere with the physical relevant computations. Additionally, we
usually apply the Silver-Müller boundary conditions at the outer most boundary to damp
the fields additionally.

In order to terminate different materials, in literature there are different methods ap-
plied such as, e.g., the stretched-coordinate implementation (see Refs. [181, 188]) in order
to terminate, i.e., dissipative materials. In this work, we only apply the most commonly
used formulation, the so-called uniaxial perfectly matched layers (uPMLs) (see Refs. [179,
188, 189]), that allows only for the termination of non-dissipative and local materials. The
basic idea then is to replace the scalar material parameters ε and µ by the material tensors

ε′ = Λε µ′ = Λµ , with Λ =




sysz
sx

0 0

0 sxsz
sy

0

0 0
sxsy
sz


 , (5.22)

where we introduce the PML parameters

si = 1− σi
iω
. (5.23)

Here, the parameter σi leads to a damping of an electromagnetic wave propagating in i
direction. The altered material parameters are implemented in the DGTD by the use of
appropriate auxiliary differential equations (ADEs) (see section 5.4 for the concept). The
method is called uniaxial due to the fact that an electromagnetic wave is damped only
in the direction i. Additionally, it is called perfectly matched since the impedance and
admittance of the uPML region are matched to the neighboring physical region

Y ′ = Y Z ′ = Z .

such that an electromagnetic wave impinging onto the interface to the uPML region is
in theory not reflected from it. However, when applying the uPML formalism to an
actual computation, besides from the back reflection from the outermost boundary at
the edge of the computational domain, back reflection at the boundary between physical
and uPML region occur. This is due to the finite discretization since the discretized
electromagnetic fields never perfectly fulfill Maxwell’s equations. In consequence, one
always needs to choose an optimum with regard to the computational error and time
between the magnitude of the damping (the smaller, the less reflection at the physical-
uPML domain) and the thickness of the uPML (the larger, the more electromagnetic
field is absorbed and the smaller the damping can be but at the same time the longer the
computational time).

For the specific implementation of the uPML into a DGTD method and the appropriate
choice of parameters see Refs. [181, 188].

111



5 The Discontinuous Galerkin Time-Domain Method

5.4 Materials in the DGTD: Auxiliary Differential Equations

After having introduced ways to insert and absorb electromagnetic fields in the compu-
tation, we next focus on the modeling of standard materials whose dielectric permittivity
cannot simply be described by the non-dispersive permittivity introduced in Eq. (5.3).
The materials of highest interest in nanoplasmonic modeling are bulk metals. In this sec-
tion, we present thus two widely applied models to describe these bulk metals (such as,
e.g., gold and silver). However, these methods can also be generalized to the description
of other materials such as graphene (see section 5.5), dielectrics doped with dyes (using
the Maxwell-Bloch equations presented in Eq. (3.19)) or even more advanced material
descriptions for the bulk metals, i.e. the hydrodynamic model (see Ref. [184, 190]). The
later two are not further discussed in this work.

Opposite to frequency domain methods, the dielectric tensors cannot be included by
their discrete and experimentally determined frequency dependent values into a time
domain method. This is due to the fact that they have to be transformed into time
domain before being introduced into the time domain algorithm. This is done via so
called ADEs (see Ref. [179]).

5.4.1 The Drude model

As mentioned above, there exist two widely applied models for the description of bulk
metals. The first of these models is the Drude model in which a constant, positive ionic
background (consisting of the immobile nuclei and the electrons occupying the lower
orbitals) and the freely moving valence electrons are assumed. This corresponds to a
jellium model (see Ref. [191]). Thus, this model describes the electronic properties of
electrons remaining in one band of the material, the so-called intraband absorption, well
(see also Fig. 2.4(a) for a very general sketch of the intraband absorption in graphene).

In frequency domain, the 3D optical conductivity σ(ω) with (cf. Eq. (1.82))

jDrude(r, ω) = σDrude(ω)E(r, ω) , (5.24)

that can both describe bulk and surface effects, reads (see Ref. [181])

σDrude(ω) =
ω2

Drude

γDrude − iω
. (5.25)

Above, ωDrude =
√
e n/me corresponds to the bulk plasmon frequency with the density

of electrons n, where each of the electrons has a mass me and a charge −e, while γDrude

is a phenomenological collision frequency between the valence electrons.
Inserting Eq. (5.25) into Eq. (5.24) and Fourier transforming the resulting equation

into time domain by use of −iωA(ω)→ ∂tA(t) (cf. Eq. (1.9)), leads to the ADE for the
Drude model

∂tjDrude(r, t) = ω2
DrudeE(r, t)− γDrudejDrude(r, t) . (5.26)

5.4.2 The Lorentz model

The second important macroscopic description for the metallic properties is the Lorentz
model. In this model, the electron is described by a driven, harmonic oscillator. This can
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be mapped to an interband transition with the electron being excited to another band
of the solid. Thus, Lorentz model terms are applied when describing the response to
electromagnetic fields in the energy range of such interband transitions.

The conductivity in this case reads (see Ref. [181])

σLorentz(ω) = −iω
∆εLorentzω

2
Lorentz

ω2
Lorentz − iγLorentzω − ω2

. (5.27)

Here, each electron oscillates at an eigenfrequency ωLorentz and is damped by the damp-
ing parameter γLorentz. Additionally, an oscillator strength ∆εLorentz is introduced that
quantifies the coupling of the electrons to the electromagnetic field driving the oscillator
(and with this the interband transition).

The conductivity, Eq. (5.27), cannot be as straight-forwardly translated into a time
domain method as the Drude conductivity due to two facts: first, it is second order in
time (ω2 in the denominator) and, second, it contains a derivative of the electric field
(−iω in the numerator). The second derivative in time can be avoided by reformulating
Eq. (5.27) in terms of an auxiliary current qLorentz and with some algebraic reformulation
(see Refs. [179, 181]), we obtain

−iωjLorentz(r, ω) =∆εLorentzω
2
LorentzE(r, ω)

−γLorentz∆εLorentzω
2
LorentzE(r, ω) + ω2

LorentzjLorentz(r, ω)

γLorentz − iω︸ ︷︷ ︸
≡qLorentz(r,ω)

. (5.28)

When we then Fourier transform the set of equations above into time domain, we obtain
with jLorentz(r, ω) = σLorentz(ω)E(r, ω) the complete set of ADEs

∂tjLorentz(r, t) = ∆εLorentzω
2
LorentzE(r, t) + qLorentz(r, t)

∂tqLorentz(r, t) = −ω2
LorentzjLorentz(r, t)− γLorentz∆εLorentzω

2
LorentzE(r, t)

− γLorentzq(r, t) .

(5.29)

5.4.3 The dielectric function of a general bulk material

For the case of bulk material, we can derive the expression for the optical dielectric
function ε(ω) via the Kubo-formula Eq. (1.83) (χ(ω) = −iωσ(ω)) and find

ε(ω) = ε∞ +

NDrude∑

i=1

χDrude,i(ω) +

NLorentz∑

i=1

χLorentz,i(ω) . (5.30)

The constant background permittivity ε∞ can be taken care of in Maxwell’s equations
themselves while the other NDrude+NLorentz terms are both in frequency and time domain
additive and lead to an additional NDrude +2NLorentz ADEs that are solved alongside with
the actual Maxwell equations on each element that contains the material. In other words,
the degree of freedom vector ~qN (r, t) as well as f(~qN (r, t)) from Eq. (5.16) are extended
by the currents and auxiliary currents from Eqs. (5.26) and (5.29).
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Figure 5.1: Frequency-dependence of the conductivity of graphene for different val-
ues of the phenomenological decay rates Γ. Panels (a) and (b) correspond to graphene
at doping levels of µ = 0.4 eV and µ = 0.6 eV, respectively. Graphene is at room
temperature T = 300 K. The change of the doping level, moves the plasmonic prop-
erties of graphene closer to the visible frequency range. All parameters are defined in
Eq. (2.63) and similar values have been used in the literature [88, 89, 192]. Adapted
from J. F. M. Werra et al., “Current sheets in the Discontinuous Galerkin Time-
Domain method: an application to graphene”, Proc. SPIE Optics+Optoelectronics
95020, 95020E (2015).

They couple to Maxwell’s equations via the external current at each point in space r
and time t (cf. Eq. (5.1a))

∂tE(r, t) = ε−1
∞ (r)


∇×H(r, t)− jfree(r, t)

−
NDrude∑

i=1

jDrude(r, t)−
NDrude∑

i=1

jLorentz(r, t)− . . .


 ,

(5.31)

where we allow for any other material current to be added to the equation above.

5.5 Graphene in the DGTD

Since we usually use the DGTD to model optical effects, we will describe graphene using
the optical conductivity (cf. Eq. (2.63))

σ(ω) = lim
q→0

[
σ(q, ω)

]
, (5.32)

with the previously defined angular frequency ω and the 3D wavevector q. Addition-
ally, we will include temperature dependent and chemical doping effects and thus apply
the quantum-field theoretical expressions Eqs. (2.64) and (2.65). Previously, this same
material model has been implemented into a FDTD algorithm (see Ref. [192]) and into
frequency domain algorithms (see Ref. [193]). In the following we present this approach
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Figure 5.2: Fitted (dots) and RPA (solid lines) data for the full conductivity of
graphene, for two different sets of parameters (Γ = 5 · 10−4 eV and T = 300 K).
Two different doping levels are used, µ = 0.4 eV and µ = 0.6 eV and are represented
by dark and light colors, respectively. Graphene’s full conductivity (see Eq. (1.82))
contains both intra- and interband contributions where the intraband contributions
are given by an exact Drude term (see Eq. (2.64)) and the interband contributions are
fitted with a two-term critical point (CP) model. Adapted from J. F. M. Werra et al.,
“Current sheets in the Discontinuous Galerkin Time-Domain method: an application
to graphene”, Proc. SPIE Optics+Optoelectronics 95020, 95020E (2015).

and a validation of it for the case of the DGTD method. This section is adapted from
Ref. [W7].

As discussed in section 2.2.4, the conductivity of doped graphene at finite temperatures
can be described by a simple Drude pole and an additional interband term Eq. (2.65). At
optical frequencies and low doping levels, the Drude contribution dominates the electro-
magnetic response. However, at high doping levels or at THz frequencies the interband
conductivity governs the properties of graphene. Additionally, for sufficiently high tem-
peratures, the damping Γ can be ignored (see the small differences between the optical
conductivity for different values of Γ in Fig. 5.1), i.e., we can consider the limit Γ→ 0.

Analogously to the work of Prokopeva et al. (see Ref. [192]), we can simplify the
interband conductivity’s expression Eq. (2.65)

σinter(ω) = −i
e2ω

π
P
∞∫

0

g(E)

4E2 − (~ω)2
dE +

e2

4~
g

(
~ω
2

)
, (5.33)

where P denotes the principal value and we have introduced the auxiliary function

g(~ω) =
sinh

(
~ω
kBT

)

cosh
(

µ
kBT

)
+ cosh

(
~ω
kBT

) . (5.34)

Equation (5.33) allows for an analytical expression for the real part. This is very helpful
for fitting graphene’s interband conductivity using a two-term critical point (CP) mod-
els (see Sec. 5.5.1 for the exact expression). Due to the Kramers-Kronig relation (see
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Parameters 1st CP 2nd CP

Ωm (eV) 0.5050 0.7922
Γm (eV) 0.6760 0.1700
φm (°) -88.5631 -84.3622

Am (e2/~) 0.1764 0.0456

Parameters 1st CP 2nd CP

Ωm (eV) 1.1943 0.8751
Γm (eV) 0.1807 0.9660
φm (°) -88.5762 -84.3661

Am (e2/~) 0.0230 0.1121

Table 5.2: Parameters of the two-term CP model obtained by fitting the model
to the interband conductivity Re

[
σinter(ω)

]
for two doping level, µ = 0.4 eV and

µ = 0.6 eV (left and right table), respectively, as described in Fig. 5.2.

Eq. (1.94), this expression can then also be utilized to describe the imaginary part of the
interband conductivity (see Ref. [192]).

In Tab. 5.2, we list the fitting parameters of the CP model and present in Fig. 5.2 a com-
parison between the analytical and the fitted conductivities. For the definition of these
CP-parameters and the exact form of the fitting function along with its interconnection
to the parameters presented in Tab. 5.2, we refer to appendix E.

5.5.1 Current sheets in the DGTD

The concept of current sheets has first been introduced via boundary conditions by Mo-
hammadian et al. into the so-called Finite Volume (FV) methods (cf. Ref. [194]).

Due to the similarities between FV and DGTD methods, this concept can be straight-
forwardly adapted to the DGTD method. The boundary condition given in Eq. (5.15)
has in this specific case to include the physical boundary condition (cf. Eqs. (2.52))

n̂×∆E(r, t) = 0 and n̂×∆H(r, t) = jsurf , (5.35)

with jsurf the local surface current. In frequency domain this reads (cf. Eq. (1.82))

jsurf(ω) = σ(ω)
[
n̂×E±(r, ω)

]
. (5.36)

Opposite to the case of the electromagnetic response of a 3D, bulk material (cf. Eq.
(5.31)), the conductivity of a current sheet does not alter the volumetric Maxwell’s equa-
tions but rather the boundary conditions Eq. (5.15). Then, between two elements there
is a current sheet flowing according to

∆H(r, t)′ = ∆H(r, t)− jsurf(r, t). (5.37)

Here, we use that the tangential components of the electric field are continuous across
the interface which leads to a continuous surface current jsurf .

In the case of a current sheet, we employ – as is the case for any dispersive material
model – ADEs (see Ref. [179] and section 5.4) that here describe the time-evolution of
the current density. In the case of graphene, we show in the following (see also Ref. [192])
it is most effectively described by combining a single Drude model (intraband term) with
two CP-models into the surface current via (cf. Eqs. (5.30) and (5.31))

jsurf(r, t) =

NDrude=1∑

i=1

jDrude,i(r, t) +

NCP=2∑

i=1

jCP,i(r, t) . (5.38)
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5.5 Graphene in the DGTD

Similarly to the Drude (Eq. (5.25)) and the Lorentz (Eq. (5.27)) conductivities, the
conductivity of the CP model reads as (see Ref. [W7, 195, 196])

σCP(ω) = −iωAmΩm

(
eiφm

Ωm − (ω + iΓm)
+

e−iφm

Ωm + (ω + iΓm)

)

= −2iωAmΩm
cos (φm)Ωm − sin (φm)Γm − iω(− sin (φm))

Ω2
m + Γ2

m − iω(2Γm − iω)
.

(5.39)

Here, the implementation into the DGTD requires a slight reformulation that originates
from the fact that within the DGTD method the electromagnetic field is collocated while
within the FDTD the electromagnetic field is represented on a staggered Yee-grid. Such
reformulations are known for the Drude- and the Lorentz-model (compare sections 5.4.1,
5.4.2 and Refs. [180, 185]).

To find a set of ADEs suited for the DGTD method as in the case of the Lorentz
conductivity Eq. (5.29) we have to provide a formulation that only depends on the elec-
tric field E(r, t) and does not contain its temporal derivative. This can be achieved by
introducing two auxiliary currents

pCP(r, ω) = jCP(r, ω) + 2AmΩm sin (φm)E(r, ω) , (5.40)

qCP(r, ω) = −

(
Ω2
m + Γ2

m

)

2Γm − iω
p(r, ω)

−
2AmΩm

[
2ΓmΩm cos (φm) +

(
Γ2
m − Ω2

m

)
sin (φm)

]

2Γm − iω
E(r, ω) . (5.41)

Inserting these expressions into the current equation jCP(r, ω) = σCP(ω)E(r, ω) and trans-
forming to the time domain, we obtain the ADEs of the CP model

∂tpCP(r, t) = qCP(r, t) + 2AmΩm

[
cos (φm)Ωm + sin (φm)Γm

]
E(r, t) , (5.42)

∂tqCP(r, t) = −2ΓmqCP(r, t)−
(

Ω2
m + Γ2

m

)
pCP(r, t)

− 2AmΩm

[
2ΓmΩm cos (φm) +

(
Γ2
m − Ω2

m

)
sin (φm)

]
E(r, t) . (5.43)

Then, the boundary condition for the magnetic field is calculated using the time-dependent
expression for the surface current jCP(r, t) obtained from Eq. (5.40)

jCP(r, t) = pCP(r, t)− 2AmΩm sin (φm)E(r, t) . (5.44)

5.5.2 Validation

In this section, we validate our results by comparing DGTD computations in two spatial
dimensions with analytic transfer-matrix calculations (see Eq. (4.1) and Fig. 4.2).

In Fig. 5.3 (left column), we depict the frequency-dependence of reflectance from and
transmittance through a single layer of graphene suspended in vacuum. In this case, the
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Figure 5.3: Comparison of the frequency-dependence of reflectance from and trans-
mittance through a freely suspended (left column) and on hBN deposited (right
column) graphene sheet under normal incidence for DGTD computations (symbols)
and analytical calculations (solid and dashed lines) for different doping levels µ (0.4
eV and 0.6 eV) and polarizations (TE and TM). For the hBN substrate we assume
ε = 4.0. The inset in the lower right panel shows the influence of different doping
values on the transmittance. The legend displayed in the upper left graph applies
to all graphs. Adapted from J. F. M. Werra et al., “Current sheets in the Discon-
tinuous Galerkin Time-Domain method: an application to graphene”, Proc. SPIE
Optics+Optoelectronics 95020, 95020E (2015).

intraband conductivity of graphene completely dominates for short (optical) wavelengths,
leading to a transmittance of (cf. Refs. [75, 197] and Eq. (2.50))

T = |t|2 =
1

(
1− π

2α

)2 ≈
π

α
≈ 97.74% . (5.45)

Within the DGTD, the transmittance (and reflectance) can be calculated via the defi-
nition of transmittance (and equivalently reflectance R by interchanging t→r) as

T =
Φt(ω)

Φi(ω)
≡ 〈
∫
V d3x ∂tu

t(t)〉t
〈
∫
V d3x ∂tui(t)〉t

Eq. (1.21)
=

∫
∂V d2x 〈St(t)〉t · n∫
∂V d2x 〈Si(t)〉t · n

, (5.46)
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Figure 5.4: Panel (a): Schematic of the setup for a hyperbolic metamaterial (HMM)
computation via the DGTD method. There are 11 graphene current sheets (bold
red lines with the boundary condition Eq. (5.37)) that are separated by 10 hBN
layers (dark blue), each being 50 nm thick. In the vertical direction, the compu-
tational domain is terminated by uPMLs and the TfSf contour is marked. In the
horizontal direction, periodic boundary conditions are applied. Furthermore, the
setup considered is two-dimensional. Panel (b) depicts an inset. Panel (c) shows
the frequency-dependence of the real part of transverse effective dielectric constant
Re[εxx(ω)] = Re[εyy(ω)] for and infinite stack of alternating graphene and hBN lay-
ers (thickness 50 nm, dielectric constant ε = 4) for different doping level of graphene
(following Ref. [88]). As Re[εzz] = ε, this composite system exhibits the character-
istics of a HMM in the frequency range ω = 0 eV to ω = 0.56 eV (µ = 0.4 eV) and
ω = 0.79 eV (µ = 0.6 eV), respectively. Adapted from J. F. M. Werra et al., “Cur-
rent sheets in the Discontinuous Galerkin Time-Domain method: an application to
graphene”, Proc. SPIE Optics+Optoelectronics 95020, 95020E (2015).

where Φt(r)(ω) is the directed, radiant flux transmitted (reflected) by the periodic struc-
ture and Φi(ω) the directed, radiant radiant flux incident on the periodic structure. Here,
we integrate over a volume V that is surrounded by an in infinity closed surface ∂V with
the normal unit vector n on the surface. In this section, this integration areas are dis-
played in Fig. 5.4, where the TfSf contour is the integration contour for the reflected and
the contour marked by the term trans. contour the integration contour for the transmit-
ted, time averaged Poynting flux (cf. Eq. (5.46)).

As demonstrated in the inset of the lower left graph in Fig. 5.3, within the DGTD
approach we obtain precisely this value for an infinitesimally thin current sheet and do
not have to take into account any artificial thickness of the graphene layer as would be
required in FDTD computations [198].
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5 The Discontinuous Galerkin Time-Domain Method

In addition, we test our system for both, TE and TM polarization for the case of
graphene on a substrate. Clearly, for normal incidence those two cases coincide analyt-
ically but in the DGTD computations different codes (rather different sections of the
code) are utilized so that obtaining agreement with the analytical calculations provides a
further aspect of validation. As before, we choose hexagonal boron nitride (hBN) as the
substrate as this leads to minimal strain effects. In fact, recent ab-initio computations
[54] have demonstrated that strain is the main factor for opening an electronic band gap
in graphene, an effect which is not contained in our material model. In Fig. 5.3 (right
column), we compare the transmittance and reflectance results from analytic calculations
with those from DGTD computations and find excellent agreement.

5.5.3 Multilayer systems: hyperbolic metamaterials

Our current sheet approach exhibits significant advantages for a number of situations such
as nonlinear material models for graphene and/or complex geometries. For illustration,
we focus on the latter and consider stacks that contain multiple layers of graphene that
are separated by dielectric spacer layers.

As described above, our approach treats graphene as an infinitely thin current sheet
instead of a thin film of somewhat arbitrary (but certainly small) thickness as would be
the case for FDTD computations (see Ref. [198]).

From a numerical point of view, perhaps even more important than the somewhat
arbitrary thickness is the fact that no matter what the precise value, it will be very, very
small compared to other length scales present in nanoplasmonic systems. For instance,
typical thicknesses of graphene sheet of 5 Å have to be compared with 700 nm (wavelength
of red light) or even 300 µm (wavelength corresponding to the frequency of 1 THz).
Corresponding antenna structures are perhaps a factor of 10 (visible frequencies) to 100
(THz frequencies) smaller and may exhibit feature sizes in the range of, say, 10 nm.
Because the smallest length scale in the problem generally determines the maximally
available time step in explicit time-stepping schemes this suggests that when having
to fully resolve the Å length scale as in the FDTD approach, one has to pay double,
i.e., one has to deal with many unknowns and acquires very small time steps both of
which significantly increase the computational run-times. In contrast, the infinitely thin
current sheets of the DGTD approach completely avoid the problem of resolving the Å
scale. Rather, the DGTD approach has to resolve the next largest length scale; in our
example this would be the typical feature size of a nanoantenna, say, 10nm. From this,
obvious gains in efficiency relative to the FDTD approach result.

In the following, we investigate systems with up to 25 graphene layers stacked in the
z-direction and separated by hBN layers (thickness 50 nm) for different doping levels
and compare the reflectance and transmittance under normal incidence with analytical
calculations. Such composite systems are known to exhibit effective hyperbolic dispersion
relations as they correspond to effective uniaxial materials and are thus called hyperbolic
metamaterial (HMM). For them, the values of the real part of the principal dielectric
constants differ in sign (see Ref. [88]).

Such effective hyperbolic dispersion characteristics lead to novel and highly interesting
optical phenomena such as enhanced densities of states etc. (see Ref. [199]).

In Fig. 5.5, we depict the results of both, DGTD computations and transfer-matrix
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Figure 5.5: Frequency dependence of transmittance and reflectance through 10, 15
and 25 layers hBN of thickness 50 nm, separated by and the whole stack sandwiched
between graphene monolayers of different doping level µ (cf. Fig. 5.4 for further
details). In the HMM region (gray shaded area), a single peak with near unity trans-
mittance through the stacks is observed. Outside of this region the electromagnetic
response is governed by Fabry-Perot oscillations. The DGTD computations (sym-
bols) agree very well with corresponding analytical transfer-matrix calculations for
both polarizations, TE and TM. Adapted from J. F. M. Werra et al., “Current sheets
in the Discontinuous Galerkin Time-Domain method: an application to graphene”,
Proc. SPIE Optics+Optoelectronics 95020, 95020E (2015).

based analytical calculations. In the frequency range of hyperbolic behavior, we observe
invariably near-unity transmittance, although a single graphene sheet on a hBN substrate
exhibits rather low transmittance values (cf. Fig. 5.3, right column). These peaks are
around frequencies ω = 0.3 eV and ω = 0.37 eV for doping levels at µ = 0.4 eV and
µ = 0.6 eV, respectively, and exhibit a weak dependence on the number of layers. In
contrast to this, outside the HMM frequency range, the systems features ordinary Fabry-
Perot oscillations corresponding to the thickness of the entire structure. Finally, we would
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Figure 5.6: The Figure above symbolizes the complete space of the dispersion rela-
tion (light blue) that is spanned by the parameters incident angle and frequency. The
red line symbolizes the parameters accessed by a time-domain simulation of normal
incidence, the blue line the parameter space accessed by a true oblique incident sim-
ulation with a fixed incident angle θ and the green line the parameter space accessed
by the method introduced in Ref. [200].

like to note, that for these rather complex systems, too, the agreement between DGTD
computations and analytical calculations is excellent (relative error εrel < 10−7).

5.6 Oblique incidence

Up to this point, we have analyzed periodic structures only by impinging with normal
incident electromagnetic pulses. However, this only gives access to a very small space of
the (q, ω) space (cf. Fig. 5.6) and especially for metamaterials that exhibit a very special
dispersion relation (see Refs. [88, 199]) but also in the case of periodically structured
layered structures (see e.g. Ref. [W5]) a method that allows for varying the incident
angle of the electromagnetic excitation is of great interest. In the following, we present a
method first introduced in Ref. [200].

5.6.1 General Idea

In general, while normal incidence in periodic structures is straight-forwardly imple-
mentable in Time-Domain solvers, oblique incidence is not. This is due to the dispersion
relation of light. In general, we define a constant incidence angle θ via

qx = q · sin (θ) , (5.47)

when the incidence plane is assumed along the (x, y)-direction, the absolute value of the
incidence wave vector is given via q = |q| and the light propagates in z-direction (cf.
Fig. 5.8). When the periodic lattice constant in x-direction is given as a, we can connect
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a

Figure 5.7: When using periodic boundary conditions (a), two periodic elements can
be connected by identifying the other element as the neighboring element containing
the fields E+ and H+ from the numerical flux and Eq. (5.15). When we model
oblique incidence, the corresponding periodic elements are in one direction connected
via condition (5.53).

the electric and magnetic fields in frequency domain via

E(x = 0, y, z, ω) = E(x = a, y, z, ω)eiqxa ,

H(x = 0, y, z, ω) = H(x = a, y, z, ω)eiqxa .
(5.48)

Translating those two equations into time domain yields (for a linear dispersion relation
ω = k · c with the material dependent speed of light c):

E(x = 0, y, z, t) = E(x = a, y, z, t+ a · sin (θ)

c
) ,

H(x = 0, y, z, t) = H(x = a, y, z, t+ a · sin (θ)

c
) .

(5.49)

Equation (5.49) requires the knowledge of the electric and magnetic fields at later points
of the simulations. For qx = 0 (normal incidence) this requirement vanishes which makes
the case implementable in time-domain Maxwell solvers, however for any other general
oblique incidence angle, this is not the case. Several different approaches were therefore
developed in the FDTD community to shortcut this problem. One famous approach is
the split-field method (cf. Ref. [201]). This approach, however, requires several iterations
of the program and is therefore highly inefficient for calculations.

However, truly oblique incidence is only one way to access the complete space spanning
over frequency and incidence angle. The sketch in Fig. 5.6 represents this parameter space,
where the red line marks the parameter space accessed by a normal incident calculation,
the blue line the parameter space accessed by an oblique incidence simulation with a fixed
incidence angle and the green line a parameter space accessed by choosing

qx = const. (5.50)

In this case, in linear time-domain simulations the propagation of a pulse with a conti-
nuum of incident angles is computed - indeed exactly distributed as the frequency dis-
tribution of the implemented pulse. Depending on the research question at hand, this
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Figure 5.8: Electric field distribution |Ex(t1 = 5.4779c/nm)|2 . The mesh setup is
depicted on the left of the picture, where in z-direction the domain is terminated by
Silver-Müller boundaries on the top and on the bottom. The TfSf contour (blue line)
on which not the exact solution to Maxwell’s equations is induced into the system
but rather the solution for qx = 0. The Bloch periodic boundaries fulfill the condition
qx = 10/nm (red line in Fig. 5.10). The blue and red dot represent the positions r0

chosen for the plots in Fig. 5.9.

approach might be as valid as the oblique incident approach, when we are for example
more interested in testing a system for the complete parameter space and not just using
one of those lines.

Whenever we choose a constant qx instead of a constant angle θ for the direction
of the incident pulse, we actually implement Bloch boundaries31. Then, the projected
wavenumber qx is not dependent on the frequency of the plane wave and therefore also
not dependent on time. We accordingly write

E(x = 0, y, z, t) = E(x = a, y, z, t)eiqxa ,

H(x = 0, y, z, t) = H(x = a, y, z, t)eiqxa .
(5.51)

31The Bloch theorem states that for a periodic potential V (r) = V (r + R) the solutions of Schrödinger’s
equations have the form ψ(r + R) = eik·rψ(r). Although this setup cannot directly be mapped onto
our situation (Bloch’s theorem is exactly like Eq. (5.49) stated in Fourier domain), the equations look
the same and the name is simply used as an abbreviation.
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Figure 5.9: In the panels above, we show the fields Ey(r1, t) and Ey(r2, t) at two
horizontally separated points (marked in Fig. 5.8 in blue and red corresponding to the
colors of the plots above). For different qx the long-time horizontal mode has different
amplitudes, the higher the closer to the center of the spectrum of the exciting pulse
(cf. Fig. 5.10). Gray lines mark the time from which on the fields are dominated by
the complete perpendicularly propagating modes are assumed to exist in the systems
and which are taken as starting times for the discrete Fourier transform in Fig. 5.10.
The time at which the perpendicularly propagating mode is assumed to be dominant
is the time at which both electric fields oscillate in phase. Adapted for DGTD data
from Ref. [200].

In the following, we will use the term Bloch factor B that is defined as

B = eiqxa . (5.52)

This can be implemented via Eq. (5.15) where instead of directly connecting the two
periodically attached elements (see Fig. 5.7), we alter the boundary condition on one side
to

∆E = B−1E+ −E− , ∆H = B−1H+ −H− . (5.53)
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Figure 5.10: Discrete Fourier transform of electric fields from Fig. 5.9 (Fields at
z = 0 nm, blue curve as marked in Fig. 5.8). For qx = 2.5/nm the remaining electric
field is not strong enough to extract the eigenfrequency. The fields from t0 = 10/nm
(compare gray lines in Fig. 5.9) are taken into account. Comparing the mode’s
eigenfrequencies with qx (dashed lines) gives a very good correspondence.

Another possible implementation of the general idea of quasi-oblique incidence is pre-
sented in Ref. [202]. where instead of computing E and H, the DGTD and with this
the numerical flux is reformulated for auxiliary modified fields. We, however, choose the
more direct implementation presented similarly for the FDTD case in Ref. [200].

5.6.2 Vacuum tests

With the correct boundary conditions Eq. (5.53), we go ahead and test the implementa-
tion with a vacuum setup as a proof of principle. The setup consists of uPMLs on the top
and bottom and the electromagnetic field is induced via a TfSf contour (see left panel of
Fig. 5.8). The electromagnetic field induced into the computational domain is a pulsed
plane wave (cf. Eq. (5.19)). Since we induce at the TfSf contour the incident field for
the case of normal incidence instead of the (not known) solution for oblique incidence
(qx = const), parts of the field is scattered into the Sf region. When we later compute
physical problems that contain a scatterer, we do thus need to apply some post processing
to the electromagnetic fields obtained.

In Fig. 5.10, we plot the spectrum used for all the tests presented here. As a first
step, we chose four qx values, qx = {2.5, 10, 12, 13}(1/nm) to access different weights of
the horizontal resonant mode. The setup used for the vacuum simulations is presented
in Fig. 5.8. In the right panel, only a part of the physical domain is plotted (the upper
PML is cut). In general, one can see the oblique incidence of the plane wave on the left
hand side where we display the absolute value of the Ey component. There, we choose
qx = 10/nm corresponding to the red line in Fig. 5.10.

One important fact to mention is that it is of great importance to choose the uPMLs
correctly, since the Silver-Müller boundaries only absorb the normal incident plane wave
and therefore for an oblique wave the oblique part of the radiation is reflected back into
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Figure 5.11: The Figure above depicts the problem arising, when we do not add an
exact analytical solution of Maxwell’s equations to the electric and magnetic field at
the TfSf contour. Therefore, a more complicated formula than the usual needs to be
used to calculate the reflectance.

the system.

Letting such vacuum simulations evolve in time, one expects the horizontal resonant
mode to survive (compare Fig. 5.9). This can also be shown by discrete Fourier trans-
forming the fields starting at a late time t0 and analyzing the peak eigenfrequency. This
corresponds very well with the frequency for which the plane wave propagates parallel to
the incident plane (see Fig. 5.10). It is also quite interesting that in Fig. 5.9 one can tell
that at two vertically spaced points (see blue and red point in Fig. 5.8) the electric field
is excited with a certain retardation. However, when the field has passed and only the
horizontal mode survives, the fields oscillate in phase at both vertically distant positions
for the remaining time. Besides from the analysis in Fig. 5.10 this is also a proof of the
existence of horizontally propagating modes.

5.6.3 The Dielectric Slab

As a second test case, we introduce a scatterer, a dielectric slab, into the computational
domain and compute reflection and transmission from this object. As discussed before,
due to the fact that the incident electromagnetic field does not fulfill the Bloch boundaries,
a part of the incident field is directly scattered into the Sf region (cf. Fig. 5.8).

From Fig. 5.11 it follows that in the short and long computation limit (assuming that all
electromagnetic fields leaving the Tf region are completely absorbed by the uPML and
Silver-Müller boundary condition) we find for the electric (and analogously magnetic)
fields

E(r = rTfSf , t ≈ t0) = Einc.(r = rTfSf , t ≈ t0) + Erest(r = rTfSf , t ≈ t0) ,

E(r = rTfSf , t� t0) = Erefl(r = rTfSf , t� t0) ,

where Einc. denotes the incident field that propagates into the Tf region, Erest denotes
the incident field that is scattered into the Sf region and Erefl the field that is reflected
from a periodic scatterer. For all times, we can then write for the outside Eout(r, t) and
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Figure 5.12: The Figure above shows the reflectance and transmittance for three-
dimensional TM (magnetic field in incidence plane) computations compared to ana-
lytical results obtained by the transmission matrix approach. The calculations were
cut for an incidence angle θ < 65°(or ω̃ > 6.5 /nm for this specific setup) since beyond
this the incidence is too flat to obtain results in reasonable computation time using
the method applied. The agreement between analytics and numerics, we present in
Fig. F.1.

the inside Ein(r, t) electric (and analogously magnetic) fields

Eout(r, t) = Erest(r, t) + Erefl.(r, t) , (5.54a)

Ein(r, t) = Einc. −Erefl . (5.54b)

Therefore, for the computation of Erefl.(r, t) from Eout(in)(r, t), information on either
Erest or Einc. is needed, which can be obtained from a vacuum simulation. Then the
transmission and reflectance can be obtained from the altered electromagnetic fields

Ẽrefl(r, ω) = Eout(r, ω)− Evac
out(r, ω) and Ẽtrans(r, ω) = Etrans(r, ω) . (5.55)

These and the analogously obtain magnetic fields can then be inserted into Eq. (5.46) to
calculate transmittance and reflectance from the scatterer.

Second, we have to consider the fact that the dielectric slab actually touches the Bloch
boundary, Whenever a dielectric (or metallic) periodic structure touches the Bloch bound-
ary, we can use the exact same approach as above. This is due to Snell’s law and Bloch’s
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Figure 5.13: The Figure above shows the reflectance and transmittance for two-
dimensional TM and TE computations compared to analytical results obtained by
the transmission matrix approach. The calculations were cut for an incidence angle
θ < 65°(or ω̃ > 6.5 /nm for this specific setup) since beyond this the incidence is too
flat to obtain results in reasonable computation time using the method applied. The
agreement between analytics and numerics, we present in Fig. F.2.

theorem leading to

ni sin (θi) = qx = const. , (5.56)

and with qi = ni
ω
c and q

(i)
x = sin (θi)qi = sin (θi)ni

ω
c , we can conclude from Snell’s law

and energy conservation that

q(i)
x = const. ≡ qx ,
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5 The Discontinuous Galerkin Time-Domain Method

for all materials and refractive indices. In other words, the wavenumber parallel to
an incident qx stays constant independent of the refractive index. In conclusion, an
interface between two materials touching the Bloch boundary, is no issue if such an
interface is orthogonal to the Bloch boundary which is given for most periodic structures.
Therefore, choosing the component of the wavevector that is projected orthogonal to the
periodicity direction as constant, is still valid when we study periodic structures with
material interfaces cutting the Bloch boundary orthogonal.

Using the transfer matrix approach and the Fresnel coefficients for reflection and trans-
mission at one interface, we compare the analytical solution with numeric results. It is
important to mention, that those numeric (and analytic) results only hold for q > qx
hence for∞ > q > qx we vary 0 < θ < π/2 as incidence angles. Wavevectors smaller then
qx would result in a purely imaginary qz =

√
q2 − q2

x and therefore to non-propagating
modes.

The results of the simulations for 3D are for a slab thickness d = 0.15nm and ε = 2.25,
are presented in Fig. 5.12 and for 2D with the same parameters in Fig. 5.13. In both
Figures, we vary the constant projected wavenumber qx. It can be noticed that the
numerical values get worse, the closer qx to the center frequency of the exciting Gaussian
pulse and the higher therefore the intensity of the horizontal mode that remains in the
system after propagation time. The exact error of the computations is presented in
appendix F in Figs. F.1 and F.2.

5.7 Graphene multilayers under oblique incidence

As discussed above, it has been shown in literature (see Ref. [88]) that graphene multilay-
ers stacked between hBN slabs can provide a HMM depending on the chemical potential of
the graphene monolayer. Due to the external tunability of the chemical potential by, e.g.,
electrostatic gating, this is very well suited for optical switching and other applications.

The very specific property that follows from the opposite signs of the anisotropic dielec-
tric tensor (cf. Fig. 5.4(b)) is a hyperbolic isofrequency contour line of the wavevectors.
This then leads to an unusual propagation behavior where the propagation direction of
the energy flux density (the orientation of the time averaged Poynting vector 〈S(r, t)〉t
bends into the opposite direction then for a common material).

We present the results in Fig. 5.14 using the example of TM polarization and qx =
0.15 eV. In Figs. 5.14(a,b), we compare the analytical results of oblique incidence for
reflectance R and transmittance T of a plane wave impinging onto a single graphene
monolayer while in Fig. 5.14(c) we present the corresponding results in the case of a mul-
tilayer system consisting of 11 layers of graphene with hBN of thickness 50 nm sandwiched
between those (cf. Fig. 5.4(a,b)). The computations presented in Fig. 5.14 have relative
errors εrel < 10−2 in all cases. Here, the error highly depends on the incident frequency
with the relative error going down to εrel < 10−5 at about ω = 0.75 eV stabilizing for
higher frequencies with εrel < 10−4.

Overall the accuracy obtained with the method of oblique incidence as presented in
this thesis shows an accuracy worse than normal incidence (cf. Figs. F.1(a) and F.2(a))
however well in the limits of agreement between a theoretical modeling and experimental
results usually obtained in nanooptical experiments. This method increases the modeling
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Figure 5.14: TM transmittance and reflectance for graphene mono- and multilayers
under oblique incidence (qx = 0.15 eV, µ = 0.4 eV). The analytical transmittance
and reflectance are compared to the transmittance and reflectance obtained from
computations using the DGTD. Over wide incidence angles and reaching into the
HMM region of the multilayer system (cf. Fig. 5.4(c)), very high agreement between
analytical and numerical results is visible (see text).

capabilities within the algorithm of DGTD in order to describe, e.g., typical surface
structuring and thin film experiments.

5.8 Conclusions

In this chapter, we discussed the basic algorithm of the DGTD applied in the field of
electromagnetics to model electromagnetic field propagation in involved nanostructured
systems. Within the scope of this work, we introduced the description of graphene at
finite chemical doping and temperatures as a sheet conductivity into the DGTD which
was published in Ref. [W7]. At the example of these graphene conductivity sheets and
graphene multilayer systems that are known to be HMMs, we furthermore discuss the
importance of being able to model oblique incidence even within time domain algorithms
and transfer a method of oblique incidence from the FDTD to DGTD. Here, the multilayer
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5 The Discontinuous Galerkin Time-Domain Method

structures exhibit the additional challenge of resulting at certain frequencies in a HMM
that can be tuned via the external manipulation of the chemical potential within graphene
(cf. Ref. [88]).

The work presented in this chapter, will in the future lay the basis for a variety of ap-
plications. The introduction of a sheet conductivity with the appropriate ADEs will allow
for further description of other two-dimensional materials as well as for the application
to other problems in nanooptics such as modeling the surface roughness of nanostruc-
tures utilizing an effective current sheet (see Refs. [203, 204]). Additional, the general
setup (combined with the self-consistent dipole model discussed in chapter 6) will allow
for including graphene or other materials in need of a quantum-mechanical modeling
into an electromagnetic time-domain solver and will in consequence lead to a Maxwell-
Schrödinger description. The oblique incidence will in this context allow not only for the
testing but also the investigation of many of the above described applications.
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CHAPTER 6

Radiation dynamics of emitters close to metallic
nanostructures

“Either this is madness or it is Hell.” “It is nei-
ther,” calmly replied the voice of the Sphere, “it is
Knowledge; it is Three Dimensions: open your eye
once again and try to look steadily.” 32

Edwin A. Abbott

In this chapter, we study emitter dynamics in the proximity of metallic nanostructures. In
section 6.1, we present the changes in the lifetime of an NV center in a nanodiamond in
the proximity of a glass substrate and different silver nanowires assuming an emitter un-
der Weisskopf-Wigner approximation (see Eq. (3.31)). We compare the computations to
experimental measurements introducing the method of three-dimensional scanning-probe
fluorescence lifetime imaging microscopy by use of a single quantum emitter. The section
is in large parts published within Ref. [W2]. In the second section of this chapter, we
move beyond the Weisskopf-Wigner approximation and introduce a numerical framework
for the time dependent description of self-consistent emitters within the Discontinuous
Galerkin Time-Domain method. To illustrate the advantages of such a method, we dis-
cuss the involved radiation dynamics of several interacting classical dipoles in the direct
proximity of a gold pentamer. The results of this section are prepared for submission in
Ref. [W6].

6.1 Three-dimensional fluorescence lifetime imaging
microscopy performed by a single quantum emitter

In this first section, we present in detail the first results on measurements of a quantitative
3D scanning-probe fluorescence lifetime imaging microscopy (FLIM) by the use of a single
quantum emitter (QE) as published in Ref. [W2]. This technique we abbreviate with QE-
FLIM.

In the experiments, one makes use of a single QE since it is optimally suited to probe
the electromagnetic environment not only due to its intrinsic quantum properties but

32Flatland: A Romance of Many Dimensions (1884)
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6 Radiation dynamics of emitters close to metallic nanostructures

also due to the typically small extension of the emitter. Additionally, true QE allow for
a reliable excitation as well as an efficient and easy readout.

First scanning quantum probes using optical emitters have been introduced as early
as in the year 2000 (cf. Ref. [205]) where the authors placed a p-terphenyl crystal doped
with terrylene molecules (of nominal concentration 10−7) at the end of a fiber tip. As
described in chapter 3, the detection of lifetime modifications allows directly to conclude
on the photonic projected local density of states. Since this is the driver of the light-
matter coupling between the photonic environment and an arbitrary emitter, mapping
the photonic projected local density of states with a stable and well characterized probe
allows for general conclusions on the nanostructure’s photonic properties. This knowledge
is a necessary ingredient to enhance the functionality of hybrid light-matter quantum
technology as pointed out in the introduction of this thesis.

While besides from the already mentioned scanning quantum probes, there exist a wide
range of typically employed methods for detecting the photonic density of states of a sys-
tem, such as coating of the nanostructures with fluorescent dyes (see Ref. [206]), scanning
near-field microscopes (see Refs. [207–209]), nano positioning of emitters (see Refs. [210,
211]) and many others. Most of these methods, however, make use of an ensemble of
emitters. When averaging over an ensemble of emitters, one in turn also averages over
different positions and orientations and cannot obtain the photonic projected local density
of states unambiguously. One possible solution for this issue are atoms (see chapter 4),
e.g., in atom traps, which however do either not emit radiation at the optical energies
of interest (atom trap) or require special experimental conditions such as an ultrahigh
vacuum or very low temperatures. On the other hand, nanodiamonds containing NV
centers, whose properties we discuss in detail in the following, are ideal QEs for use as a
scanning probe since they are extremely photo stable at room temperature and they can
be positioned with high accuracy. Nanodiamonds containing only a single vacancy center
exist, can be experimentally found and these nanodiamonds are commercially available
(compare also section 3.2).

6.1.1 The nitrogen-vacancy center in a nanodiamond

Due to all the characteristics named above, the NV center in nanodiamonds has risen
high attraction in the last decade (see Refs. [98, 100, 213]). Besides from its use as
an optical quantum probe, it is popular in all kinds of experimental setups, including
magnetic resonance experiments (see Ref. [215]) and quantum computation experiments
(see Refs. [216, 217]).

However, in this section, we focus on the use as an optical quantum probe and thus
the optically allowed electric dipole transitions of the NV center. As discussed in sec-
tion 3.2, an NV center consists of a vacancy due to the substitution of a carbon atom
by a nitrogen atom in the diamond structure and thus creating an effective electron va-
cancy. In Fig. 6.1(a), we present the resulting crystallographic structure with the carbon
atoms presented by gray spheres, the nitrogen atom depicted by the orange atom and
the vacancy denoted by V . In the proximity of the vacancy, the electronic orbitals are
sketched in blue. The crystallite growth direction is here assumed along the z-axis. The
NV center occurs in nature with two different charges, the negatively NV− and the neu-
trally charged NV 0 color center (for a review see, e.g., Ref. [100]). Since in nature, the
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Figure 6.1: Panel (a) displays the crystallographic structure of an NV center with
one electron missing due to the insertion of a nitrogen atom. Panel (b) shows a simpli-
fied electronic level structure where an excited NV center can decay either radiatively
transition 3A to 3E or non-radiatively via the metastable state 1A. The electronic
levels are denoted according to the NV center’s C3v symmetry nomenclature. Panel
(c) displays the absorbance of an NV center in a bulk crystal (black) and fluorescence
of an NV center in a nanodiamond (red) spectrum at room temperature. Here, the
zero phonon line (ZPL) and the broadening due to large strain variations and the
corresponding Stokes shift (phonon-sideband) are well visible. By the light red area,
we denote the simplified fluorescence intensity used as an approximation in this thesis
(the emitter spectrum is Gaussian with λ0 = 700 nm and σ = 50 nm). Panel (a) is
taken from Ref. [212] and reprinted by permission from Macmillan Publishers Ltd:
Nature [212],© 2011. Panel (b) is adapted from Refs. [98, 213] and in panel (c),
the fluorescence plot is adapted from Ref. [97] with the original data provided as a
courtesy by the author and the absorbance plot is adapted from Ref. [214].

first kind occurs far more often, we exclusively focus on the NV− color center and in the
following referring to it for brevity as NV (color) center.

Since the NV center belongs to the C3v group (cf. Ref. [98, 100]), the ground state
exhibits a 3A symmetry and the excited state a 3E symmetry (see Fig. 6.1(b)) . Within
this group, the excited state contains two degenerate sub states with orthogonal polariza-
tion of the optical transition dipole moment. Additionally, both electric dipole transition
moments are orthogonal on the crystal axis (cf. Ref. [98] for more details). Thus, the
NV center has to be described by two orthogonal electric dipole moments where in vac-
uum the radiative decay rate γr for both degenerate transitions can be considered equal.
Additionally, a metastable state 1A exists that couples non-radiatively width decay rates
γnr,2 and γnr,1 to both ground state and excited state, respectively.

The direct transition from the 3A state to the 3E state without any phonon coupling
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Figure 6.2: Properties of the nitrogen-vacancy (NV) center. Panel (a) displays the
number of counts at a time t after the excitation of the NV center in a nanodiamond
for three different situations (nanodiamond on a glass substrate, nanodiamond glued
to a cantilever tip close to a glass substrate and nanodiamond glued to a cantilever
tip close to a silver nanowire laying on a glass substrate. A mono-exponential decay
is fitted to the experimentally obtained data (gray line) allowing to determine the
lifetime of the quantum emitter. Here, only data t > 5 ns is taken into account
to neglect excitation effects. Panels (b,c) display the g(2)-correlation function for a
nanodiamond on a glass substrate and glued to a cantilever tip far away from the
substrate. In both cases, with g(2)(0) < 1/2 the main photon contribution is indeed
caused by a single NV center in the nanodiamond. Thus, we can use the nanodiamond
as a single photon source. Figures adapted from Ref. [W2], doi:10.1021/nl500460c.

is in absorbance and fluorescence known as the zero phonon line (ZPL) (see Fig. 6.1(c)).
Caused by large strain variations (cf. Ref. [213] and gray faded region in Fig. 6.1(b)),
a wide phonon sideband appears that is Stokes-shifted between absorbance and fluores-
cence. Thus, the broad fluorescence spectrum consists of transitions with a continuum of
transition energies each of them approximately decaying at the same rate.

When studying the time-evolution of the excitation of an NV center in a nanodiamond,
a corresponding mono-exponential decay can be determined (see Fig. 6.2(a)). This holds
under a variety of different conditions (NV center on a substrate, glued to a tip and over a
substrate while glued to a tip) exhibiting different decay rates depending on the respective
photonic environment (see Fig. 6.2(a)). In consequence, the fluorescence spectrum of an
NV center at room temperature can be most simplistic modeled as a Gaussian with
λ0 = 700 nm and σ = 50 nm (compare light red area in Fig. 6.1(c)). Here, for simplicity
we focus on reproducing the visible part of the spectrum with sufficient accuracy while
neglecting the asymmetry of the fluorescence spectrum at higher wavelengths.

Since we are considering NV centers in nanodiamonds, in general, a large number of
NV centers can be contained in a single nanodiamond. However, as pointed out in the
introduction, the strength of nanodiamonds is the opportunity to determine single-photon
emitter, namely nanodiamonds containing a single NV center only.

These nanodiamonds can be experimentally selected by measuring the g(2)-correlation
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6.1 Three-dimensional fluorescence lifetime imaging microscopy performed
by a single quantum emitter

(a) (b) (c) (d)

Figure 6.3: Panel (a): artist’s view on the three-dimensional fluorescence lifetime
imaging microscopy. The nanodiamond (red) is glued to an atomic force microscope
(AFM) made out of silicon and can thus be moved with high accuracy in 3D space
scanning, e.g., a silver nanowire. Panels (b-d): experimental results on the three-
dimensional scanning-probe fluorescence lifetime imaging microscopy performed by a
single quantum emitter (QE-FLIM) for a network of silver wires. Panel (b) shows the
height information while panels (c,d) display the fluorescence lifetime measurements
for two different distances from the sample. The scale bars in panels (b-d) correspond
to 500 nm. Figure adapted from Ref. [W2], doi:10.1021/nl500460c.

function of the nanodiamond. The definition of the g(2)-correlation function for a pure
photonic state (cf. Ref. [218]) is given by

g(2)(r1, t1; r2, t2) =
〈Ê†(r1, t1)Ê†(r2, t2)Ê(r1, t1)Ê(r2, t2)〉

〈|Ê(r1, t1)|2〉〈|Ê(r2, t2)|2〉
. (6.1)

Above, 〈·〉 describes an ensemble average while g(2)(τ) describes the probability that both
a photon is detected at position r1 and time t1 and at position r2 and t2. In the case
of vacancies, photons are emitted into a Fock state (cf. appendix A.1 and specifically
Eq. (A.9)). For a Fock state containing n photons, the g(2)-correlation function detected
at the same position r = r1 = r2 reads in the limiting cases

g(2)(0) = 1− 1

n
lim
τ→∞

g(2)(τ) = 1 . (6.2)

Then, when experimentally g(2)(0) < 1/2 we can conclude that the main photon contri-
bution is caused by a single emitter. As shown in Fig. 6.2(b), for different situations (NV
centers on a plane and glued to a cantilever), indeed for the two nanodiamonds used in
the experiments

g(2)(0) <
1

2
, (6.3)

concluding that these specific nanodiamonds act as single photon sources. Additionally,
we find the predicted long inter-photon time behavior g(2)(τ)→ 1.

6.1.2 The experiment

In order perform 3D FLIM by use of a single quantum emitter (QE) as published
in Ref. [W2], our experimental collaborators from the group of Oliver Benson at the

137

http://dx.doi.org/10.1021/nl500460c


6 Radiation dynamics of emitters close to metallic nanostructures

(b)(a)

Figure 6.4: Sketch of the orientations of the dipole vectors for the two degenerate
optically allowed electric dipole transitions in a nitrogen-vacancy center. These two
dipole vectors are due to symmetry reasons orthogonal to each other (see text). In
the two panels above, we display the on top view (a) and the side view (b) on the
two emitters relative to a reference plane orthogonal to the z axis. The angles φi and
θi determine the orientation of the dipole (cf. Eq. (6.12)).

Humboldt-Universität zu Berlin glued a nanodiamond (typically of about 30 nm size)
containing a single NV center (see Fig. 6.2(b,c)) to an atomic force microscope (AFM)
cantilever tip and thus manage to position the NV center with high precision in 3D space.

As they show in measurements, they preserve the single-photon emitter nature of the
NV center even when it is glued to a tip (cf. Fig. 6.2(c)). Additional to the measurement
of the position of the NV center, they excite the NV center at each spatial position by a
confocal microscope with a picosecond laser at λexc. = 531 nm making use of the Stokes
shift of the fluorescence (see Fig. 6.1(c)). Depending on the experimental setup, different
repetition rates of the laser are used (10MHz for the QE-FLIM measurements and 80MHz
for the correlation measurements shown in Fig. 6.2(b,c)). The single photons emitted
from the NV center are then measured by spectrally filtering out the laser spectrum and
subsequently detecting the photon event time (for exemplary data, see Fig. 6.2(a)). To
finally determine NV center’s lifetime, a mono-exponential decay is fitted to the data and
thus assigned to every position in 3D space.

This QE-FLIM probe can then be used to detect the lifetime modifications to an emitter
in an arbitrary photonic environment such as the network of silver nanowires for which we
display the measurements in Fig. 6.3(b-d). In panel 6.3(b), we present the height profile
of the silver wire’s network as measured by the AFM. In panels 6.3(c,d), we display the
NV center’s lifetime in two different planes each at a constant distance from the glass
substrate the silver nanowires are deposited on. Lifetime reductions due to the silver
nanowires are well visible while also noticing an increase of the lifetime in panel 6.3(d)
right above the horizontal nanowire. Such an increase would usually be attributed to a
topography artifact. Due to the method applied, we can however exclude this possibility.
Thus, the silver nanowire network does indeed lead to regions of decreased and increased
emitter lifetime.
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6.1 Three-dimensional fluorescence lifetime imaging microscopy performed
by a single quantum emitter

6.1.3 Modeling the nitrogen-vacancy center

In order to model the nitrogen-vacancy center, we make use of two different methods.
First, we compute analytical results for emitters above a glass half space to compare
to the corresponding measurements and, second, we compute the lifetime modification
in more complicated plasmonic systems within the DGTD (see chapter 5) inducing the
electromagnetic fields radiated from the emitter via a TfSf contour (see section 5.2 and
Eqs. (3.12) and (3.13)). In both cases, we first have to determine the appropriate model
of the NV center and the influence of the additional parts of the probe such as the AFM
cantilever tip and the nanodiamond itself.

As discussed in chapter 3, the decay rate of an emitter within the Weisskopf-Wigner ap-
proximation is proportional to the photonic projected local density of states (cf. Eqs. (3.31)
and (3.33)). In the case of a single NV center, we have to take into account that the
vacancy center exhibits two degenerate, orthogonal dipole transitions. Then, the decay
rate cannot simply be calculated from the field scattered back from the excitation of
the electromagnetic environment by one single electric dipole (cf. Eq. (3.42)), but we
have to reconsider the equations of motion for the electric dipole moments and the cor-
responding coupling between the two of them. Assuming a classical equation of motion
(cf. Eq. (3.23)), we obtain for the two degenerate transitions

∂2
t d1(t) + ω2

1d1(t) =
e2

m
(E1(t) + E2(t)) , (6.4a)

∂2
t d2(t) + ω2

2d2(t) =
e2

m
(E1(t) + E2(t)) . (6.4b)

Next, we make use of the relation between the electric fields and the dyadic Green’s
function (see Eq. (3.41)), introduce the abbreviation edi · G(r0, r0;ω) · edj ≡ Gij(ω), and
choose without loss of generality the Cartesian coordinate system in such a way that
ed1 = ex and ed2 = ey where di = diedi . In order to obtain the eigenfrequencies of the
two coupled Equations (6.4), we have to solve the eigenvalue problem stemming from
Eqs. (6.4) in frequency domain (cf. Eq. (1.9))


−ω

2 + ω2
1 − ω2 e2µ0µr

m Gxx(ω) ω2 e2µ0µr
m Gxy(ω)

ω2 e2µ0µr
m Gyx(ω) −ω2 + ω2

2 − ω2 e2µ0µr
m Gyy(ω)


 ·

(
d1(ω)
d2(ω)

)
= ε±

(
d1(ω)
d2(ω)

)
.

(6.5)

In the case of a degenerate transition ω1 = ω2 = ω0, the above equation leads to dressed
states as eigenstates

d+ = cos
(θ

2

)
d1 + sin

(θ
2

)
e−iϕd2 ,

d− = − sin
(θ

2

)
eiϕd1 + cos

(θ
2

)
d2 ,

(6.6)

where eiϕ = Gxy/|Gxy| and

tan (θ) =
2|Gxy|
Gyy − Gxx

. (6.7)
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Figure 6.5: Panel (a): geometry used in the three-dimensional numerical simula-
tions. The probe consists of two dipoles which are placed in the center of a truncated
conical tip made of silicon. The distance of this probe to a dielectric interface is
varied. Panel (b): results of the numerical simulations and the analytical solution
for two dipoles in front of an interface, corrected for an effective quantum efficiency
(see text). Adapted from Ref. [W2], doi:10.1021/nl500460c.

For these states, the corresponding eigenvalues read

ε± = ω2
0 − ω2 − e2µ0µr

2m
ω2

[
(Gxx + Gyy)±

√
(Gxx − Gyy)2 + 4|Gxy|2

]
, (6.8)

where for a non isotropic environment, Gxx is not necessarily equal to Gyy and the off–
diagonal elements can be non zero as well. For a single dipole with dipole moment d, we
would map

(Gxx + Gyy)±
√

(Gxx − Gyy)2 + 4|Gxy|2 ≡ 2
[
ed · G(r0, r0;ω0) · ed

]
.

When we now, however, take into account that at room temperature the two degen-
erate dipole-allowed transitions are incoherently coupled, we can approximate Gxy ≈ 0 .
Additionally including the orthogonality of the two dipole moments we find that the two
transitions decouple and the total radiative decay rate reads

γr = γ1 + γ2 . (6.9)

In order to determine the complete decay rate of the NV center, we also have to consider
the non-radiative processes (cf. Fig. 6.1(b)). When we assume that these processes are
approximatively independent of the electromagnetic environment ( γnr ≈ γnr,0), we can
write (cf. Eqs. (3.42) and (3.45))

γi
γ0

= 1 +QY · F
ω3

2∑

i=1

Im[d∗i ·Es,i(r0)] ≡
2∑

i=1

Pi
Pi,0

, (6.10)

with the quantum yield that describes the percentage of the decay rate that is radiative

QY =
γr,0

γr,0 + γnr,0
, (6.11)
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6.1 Three-dimensional fluorescence lifetime imaging microscopy performed
by a single quantum emitter
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Figure 6.6: Panel (a): sketch of the geometry used in the three-dimensional nu-
merical simulations. The probe consists of a classical dipole (red) at the tip of a
truncated silicon cone. The position of the dipole is displaced from the center of the
cantilever by ∆y = 30 nm compared to the centered case displayed in Fig. 6.5. Three
orthogonal polarizations of the dipole are probed such that the complete photonic
projected local density of states of the two orthogonal dipoles can be back engineered.
The distance of this probe to a dielectric interface is varied. Panel (b): shows the
results of the numerical simulations for different orientations of the dipole. It can
be seen that even for the asymmetrical case, deviations from the adjusted analytical
theory are small. Adapted from Ref. [W2], doi:10.1021/nl500460c.

and the frequency independent prefactor F = 6πε0c3/|d|2 assuming |d| = |d1| = |d2|.

With Eq. (6.10), we obtain an expression for the modeling of the NV center’s decay
rate. Next, we examine the influence of the additional parts of the probe, such as the
cantilever tip and the nanodiamond. This, we accomplish by modeling the complete
probe within the DGTD for an NV center with known orientation and comparing the
lifetime modifications with the lifetime modifications of an effective NV center that is not
contained in a nanodiamond and not mounted to an AFM tip (silicon, ε = 14.317).

We expect the larger influence from the AFM tip and hence start by neglecting the
nanodiamond and only modeling the emitter with an AFM tip placed close by. For a
better understanding of its influence, we also compare the cases of an NV center glued
to the center of a cantilever tip (see Fig. 6.5(a) for a part of the mesh) and an NV
center displaced from the center of a cantilever tip by ∆y = 30 nm (see Fig. 6.6(a) for
a part of the mesh). We then compute the lifetime modifications when approaching a
non-dispersive, lossless, dielectric half space (here: εBK7 = 2.301) with the emitter. We
model the tip of the cantilever as a truncated conical tip with an aperture angle of 17.65°,
a radius of the truncated cap of 50 nm and a height of 800 nm.

Using spherical coordinates to describe the dipole vectors’ orientation (see Fig. 6.4 for
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Θ Θeff QYeff Td1,d2

symmetric
0.00 0.00 0.39 2.54

0.35 0.44 0.83 0.73

0.70 0.66 0.88 0.49

asymmetric
0.00 0.00 0.33 2.93

0.35 0.53 0.57 1.01

0.70 0.80 0.62 0.76

Table 6.1: Nonlinear least square root fits (conducted with MATLAB, see
Ref. [219]) for symmetrical (see Figure 6.5) and asymmetrical (see Figure 6.6) probes
compared to the analytical solution for two dipoles only. Θ describes the chosen
orientation of the two perpendicular dipoles attached to the tip, Θeff the effective
orientation of the two dipoles when using only the emitters to model the complete
probe. QYeff , the effective quantum yield, absorbs the influences of the tip in the an-
alytic solution.Td1,d2 is the orientation-dependent conversion factor for the free-space
decay rate. Table adapted from Ref. [W2].

a definition)

d1 =




sin(θ1) cos(φ1)
sin(θ1) sin(φ1)

cos(θ1)


 ,

d2 =




sin(θ2) cos(φ2)
sin(θ2) sin(φ2)

cos(θ2)


 ≡




cos(α) cos(θ1) cos(φ1)− sin(α) sin(φ1)
cos(α) cos(θ1) cos(φ1)− sin(α) cos(φ1)

− cos(α) sin(θ1)


 ,

(6.12)

we find that in the case of two orthogonal emitters (introduction of the relative angle α
in the reformulation of d2, above) in front of an infinitely extended plane the only degree
of freedom is given by

Θ = cos (θ1)2 + cos (θ2)2 = cos (θ1)2 + cos(α)2 sin(θ1)2 . (6.13)

The modification of the decay rate of an NV center glued to a tip above a dielectric
half space can be split in the following parts

γi = γnr + γr,0 + γTip,System , (6.14)

where we then assume that the influences of tip and system decouple to

γTip,System = γTip + γSystem .

Then, motivated by the results displayed in Figs. 6.5 and 6.6, we include the effects
of the decay rate modification due to the AFM cantilever tip into the non-radiative
decay rate γnr,eff = γnr + γTip and additionally also introduce an effective quantum yield
QYeff =

γr,0

γr,0+γnr,eff
. With these definitions and γ0 = γr,0 + γnr,0, we can recast Eq. (6.10)
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6.1 Three-dimensional fluorescence lifetime imaging microscopy performed
by a single quantum emitter
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Figure 6.7: Lifetime modifications of an NV center contained in a nanodiamond
which is glued to an AFM cantilever tip when approaching a glass substrate (εBK7 =
2.301). The red curve is a fit of the analytical solution of the lifetime modification of
two dipoles over a non-dispersive and lossless glass half space (cf. Ref. [28]) to the
data. For more information, see the corresponding text. Adapted from Ref. [W2],
doi:10.1021/nl500460c.

for a single emitter into

γi
γr,0

=
1

QYeff,i
+ F 1

ω3
Im[d∗i ·Es,i(r0)] . (6.15)

For two dipoles, we can then define an effective quantum yield for both dipoles

1

QYeff
=

1

QYeff,1
+

1

QYeff,2
, (6.16)

and a joint free-space decay rate

γ0,eff = 2 · (γr,0 + γnr,0) + γTip,d1 + γTip,d2 ≡ Td1,d2γr,0 . (6.17)

With these definitions and Eq. (6.9), we rewrite the joint decay rate as

γ

γ0,eff
=

1

Td1,d2

{ 1

QYeff
+ F 1

ω3

2∑

i=1

Im
[
d∗i ·Es,i(r0)

]}
. (6.18)

By use of this definition, we compute for different orientations of the dipole vector the
lifetimes and then try to fit analytic results to the numerically obtained values neglecting
the cantilever tip. Additionally, we assume as discussed above that the two emitters
are incoherently coupled and placed freely hanging in front of a dielectric half space. We
obtain the results presented in Fig. 6.5 and 6.6 with the values of the fits given in Tab. 6.1.
Analogously to the AFM cantilever tip, we can also include the nanodiamond itself into
the effective description of the two emitters.

Thus, for modeling the experimental results, we can minimize the computational over-
head by computing the complete Green’s tensor for each of the two orthogonal emitters
separately. We obtain an effective characterization of the probe then by adding the decay
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Figure 6.8: Lifetime modifications of an NV center when moving it at a constant
distance along a silver nanowire of diameter d = 50 nm. A section of the mesh used for
the computations is shown in panel (a) while same mesh jointly with the experimental
and numerical data points is presented in panel (b). For the characterization of the
QE-FLIM probe, the theoretically computed dyadic Greens function is fitted to the
experimentally measured data set. Here, we determine by use of the complete set of
theoretical computation points the two dipole vector’s orientation and the position
of the NV center in the nanodiamond. Within the degrees of freedom of the fit, we
are able to obtain a very high qualitative and quantitative agreement. The lifetime
is drastically reduced due to the silver nanowire. On top of that, oscillations of the
lifetime due to the excitation of surface plasmon polaritons on the silver nanowire
and their back reflection from the end of the wire are well visible. Adapted from
Ref. [W2], doi:10.1021/nl500460c.

rate of the two orthogonal emitters and by fitting the orientation of the theoretical val-
ues to appropriate experimental data. With an appropriate redefinition of the vacuum’s
decay rate γ̃0, we find as the typical decay rate expression

γ

γ̃0
= 1 +QYeff

F
ω3

2∑

i=1

Im
[
d∗i ·Es,i(r0)

]
. (6.19)

6.1.4 Results

After having introduced the effective description of the QE-FLIM probe as two effec-
tive, orthogonal dipoles described by Eq. (6.19), we validate this approach by analyzing
the experimentally measured lifetime modifications when approaching a glass substrate
(εBK7 = 2.301). In Fig. 6.7, we present the results where we consider a Gaussian flu-
orescence spectrum (λ0 = 700 nm and σ = 50 nm) as depicted by the light red area in
Fig. 6.1(c). This and the following fits, we perform via a least-squares-root fit by ap-
plying the Levenberg-Marquardt method as implemented in MATLAB (see Ref. [219]).
In Fig. 6.7, we find as an effective quantum efficiency QYeff = 0.703 and for the dipoles’
relative orientation Θeff = 0.4. These theoretical values characterize the QE-FLIM probe
by determining the NV center’s orientation and the effective quantum efficiency of the
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6.1 Three-dimensional fluorescence lifetime imaging microscopy performed
by a single quantum emitter
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Figure 6.9: Experimental (a) and theoretical (b) results for the lifetimes of an NV
center measured in a plane orthogonal to a silver nanowire (diameter d = 80 nm,
length lwire = 4µm and position ymeas. ≈ 0.618 lwire). Panel (b) contains a section
of the mesh applied in the computations. The parameters obtained from Fig. 6.8
are used and lead to a high qualitative agreement. In the experiment, the data is
convoluted due to a displacement of the nanodiamond with respect to the center of
the AFM cantilever tip. Adapted from Ref. [W2], doi:10.1021/nl500460c.

optical transitions as we discuss above. Furthermore, we can calibrate its position in the
nanodiamond and with respect to the center of the AFM cantilever tip.

Additional to moving the nanodiamond closer to the dielectric substrate and detecting
the changes in lifetime of the NV center, we also detect the lifetime modifications when
studying more involved photonic environments. As an example, we present in Ref. [W2]
the lifetime modifications due to a network of silver nanowires. Some of the experimen-
tally obtained results we present in Fig. 6.3(b-d).

For the validation of the experimental results, we compare theory and experiment in
the case of different single silver nanowires. Here, we first characterize the probe by
fitting the theoretically obtained values to one experimental data set and then compare
the theoretical predicted values for another circumstance to the experimentally measured
values.

In order to model this photonic environment, we model the material silver by fitting a
Drude-Lorentz model to experimental data (see Ref. [220] and Eq. (5.30))

ε = ε∞ −
ω2

Drude

ω2 + iγDrudeω
+

∆εLorentzω
2
Lorentz

ω2
Lorentz − iγLorentzω − ω2

, (6.20)

and obtaining

ε∞ ωDrude (1/ns) γDrude (1/ns) ∆εLorentz ωLorentz (1/ns) γLorentz (1/ns)

Silver 4.6 1.37 · 107 1.06 · 105 1.1 7.44 · 106 1.83 · 107 .

With this, we can then characterize the QE-FLIM probe by fitting the results from
our numeric computations with respect to its degrees of freedom to the experimental
data obtained scanning the fluorescence lifetime parallel to a silver wire . The emitter
is positioned at a distance of 27 nm above the nanowire whose diameter we approximate
as d = 50 nm, whose length is lwire = 4µm, which exhibits rounded ends and is flattened
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at the bottom by 2 nm (see Fig. 6.8(a)). This yields QYeff = 0.5869, θeff = 0.5174π,
φeff = 1.2509π and αeff = 1.19π for the QE-FLIM probe (compare Eq. (6.12) and Fig. 6.4
for the definition of the parameters).

In Fig. 6.8(b), in both the experimental and the theoretical results oscillations at the
end of the silver wire are well visible. These are due to surface plasmon polaritons. The
single-photon source couples to these surface plasmon polaritons and excites them. In
turn, they propagate along the silver wire and are reflected from there. Depending on the
position of the emitter, the back propagating surface plasmon polariton then interferes
with the emitter either constructively or destructively and thus increases or decreases the
NV center’s lifetime, respectively. It is also worth noticing that the damping of these
oscillations when receding from the end of the nanowire is much faster than expected due
to effects caused by the dipolar plasmon damping and the dephasing due to the broad
spectrum of the NV center. This can be explained by the necessity to take into account
also the higher order multipole resonances of the silver nanowire to completely describe
all decay effects.

With the parameters obtained from the scan of the lifetime modification along the
silver nanowire, we compute the lifetime modification vertical through a similar silver
wire (we approximate the diameter as d = 80 nm with the other parameters of the silver
nanowire unchanged) and compare them to the experimental measurements (see Fig. 6.9).
In Fig. 6.9(a), we depict the experimental results while in Fig. 6.9(b) we present the
theoretical predictions without any additional fitting parameters. Since we compare the
theoretical computations to the experimental data obtained at a accidentally chosen point
towards the center of a single wire, we position the NV center at the golden ration of the
nanowire ymeas. ≈ 0.618 lwire to avoid high symmetry points. In Fig. 6.9(a), additionally to
the height and position information, an additional offset due to the asymmetric mounting
of the nanodiamond at the AFM cantilever tip is visible.

Figures 6.3 and 6.9 reveal an additional strength of the QE-FLIM. By this technique, we
are able to derive topography corrected lifetime image scans. Here, we present specifically
in Fig. 6.3(c,d) two lifetime images at constant distance over the glass substrate (not with
respect to the silver nanowires). In Fig. 6.9 on the other hand, we display experimental
data obtained in a plane orthogonal to the glass substrate. Therefore, the usage of the
AFM cantilever tip and with this the determination of the spatial coordinates allows to
avoid artifacts that otherwise oftentimes appear in scanning probe images.

6.1.5 Conclusions

In this section, we presented an experimental method that allows to determine the life-
time modification of a single-photon emitter induced by the photonic environment and
with this the photonic projected local density of states. This information is obtained at
the same time as the spatial location of the probe. Furthermore, we show how the method
highly profits from a characterization of the QE-FLIM probe’s properties by numerical
methods allowing for an even more advanced and additionally quantitative characteriza-
tion of a photonic environment. With the help of an in depth analysis of the NV center’s
optical dipole transitions, we are actually able to describe this QE at room temperature
in a purely classical picture and still achieve a high quantitative agreement. Here, es-
pecially due to the unstructured tessellation of the computational domain, the DGTD
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Figure 6.10: Sketch of the interaction of an emitter with the electromagnetic field
scattered from a plasmonic nanosphere. The emitter does not only radiate electro-
magnetic field and thus excites, e.g. plasmons on a gold nano sphere, but it is in return
also influenced by the back scattered light and therefore changes its emission pattern.
The additional intuition gained from modeling the back action on a (classical) dipole
caused by the electromagnetic field scattered from a plasmonic nanostructure nearby
is the focus of the work presented in section 6.2.

allows for the necessary accurate description of the plasmonic environment that enables
this modeling in the first place.

6.2 Self-consistent dipoles in the proximity of a gold
pentamer

As we have shown in section 6.1, plasmonic nanostructures such as a silver nanowire have
a strong effect on the lifetime of a (quantum) emitter. Furthermore, when the photonic
density of states causes a strong modification of the emitter’s lifetime, a significant shift
of the emitter’s resonance frequency (Lamb shift) is induced (see Eq. (3.35)).

Up to this point and in Eqs. (3.33) and (3.35), we have made use of the Weisskopf-
Wigner approximation. However, when we discuss emitters in the proximity of plasmonic
nanostructures and these emitters couple strongly to the plasmonic nanostructure (see
Refs. [221, 222]) the Weisskopf-Winger approximation is not valid any longer. This fact
is also very well known in photonic crystals where due to the photonic band gap the
coupling of the emitter to the modes of the electromagnetic field can be significantly
increased (see Refs. [223, 224]).

Close to a metallic nanostructure, this Weisskopf-Wigner approximation is especially
weak and ultimately breaks down when the lifetime of the emitter is suppressed sufficiently
such that it becomes of the order of the surface plasmon polaritons of the structure.
Additionally, for high excitation and at strong coupling, the classical emitter description is
not any longer appropriate but needs to be replaced by a (nonlinear) quantum-mechanical
equation of motion (cf., e.g., Ref. [225] for an implementation of a self-consistent solution
of a quantum emitter within the FDTD).

In this section, we present an algorithm of a self-consistent dipole within the numerical
framework of the DGTD. As a proof of principle and to display the mere effect of the
breakdown of the Weisskopf-Wigner approximation, we concentrate on a classical emitter.
In the future, extensive studies on the effects of real quantum emitter will be conducted
(see also the work in the Seideman group (see Ref. [225]) for a similar approach within
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Figure 6.11: Schematics of the implementation of a self-consistent emitter in the
DGTD where the position of the emitter is denoted at the black dot. An ana-
lytic solution of the electromagnetic fields radiated by the point emitter is added
at the total-field/scattered-field (TfSf) contour (1). These fields are then subject to
Maxwell’s equations: they are evolved in time and back scattered from dielectric and
metallic structures (2). At the position of the emitter, the field is recorded and stored
(3) and at a corresponding later time added as a source at the TfSf contour (4). The
dashed lines represent analytical propagation in time while the solid lines represent
numeric propagation in time. Adapted from Ref. [W6].

the FDTD and Ref. [226] for future research planned in the group Theoretical Optics &
Photonics at the Humboldt-Universität zu Berlin).

6.2.1 Algorithm of a self-consistent dipole

We begin this section by introducing the implementation of a self-consistent emitter
within the DGTD. As discussed in section 5.2, we couple the electromagnetic fields into
the calculation via the TfSf and Sf sources (see Ref. [179]). In the following, we ex-
clusively describe the inducement of the electromagnetic radiation via the TfSf contour
but the general scheme translates straight-forwardly to the Sf mechanism. However, for
large scatterers the TfSf mechanism is much more effective regarding computational run
times. This roots in the analytic propagation of the electromagnetic fields to the TfSf
contour (respectively the Sf region) and the evaluation of a time interpolation of the
recorded electric fields at each point in time and space (on the contour and in the region,
respectively). For most scatterers of interest, the number of discretization points in the
Sf region is much higher than the number of discretization points on the TfSf contour.

The TfSf source adds incident electric and magnetic fields on the faces of the TfSf
contour to the numeric flux as defined in Eq. (5.18)

∆Et(r, t) = E+
s (r, t) + Ei(r, t)−E−t (r, t) ,

∆Es(r, t) = E+
t (r, t)−E−s (r, t)−Ei(r, t) ,

with the previously specified boundary conditions ∆Et for the fields on the total field’s
element side of the face and ∆Es for the fields on the scattered field’s element side.

The analytically known incident field is in our case a dipole’s electric and magnetic
field distribution (see Eqs. (3.13) and (3.12)) where p(t) = p(t) ep is the emitter’s dipole
moment with orientation p and dipole moment amplitude p(t). The time evolution of
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the polarization’s amplitude p(t) is hither determined in a self-consistent manner from an
equation of motion. This particular equation of motion describes the coupling between
emitter and electromagnetic field and is solved alongside with Eq. (5.16) by the low
storage Runge Kutta (LSRK) solver. As the specific ODE used in this work, we describe
the emitter as a point-like dipole with a fixed dipole orientation positioned at r0 and
couple it with Maxwell’s equations via

p̈(t) + γ0ṗ(t) + ω2
0p(t) = Apump(t) +

e2

m
ep ·Es(r0, t) , (6.21)

where γ0 and ω0 characterize the dipole’s vacuum decay rate and transition frequency,
respectively. Furthermore, we allow for a pump pulse that does not need to be optical
and can excite the emitter from the ground to an excited state. The Equation above
relates to Eq. (3.22) by assuming a point-like emitter at position r0 and splitting the
electric field at the emitter’s position into

E(r0, t) = Es(r0, t) + ERR(t) , (6.22)

where ERR(t) is the radiation reaction describing the field produced by the charged
particle itself at the position of the particle r0 (cf. Ref. [227]) and Es(r0, t) is the electric
field scattered from the photonic structures and evaluated at the dipole’s position. In
a classical and simplified picture, an accelerated, periodically moving, charged particle
radiates electromagnetic energy between the time t1 and t2 with t2 < t1 (see Refs. [27,
227])

WEM(t2, t1) = − 2

3c3

t2∫

t1

dt
...
p (t)ṗ(t) , (6.23)

where the change in energy of the charged particle can be ascribed to the radiation
reaction such that

ERR(t) =
2

3c3

...
p (t) . (6.24)

This expression is actually the source of a divergence that cannot be straight-forwardly
resolved within the limits of a point-like emitter. When describing the emitter as a
spatially extended object, however, no divergence occurs. Thus, this divergence is a
residual from the point approximation and not of physical origin.

However, within the description of the emitter as a classical, point-like object, the
divergence in Eq. (6.24) can be avoided by assuming in a first approximation that the
emitter’s damping due to the radiation reaction is negligible. Consequently, in vacuum
(Es(r0, t) = 0), the emitter then oscillates with p(t) ∝ exp (−iω0t) leading to p̈(t) ≈
−ω2

0 ṗ(t). This way, we introduce the vacuum decay rate γ0 in Eq. (6.22) which holds
only for sufficiently small vacuum damping γ0 < 2ω0 (see also Ref. [28]). The charge and
mass of the dipole are here connected to the resonance frequency and vacuum decay rate
via (see Refs. [T1, 28])

e2

m
= 6πε0c

3 γ0

ω2
0

. (6.25)
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Figure 6.12: Analytical solution (Eq. (6.29)) for a dipole’s lifetime enhancement
at distance λ0 to a dielectric half space compared to the lifetime of a self-consistent
emitter as implemented in our scheme within the DGTD. The numeric results are
obtained expanding the electromagnetic fields on each tetrahedron in fourth order
Lagrange polynomials. Adapted from Ref. [W6].

These ODEs (Eq. (6.21) reformulated into two first degree ODEs) are then solved by
the LSRK solver, the results at each time step stored and then at time t interpolated
at exactly time t − r̃ (for a definition of r̃ see section 3.2.1) and back coupled to the
electromagnetic fields by the use of a TfSf contour (see (1) and (4) in Fig. 6.11 and
Eqs. (5.18), (3.13) and (3.12)). For a detailed discussion of the solution of the ODE
Eq. (6.21) without backscattering using the LSRK solver and the time interpolation
applied, see also Ref. [T1].

6.2.2 Convergence studies

In order to check the validity of the implemented method, we calculate the time-dependent
polarization of an emitter described by the equation of motion (6.21) placed above a di-
electric half space (z < 0) using the DGTD and comparing this to the integral description
of the problem.

In both cases, the dipole is at the beginning of the computation in its ground state
(p(t0) = 0, ṗ(t0) = 0) and is excited by the pump pulse which is given by

Apump(t) = A e
− (t−tpump)2

2σ2
pump sin

[
ωpump(t− tpump) + φpump

]
, (6.26)

where tpump, σpump, ωpump and φpump are freely electable pump pulse parameters. We
select the parameter tpump such that at the start time of the numeric computation t = t0
the emitter exhibits no static dipole moment. This is necessary since a static dipole
moment implies non-vanishing electric and magnetic fields which need to be initialized in
space with their correct analytic expression. In general, this information is not known.
The pump pulse’s carrier frequency ωpump is in this work chosen equal to the dipole’s
transition frequency ω0 assuming a resonant pump pulse. The influence of the choice of
the pump pulse’s width σpump is studied below. Last, we introduce an optional phase
φpump and set it to φpump = π/2 in this part of the thesis.
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Figure 6.13: Errors for spatial and temporal discretization. The choice of tN (the
time at which the computation ends) is given by the vertical black lines in Fig. 6.14(a)
and (b) for the spatial and temporal discretization, respectively. The spatial dis-
cretization exhibits a convergence rate αp ≥ p+ 1 with α2 = 3.5, α3 = 4 and α4 = 6.
The temporal discretization exhibits a rate of α = 4 independent of the field expan-
sion into polynomial orders and exemplary only shown for one dipole orientation as
expected for the global error of a LSRK algorithm of fourth order (see Ref. [186]).
Adapted from Ref. [W6].

We find an alternative to the DGTD solution by transforming Eq. (6.21) into frequency
domain

pint(t) =
1√
2π

∞∫

−∞

dω e−iωtApump(ω)·



−ω

2 − iγ0ω

[
1 +

6πε0c
3

ω2
0ω

(
ep ·Escat(r0, ω) · ep

)]
+ ω2

0





−1

,

(6.27)
where the solution to the scattered field is given by use of the reflection coefficients of a
plane (see Ref. [28] and Eq. (4.90))

Escat(r0, ω) =
i

8πε0

∞∫

0

dkρ
kρ
kz1



k2

1r
TE − k2

z1r
TM

k2
1r

TE − k2
z1r

TM

2kρr
TM


 e2ikz1z0 . (6.28)

Above, rTE and rTM are the usual TE and TM reflection coefficients for light propagating
from vacuum into an infinite, dielectric half space that we have already made use of in
chapter 4.

As presented in Refs. [28, 228], for an emitter decaying with a transition frequency
of ω0, the analytic and experimental distance dependence of the emitter’s lifetime is
well known and can be approximated by assuming the validity of the Weisskopf-Wigner
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approximation with ω ≈ ω0 (see Eq. (4.90))

γ

γ0
≈ 1 +

3c3

4ω3
0

∞∫

0

dkρ
kρ
kz1



k2

1r
TE − k2

z1r
TM

k2
1r

TE − k2
z1r

TM

2kρr
TM


 e2ikz1z0 . (6.29)

In Fig. 6.12, we present the numerically obtained altering of the lifetime in comparison
to the analytic solution Eq. (6.29). The numeric lifetime is obtained fitting the function

pfit(t) ∝ sin (ω · t+ φ) exp [−t/(2τ)] , (6.30)

to the dipole’s polarization starting at times t > 4 tpump. The nonlinear regression applied
leads to errors on the decay rate of ∆γ < 4× 10−10.

We expect the convergence to be governed by several parameters: (i) the overall spatial
discretization of the system , (ii) the time step of the Runge-Kutta scheme, (iii) the spatial
discretization of the TfSf contour and (iv) the width of the pump pulse (and with this
the slope of the induced fields. For the convergence parameters (i)-(iii), we define the
error as

ε(j) =
1

N

N∑

i=1

|pj(ti)− p j
2
(ti)| , (6.31)

where the parameter j describes the spatial discretization of the whole system, the time
step of the LSRK scheme or the spatial discretization of the TfSf contour, respectively.
Due to the fact that the computations are conducted in time-domain, we only sum up
the individual error in each time step up to the time tN in Eq. (6.31). In Fig. 6.13, we
present the results for the error due to discretization (see panel (a)) and time stepping
(see panel (b)) where we choose the tN as marked in Fig. 6.14 that we discuss later in
the text. In panel (a), we observe different convergence rates for the different Lagrange
polynomial orders p into which the fields are expanded. These convergence rates

ε(j) = Cjα , (6.32)

with the constant prefactor C are at least as large as predicted for a pure DGTD algorithm
where αp ≤ p + 1 (see Refs. [173, 180]). In panel (b), we observe a convergence rate of
α = 4 which is consistent with the global error for a Runge Kutta method of fourth order
(see Ref. [185, 186]).

When studying the robustness of these results when varying tN , we find two different
regimes for the ordinary differential equation (ODE) convergence behavior (see Fig. 6.14).
At early times, when the electric field (see Fig. 6.14(c)) governs the ODE, the ODE
exhibits a stable convergence rate with respect to discretization. For later times, the
polarization and current governs the ODE and thus the spatial discretization for this point
source does not matter any longer. Instead, the time discretization is of importance. The
black lines in panels (a,b) correspond to the time tN for which the errors are presented
in Fig. 6.13.

Regarding the convergence parameter (iii), the discretization of the TfSf contour, we
find a convergence rate of α ≈ 3.6 for both polarizations at early times (see Fig. 6.15(a)).
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Figure 6.14: Different convergence rates α of the ordinary differential equation
(ODE) Eq. (6.21). For early times tN < 60λ0/c, we obtain a fix spatial convergence
rate α. This is due to the fact that in Eq. (6.21) the terms proportional to the
electric field govern the time evolution (blue curve, panel (c)). For later times, the
polarization and current terms govern the ODE. Thus, the convergence rate of the
temporal discretization obtains the value α = 4 as known for the global error of a
LSRK method (see also caption of Fig. 6.13). Adapted from Ref. [W6].

For the last parameter (iv), the width of the pump pulse that effectively changes the
steepness of the field induced at the TfSf-contour, the error cannot be determined ac-
cording to Eq. (6.31) but can only be obtained by comparing to the results from a different
computational method. Here, we compute Eq. (5.16) directly and obtain as an error

ε =
1

N

N∑

i=1

∣∣pint(ti)− pDGTD(ti)
∣∣ . (6.33)

As before, the influence on the error is hugest at small time steps where most of the field
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Figure 6.15: Errors for the dependence of the discretization of the TfSf contour (a)
and the width of the pump pulse (b). The convergence rate in panel (a) is given as
αx = 3.6185 and αz = 3.5948 for a Lagrange polynomial order of p = 3. In panel (b),
we present the DGTD results for different pump pulse width in comparison to the
integrated values. We obtain convergence with convergence rates as large as α > 15.
Adapted from Ref. [W6].

is induced. In Fig. 6.15(b), we find that the convergence rate α for this specific parameter
is α > 15 for both polarizations.

With these convergence studies in mind, we consider the algorithm introduced in this
section stable and working and move on applying this self-consistent modeling of a clas-
sical dipole to the case in which we place such an emitter in the proximity of a nanoplas-
monic system – specifically a gold pentamer.

6.2.3 The gold pentamer

Before computing the self-consistent emitter dynamics, we start by discussing in this
section the general properties of the gold pentamer that we consider in the following.
This way, we enhance the understanding of the emitters’ radiation dynamics later in this
section. We consider a gold pentamer as plasmonic nanostructure since it exhibits a
rather broad scattering and absorbance cross section (see Fig. 6.17) covering the visible
wavelengths.
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Figure 6.16: Snippet of the mesh for the emitters in proximity of the pentamer. In
green, we present the pentamer structure, in blue a substrate is introduced (BK7) and
in red, orange and yellow three different TfSf contours (see Eq. (5.18)) are shown.
These TfSf contours are three possible contours to initialize fields radiated from
dipoles (positioned at the center of each TfSf domain). We study three different
setups: (i) a single emitter (red TfSf contour), (ii) two emitters opposite to each
other (red and yellow spheres) with the same polarization and (iii) two emitters at a
90 degree orientation (red and orange sphere) where in (ii) and (iii) the dipole inside
the red TfSf is pumped by Apump (see Eq. (6.26)) while the dipoles inside the yellow
and orange contour, respectively, are solely responding to the red source dipole.

A snippet of the mesh used for the simulations within the DGTD is shown in Fig. 6.16
with three possible total-field/scattered-field contours (see section 5.2) (red, orange and
yellow) in order to introduce the field of the self-consistent dipoles into the computation.

We assume the gold pentamer nanostructure to reside on a dielectric half space (BK7,
εBK7 = 2.2836649924). Each of the pentamer’s disks is of diameter d = 170 nm and of
height h = 30 nm and the disks have a distance of d′ = 30 nm from each other. The gold
is modeled using one Drude and one Lorentz pole (cf. Eq. (5.30))

εGold(ω) = ε∞ −
ω2

Drude

ω(ω + i γDrude)

+
∆εLorentz ω

2
Lorentz

ω2
Lorentz − i γLorentz ω − ω2

.

(6.34)

As parameters we use a fit to experimentally measured values (see Ref. [220]):

ε∞ = 6.210576 , ∆εLorentz = 1.00 ,

ωDrude = 0.04456379
c

nm
, ωLorentz = 0.01341646

c

nm
,

γDrude = 0.00034815
c

nm
, γLorentz = 0.00193932

c

nm
.

(6.35)

We then calculate the scattering and absorbance spectra (see Fig. 6.17) by exciting
the gold pentamer by an electromagnetic pulse with E ∝ ey and q ∝ ez and compute

155



6 Radiation dynamics of emitters close to metallic nanostructures

λsource
λdet.

400 600 800 1,000
0

2

4

6

8

10

Wavelength λ (nm)

S
ca
tt
er
in
g
R
+
T λsource

λdet.

400 600 800 1,000
0

1

2

3

Wavelength λ (nm)

A
b
so
rb
a
n
ce

A

(b)(a)

Figure 6.17: Scattering and absorbance of the gold pentamer displayed in Fig. 6.16.
In the visible, we can fit (red dots) three Lorentzian (with one additional Lorentzian
in the infrared) to the absorbance spectrum where the blue lines correspond to three
resonances. For the damping of these resonances, see the text. Due to an overlapping
mode structure in the scattering spectrum, we cannot fit Lorentzians to the scattering
spectrum in order to determine the eigenfrequencies of the radiative modes. The two
remaining maxima in the scattering spectrum that do not show in the absorbance
spectrum are simply marked by the orange lines. Additionally, the transition fre-
quencies of the three emitters we consider later are denoted by the dotted, dashed
and solid gray lines, respectively. Two of them, at transition wavelength λsource and
λdet., we couple in the last part of the section by placing the two at different positions
close to the gold pentamer.

the spectra via Eq. (5.46) and the corresponding Equations in Ref. [181]. Due to the
symmetry axis of the gold pentamer, we obtain the same results as presented in Fig. 6.17
also for all other excitations with the electric field polarized parallel to the glass substrate
(e.g., by choosing E ∝ ex + ey). Since in the following, we will only consider emitters
exhibiting in-plane electric dipole moments, we focus explicitly on the x-y excitation of
the gold pentamer in order to obtain the relevant scattering and absorbance spectra.

The scattering spectrum (see Fig. 6.17(a)) of this pentamer structure is dominated by
three maxima. One maximum is centered around 700 nm with the resonance decaying
both radiatively and non-radiatively (since the maximum appears in both the scatter-
ing and the absorbance spectrum) and a second maximum is located at approximately
900 nm and mainly radiative since it does not appear in the absorbance spectrum. The
third maximum is found close to 400 nm for which a corresponding, slightly red-shifted
maximum also exists in the absorbance spectrum.

Besides from this qualitative considerations, we can also discuss the spectra at a more
quantitative level. Due to broad radiative dipolar resonances that typically overlap with
a number of other modes, the higher-order resonances in the absorbance spectrum are
separated clearer from each other than the resonances in the scattering spectrum. The res-
onances in the absorbance spectrum can even be approximated by Lorentzian lineshapes
describing damped oscillator. We fit the visible part of the absorbance spectrum by the
use of four Lorentzians leading to the resonances of eigenfrequency ωplasm = 2πc/λplasm
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and decay rate γplasm (blue lines at the eigenwavelengths and red dots for the resulting
absorbance spectrum in Fig. 6.17(b))

λ1
plasm = 472.03 nm , γ1

plasm = 3.89 · 10−3 c

nm
,

λ2
plasm = 604.64 nm , γ2

plasm = 1.37 · 10−4 c

nm
,

λ3
plasm = 730.05 nm , γ3

plasm = 9.13 · 10−5 c

nm
,

λ4
plasm = 1165.63 nm , γ4

plasm = 4.34 · 10−4 c

nm
.

(6.36)

Above, the fourth resonance wavelength is rather an auxiliary eigenfrequency that is
needed due to the broad tail of the absorbance data between 800 nm and 1000 nm that
is due to the mainly radiative resonances appearing at the same wavelengths in the
scattering spectrum. From the numbers above, we deduce that the resonances exhibit
lifetimes in the femtosecond region which is typical for plasmonic nanostructures.

Since we cannot apply the same fitting routine to the analysis of the scattering spectrum
in Fig. 6.17(a), we simply determine the two additional maxima (orange lines) that do
not agree with the maxima in the absorbance spectrum

λ0
plasm ≈ 447.5 nm , λ5

plasm ≈ 942.5 nm . (6.37)

In total, we do thus find five important features in the scattering and absorbance spec-
trum: three maxima occur in the scattering and three maxima occur in the absorbance
spectrum where one of the three maximum (λ3

plasm) agrees in both spectra. Due to the
pentamer consisting of five monomers and the D4h symmetry (cf. Ref. [229]), the hy-
bridized plasmonic resonances that exist due to the plasmonic resonances of the single
monomers are numerous and overlap in large parts of the spectra. Especially in the
mainly radiative region (λ > 800 nm) in which the absorbance spectrum only exhibits
the mentioned tail, a combination of different dipolar hybridized modes exist that cannot
be easily separated from each other. However, we can assume that all of the plasmonic
resonances have lifetimes comparable to the ones determined in the case of the resonances
within the absorbance spectrum (see Eq. (6.36)).

6.2.4 A single self-consistent emitter

As an application of the self-consistent emitter, we consider emitters for which the
Weisskopf-Wigner approximation (see Eq. (3.31)) breaks down. This specifically hap-
pens when the emitter’s lifetime in the proximity of the metallic nanostructure becomes
comparable to the plasmonic resonance’s lifetimes obtained before (see Eq. (6.36)). In
this case, we expect a strongly modified and involved temporal dynamics of the emitter’s
radiation dynamics.

Emitters that are expected to exhibit femtosecond lifetimes (as plasmons usually do)
when placed next to a metallic nanostructures, have picosecond lifetimes in vacuum. In
the visible, these emitters are hard to come by but nonetheless of great scientific interest.
These emitters would allow to image, e.g., biological processes that happen on very short
time scales (cf. Refs. [5–7]) with a high degree of spatial resolution. However, some
systems indeed exhibit such short lifetimes. These are for example systems exhibiting
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Figure 6.18: Vacuum calculations for dipoles radiating with ω0,r(ed) and γ0,r(ed),
ω0,o(range) and γ0,o(range) and ω0,b(lue) and γ0,b(lue), respectively (see text). For the
vacuum calculations we used the tessellation shown in Fig. 6.16. The spectral in-
formation is obtained by use of a discrete Fourier transform. To obtain an error
measure, we fit the data (see discussion in text and Eq. (6.39)).

intersystem crossings such as found iridium or copper complexes, see Refs. [24, 25]. The
motivation of finding emitters with these short lifetimes has additionally led researchers
to the approach of indeed coupling plasmonic nanosphere with longer lifetime emitters
(see Ref. [26]). This leads us to the conclusion that even though the search for suited
optical picosecond emitters is still on-going, there have been promising experiments that
show the interest of scientists into short-time emitters and specifically the coupling of
these emitters with metallic nanostructures. Especially, when coupling these emitters to
plasmonic nanostructures and then using this coupled system as a probe, the knowledge
on the exact radiation dynamics and the consequences of the coupling are of uttermost
importance.

When we now couple emitters radiating in the visible, out of all modes discussed in the
scattering and absorbance spectra presented in Fig. 6.17, the radiative eigenresonances
are of highest importance. To stress this fact and discuss the widest range of emitters
possible, we choose in the following three emitters for our discussion, one that radiates
with a wavelength very close to the maximum appearing both in the scattering and
absorbance spectrum (λ3

plasm, red), the second one (λ2
plasm, orange) that radiates close to

the maximum that only exists in the absorbance spectrum and the third emitter (blue)
that radiates at a wavelength close to the smallest wavelength maximum (λ0

plasm).
Since we will use the emitters’ parameters throughout the remainder of this thesis, we
present in Fig. 6.18 the calculation of the dipoles’ spectra for a self-consistent emitter
placed in vacuum. Here, we post processed the results, fitting the transition frequency
ω̃0 and decay rate γ̃0 of an oscillator of spectrum

p(ω) =
Apump(ω;ω0)

ω̃2
0 − ω2 − iγ̃0ω

, (6.38)

to the discrete Fourier transform of the time evolution of the dipoles. For a perfect
computation in vacuum, one expects ω̃0 = ω0 and γ̃0 = γ0 = 10−5c/nm for all emitters.
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Figure 6.19: Time evolution (a) and corresponding spectra (b) of a self-consistent
emitter near a gold pentamer. The emitter is oriented as depicted in the inset of
panel (a). We study three emitters with different transition frequency (cf. also
Fig. 6.18). The closer the emitter’s transition frequency to the dipole resonance of
the gold pentamer, the more it is actually influenced by the surface plasmon polaritons
leading to a bi-exponential decay in the case of the red emitter. We zoom in Fig. 6.20
into the gray box denoted in panel (a).

From Fig 6.18, we obtain values

ω̃0,r − ω0,r

ω0,r
= 0.091% ,

γ̃0,r − γ0,r

γ0,r
= −0.994% ,

ω̃0,o − ω0,o

ω0,o
= 0.053% ,

γ̃0,o − γ0,o

γ0,o
= −0.998% ,

ω̃0,b − ω0,b

ω0,b
= 0.014% ,

γ̃0,b − γ0,b

γ0,b
= −0.834% ,

(6.39)

with the emitters transition frequencies chosen as ω0,b = 0.014280 c/nm, ω0,o = 0.010283 c/nm

and ω0,r = 0.008976 c/nm (corresponding to λ0,b = 440 nm, λ0,o = 611 nm and λ0,r =
700 nm) and the decay rates equal for all three systems and as given above. Thus, we
can conclude that this specific computation’s error is of below 0.9977% on the decay rate
fit but below 0.0998% for the frequency dependent characteristics. This is usually of
sufficient accuracy to compare to standard nanophotonic experiments.

When studying those self-consistent emitters in proximity to a gold pentamer (see
Fig. 6.16 for parts of the tessellation of the computational domain), we can determine
the altered decay rates. In Fig. 6.19, we notice that even in the close proximity to the
gold pentamer (gP), the blue and orange emitting emitters still display a mainly mono-
exponential decay with

γo,gP = 33.55γ0 and γb,gP = 41.5γ0 , (6.40)
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Figure 6.20: Zoom into the time evolution of self-consistent emitters near a gold
pentamer (see gray region in Fig. 6.19(a)). It is well visible that exactly as shown
in Fig. 6.19(b), the blue emitter behaves almost as a Lorentzian emitter with a well
defined decay rate. The orange emitter, however, shows some very small beating
at early times while for the red emitter at the times displayed here it is almost not
possible to determine a decay rate at all.

while the radiation dynamics of the red shining emitter whose transition frequency is in
close proximity of the radiating dipole resonance of the gold pentamer (cf. Fig. 6.17(a))
is far more involved. More specifically, we can find a bi-exponential decay with the short
and long time decay rates

γr,gP,short = 86.07γ0 and γb,gP,long = 55.88γ0 . (6.41)

As is well visible in Fig. 6.20, at early times of the emitter’s radiation dynamics, both the
orange and the red emitter exhibit a beating caused by the coupling to radiative part of
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Figure 6.21: Time evolution of two emitters interacting with each other in vacuum.
The computation is done in the same tessellation of space as for the simulation of
the emitters in proximity to a gold pentamer (cf. Fig. 6.16) despite the pentamers
consisting of vacuum (depicted by empty circles in pictogram). In time domain (a,c),
the exponential decay (fit: gray lines) with one frequency (source) and two beating
frequencies (detector) are clearly visible. This is supported by the frequency resolved
polarization amplitudes (panels (b,d)) that are normalized to the maximum value
of the source terms. The coupling efficiency of the source emitter to the detecting
emitter goes with η = 1.39 ≈

√
2 which corresponds to the difference in inter-emitter

distance.

the hybrid plasmon resonances. In Fig. 6.19(b), a clear red shift and broadening for all of
the three emitters becomes apparent where specifically the broadening is responsible for
the breakdown of the Weisskopf-Wigner approximation. By the spectral consideration,
we can also understand that the orange emitter is sufficiently broadened and red-shifted
such that it couples to the modes positioned at the absolute maximum in the scattering
spectrum. For the red emitter this red shift and broadening is even sufficiently strong
such that it does not only exhibit a lifetime on the order of the resonance lifetimes but
it couples to modes distributed over two scattering maxima (λ > 550 nm). This leads
in turn to this very involved time dynamics that we described before when discussing
Figs. 6.20(a) and 6.19(a).
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6 Radiation dynamics of emitters close to metallic nanostructures

6.2.5 Interacting emitters in proximity to a gold pentamer

Due to the self-consistent nature of the classical dipoles, we can additionally study the
interaction between two emitters. For this purpose, we choose two of the emitters – the
red one that is the fastest decaying as the driver and the orange emitter that is the slowest
decaying emitter. First, we start their direct coupling in vacuum at different distances
from each other and obtain the results presented in Fig. 6.21. It is important to note that
in vacuum both of the emitter decay at the same rate. In this case, we find a lowering of
both decay rates to

γr,coupl. = 1.13γ0 and γo,coupl. = 1.07γ0 . (6.42)

It is well visible in the polarization spectra (cf. Fig. 6.21(b,d)), that the detecting emitter
exhibits strictly speaking a bi-exponential decay. However, due to the numerical similarity
of the two decay rates, this does not show in the time evolution. On the opposite, the
time evolution of the polarization of the detecting emitter shows a beating due to the
two transition frequencies involved. Additionally, we would like to point the readers
attention to the coupling efficiency between the two different geometries. They relate
as η = pmax,(c)(ω)/pmax,(a)(ω) = 1.39 ≈ d(a)/d(c) with the distance d between the two
emitters.

In the next step, we place the two emitters close to the gold nanostructure (with the
results given in Fig. 6.22). Here, in the time evolution we can see that the source emitter
is in the beginning completely determined by its single emitter dynamics (cf. Fig. 6.19,
red line and Eq. (6.41) with γr,gP,short) until the much slower decaying detector emitter
has a higher polarization amplitude than the source emitter. After a transition phase, the
radiation dynamics of both emitters are completely determined by the radiation dynamics
of the single, orange emitter in a gold pentamer structure where the orange emitter emits
sufficient radiation such that it can re-excite the original source emitter. Thus detector
emitter and source emitter change its functions. In this case, the decay rate of both
emitters equals exactly the value of the orange emitter in Eq. (6.40). In Fig. 6.22, the
mono-exponential decays are sketched into panels (a,b) with the decay rates exactly equal
to the decay rates previously determined.

This coupling behavior can also be detected in the spectrum of the polarization am-
plitudes where both spectra are normalized to the maximum value of the single source
emitter’s spectrum (orange line). There, the orange detector emitter, exhibits an addi-
tional resonance at the driving frequency of the source emitter. Due to the domination of
the detecting emitter at later times, the source emitter’s spectrum is slightly influenced
at lower wavelengths. However, since the interchange of source and detector function
changes sufficiently late in the decay dynamics, the amplitudes of these processes are
small compared to the initial driving of the red source emitter.

6.2.6 Conclusions

We have shown in this section that a compete self-consistent modeling even of a classical
dipole can deepen the understanding of the light-matter coupling in complex photonic and
plasmonic systems significantly. While this knowledge can, in general, in linear systems
be derived from a frequency dependent or not self-consistent computation, the modeling
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6.2 Self-consistent dipoles in the proximity of a gold pentamer
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Figure 6.22: The Figure above presents the time evolution and spectrum of two
dipoles coupling to each other in proximity of a gold pentamer. The emitter titled
source is pumped by a pump pulse while the emitter called detector only responds
to the electromagnetic field stemming from the gold pentamer and the first emitter.
The source emitter radiates at λsource = λ0,r = 700 nm while the second emitter is
detuned at λdet. = λ0,o = 611 nm. In the left panels, we present the time evolution
(for color coding see corresponding legends in right panels). In the right panels, we
present the spectra obtained via a discrete Fourier transform. Additionally, in green
we give the scattering cross section of the pure gold pentamer.

of the time evolution enhances the corresponding intuitively understanding of the setup
at hand.

Especially, while we are experimentally approaching the regime where we are able
to place emitters with increasingly higher precision as presented in section 6.1, in a
variety of fields it is important to enhance the understanding of the dynamics on the
picosecond scale. For example, already in 1975, Kaufmann and co-workers (see Ref [230])
developed picosecond spectroscopy in biology. By using single emitters, an increase in the
detection of spatially resolved biological processes might be possible. In order to decrease
the lifetime of current optical emitters to the picosecond regime, a strong coupling to
plasmonic materials for quantum emitters is one possible path (cf. Ref. [26]). The
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6 Radiation dynamics of emitters close to metallic nanostructures

basis for successful experiments using picosecond emitters is in conclusion the detailed
understanding of processes similar to the once discussed in this section.

Furthermore, the convergence studies as provided for the case of a classical self-consistent
dipole allow for the future modeling of quantum-mechanically described emitters and will
open the possibilities to, e.g., also include non-radiative decay processes and the influence
of plasmonic nanostructures onto these decay channels. The resulting equations of mo-
tion are often nonlinear such that additionally the mapping between time and frequency
domain breaks down and a self-consistent time domain description becomes obligatory.
In these cases, even more involved time evolution are to be expected.
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CHAPTER 7

Conclusions, outlook and related work

The last section of this thesis first summarizes and concludes the thesis and then gives
a short outlook to future applications of the methods and results presented throughout
this thesis. The following discussion of related work shows the embedding of the research
presented in this thesis in the research conducted in the group Theoretical Optics &
Photonics at the Humboldt-Universität zu Berlin.

7.1 Conclusions and Outlook

In this thesis, we presented plasmonic environments in which different types of emitters
can be used for the detection of electronic and photonic properties. In the future, the
exact knowledge of these properties will help to design more advanced and functionalized
hybrid light-matter devices which might be of use in wide areas of quantum technologies.
Specifically, in this work we discussed plasmonic environments probed by contrasting
mechanisms such as the QE-FLIM where an NV center glued to an AFM cantilever acts
as a fluorescence lifetime probe, or the density of an atomic cloud trapped in an atom
chip which can be used as a spatially resolved lifetime probe.

In order to arrive at the description of these plasmonic systems and their coupling
to electric and magnetic emitters, we applied diverse methods. One of these was the
analytical computation of the lifetimes of electric and magnetic emitters above graphene
exhibiting a band gap. Here, we showed that the measurement of the lifetimes would
indeed allow for an additional path to determine the possible band gap in a graphene
monolayer, providing an alternative to ARPES measurements. The specific strength of
the setup lies in the spatial resolution allowing, e.g., to study the correlation of spatial
band gap and strain fluctuations. This is further enabled by the broad range of transition
frequencies exhibited by electric and magnetic emitters. In the case that the emitter is
already by construction included in the experimental setup, probing the properties of
a graphene monolayer by an emitter instead of other methods, allows for the in-situ
determination of the actual state of the graphene monolayer used in the experiment at
hand.

Furthermore, we developed more involved numerical tools to describe as exact as nec-
essary the radiation dynamics of the emitters. This includes an analysis of the allowed
dipole orientations of an NV center and a method to compute the time evolution of
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7 Conclusions, outlook and related work

classical dipole in a self-consistent manner within the DGTD. In the first case, we were
able to describe with high qualitative and quantitative agreement the experimental re-
sults obtained when conducting the first three-dimensional QE-FLIM. In the second case,
we showed the importance of reconsidering the Weisskopf-Wigner approximation that not
only in photonic crystal systems but also close to metallic nanostructures can break down.
Here, a self-consistent time domain modeling does not only allow for a more intuitive pic-
ture but also secures that the involved time evolution and with this the complicated
spectrum of the emitter is not overly simplified.

We also introduced the possibility to introduce plane wave pulses under oblique inci-
dence with respect to a periodic structure into the DGTD method in order to increase
possible applications of this time-domain Maxwell solver. This is of particular importance
in the context of periodically-structured systmes (cf. Ref. [W5]) or for the further anal-
ysis of the influences of periodicities on experimental measurements. Also, we discussed
in detail the existence of modes in dielectric slab - graphene - dielectric slab setups to
deepen the understanding of the processes leading to lifetime modifications of emitters
above graphene.

With the development of the numerical methods, we also laid the ground for future
work. By including graphene as a sheet conductivity into the DGTD, we will in the
future be able to both enhance the description of two-dimensional, structured materials
within the DGTD (e.g., by a tight-binding description as discussed in the next section)
but also to model further physical properties such as surface roughness of plasmonic
nanostructures by use of a surface current (see Ref. [203, 204]) or surface current sources
that may be applied, e.g., for the computation of Casimir forces (see Ref. [231, 232]).
However, it turns out from numerical studies by Philip Kristensen that a sine-shaped
source as the one suggested by the authors of Refs. [231, 232] seems to limit the accuracy
of these calculations since it is not divergenceless and thus leads to non-vanishing fields.
In this context, it seems more promising to make use of the (self-consistent) dipole as a
source of the electromagnetic radiation in a Casimir force calculation.

With respect to the work on emitter dynamics in the proximity of plasmonic and
dielectric nanostructures, we will further focus on the effects that graphene and other
two-dimensional materials have onto electric and magnetic emitters. In the future, it
will be, among others, necessary to include finite temperature effects into the description
of the graphene monolayer (see chapter 4) and compute the lifetime modifications when
graphene monolayers are placed in a magnetic field that might experimentally be required
in order to tune the magnetic transition. By doing so, even further quantitative and
qualitative predictions regarding room-temperature experiments are possible allowing for
a further discussion of the relevance of graphene’s band gap in experiments.

Last, it is of interest to the scientific community to broaden the discussion and re-
search to include the influence of other two-dimensional materials (and their multilayers)
on light-matter coupling. Although graphene is already a promising platform, other
two-dimensional crystals might allow for an even better performance of hybrid emitter-
plasmonic devices such as for instance in an atom chip.
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7.2 Related work

7.2 Related work

In the group Theoretical Optics & Photonics at the Humboldt-Universität zu Berlin, a
wide range of research is conducted that relates to the work presented in this thesis. Re-
search regarding the radiation dynamics and its modeling in the framework in the DGTD
has been conducted within the Bachelor thesis of Franziska Bierbüße (see Ref. [T1]).
Her research within the scope of her Bachelor thesis concentrated on the basic numerical
framework such as the low storage Runge Kutta (LSRK) solver and the time interpolation
needed for the modeling of a self-consistent classical dipole.

In the future, we will move towards the modeling of quantum emitters (two- and three-
level-systems) within the DGTD and realize a Maxwell-Schrödinger coupling. Robert
Kieschke conducts this research within his Master thesis where he focuses specifically
on the radiation dynamics of a quantum emitter close to or embedded in a hyperbolic
metamaterial cavity (see Ref. [226]). It has been shown in work from within this group
(see Ref. [233]) that in general hyperbolic metamaterials can decrease the lifetime of an
emitter close to the material by a factor of up to 1000 for certain transition frequencies.
Thus, when assuming, e.g., certain layers of the hyperbolic metamaterial to be doped
with a dye, these dyes might exhibit strong modifications to their radiation dynamics.

This directly leads to the point of including a quantum description of such two-
dimensional materials into an electromagnetic field time domain solver such as the DGTD.
Christian Gryzik within his Master thesis (see Ref. [T2]) focuses on the finite size effects
that a graphene nanostructure has on the lifetime modification of electric and magnetic
emitters. This is of importance since nanoribbons, e.g., on an atom chip will be finite
in size. The influence of finite size effects has previously been discussed elsewhere (cf.
Ref. [153, 154]) but is nonetheless different when the graphene nanostructures are excited
by magnetic emitters with their much smaller transition energies. Within this project, the
long-term goal is the coupling of a time-dependent tight-binding description of graphene
to the complete three-dimensional electromagnetic field computation within the algorithm
of the DGTD. In turn, he can then compute experimentally relevant structures combining
two-dimensional semi-metal with plasmonic and dielectric nanostructures.
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APPENDIX A

Bosonic and fermionic states

Although, in the results of this work, we do not explicitly make use of bosonic and
fermionic states, in this appendix we present the basic notation, the QFT description
of graphene presented in chapter 2 is based on.

The QM description as presented in section 1.2 is in the non-relativistic limit the theory of
choice to describe the dynamics of so-called microscopic objects33, such as, e.g., photons
and electrons. These objects (or particles) are sorted by their specific properties into
two particle classes: bosons and fermions34. Bosons (e.g., photons) and fermions (e.g.,
electrons) are defined by their specific occupation characteristics that follow from the
different particle commutator relations applied to a multiparticle wavefunction. While
more than one boson can occupy one single state, only one fermion can occupy a given
state. This leads to the following statistics at thermodynamic equilibrium

fBoson ≡ 〈nBoson(E)〉 =
1

eβ(E−µ) − 1
and

fFermion ≡ 〈nFermion(E)〉 =
1

eβ(E−µ) + 1
,

(A.1)

where 〈ni(E)〉 describes the expectation value for the bosonic and fermionic density at
a certain energy E. Above, we also introduce the temperature β = (kBT )−1 defined via
the Boltzmann constant kB and the chemical potential µ. The bosonic distribution is
known as the Bose-Einstein distribution while the fermionic distribution is known as the
Fermi-Dirac distribution. For the limit of T → 0, we find

lim
T→0

fBoson(E) = δ(E) , (A.2)

33The terminus microscopic objects compares to the concept of macroscopic objects, i.e., a metallic
nanostructure that consists of a large amount of these microscopic objects and is thus very well
described in the limit of classical physics.

34Most general speaking, a third class, the anyons, exist. Anyons are quasiparticles with a very specific
occupation probability that is neither fermionic nor bosonic. They are of great importance for the
description of the fraction quantum Hall effect (see Ref. [234] for a review) and in the discussion of a
possible realization of very fault-tolerant quantum computers (see, e.g., Ref. [235]). They are not the
subject of this thesis and are thus not touched further.
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A Bosonic and fermionic states

where δ(E) describes a delta function defined by

δ(x− E) ≡ 1

2π

∞∫

−∞

dq eiq (x−E) with

∞∫

−∞

dζ ′f(ζ ′) δ(ζ − ζ ′) ≡ f(ζ) , (A.3)

such that all bosons occupy the zero energy state while

lim
T→0

fFermion(E) = Θ(µ− E) , (A.4)

where Θ(µ− E) describes the Heaviside function

Θ(µ− E) ≡





1 , forE ≤ µ
0 , forE > µ

. (A.5)

The fermionic particle distribution then leads to the fact that all states with E ≤ µ are
occupied while the states with E > µ are empty.

A.1 Bosonic states

For the example of bosons, we can define an annihilation operator â that annihilates a
boson and a creation operator â† that creates a boson and obey the well-known commu-
tation relations

[â, â†] = 1 and [â†, â†] = [â, â] = 0 . (A.6)

On a so-called Fock or number state |n〉 which is a state containing n bosons these
operators then act as follows:

â |n〉 =
√
n|n− 1〉 and â†|n〉 =

√
n+ 1 |n+ 1〉 . (A.7)

This results in the fact that these states |n〉 are eigenstates of the number operator

(â†â)|n〉 = n|n〉 . (A.8)

and |0〉 is the vacuum state without bosons and with (â†â)|0〉 ≡ 0. As a result of these
identities, a Fock state can be written as

|n〉 =
(â†)n√
n!
|0〉 . (A.9)

These states form an orthogonal

〈m|n〉 = δmn ≡





0 if m 6= n ,

1 if m = n
(A.10)

170



A.1 Bosonic states

and complete

∞∑

n=0

|n〉〈n| = 1 (A.11)

set of eigenstates with the Kronecker δ defined in Eq. (A.10) and 1 being the identity
operator in the Hilbert space of a single-mode system.

A bosonic excitation can experimentally also be prepared in a coherent state. These
coherent states |α〉 are most rigorously and general defined as displaced vacuum states

|α〉 = D̂(α)|0〉 . (A.12)

where the displacement operator is given by

D̂(α) = eαâ
†−α∗â = e−

|α|2
2 eαâ

†
eα
∗â , (A.13)

The last reformulation we perform with the help of Lie’s expansion formula (cf. Ref. [236],
p. 971)

eX̂ Ŷ e−X̂ =
∞∑

i=0

1

i!
[X̂, Ŷ ]i (A.14)

with [X̂, Ŷ ]i = [X̂, [X̂, Ŷ ]i−1] and [X̂, Ŷ ]0 = Ŷ and the Baker-Campbell-Hausdorff For-
mula (see Ref. [237]) for two non-commuting operators X̂ and Ŷ

eX̂eŶ = eX̂+Ŷ+
[X̂,Ŷ ]

2
+

[X̂,[X̂,Ŷ ]]−[Ŷ ,[X̂,Ŷ ]]
12

+... (A.15)

that reads for the bosonic operator relations [â†, â]n = 0 for n ≥ 2 as

exX̂+yŶ = exX̂eyŶ ex·y·[X̂,Ŷ ] . (A.16)

In Eq. (A.16), we identify X̂ = â†, Ŷ = â and x = y∗ = α and arrive at Eq. (A.13).

By applying algebraic reformulations35, one finds that the coherent state is the right-
sided eigenstate of the annihilation operator

â|α〉 = α|α〉 , (A.17)

35The proof goes as follows: For the displacement operator, one finds D̂†(α) = D̂−1(α) = D̂(−α) and
with this and Eq. (A.14), one can write

D̂†(α)âD̂(α) = â+ [α∗â− αâ†, â] = â+ α ,

and thus find
â|α〉 = âD̂(α)|0〉 = D̂(α)D̂†(α)âD̂(α)|0〉 .

The r.h.s. of the last Equation can be rewritten as

â|α〉 = D̂(α)(â+ α)|0〉 = αD̂(α)|0〉 = α|α〉

with which Eq. (A.18) is proven.
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we can expand the coherent states in the complete set of Fock states

|α〉 = e−
|α|2

2

∞∑

n=0

αn√
n!
|n〉 = e−

|α|2
2

∞∑

n=0

αn(â†)n

n!
|0〉 ≡ e−

|α|2
2 eαâ

† |0〉 . (A.18)

Contrary to the Fock state basis, the coherent states form an over complete set

1

π

∫
|α〉〈α|d(Re [α]) d(Im [α]) = 1 . (A.19)

Nonetheless, coherent states are important states since they are considered the most
classical states since they simultaneously provide the minimal uncertainty in space and
momentum.

A.2 Fermionic states: the Grassman algebra

For the example of fermions, we define an annihilation operator ĉ that annihilates a
fermion and a creation operator ĉ† that creates a fermion. Contrary to the bosons, these

operators obey anti-commutator relation for two operators ĉ
(†)
i creating and annihilating

fermions in different states (such as at different times and positions or with different
momentum and energy)

{ĉi, ĉ
†
j} = δij and {ĉ†i , ĉ

†
j} = {ĉi, ĉj} = 0 . (A.20)

This algebra is known as the Grassman algebra (for details see QFT literature, i.e.,
Ref. [30]). As in the bosonic case, we can define Fock states

ĉ†i ĉi|ni〉 = ni|ni〉 , (A.21)

and coherent states

ĉi|ηi〉 = ηi|ηi〉 . (A.22)

With the anticommutation relation ĉiĉj = −ĉj ĉi and thus with ηiηj = −ηjηi it is obvious
that opposite to the bosonic case the ηi cannot be simple numbers. Instead they have to
fulfill the anticommutation relation.

Thus, for the projection of a coherent state onto a Fock state one finds

〈ni|ηi〉 = 〈−ηi|ni〉 . (A.23)

Since the discussion of the Grassman algebra in all depth is far beyond the scope of
this work, we do not introduce any additional identities. However, the general concept
of fermionic coherent states is analogous to the insight one gathers from the bosonic
discussion.
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APPENDIX B

The reflection coefficients of a conductive sheet

In this appendix, we present a detailed derivation of the TE and TM reflection coeffi-
cients for a conductive sheet for both a classical sheet conductivity σ(q, ω) as presented in
section 2.2.2 and a quantum-field theoretical description via the polarization tensor Πµν

as presented in section 2.2.1.

B.1 Calculating the reflection coefficients of a sheet
conductivity

TM polarization:

Starting with the divergence equation for the magnetic flux density (1.1b) of Maxwell’s

equations, we find that ∇ · B(r, t) = 0 is in the TM mode with q
(i)
y = 0 and µ

r
= 1

automatically fulfilled. The second divergence equation (1.1a), leads to the first condition
that connects the different components of the electric fields. When taking into account

that the system is invariant under displacement in x-direction (q
(1)
x = q

(2)
x ), the e±iq

(i)
z z

are linear independent of each other for all q, one arrives at

E(0)
z (q, ω) = −q

(1)
x

q
(1)
z

E(0)
x (q, ω) , E(r)

z (q, ω) =
q

(1)
x

q
(1)
z

E(r)
x (q, ω) , (B.1a)

E(t)
z (q, ω) = −q

(2)
x

q
(2)
z

E(t)
x (q, ω) , E(−)

z (q, ω) =
q

(2)
x

q
(2)
z

E(−)
x (q, ω) , (B.1b)

Next focusing on the curl equation for the electric field (1.1d), using Eqs. (B.1), and
B = µ0H, we find for region (1) as a connecting condition between electric and magnetic
field

E(0)
x (q, ω) =

q
(1)
z

ε1ω
H(0)
y (q, ω) , E(r)

x (q, ω) = −q
(1)
z

ε1ω
H(r)
y (q, ω) . (B.2)

For region (2) we replace (1)↔ (2), (0)↔ (t) and (r)↔ (−) in the equation above. The
last curl equation does not yield any additional information.

In order to finally connect the different fields with each other, we need to apply the
boundary conditions (2.52). For the TM mode, condition (2.52b) is automatically fulfilled.

173



B The reflection coefficients of a conductive sheet

Next, from condition (2.52c) with the use of Eq. (B.2) follows

q
(1)
z

ε1ω

(
H(0)
y (q, ω)−H(r)

y (q, ω)
)

=
q

(2)
z

ε2ω

(
H(t)
y (q, ω)−H(−)

y (q, ω)
)
. (B.3)

Condition (2.52d) together with Eq. (B.2) leads to the last condition needed

H(0)
y (q, ω)+H(r)

y (q, ω)−
[
H(t)
y (q, ω) +H(−)

y (q, ω)
]

=
σL(k, ω)q

(2)
z

ε2ω

[
H(t)
y (q, ω) +H(−)

y (q, ω)
]
. (B.4)

Both adding and subtracting Eq. (B.3) and (B.4) from each other and assumingH(−)
y = 0,

the TM reflection and transmission coefficient for a conductive sheet in between material

1 and 2 (remember, q
(i)
z =

√
εiω2/c2 − (q

(i)
x )2) read

rTM =
H(r)
y

H(0)
y

=
ε2q

(1)
z − ε1q

(2)
z + q

(1)
z q

(2)
z

σL(k,ω)
ω

ε2q
(1)
z + ε1q

(2)
z + q

(1)
z q

(2)
z

σL(k,ω)
ω

, (B.5a)

tTM =
H(t)
y

H(0)
y

=
2ε2q

(1)
z

ε2q
(1)
z + ε1q

(2)
z + q

(1)
z q

(2)
z

σL(k,ω)
ω

. (B.5b)

With these solutions, the remaining of Maxwell’s equations and the boundary conditions
give the additional information to solve for the electric field.

TE polarization:

In the case of TE polarization, the reflection and transmission coefficients can be derived
similar to the ones in Eq. (B.5). In this case, however, of the four Maxwell’s equations
the divergence condition of the electric field (1.1a) is automatically fulfilled. Exploiting
the same properties as for Eqs. (B.1) and (B.2), one arrives at

H(0)
z (q, ω) = −q

(1)
x

q
(1)
z

H(0)
x (q, ω) , H(r)

z (q, ω) =
q

(1)
x

q
(1)
z

H(r)
x (q, ω) , (B.6a)

H(t)
z (q, ω) = −q

(2)
x

q
(2)
z

H(t)
x (q, ω) , H(−)

z (q, ω) =
q

(2)
x

q
(2)
z

H(−)
x (q, ω) , (B.6b)

This expression can then (as before) be inserted into the conditions that arise from
Eq. (1.1c) which in consequence leads to

H(0)
x (q, ω) =

q
(1)
z

µ0ω
E(0)
y (q, ω) , H(r)

x (q, ω) = − q
(1)
z

µ0ω
E(r)
y (q, ω) . (B.7)

Last, as in the case for the TM mode, we will proceed with the boundary conditions
finding that this time condition (2.52a) is automatically fulfilled. With condition (2.52b),
leading to

H(2)
z (q, ω)−H(1)

z (q, ω) = 0 , (B.8)
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B.2 The reflection coefficients from a polarization tensor

and using condition (B.7), the first condition connecting the electric fields can be obtained
from Eq. (2.52c)

E(0)
y (q, ω) + E(r)

y (q, ω) = E(t)
y (q, ω) + E(−)

y (q, ω) , (B.9)

and the second condition may be arrived by starting from Eq. (2.52d)

E(0)
y (q, ω)− E(r)

y (q, ω) =


−µ0ωσ

T(k, ω)

q
(1)
z

+
q

(2)
z

q
(1)
z


 E(t)

y (q, ω)

−


µ0ωσ

T(k, ω)

q
(1)
z

+
q

(2)
z

q
(1)
z


 E(0)

y (q, ω) . (B.10)

Subtracting and adding Eqs. (B.9) and (B.10) we obtain rTE and tTE, respectively,

assuming no incident field from the bottom of the structure (E(0)
y = 0)

rTE =
E(r)
y

E(0)
y

=
q

(1)
z − q(2)

z + µ0ωσ
T(k, ω)

q
(1)
z + q

(2)
z − µ0ωσT(k, ω)

, (B.11a)

tTE =
E(t)
y

E(0)
y

=
2q

(1)
z

q
(1)
z + q

(2)
z − µ0ωσT(k, ω)

. (B.11b)

As for the TM mode, the remaining Maxwell’s equations and boundary conditions anal-
ogously give the missing conditions to calculate the complete solution including all am-
plitudes of the magnetic fields that were not of interest for the calculation of reflection
and transmission coefficients.

B.2 The reflection coefficients from a polarization tensor

In section 2.2.1, we introduce the concept of a polarization tensor within the QED 2+1

as used to describe the quasi particle propagation in graphene. Since the interaction
with the electromagnetic field is confined to a two–dimensional spatial sheet positioned
at z = x3 = 0, the polarization tensor is completely described by one temporal and
two spatial dimensions. For an easier translation into the generally known boundary
conditions for the electromagnetic vector potentials it is customary to generalize the
polarization tensor to the 4× 4 matrix Π with Π3µ = Πµ3 = 0.

For the classical boundary conditions (compare Eq. (2.52)) and when considering to
the Ehrenfest theorem (see Ref. [101] and Eq. (3.18)), the classical current reads

j(q, ω) ≡ 〈̂j(q, ω)〉 = χj(q, ω) ·A(q, ω) ≡ Π ·A(q, ω) . (B.12)

Here, we additionally have used Eq. (1.80) and the equivalence between the terminus
current-current response function χjαβ and the polarization operator Παβ.

With this expression for the current jµ, Maxwell’s equations read (compare Eq. (1.63))

1

4µ0
∂µF

µν + δ(x3)ΠνµAµ = 0 . (B.13)
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B The reflection coefficients of a conductive sheet

Reformulating Eq. (2.52d) in terms of the electromagnetic potentials the resulting bound-
ary condition reads (see Ref. [56, 238, 239])

Aµ|x3=0+ = Aµ|x3=0− ,

(∂3Aµ)|x3=0+ = −(∂3Aµ)|x3=0− = Πν
µAν |x3=0 .

(B.14)

With x = (x1, x2, x3)T , the Cartesian unit vectors ei, i ∈ {1, 2, 3}, the three-dimensional
wavevector q = (k, q3)T and the 2D projection onto the graphene plane k = (k1, k2)T ≡
(k1, k2)T , we can choose the Ansatz (see Ref. [56, 238]) for the TE mode

ETE(q, ω) = (−k2e1 + k1e2)
ω

c
Ψ(x3) , (B.15a)

HTE(q, ω) = i(k1e1 + k2e2)Ψ′(x3) + e3(k2
1 + k2

2)Ψ(x3) , (B.15b)

and for the TM mode

ETM(q, ω) = i(k1e1 + k2e2)Φ′(x3) + e3(k2
1 + k2

2)Φ(x3) , (B.16a)

HTM(q, ω) = (k2e1 − k1e2)
ω

c
Φ(x3) , (B.16b)

omitting the overall factor exp [i(x1k1 + x2k2 − ωt)]. Above, we introduced the wave
functions

Ψ(x3) =





eiq3x3
+ rTE

g e−iq3x
3
, x3 < 0

tTE
g eiq3x3

, x3 > 0
, (B.17a)

Φ(x3) =





eiq3x3
+ rTM

g e−iq3x
3
, x3 < 0

tTM
g eiq3x3

, x3 > 0
, (B.17b)

distinguishing between the fields above (>) and below (<) the graphene sheet and forward
(prefactor in exponential: +) and backwards (−) propagating fields.

With algebra analogously to Appendix B.1, the authors of Ref. [56] arrive at the general
expression (as in section 2.2.1, y2 = ω̃2 − ṽ2

Fk2)

rTE
g =

A
2iq3 −A

, tTE
g =

2iq3

2iq3 −A
, (B.18)

rTM
g = − q3(A− ṽ2

Fk2B)

2iy2 − q3(A− ṽ2
Fk2B)

, tTM
g =

2iy2

2iy2 − q3(A− ṽ2
Fk2B)

. (B.19)

By inserting Eq. (2.36) into Eqs. (B.18) and (B.19), Fialkovsky and co-workers arrive in
Ref. [56] at the general Eqs. (2.38) and (2.37).
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APPENDIX C

Selection Rules of electric and magnetic dipole transitions

Here, we present a discussion of the selection rules for electric and magnetic dipole tran-
sitions. These selection rules determine the existence of a transition and determine the
polarization of the electromagnetic fields that can couple to the corresponding dipole mo-
ment. Thus, they are important to determine when applying the theoretical results pre-
sented in this thesis to experimental setups.

C.1 Selection rules of an electric dipole transition

The selection rules for an electric dipole transition depend on the specific electronic
structure of the emitter that we use for the experimental realization.

To understand the basis of the selection rules that apply, we will consider “simple”
atoms (e.g., hydrogenic atoms, alkali atoms and singly-ionized alkaline earth elements)
that can be described by taking only one electron into account. Additionally, we assume
that it is valid to describe the electron’s wavefunction by a spherical symmetric function

Ψnlmlms(r) = ψnlml(r)χ(ms) = Rnl(r)Y
ml
l (θ, φ)χ(ms) . (C.1)

where these wavefunctions are required to be eigenstates

Ĥ0Ψnlmlms = EnΨnlmlms . (C.2)

of the system’s Hamiltonian

Ĥ0 = − ~
2

2m
∆ + V̂ (r̂)

with its kinetic part ~2

2m∆ and the coulomb potential V̂ (r̂) containing the electrostatic
interaction between several electrons. Since we are only considering spherically-symmetric
potentials V̂ (r̂), the eigenfunction of the Hamiltonian is naturally also an eigenfunction
of the orbital angular momentum operator L̂2

L̂2Ψnlmlms = l(l + 1)Ψnlmlms . (C.3)

and to its z-component L̂z

L̂zΨnlmlms = mlΨnlmlms . (C.4)
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C Selection Rules of electric and magnetic dipole transitions

The latter can be understood as a space quantization and can also be directly derived
from the fact that Ψnlmlms are eigenfunctions of the Hamiltonian. Last, the electronic
eigenfunctions are also eigenfunctions of the projected spin operator Ŝz (with eigenvalues
ms = ±1/2)

ŜzΨnlmlms = msΨnlmlms . (C.5)

These four quantum numbers are sufficient to describe hydrogen-like atoms in the absence
of a magnetic field that would lift further degeneracies.

The uncoupled representation introduced by the function χ(ms) in Eq. (C.1) is moti-
vated by the fact that the electric dipole operator does not couple to the spin and the
selection rule for the spin is given as

∆ms = ms −m′s = 0 . (C.6)

Additionally, we introduced the normalized spherical harmonics36

Y ml
l (θ, φ) = (−1)ml

[2l + 1

4π

(l −ml)!

(l +ml)!

]1/2
Pmll (cos θ)eimlφ (C.8)

where Pmll (cos θ) is the associated Legendre polynomial. Furthermore, Rnl(r) is the
completely real radial wavefunction. Further information on the electron’s wavefunction
can be found in any quantum mechanics textbook, i.e., Ref. [119].

Following Ref. [119], we can transform the electric dipole operator from Cartesian
coordinates d̂ = e(xêx + yêy + zêz) into spherical coordinates

d̂ = d (− 1√
2

sin θe−iφε̂+1 + cos θε̂0 +
1√
2

sin θeiφε̂−1) , (C.9)

with |〈d̂〉| = d = e
√
x2 + y2 + z2 and the spherical basis

ε̂±1 = ∓ êx + iêy√
2

and ε̂0 = êz . (C.10)

For the φ-dependence of the matrix elements, we thus obtain

e

∫
d3r ψ∗n′l′m′l r̂ψnlml = aε̂+1

2π∫

0

dφ ei(ml−m′l−1)φ

+ bε̂0

2π∫

0

dφ ei(ml−m′l)φ + cε̂−1

2π∫

0

dφ ei(ml−m′l+1)φ ,

(C.11)

36The normalized spherical harmonics can be written explicitly with the three lowest order ones given by

Y 0
0 (θ, φ) =

√
1

4π
, Y 0

1 (θ, φ) =

√
3

4π
cos θ , and Y ±1 (θ, φ) = ∓

√
3

8π
sin θe±iφ . (C.7)
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C.2 Selection rules of a magnetic dipole transition

with a, b and c integrals solely over r and θ. In consequence, only transitions between
states with

∆ml = ml −m′l = 0,±1 , (C.12)

are allowed. Here, there are two interesting facts to denote. First, only one of the three
integrals on the r.h.s. of Eq. (C.11) is unequal from zero for a given ∆ml. Since the εi
are a complete set of basis vector in R3, the electric field can be expanded into the same
basis. Then, only the electric field with a component of εj couples two states of given
∆ml. When viewing the electric field polarizations εj from the z-axis, one realizes that
transitions between two states with ∆ml = +1 are driven by left circular, with ∆ml = −1
are driven by right circular and with ∆ml = 0 are driven by linear polarized light.

Second, since Rnl(r) and Pmll (cos θ) are fully real functions (besides from a global
phase factor that can be fixed) the phase of the dipole matrix elements d↑↓ in Eq. (3.7a)
is determined purely by ∆ml. Considering a state transition that only couples to linear
polarized light (∆ml = 0), d↑↓ = d∗↑↓ ∈ R.

Last, we use the necessary requirement that the integrand of the dipole matrix element
is even under parity transformation since it otherwise disappears. The radial wavefunction
Rnl(r) only depends on radius and is thus even, such that the only functions of importance
are the spherical harmonics that transform

Y ml
l (π − θ, φ+ π) = (−1)lY ml

l (θ, φ) ,

with which under parity transformation, we obtain a prefactor (−1)l+l
′+1. With the refor-

mulation (−1)l+l
′−2l′+1 = (−1)l−l

′+1 we find that ∆l is required to be odd. Furthermore
recalling Eq. (C.9), one realizes that Eq. (C.11) contains the products Y −m

′
l′ cos θY m

l and

Y −m
′

l′ sin θY m
l with (see Ref. [119])

cos θ Y m
l = Y m

l+1f(l,m) + Y m
l−1g(l,m) and sin θ Y m

l = Y m+1
l+1 f̃(l,m) + Y m+1

l−1 g̃(l,m) .

Here, f(l,m), g(l,m), f̃(l,m) and g̃(l,m) are real-valued functions of only l and m. Due
to the orthogonality of the spherical harmonics, we can conclude

∆l = l − l′ = ±1 . (C.13)

C.2 Selection rules of a magnetic dipole transition

As for the case of electric dipole transitions, selection rules determine whether or not a
magnetic dipole transition between two different states is allowed. However, since the
two dipole operators differ, the selection rules are also largely different.

In the previous section, we have assumed a spherical symmetric, one electronic, spin-
less atom (describing, e.g., the electronic states of the alkali metal Rubidium) with a
wavefunction ψnlmlms(r) = 〈r|n, l,ml,ms〉. Due to the coupling of the electronic and
nuclear spin and angular momentum to each other and to an external magnetic field (cf.
section 3.3),he wavefunction ψnlmlms(r) is replaced by ψnlifmf (r) = 〈r|n, l, i, f,mf 〉 under
the assumption of a weak external magnetic field.
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C Selection Rules of electric and magnetic dipole transitions

For the total orbital momentum operator F̂ = (F̂x, F̂y, F̂z)
T and F̂± = (F̂x ± F̂y)/

√
2,

the eigenvalues of the wavefunctions read

F̂±ψnlifmf (r) = (mf ± 1)ψnlif(mf±1)(r) and F̂zψnlifmf (r) = mfψnlifmf (r)

such that the magnetic dipole matrix element 〈n′, l′, i′, f ′,m′f |µ̂ ·B(r0, t)|n, l, i, f,mf 〉 is
non-vanishing for

∆mf = 0, ±1 (C.14)

where ∆mf = 0 is valid for B ‖ ez and ∆mf = ±1 for B ⊥ ez. Due to vectorial addition

arguments of F̂ (see Ref. [119]), the selection rules are completed by

∆f = 0, ±1 , with a forbidden transition |f = 0〉= |f ′ = 0〉 . (C.15)
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APPENDIX D

Details on the modes of the dielectric-graphene-dielectric
slab

In this Appendix, we present detailed calculations for the computations of some of the
modes in a dielectric-graphene-dielectric slab setup as discussed in chapter 4.2.

D.1 Further expressions for the transverse electric (TE)
plasmonic mode of graphene embedded in a bulk
dielectric

In Eqs. (4.12), we present the parametrized solution k̂p[ˆ̃ω] for the dispersion relation of
the TE plasmonic resonance. This TE plasmonic resonance can also be expressed in terms
of the variable ŷ where the low and high frequency case are of interest for the calculation
of the plasmonic contribution to the decay rate modification of electric and magnetic
emitters over a graphene monolayer. Reintroducing q = atanh(ŷ) into Eqs. (4.12) leads
to

k̂p[ŷ] =
1√

1− εmṽ2
F

√√√√εmŷ2 + α2

(
atanh(ŷ)

ŷ2 + 1

ŷ
− 1

)2

,

ˆ̃ωp[ŷ] =
1√

1− εmṽ2
F

√√√√ŷ2 + α2ṽ2
F

(
atanh(ŷ)

ŷ2 + 1

ŷ
− 1

)2

.

From this expression, we can find the variable ŷp using ṽ2
Fk̂

2 = ˆ̃ω2 − ŷ2

ŷ2
p =

ˆ̃ω2

ˆ̃ω2
∆

− α2ṽ2
F

[
1−

ŷ2
p + 1

ŷ2
p

atanh(ŷp)

]2

(D.1)

Two different cases are of interest: First, we focus on the case ˆ̃ω > ˆ̃ω∆ (ŷp → 1−) for
which the approximation

ŷ2 − 1

ŷ2
atanh(ŷ)

ŷ→1−≈ (1− ŷ) ln
(1− ŷ

2

)
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D Details on the modes of the dielectric-graphene-dielectric slab

eventually leads to

ŷp ≈ 1− 2 exp


−




√
ˆ̃ω2 − ˆ̃ω2

∆

αṽF
ˆ̃ω∆

+ 1





 . (D.2)

Equivalently, for the second case ˆ̃ω < ˆ̃ω∆ (ŷ � 1) we can approximate

ŷ2 − 1

ŷ2
atanh(ŷ)

ŷ�1≈
(

4αŷ2

3

)2

,

leading to

ŷ2
p =

2(
ˆ̃ω

ˆ̃ω∆
)2

1 +

√
1 + 4

(
4αṽF

ˆ̃ω

3ˆ̃ω∆

)2
≈

ˆ̃ω2

ˆ̃ω2
∆


1−

(
4αṽF

ˆ̃ω

3ˆ̃ω∆

)2

 , (D.3)

ŷp ≈
ˆ̃ω

ˆ̃ω∆

√√√√1−
(

4αṽF
ˆ̃ω

3ˆ̃ω∆

)2

≈
ˆ̃ω

ˆ̃ω∆


1− 8

(
αṽF

ˆ̃ω

3ˆ̃ω∆

)
 , (D.4)

where we approximate
√

1− x ≈ 1− x/2 for x� 1.

D.2 On the non-existence of the transverse magnetic (TM)
plasmonic resonance in graphene with a band gap

In this appendix, we give a detailed derivation of the non-existence of TM plasmonic
resonances in gapped but undoped graphene. As we discuss in section 4.2.1, the TM
plasmonic resonance condition is given as (see Eq. (4.20))

−2ŷ2 + αΦ̂(ŷ)κ̂m = 0 .

Here, we can at first glance exclude certain regions of the (k, ω) space as a possible
solution space: For ˆ̃ω > ṽFk̂, ŷ2 = ˆ̃ω2 − ṽ2

Fk̂
2 ∈ R+ while for ˆ̃ω < ṽFk̂, ŷ2 ∈ R− (see the

distinction between the two red regions in Fig. D.1).

In these two regions, we have to distinguish between two different formulations of Φ̂(ŷ).
In the light red region (1 > ŷ2 > 0), we find

Φ̂(ŷ) = 2


1−

(
1 +

1

ŷ2

)
ŷ atanh(ŷ)


 < 2


1−

(
1 +

1

ŷ2

)
ŷ2


 = −2ŷ2 < 0 , (D.5)

where we make use of the fact that atanh(ŷ) > ŷ. Thus, with κ̂m > 0

−2ŷ2 + αΦ̂(ŷ)κ̂m > 0 , for ŷ2 > 1 , (D.6)
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D.3 On the existence of damped modes in the propagating region in the
case of graphene embedded between two identical dielectric slab waveguides

κ̂mαΦ(ŷ) ∈ C

ŷ2 > 0 and αΦ(ŷ)κ̂m < 0

ŷ2 < 0 and αΦ(ŷ)κ̂m > 0
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Figure D.1: Above, we display the three different regions that fill the complete (k̂, ˆ̃ω)
space and due to three different regions forbid the existence of a TM plasmonic
resonance due to condition Eq. (4.20). The regions are depicted with the choice
εm = 4.0.

we find a direct contradiction to Eq. (4.20).

On the other hand, for ŷ2 = −x2 < 0 (dark red region in Fig. D.1), we find

Φ̂(x) = 2

[
1 +

(
1− 1

x2

)
x atan (x)

]
>





2

[
1 +

(
x2 − 1

)(
1− x2

3

)]
> 2x2 > 0, forx < 1

2 > 0, forx > 1

(D.7)

where we use for x < 1 that atan (x) > x − x3/3. In consequence, in the red regions of
Fig. D.1, ŷ2 and αΦ(ŷ)κ̂m are of opposite sign but for the case of ŷ = 0.

For the case of ŷ = 0, we find that rTM
g (see Eq. (2.44)) exhibits a liftable singularity

with

lim
ŷ→0

[
rTM
g

]
=
κ̂0

2
, (D.8)

and thus the solution ŷ = 0 to Eq. (4.20) does not correspond to a collective excitation
of the system.

Last, in the gray region in Fig. D.1, we find that the term αΦ(ŷ)κ̂m ∈ C. Here, in
the radiative region κ̂m ∈ C while αΦ(ŷ) ∈ R and ŷ2 ∈ R whereas in the SPE region,
αΦ(ŷ) ∈ C while ŷ2 ∈ R and κ̂m ∈ R.

Thus, no TM plasmonic mode in the evanescent region (red regions of Fig. D.1) and
no real modes in the remaining regions (gray regions of Fig. D.1) exist.
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D Details on the modes of the dielectric-graphene-dielectric slab

D.3 On the existence of damped modes in the propagating
region in the case of graphene embedded between two
identical dielectric slab waveguides

In section 4.2.2, we discuss the existence of modes for a layer of graphene embedded
between two identical dielectric slab waveguides in the propagating region of the (k̂, ˆ̃ω)-
region (ˆ̃ω > k̂). In the following, we show that there exist damped modes which are,
however, strongly governed by the properties of the dielectric slab and thus not of par-
ticular interest within the scope of this work.

Starting from Eq. (4.25), we find that for any complex logarithm log (x) = a + ib and

q̂z,m = q̂′z,m + iq̂′′z,m where Re
[
q̂z,m

]
= q̂′z,m and Im

[
q̂z,m

]
= q̂′′z,m

ď =
a+ ib

−2iq̂z,m
=
a q̂′′z,m − b q̂′z,m + i(b q̂′′z,m + a q̂′z,m)

2|q̂z,m|2
. (D.9)

Assuming that a complex mode ˆ̃ω = ˆ̃ω′+ iˆ̃ω′′ (again, Re
[
ˆ̃ω
]

= ˆ̃ω′ and Im
[
ˆ̃ω
]

= ˆ̃ω′′) exist

for which Im
[
ď
]

= 0, we will show in the following that this necessarily leads to ď < 0.

For the definition of the Fourier transform we use in this thesis, Eq. (1.9), a damped

mode is comprised of ˆ̃ω′′ < 0 while ˆ̃ω′ > 0. With k̂z,m =
√
εm ˆ̃ω2 − k̂2 and in the

propagating region k̂′z,m > 0, we find

q̂′z,m =

√√√√√− k̂
2 − εm(ˆ̃ω′)2 + εm(ˆ̃ω′′)2

2
+

√√√√
[
k̂2 − εm(ˆ̃ω′)2 + εm(ˆ̃ω′′)2

2

]2

+ (εm ˆ̃ω′ ˆ̃ω′′)2 ,

(D.10)

where k̂2 − εm(ˆ̃ω′)2 + εm(ˆ̃ω′′)2 < 0. Thus, always q̂′z,m > q̂′z,0.

From ˆ̃ω′′ < 0, it also automatically follows that q̂′′z,m < 0.

Then, with these conditions and the demand that Eq. (D.9) be purely real and thus

b =
aq′z,m
q′′z,m

, (D.11)

we find

ď =
a

2q′′z,m
. (D.12)

Thus, we have to determine sign of a to determine the sign (and with this the existence)
of the substrate’s thickness ď. With the relation

Re
[
log (x)

]
=

1

2
log (|x|2) , (D.13)

we have to determine |x|2 ≷ 1 to find whether a ≷ 0.
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D.4 Effective medium model for dielectric-graphene-dielectric slab
waveguide

With

|x| = |q̂z,0 − q̂z,m| |αΦ̂(ŷ) + 2iq̂z,m|
|q̂z,0 + q̂z,m| |αΦ̂(ŷ)− 2iq̂z,m|

, (D.14)

and since q̂′z,m > 0, ∀m and q̂′′z,m < 0, ∀m and with this also for m = 0, we find that

|q̂z,0 − q̂z,m| < |q̂z,0 + q̂z,m| . (D.15)

When first considering dielectric slabs without a graphene monolayer (α→ 1), we find

|x| = |q̂z,0 − q̂z,m||q̂z,0 + q̂z,m|
< 1 , (D.16)

and with this a < 0 and thus indeed a solution

ď =
a

2q′′z,m
> 0 , (D.17)

exists. Thus, for the dielectric slab, damped modes (also known as resonances) always
exist.

However, for the case including a graphene monolayer, the situation is more compli-
cated. As shown in Fig. D.2(a,b), we find for all εm in the case of k̂ = 0 (varying ˆ̃ω and
thus ŷ = ˆ̃ω with Re

[
(
]
ŷ) > 0 and Im

[
(
]
ŷ) < 0) that

|αΦ̂(ŷ) + 2iŷ| > |αΦ̂(ŷ)− 2iŷ| . (D.18)

Thus, it is not clear whether |x| ≷ 1. Indeed, when plotting |x| − 1 for εm = 4.0 and
εm = 10000.0) in Fig. D.2(d) (for α = 1 shown in Fig. D.2(c)), we find that for physically
realizable values of εm, indeed a damped waveguiding mode exists but for ŷ = 1 the
boundary to the SPE region where Φ̂(ŷ)→∞.

However, as we show in Fig. D.2(c), the magnitude of α has a strong influence on the
existence of a damped waveguide mode. For α = 1 almost for now frequency a mode
exists. Thus, we conclude that indeed the damped waveguide mode in the propagating
region is caused by the dielectric slab and is not due to the graphene monolayer. Its
existence would actually even be suppressed if the photon-electron coupling in graphene
was be larger.

If the waveguide mode is allowed at k̂ = 0 for all frequencies at a corresponding
thickness, it will definitely also exist for all k̂ < ˆ̃ω. However, these modes are not of
specific interest in this thesis.

D.4 Effective medium model for dielectric-graphene-dielectric
slab waveguide

In order to determine the damping of the waveguide modes of a dielectric slab-graphene-
dielectric slab waveguide induced in the SPE region, we approximate this waveguide by
a slab of effective complex permittivity

εeff = εm + iε(1) , (D.19)
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with εm ∈ R. Furthermore, we assume that ε(1) � ε which seems appropriate considering
that the losses in the waveguide are induced via the coupling of the mode to the graphene
monolayer that is controlled via the fine structure constant α� 1.

For such a waveguide, in TE polarization and within the waveguiding region given by
ˆ̃ω < k̂ <

√
εeff

ˆ̃ω the mode condition reads

sin

(
d

√
εeff

ˆ̃ω2 − k̂2

)
(εeff

ˆ̃ω2 − k̂2) =

√
εeff

ˆ̃ω2 − k̂2

√
k̂2 − ˆ̃ω2 cos

(
dεeff

ˆ̃ω2 − k̂2
)
. (D.20)

Next, considering the two sides of the equation apart with εeff
ˆ̃ω2− k̂2 = a+ ib and b� a,

we find

(a+ ib) sin
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a+ ibd
)

= a sin
(
d
√
a
)
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i

2

[
d
√
a cos

(
d
√
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)

+ 2 sin
(
d
√
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)]
b+O(b2) ,

√
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)
= a cos

(
d
√
a
)

+
i

2


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cos
(
d
√
a
)

√
a

− d sin
(
d
√
a
)

 b+O(b2) .

(D.21)
In order to be able to compare Eq. (D.20) to the respective equation in the case of a
dielectric slab-graphene-dielectric slab waveguide

(
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(D.22)

we assume a very tiny damping Im
[
ˆ̃ω
]
� 1 and thus neglect Im

[
ˆ̃ω
]
≈ 0. Then by

writing a = εm ˆ̃ω2 − k̂2 and b = ε(1) ˆ̃ω2, we find for Eq. (D.20)

(
εm ˆ̃ω2 − k̂2

)
sin

(
d

√
εm ˆ̃ω2 − k̂2

)
−
√
εm ˆ̃ω2 − k̂2

√
k̂2 − ˆ̃ω2 cos

(
d

√
εm ˆ̃ω2 − k̂2

)

=
i

2
ε(1) ˆ̃ω2




cos

(
d
√
εm ˆ̃ω2 − k̂2

)

√
εm ˆ̃ω2 − k̂2

(
−d(εm ˆ̃ω2 − k̂2) +

√
k̂2 − ˆ̃ω2

)

− sin

(
d

√
εm ˆ̃ω2 − k̂2

)(
2 + d

√
k̂2 − ˆ̃ω2

)

 .

(D.23)
Under these assumptions, we can compare the right hand side of Eqs. (D.22) and (D.23)
since the left hand side of both equations agree. Then, we find

ε(1) ∝ α , (D.24)
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waveguide

where the damping of the mode is thus proportional to the fine structure constant as
stated in the main part of this thesis and in Ref. [W3].
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ŷ
]

−Im
[
ŷ
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Figure D.2: Comparison of |αΦ̂(ŷ) ± 2iŷ| for different complex values ŷ and at
normal incidence k̂ = 0. In panel (a), we show the solutions for α = 1, while in
panel (b), we show the solutions for α = 137−1. For all complex ŷ, we find that
|αΦ̂(ŷ) + 2iŷ| > |αΦ̂(ŷ)− 2iŷ| where this relation is important for the comparison in
Eq. (D.14). In panel (c,d), we show |x| − 1 from Eq. (D.14) for different values of α
and εm = 4.0 (c) and εm = 10000 (d), respectively.
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APPENDIX E

Fitting the conductivity of graphene

The following appendix describes the fitting procedure of the frequency dependent conduc-
tivity of graphene at finite temperature and with finite chemical potential. We make use
of the fitted functions in order to transform the frequency dependent conductivity into a
time dependent ADE. This appendix is adapted from the appendix of Ref. [W7].

As discussed in Sec. 5.5, the real part of the interband conductivity of graphene Eq. (2.65)
can be described analytically when assuming Γ→ 0. Since we fit the interband conduc-
tivity of graphene with two critical point conductivities (cf. Eq. (5.39)), we present the
real part of this critical point conductivity

Re
[
σCP(ω)

]
= 2AmΩmω

2
− sin (φm)ω2 + sin (φm)

(
Ω2
m − Γ2

m

)
+ 2 cos (φm)ΓmΩm

ω4 + 2
(

Γ2
m − Ω2

m

)
ω2 +

(
Ω2
m + Γ2

m

)2 .

(E.1)

In analogy to Ref. [192], we introduce the variable
√
x = ω

2kBT
and rewrite

Re
[
σCP(x)

]
=

A+Bx

C +Dx+ x2
x .

With this we find
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2
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4
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2
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4
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2A−BD


 ,

Am =
e2

8kBT~
−B

sin (φm)
√

2
√
C −D

.

(E.2)

Additionally, the intraband conductivity σintra(ω), Eq. (2.64), is modeled by a Drude
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pole, relating

ωDrude =

√√√√2kBTe2

~π
ln

(
2 cosh

(
µ

2kBT

))
. (E.3)
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APPENDIX F

Oblique incidence: error on test computations

In section 5.6, we introduce the concept of oblique incidence calculations within our time-
domain Maxwell solver, the DGTD. This method is tested against analytical solutions in
section 5.6.3 where we only present absolute values. The errors on the computation we
present in this appendix.
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Figure F.1: Error for three-dimensional TM transmittance and reflectance for a
dielectric slab (ε = 2.25 and thickness d = 0.15 nm) under different Bloch boundary
conditions. The errors correspond to the absolute difference between analytical and
DGTD computed results as presented in Fig. 5.12.
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Figure F.2: Error for two-dimensional TE and TM transmittance and reflectance for
a dielectric slab (ε = 2.25 and thickness d = 0.15 nm) under different Bloch boundary
conditions. The errors correspond to the absolute difference between analytical and
DGTD computed results as presented in Fig. 5.13.
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Schmiedmayer, “Relevance of sub-surface chip layers for the lifetime of magneti-
cally trapped atoms”, EPJ D 35, 97 (2005).

126. S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S.
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224. U. Hoeppe, C. Wolff, J. Küchenmeister, J. Niegemann, M. Drescher, H. Ben-
ner and K. Busch, “Direct observation of non-Markovian radiation dynamics in
3D bulk photonic crystals”, Phys. Rev. Lett. 108, 043603 (2012).

225. A. Deinega and T. Seideman, “Self-interaction-free approaches for self-consistent
solution of the Maxwell-Liouville equations”, Phys. Rev. A 89, 022501 (2014).

226. R. Kieschke, (working title) Quantum emitters near to hyperbolic metamaterial
cavities, Master thesis (Humboldt-Universität zu Berlin, hand-in date: October
2017).

227. P. W. Milonni, The quantum vacuum : an introduction to quantum electrodynam-
ics (Academic Press, Boston [u.a.], 1994).

228. K. Drexhage, “Influence of a dielectric interface on fluorescence decay time”, JOL
1, 693 (1970).

229. S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston and P. Mulvaney, “The surface
plasmon modes of self-assembled gold nanocrystals”, Nature Commun. 3, 1275
(2012).

230. K. J. Kaufmann and P. M. Rentzepis, “Picosecond spectroscopy in chemistry and
biology”, Acc. Chem. Res. 8, 407 (1975).

231. A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos and S. G. Johnson, “Casimir
forces in the time domain: Theory”, Phys. Rev. A 80, 012115 (2009).

232. A. P. McCauley, A. W. Rodriguez, J. D. Joannopoulos and S. G. Johnson, “Casimir
forces in the time domain: Applications”, Phys. Rev. A 81, 012119 (2010).

233. F. Intravaia and K. Busch, “Fluorescence in nonlocal dissipative periodic struc-
tures”, Phys. Rev. A 91, 053836 (2015).

234. A. Stern, “Anyons and the quantum Hall effect – a pedagogical review”, Ann.
Phys. 323, 204 (2008).

235. A. Y. Kitaev, “Fault-tolerant quantum computation by anyons”, Ann. Phys. 303,
2 (2003).

208



Bibliography

236. H. Kleinert, Path integrals in quantum mechanics, statistics, polymer physics, and
financial markets (World Scientific, 2009).

237. J. E. Campbell, “On a law of combination of operators (second paper)”, Proc.
London Math. Soc. 1, 14 (1897).

238. I. Fialkovsky and D. Vassilevich, “Parity-odd effects and polarization rotation in
graphene”, J. Phys. A 42, 442001 (2009).

239. I. Fialkovsky and D. Vassilevich, “Faraday rotation in graphene”, EPJ B 85, 384
(2012).

209





Acknowledgments

“Never trust a computer you can’t throw out a win-
dow” 37

Steve Wozniak

First and foremost, I would like to acknowledge my gratitude to Prof. Kurt Busch who
has put his trust in me and supported me first during my Diploma thesis and then of
course during the last three and a half years. Second, I would like to extend this gratitude
to the two referees of my thesis, Prof. N. Asger Mortensen and Prof. Stefan Scheel, who
agreed to invest their time to read and grade this thesis.

My research during the last three years was financed by the Studienstiftung des deutschen
Volkes. I would like to express my appreciation to this independent source of finances that
allowed me to steer the research the way it was appropriate and with the huge number
of seminars offered helped me to broaden my horizon beyond my research.

Furthermore, I would like to thank all collaborators that I had the pleasure working
and exchanging ideas with over the last three years. This includes Prof. Oliver Benson,
Dr. Andreas Schell and Philip Engel from the Humboldt-Universität zu Berlin as well as
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