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Abstract 

Arbuscular mycorrhizal (AM) fungi can be beneficial for horticultural crops due to 

their nutrient acquisition properties and stimulation of the plant metabolism. The pre-

sent work focuses on the prospects of AM fungi a) to solve plant nutritional problems, 

b) to induce flower development of ornamental plants, and c) to improve the health 

potential of crop plants for humans. 

Contribution of AM fungi to plant nutritional problems were investigated with leek, 

pelargonium and poinsettia plants on peat-based substrates with 20% and 40% com-

post additions. Moreover, lettuce plants were supplied on peat-based substrates with 

substrate own P, rock phosphate, or highly soluble P. Bunching onion and chinese chive 

were propagated on perlite in nutrient solution with low, medium and high NH4
+:NO3

- 

ratios. Mycorrhizal colonization, dry weight, and N, P, K, S, NO3
-, Mg and Zn concen-

trations in plants were measured. 

Mycorrhizal effects on bud and flower development of pelargonium and poinsettia 

plants were investigated on peat-based compost substrates. 

Treatment effects on secondary metabolites in bunching onion and chinese chive 

were determined by exposing mycorrhizal and non mycorrhizal plants to three 

NH4
+:NO3

- supply ratios. The metabolites measured were glucose, fructose, and su-

crose, total soluble solids, and organosulfur compounds (measured as pyruvic acid). 

Colonization improved plant nutrient status and flower development. Under the de-

scribed experimental conditions, however, plants did not consistently benefit in growth 

or plant composition from the mycorrhizal symbiosis. Additions of compost were a 

means of improving the substrate quality for an increased plant nutrient acquisition 

and plant growth in organic horticulture. The plant quality of Allium species in respect 

to organosulfur compounds was increased by taking the individual Allium species into 

consideration, their specific requirements for an optimal NH4
+:NO3

- supply ratio, and a 

possible AM effect on plant growth. 
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Kurzfassung 

Aufgrund seines Nährstoffaneignungsvermögens und Stimulierung des Pflanzenme-

tabolismus kann der arbuskuläre Mykorrhiza (AM) Pilz im Gartenbau nutzbringend 

eingesetzt werden. Der Fokus der Arbeit liegt auf den Möglichkeiten des AM Pilzes a) 

pflanzenernährerische Probleme zu lösen, b) die Blütenbildung bei Zierpflanzen zu 

steigern und c) das Gesundheitspotential von Gemüse für den Menschen zu erhöhen 

(sekundäre Pflanzenmetaboliten). 

Zur Lösung pflanzenernährerischer Probleme wurden Porree, Pelargonie und Poin-

settie auf Torf-Substraten mit 20% und 40% Kompostzusatz untersucht. Ferner wurde 

Salat auf Torf-Substrat mit drei P Behandlungen getestet: substrateigenes P, Rohphos-

phat und lösliches P. Frühlingszwiebeln und Schnittknoblauch wurden in Nährlösun-

gen auf Perlit mit niedrigem, mittlerem und hohem NH4
+/NO3

- Verhältnis ernährt. 

Gemessen wurde die AM Kolonisation,  die Trockenmasse und die N, P, K, S, NO3
-, Mg 

und Zn Konzentrationen im Spross. 

Die Blütenbildung von Pelargonien und Poinsettien wurde auf Torf-Kompost-

Substraten untersucht. 

Der Einfluss auf die sekundäre Metaboliten von Frühlingszwiebeln und Schnittknob-

lauch wurde zusammen mit drei NH4
+/NO3

- Verhältnissen geprüft (s.o.). Untersucht 

wurden Glukose, Fruktose, Saccharose, lösliche Feststoffe und organische Schwefelver-

bindungen (gemessen als Pyruvat). 

Eine AM Kolonisation konnte die Nährstoffversorgung der Pflanze verbessern und 

die Blütenbildung erhöhen. Jedoch profitierten die Pflanzen unter den beschriebenen 

experimentellen Bedingungen nicht durchgängig in ihrem Wachstum und Metaboliten 

vom AM Pilz. Die Zugaben von Kompost ermöglichte die Verbesserung der Substrat-

qualität für die Nährstoffversorgung und das Pflanzenwachstum unter ökologischen 

Gartenbaubedingungen. Der Ertrag von gesundheitsfördernden organischen Schwefel-

verbindungen konnte in Abhängigkeit von der jeweiligen Allium Spezies, durch eine 

Variation des Ammonium/Nitrat Verhältnissen und/oder durch einen AM Effekt auf 

das Wachstum gesteigert werden. 
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Allium spec., Ammonium, arbukulärer Mykorrhizapilz, Blütenbildung, Nitrat, ökolo-

gischer Gartenbau, organische Schwefelverbindungen, Pelargonie, Poinsettie, Roh-

phosphat, Salat, Torf-Kompost Substrat 
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1 General Introduction 

Horticulture has been practiced since humans became sedentary. Over the years 

people have learned how to increase the yield of their crops through breeding and fer-

tilization. For the most part, the problems of crop failure regarding nutrient supply 

have been solved. 

Since the 1970s, a new style of plant production known as organic horticulture has 

become increasingly popular. The aim of this new movement was a sustainable ecologi-

cal system that produces healthy crops. Practitioners of organic horticulture abide by 

special regulations regarding use of fertilizers and pesticides. The adoption of organic 

management systems has generated new problems, for example in nutrient supply, that 

need to be researched. 

The organic horticulture movement’s goal of producing healthy food for healthy peo-

ple has contributed to the development of another novel aspect of modern horticulture, 

the cultivation of plants for their health-promoting phytochemical content. In recent 

years, it has been discovered that many compounds in crop plants are beneficial to hu-

man health. These health related compounds are products of secondary plant metabo-

lism. It was found that the production of these compounds could be influenced by a 

variety of environmental factors, including plant nutrition and microorganism. 

Mycorrhizal fungi belong to a group of microorganisms that are beneficial for plants 

due to their role in plant nutrient acquisition and stimulation of plant metabolism. In 

combination with a variety of different fertilizer treatments, it may be possible to use 

mycorrhizal fungi to solve nutritional problems in organic horticulture and improve the 

health potential of crop plants. In this endeavor, the form of the fertilizer is an impor-

tant aspect. 

In the following sections, short introductions are given, into the different research 

areas regarding this work. 

1.1  Mycorrhizal symbiosis 

The word mycorrhiza was created from the Greek mykes (fungus) and rhiza (root). It 

describes the mutualistic symbiosis between soil-born fungi and roots of higher plants 

(Smith and Read, 97). Two main groups of mycorrhizal fungi have been recognized, the 

ectomycorrhiza and the endomycorrhiza. Endomycorrhizas have been further divided 

into the arbuscular mycorrhiza, the ericoide mycorrhiza, the arbutoid mycorrhiza, the 

monotropoid mycorrhiza, the ectendomyccorrhiza, and the orchid mycorrhiza 

(Peterson et al., 04). Arbuscular mycorrhizal fungi are placed in the Phylum Glomero-

mycota; Class Glomeromycetes and are divided into the, genera Acaulospora, 

http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo/amphylo_species.html#Acaulospora#Acaulospora
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Archaeospora, Entrophospora, Geosiphon, Gigaspora, Glomus, Diversispora, 

Pacispora, Paraglomus, and Scutellospora (Schüssler, 06; Peterson et al., 04). 

The symbiotic association between arbuscular mycorrhizal fungi and plant roots is 

common in the natural environment. Evidence for the existence of arbuscular my-

corrhizal (AM) symbiosis  dates back to the Ordovician, 450-500 million years ago 

(Brundrett, 02; Redecker, 02; Russell and Bulman, 05). Arbuscular mycorrhizal fungi 

probably already assisted the plants to colonize the land. Today, about 90% of land 

plants are mycorrhized (Smith and Read, 97) and provide a range of benefits to the host 

plant, including improved nutrition (Grimoldi et al., 05), enhanced resistance to soil-

born pests and disease (Dumas-Gaudot, 00; Whipps, 04), improved resistance to 

drought (Neumann and George, 04), or salinity (Tian et al., 04), tolerance to heavy 

metals (Andrade et al., 04; Leung et al., 06; Rivera-Becerril et al., 05), a better soil 

structure (Piotrowski et al., 04), and earlier flowering (Gaur and Adholeya, 05; Usha et 

al., 05). 

1.1.1 Arbuscular mycorrhizal colonization (mycorrhization) 

The mycorrhization of a root starts with the detection by the mycorrhizal spore of 

signal molecules in the root exudates. These signals, such as flavonoids or strigolactone 

(Scervino et al., 05; Akiyama et al., 05), dispose the germinated spore to switch from 

limited to vigorous growth and branching (Tamasloukht et al., 03). As soon as the hy-

phae contact a root, they form appressioria, penetrate the root surface and colonize the 

intercellular space of the root cortex. They either enter between two epidermal cells or 

pass through a cell (Demchenko et al., 04). Recently, Genre et al. (05) found in epider-

mal cells of Medicago truncatula, targeted with Gigaspora hyphae the formation of a 

specific structure composed of microtubules, microfilaments, and cytoskele-

tal/endoplasmatic reticulum. This structure served as an apoplastic interface compart-

ment through which the fungal infection hyphae traversed the epidermal layer. This 

penetration of the cortical cells is probably accompanied by the increased production of 

a cell wall loosening protein (Balestrini et al., 05; Balestrini and Bonfante, 05). Inside 

the roots the hyphae travel between the cortical cells, but do not enter the central cylin-

der. In some cells they form tree-like structures called arbuscules by repeated dichoto-

mous branching of the hyphae. The branching of the hyphae results in a two- to four-

fold larger surface area, where the main exchange between plant and fungus takes 

place. The fungi provide nutrients in exchange for carbohydrates. The arbuscules are 

separated from the cell protoplast by the host plasma membrane, the periarbuscular 

membrane. The cell undergoes several changes while being mycorrhized. The organ-

elles increase in shape and number, the nucleus moves to the center of the arbuscule, 

http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo/amphylo_species.html#Archaeospora#Archaeospora
http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo/amphylo_species.html#Entrophospora#Entrophospora
http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo/amphylo_species.html#Geosiphon#Geosiphon
http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo/amphylo_species.html#Gigaspora#Gigaspora
http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo/amphylo_species.html#Glomus#Glomus
http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo/amphylo_species.html#Diversispora#Diversispora
http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo/amphylo_species.html#Pacispora#Pacispora
http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo/amphylo_species.html#Paraglomus#Paraglomus
http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo/amphylo_species.html#Scutellospora#Scutellospora
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and the microtubuli and microfilamenti reorganize. After 4-10 days the arbuscule se-

nesces, collapses and its structures are completely degraded (Hause and Fester, 05). 

Some fungal species form intra- or intercellular vesicles, which function as storage 

for lipids (Smith and Read, 97). Hyphae do not only grow within the roots, but also 

grow out of the root to penetrate the root at a different location or to exploit surround-

ing nutrients in the soil to contribute nutrients to the plant. These so called extraradical 

hyphae form spores towards the end of the fungal lifecycle (Hause and Fester, 05). 

The observation of morphologically different roots led to a general thesis of Baylis 

(72) that all plants with thick unbranched roots and few root hairs, like Allium, 

Coprosma, or Citrus, are apparently more responsive to mycorrhizal colonization than 

are plants with finely branched roots and long or numerous root hairs when growing in 

low P soils (Jakobsen et al., 05; Koide, 00). Experiments with hairless mutants revealed 

that hyphae effectively replace root hairs and therefore support growth of plants with 

no or poorly developed root hairs (Chen et al., 05). 

The host plant is not the only symbiotic partner of mycorrhizal fungi.  Bacteria inside 

or associated with AM imply that many AM symbioses are tripartite associations, and 

such bacteria support the mycorrhizal effects (Bonfante, 03; Rillig et al., 05; Barea et 

al., 05; Toljander et al., 06). 

1.1.2 Arbuscular mycorrhizal fungi in organic farming 

Arbuscular mycorrhiza colonization has often been observed in agriculture soils all 

over the world, with beneficial effects but also costs for the crop plants (Morgan et al., 

05). Many agriculture management systems include use of fertilizers, biocides, tillage, 

monocultures and growing of non-mycorrhizal crops that are harmful to arbuscular 

mycorrhizal fungi (Gosling et al., 06). Gryndler (05b; 05a) found that AM growth was 

inhibited by mineral fertilizer, whereas sole organic fertilizer with humic acids en-

hanced growth. This finding, together with those of Mäder (02) and Oehl (04; 05) that 

organically managed sites increase the biodiversity of AM, suggests that fungi could be 

used advantageously in organic agriculture. Recently, these aspects have been dis-

cussed in more detail by Gosling (06). 

1.1.3 Characteristics of arbuscular mycorrhizal nutrient uptake 

The most frequently reported characteristic of arbuscular mycorrhizal fungi is the 

phosphorus (P) effect (Lekberg and Koide, 05). It appears mainly on soils that are defi-

cient in P where the plant dry weight was visibly supported by the increased uptake of P 

(Grimoldi et al., 05; Asghari et al., 05). This increased efficiency of P utilisation com-

pensates the higher plant’s construction costs of carbon (C), as soon as the AM fungus 

is established. Sometimes very young plants can not compensate the C drain and the 
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plant growth is slowed (Mortimer et al., 05). This can also happen when the soils are 

not nutrient deficient and plants do not depend on the fungus (Koide and Mosse, 04; 

Lerat et al., 03). Nutrients that can be transferred to the plant via hyphae beside P are 

the also relatively immobile zinc (Zn) and copper (Cu), and sometimes also nitrogen 

(N) and potassium (K) (George, 00; Azcón et al., 03). Magnesium (Mg) and iron (Fe) 

have also been reported to be transported in higher amounts towards the plant roots 

(Azcón et al., 03). The main mechanism by which mycorrhizal fungi increase nutrient 

uptake is through more extensively soil utilization rather than a unique capacity to mo-

bilize nutrients that are not available to plants (Sanders and Tinker, 71, Haymann and 

Mosse, 72; Drew et al., 03). AM hyphae have been shown to link plant roots and also to 

translocate P between the same or different plant species (Yao et al., 03). 

1.1.3.1 Uptake of phosphorus 

Phosphorus in soil can be categorized as either inorganic or organic. Inorganic P is 

often integrated in crystal lattices with Ca, Fe and Al that form largely insoluble com-

plexes, or absorbed to the surface of clay minerals. Plant available P consists of loosely 

bound P that exchanges relatively rapidly with the soil solution at pH 6.5. Tightly 

bound P exchanges very slowly with soil solution and is regarded as unavailable to 

plants. Organic P derives from soil organisms, including plants, microorganisms and 

animals and can be extracted from soil mainly as inositol phosphates (PO4
3-), phosphol-

ipids and nucleic acids (Smith and Read, 1997). Plants, and potentially AM as well, can 

secrete phosphatases to help hydrolyze this organic PO4
3- (Joner and Johansen, 00; 

Koide and Kabir, 00). The uptake of PO4
3- by plants is regulated by the concentration 

and the electrical gradient between internal and external conditions. Two transporter 

systems exist; one is a low affinity transporter system working constantly and the other 

is a high affinity uptake system that is strongly enhanced through P deficiency 

(Raghothama and Karthikeyan, 05). 

The active uptake of P by AM and its transport as short chain poly P via hyphae to 

plant roots is influenced by the transfer of carbon, as hexose, from the host to the AM 

across the mycorrhizal interface. Within the extraradical hypae P is stored in fungal 

vacuoles in form of short- and long-chained poly P (Bücking and Shachar-Hill, 05). 

In G. intraradices for example, the uptake of P is regulated by the P transporter gene 

GiPT in the extraradical hyphae. The expression of this gene in turn is regulated by ex-

ternal P concentration, but probably also by the internal P status of the plant 

(Maldonado-Mendoza et al., 01), and by the N supply (Olsson et al., 05a). The transfer 

of P from fungi to the plant has been studied at the molecular level in several plant spe-

cies (Rausch et al., 01; Nagy et al., 05; Poulsen et al., 05). 
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In conclusion, the advantages of mycorrhizal hyphae in P acquisition are that they (1) 

can transport P much faster to the plant than by diffusion in soil, (2) overcome the de-

pletion zone around roots, (3) use less C for their construction than for the same root 

length, (4) can explore a larger soil volume by penetrating pores of smaller diameter 

than roots (Drew et al., 03), and (5) are more competitive against free-living soil micro-

organisms for recently mineralized or solubilized Pi than are roots (Smith and Read, 

97). 

1.1.3.1.1 Uptake of P from rock phosphate 

In organic agriculture and horticulture the application of P fertilizer is allowed only 

in the form of organic materials (e.g. chicken manure) or as rock phosphate. Rock 

phosphate is a raw rock mined from P-rich deposits. The rock is washed free from clay 

impurities, heated to remove moisture, and ground (Espoma, 06). Rock phosphate is a 

slowly soluble fertilizer (Steffens et al., 06; El Dessougi et al., 03) and has a much lower 

degree of efficiency than chemically decomposed P fertilizer (Steffens et al., 06). My-

corrhiza fungi have been reported to increase P uptake from rock phosphate in 

roothairless barley roots (Chen et al., 05) and to increase the yield of Alfalfa signifi-

cantly (Barea et al., 02). On acidic soils fertilized with rock phosphate, arbuscular my-

corrhiza increased shoot and root dry weight and P, Cu, Zn, B, Mg, Ca, and K concen-

trations of Zea mays L. (Alloush and Clark, 01). A combination of mycorrhizal fungi 

and P solubilizing bacteria or organic matter were found to be very efficient in exploit-

ing the rock phosphate (Barea et al., 75; 02). Probably the hyphae immediately take up 

inorganic P that is dissolved in the soil solution during mineralization of organic P by 

microorganisms, and prevent its sorption on clay minerals (Jakobsen et al., 94). Low-

ered soil pH, which may result either from CO2 entry into the soil or from use of am-

monium fertilizer, can also contribute to the availability of P in the soil solution (Li et 

al., 91; Son et al., 06). 

1.1.3.2 Uptake of N, especially ammonium and nitrate 

The development of AM hyphae is dependent on a sufficient N supply (Hawkins and 

George, 01). Extraradical hyphae of AM take up ammonium (NH4
+), nitrate (NO3

-), and 

amino acid via transporters/permeases and proton pumping ATPases (Breuninger et 

al., 04). Recent experiments have shown that NO3
- and NH4

+ are assimilated into argin-

ine at the tip of the hyphae, transported to the plant, and transferred probably as NH3 

at the fungus-plant interface (Govindarajulu et al., 05). 

It has been shown for ammonium that NH4
+ nutrition can lower the rhizosphere pH 

and suppress spore germination (Green et al., 76), root colonization, and growth of AM 

(Ortas and Rowell, 04), and can also directly reduce root and/or extraradical hyphal 

biomass (Hawkins and George, 01; Olsson et al., 05a). Olssen et al. (05a) found that N 
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availability can regulate nutritional processes in AM. The suppressing influence of a 

high nutrient supply on AM could be a result of increased C immobilization in the 

plant. In this case the N available to the plant may reduce C-flow to the AM in a similar 

way as P availability does (Olsson et al., 05a). 

1.1.4 Changes of secondary metabolism by AM: phytohormones and 
flowering 

It has been shown that AM can enhance phytohormones (Barker and Tagu, 00) like 

abscisic acid (Danneberg et al., 92), the auxin conjugate indole-3-butritic acid (Ludwig-

Müller et al., 97; Fitze et al., 05), cytokinin isopentenyl adenosine (Shaul-Keinan et al., 

02), hydroproline-rich glycoproteins (Van Rhijn et al., 97), jasmonic acid (Hause et al., 

02), and gibberellin-like compounds (Allen et al., 82; Danneberg et al., 92; Shaul-

Keinan et al., 02). Most of these observations were made in mycorrhized roots, but 

some phytohormones like cytokinin or auxin conjugates have also been monitored in 

the shoot (Shaul-Keinan et al., 02; Fitze et al., 05). 

Flower development is a process highly influenced by phytohormones. AM has been 

shown to increase flower development and lead to earlier flowering (Backhaus, 83; 

Gaur and Adholeya, 05; Usha et al., 05). Although this phenomenon has often been 

observed, there has not been much work done to understand the mechanism. From 

molecular studies with Arabidopsis thaliana it has been shown that flower develop-

ment is influenced by the environment and by phytohormones like auxin and gibberel-

lin (cp. 2.3.4.1). Even though this test plant is not colonisable by AM, observed in-

creases in gibberellin and auxin concentrations in mycorrhizal plants could be 

responsible for their earlier flowering. 

1.1.4.1 Mechanisms of flower development 

The most detailed outline of flower development has been given in the model plant 

Arabidopsis thaliana. Many mutants have been developed from this species that made 

it possible to explain the molecular mechanisms underlying flower development and 

give an overview picture (Krizek and Fletcher, 05; Jack, 04). The general model used is 

the ABC model, in which the LEAFY (LFY) gene has the central role. Flower develop-

ment can be divided into four steps: First, the plant switches from vegetative to repro-

ductive growth after receiving certain environmental and developmental signals, such 

as long-day photoperiod, gibberellins (Yu et al., 04) (important for short day), autono-

mous promotion, and vernalization (cold treatment). Second, a small group of meris-

tem identity genes that specify floral identity are activated by signals from several flow-

ering pathways. Third, these meristem identity genes activate the floral organ identity 

genes in a specific region of the flower. Fourth, the floral organ identity genes activate 
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genes that induce different cell types to “build” the floral organs (Jack, 04) (Fig. 1). The 

phytohormone auxin takes part in the selection of the sites of the primordium specifica-

tion (Bénkova et al., 03; Reinhardt et al., 03; Reddy et al., 04). 

 

long-day
photoperiod
promotion

vernalization gibberellin

FRI, PIE1

LFY

CO

AP1

FT SOC1

FLC

Floral meristem specification

autonomous
promotion

long-day
photoperiod
promotion

vernalization gibberellin

FRI, PIE1

LFY

CO

AP1

FT SOC1

FLC

Floral meristem specification

autonomous
promotion

 

Fig. 1: The major floral inductive pathways in Arabidopsis. Signals from four major inductive 
pathways are integrated by FLC, SOC1, FT and LFY. Interactions are shown as ┤for a repres-
sive signal or → for the positive regulator signal. Abbreviation: CO: Constans gene; FT: Flower-
ing locus T; AP1 and LFY: major floral meristem identity genes; FRI: Frigida gene; PIE1 photo-
period independent earlier flowering 1; FLC: Flowering locus C, low FLC early flowering, 
overexpressed FLC late flowering; SOC1: suppressor of overexpression of CO (after Jack, 04; 
Moon et al., 05). 

 

The major floral meristem identity genes in Arabidopsis thaliana are LFY and 

Apetala 1 (AP1). The activation of these two genes results, either directly or indirectly, 

from the outputs of the flowering time pathways. The signal of gibberellin is directly 

integrated by LFY, whereas the others are integrated upstream or in parallel to LFY by 

flowering locus C (FLC), suppression of overexpression of constans (SOC1), and flower-

ing locus T (FT). Long-day-photoperiod and gibberellin induce SOC1 (Moon et al., 

03).The floral repressor FLC integrates the repressive signals from the autonomous and 

vernalization pathway, and the positive regulatory signals from the gene Frigida (FRI) 

and PIE1. High levels of FLC correlate with late flowering, and low levels of FLC corre-

late with early flowering. One signal on the autonomous pathway, for example, is a pro-

tein with similarity to a component of the histone deacetylase complex of mammals (He 

et al., 03). The up regulation of SOC1 via FLC can only take place when either gibberel-

lin or long-day photoperiod is also present. The second pathway that long-day photope-

riod activates is over FT that rather activates AP1 than LFY.  LFY activity is necessary 

for the proper expression of floral organ identity genes, although it does not function 
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independently of AP1. AP1 is probably directly activated by LFY (Jack, 04; Wagner et 

al., 04). 

1.2 Plant mechanisms for uptake and assimilation of nitro-
gen und sulfur 

Membrane transport of anions and cations is carried out via ion selective transport-

ers or through channels. Potassium is taken up actively but most other cations pass 

passively through the cell membrane along the electronic potential. Anions are moved 

out with the efflux pump to keep down sodium (Na) and calcium (Ca) concentration in 

the cell. External and internal signals attach to the receptors of the membrane trans-

porters, which convert and start the transport process (Marschner, 95). The activity of 

root NO3
-, NH4

+ and sulfate (SO4
2-) transporters are likely to be linked to changes in 

sucrose transfer to the roots (Lejay et al., 03). 

1.2.1 Sulfate uptake 

Sulfate is a macronutrient for plants that is essential for the synthesis of sulfur-

containing amino acids (Leustek and Saito, 99). Molecular studies have shown that 

most of the higher plants have high-affinity SO4
2- transporters that potentially assist the 

uptake of SO4
2- (Smith et al., 95; 97; Takahashi et al., 97; Hawkesford, 03). In addition 

to sulfate transporters used for uptake, there are voltage-dependent channels in some 

tissues that are initiated by SO4
2- and inactivated by nucleotides (Frachisse et al., 99). 

These plasma membrane-bound SO4
2- transporters are located in the surface cell-layer 

of roots and function as an energy dependent proton/sulfate co-transport system that 

can be initiated especially at times of SO4
2- limitation in the roots. Once within the 

plant, SO4
2- is reduced to sulfide (S2

-) (1) (Lüttge et al., 99). For excess SO4
2- the vacuole 

is the major intracellular storage (Hawkesford and Wray, 00). 

 

(1) SO4
2- + 8e- + 8H+ → S2

- + 4H2O 

1.2.2 Nitrogen uptake  

In the soil, nitrogen (N) is extremely heterogeneously distributed and consists of a 

complex mixture of organic and inorganic forms (Miller and Cramer, 05). The N con-

tent required for optimal growth depends on the plant species, development stage, and 

organ. It varies between 2 and 5% of the plants dry weight (Marschner, 95; Miller and 

Cramer, 05). Nitrogen is present in proteins, nucleic acids, coenzymes and numerous 

secondary plant compounds. The size and architecture of the root system is of relevance 

for a sufficient access to N sources (Miller and Cramer, 05). Generally, N is assimilated 
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by NH4
+, NO3

-, or amino acid uptake, or by N2
-
 fixation. Of these speciations, inorganic 

N is probably the dominant N source for crop plants. The reason for this is that organic 

N in the form of amino acids has a low diffusion coefficient and is rapidly turned over 

by micro organisms, and hence is taken up by the roots at a very low rate (Owen and 

Jones, 01). The uptake of inorganic (NO3
- and NH4

+) and organic N from the soil into 

roots is realised by multiple transport systems that are mainly situated just behind the 

root tip. The transporters are induced by several factors, and are subject to complex 

regulation at the level of transcription, translation and post-translation (Miller and 

Cramer, 05). 

1.2.2.1 Nitrate uptake and assimilation 

Nitrate is preferentially taken up by crop plants, because NO3
- is generally provided 

in higher concentrations than either NO2
- or NH4

+ (Miller and Cramer, 05). Nitrate is 

mainly delivered to the roots through a combination of mass flow and diffusion, and 

depends on soil moisture, soil impedance and root uptake and growth rate (Craine et 

al., 05). Plants take up NO3
- in cotransport with H+ (Ullrich and Novacky, 90). Uptake 

is regulated by high- and low affinity NO3
- -uptake systems that operate at different 

external NO3
- concentrations (Aslam et al., 92; Glass and Siddiqi, 95). At low external 

NO3
- concentration (<0.5 mM), two high-affinity transport systems probably assume 

most of the responsibility for N uptake, whereas at high NO3
- concentration (>0.5 mM), 

one low-affinity transport system does the work (Glass and Siddiqi, 95). Besides physi-

ology studies, many investigations at the molecular level have been conducted recently 

on uptake and transport mechanisms (e.g. Tong et al., 05; Berger et al., 06; Little et al., 

05). 

At low NO3
- supply, most nitrate is either reduced by NO3

- and NO2
- reductase to 

NH4
+ within the root cells ((2) and (3)) (Lüttge et al., 99) or stored in the vacuoles 

(Miller and Cramer, 05; Granstedt and Huffaker, 82).  

 

(2) NO3
- + 2e- + 2H+ → NO2

- + H2O (in cytoplasma) 

 

(3) NO2
- + 6e- + 6H+ → NH3 + H2O + OH- (in chloroplast) 

 

Increasing NO3
- concentration in the soil solution results in a partial transport of ni-

trate into the shoots (Britto and Kronzucker, 05; Marschner, 95; Andrews, 86). It en-

ters the xylem by anion channels or via the voltage dependent Quickly Activating Anion 

Conductance (X-QUAC) and is transported with endogenous K as a counterion (Köhler 

et al., 02; Marschner, 95). 
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1.2.2.2 Ammonium uptake and assimilation 

Compared to NO3
-, NH4

+ is relatively immobile in the soil (Miller and Cramer, 05). 

Ammonium uptake may occure through channels, even through K channels, driven by 

negative membrane potential of the plant cell (White, 96). Entery of NH4
+ into cells 

may be in countertransport with protons (Britto and Kronzucker, 05). For closer inves-

tigations many plant NH4
+ transporter (AMT) genes have been identified that could 

take part in the uptake of NH4
+ (Miller and Cramer, 05). Compared to NO3

- assimila-

tion, NH4
+ assimilation increases carbon (C ) utilization for respiration and amino acid 

production (Britto and Kronzucker, 02b). 

Once within the cell, most NH4
+ is dissolved quickly into ammonia (NH3 + H+), inte-

grated directly into amino acids and amides (Schilling, 00), and transported in the xy-

lem to the shoot mainly as sucrose. This synthesis of amino acid (glutamine and gluta-

mate) requires a large amount of C skeletons from α-ketoglutarate, ATP and reducing 

power (Ferrario-Méry et al., 05). Translocation of low NH4
+ concentrations in the xy-

lem has been measured (Schjoerring et al., 02), but the loading mechanism has not 

been clarified yet (Miller and Cramer, 05).There is also evidence that NH4
+ may be 

stored in vacuoles of the roots were it raises the pH with increasing external NH4
+ con-

centration (Roberts and Pang, 92). 

High concentrations of NH4
+ can be toxic to some species. Several reasons for this 

have been postulated, including internal decrease of the pH (pH imbalance) (Van den 

Berg et al., 05), external acidification (Britto and Kronzucker, 02b), cation deficiency 

(Van Beusichem et al., 88; Lucassen et al., 03), and energy drain resulting from the 

efflux/pumping process of NH4
+  (Britto and Kronzucker, 02b). Plants react to NH4

+ 

toxicity by increasing the efflux/influx ratio of NH4
+ in leaves and root cells (Britto et 

al., 02a). 

1.2.2.3 Competition between ammonium and nitrate uptake  

In almost all cases external NH4
+ strongly suppresses net uptake of NO3

- (Kronzucker 

et al., 99a). In contrast, externally supplied NO3
- generally has little or no effect on net 

uptake of NH4
+ (Marschner, 95), but activates NH4

+ transporters genes at NO3
- defi-

ciency (Wang et al., 00). Accordingly, by supplying NH4NO3, NH4
+ is usually taken up 

much more preferentially than NO3
-, accompanied by an optimal growth of most plants 

species at mixed supply of NH4
+ and NO3

- (Marschner, 95). One explanation for the 

suppression of net NO3
- influx by NH4

+ in the plasma membrane could be the inhibition 

of the inducible high-affinity transport system and on a very small scale also NO3
- efflux 

(Kronzucker et al., 99a). A second explanation could be the energy balance. The proc-

esses of NO3
- reduction and assimilation have a higher energy requirement when car-

ried out in roots than that of NH4
+. Expressed in ATP equivalents, 15 moles of ATP are 
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used for the reduction of one mole of NO3
-, with an additional 5 moles of ATP for am-

monia assimilation (Marschner, 95). The assimilation of NO3
- in barley roots hence 

requires 9% more energy than when NH4
+ is supplied, but NH4

+ in high concentration 

is toxic (Bloom et al., 92). The reason for the optimal growth of most plants at the 

mixed supply of NH4
+ and NO3

- could be that they complement one another. This effect 

may result from balancing the pH process in the cytosol and the external soil solution 

(Britto and Kronzucker, 05), translocating more N into the shoot (Kronzucker et al., 

99b), and possibly inducing assimilating pathways in the roots by NO3
- that are nor-

mally not available with NH4
+ (Britto et al., 02b). 

1.2.3 Sulfur and nitrogen interactions 

Sulfur transporters are basically regulated by external S conditions, but are addition-

ally controlled by plant C status and N supply (Fig. 2) (Maruyama-Nakashita et al., 04). 

These act as signals which activate molecular mechanisms that modify biosynthetic 

pathways and thereby have a profound impact on metabolite fluxes (Hesse et al., 04). 

In Arabidopsis roots, C supply generally induces the expression of nutrient transport-

ers, especially nitrogen (Lejay et al., 03; Palenchar et al., 04). Apparently, the nutrient 

uptake systems are co-ordinately operated under a general regulatory circuitry to meet 

the demands of primary metabolism when C is sufficiently supplied. The exact mecha-

nism remains an open question (Maruyama-Nakashita et al., 04). 
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Fig. 2: Plant metabolism is highly interconnected and dependent on external supply of nutri-
ents, light and water. Scheme showing factors affecting sulfur-assimilation and the interrelation 
with nitrogen and carbon metabolism in plants. The regulatory and biosynthetic circuits lead to 
the respective composition of plant metabolites and, eventually, to plant growth and reproduc-
tion (Hesse et al., 04). 

 

Sulfur uptake and assimilation is dependent on the constant supply of the precursor 

of cysteine, O-acetylserine (OAS), which, in turn, is controlled by N and C availability 

(Koprivova et al., 00, Kopriva et al., 02). Excess cysteine and glutathione (GSH) con-
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centrations induced the down-regulation of the SO4
2- transporter, with an accompany-

ing rapid decrease in SO4
2- uptake. This can happen when either S is in excess, or N is 

limited (Smith et al., 97; Zhao et al., 99). 

Cysteine is the first molecule in the plant metabolism containing both S and N. Cys-

teine is incorporated into proteins and glutathione and functions as the main S donor 

for methionine synthesis (Ravanel et al., 98; Hesse and Hoefgen, 03; Leustek and Saito, 

99). Cysteine acts as a general catalyst in redox reactions. Furthermore, secondary 

compounds such as S-alk(en)ylcysteine, S-methylcysteine, glucosinolates, and phy-

toalexins are based on S directly or on cysteine and methionine, respectively (Schmidt 

and Jäger, 92). S-alk(en)yl cysteine sulphoxides are the precursors to health related 

organosulfur compounds of Allium species (Jones et al., 04). Limitations in either nu-

trient do not only inhibit the plant’s ability to synthesize cysteine, but also limits pro-

tein synthesis. Clarkson (89) observed a suppressed uptake of NO3
- and NH4

+ when 

cereal plants had S deficiency. 

Cysteine is formed in a stepwise process starting with SO4
2- uptake by the appropri-

ate SO4
2- transporter (Fig. 3), followed by the activation of SO4

2- by covalent binding to 

ATP via an ATP-sulfurylase-catalysed reaction to form APS, its reduction to sulfite by 

APS-reductase (APR), and finally the reduction to sulfide by sulfite reductase. The O-

acetylserine(thiol)lyase (OASTL) transforms sulfide and activated serine, O-

acetylserine (OAS), into cysteine. The OAS is synthesized by serine acetyltransferase 

(SAT) which forms a complex with OASTL. These two enzymes catalyse the final step of 

the cysteine biosynthesis and represent the major link between N/C and SO4
2- assimila-

tion. This multi-enzyme complex is called cysteine synthase (Hawkesford and Wray, 

00, Leustek and Saito, 99). The regulation of SATs was shown in different plant species, 

including Allium tuberosum (Urano et al., 00). 

The effect of S deficiency on N metabolism is much less obvious. Hesse (04) specu-

lates that the interrelationship of S and N metabolism is of a hierarchical nature, where 

N metabolism has priority over S metabolism. 
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Fig. 3: External sulfate is taken up through sulfate transporters. The inert sulfate is activated 
by covalent binding to ATP to form APS either in the cytosol or the plastid. In the cytosol APS 
can be phosphorylated to PAPS, in chloroplasts, sulphate bound in APS is reduced to sulfide 
via sulfite and subsequently transferred to activated serine (OAS) to form cysteine. Cysteine 
formation takes place in three cellular compartments, chloroplasts, but also cytosol and mito-
chondria. In these compartments both SAT and OASTL isoforms are present but the reductive 
component of the pathway is missing. Black lines represent metabolic efflux; grey lines are 
probable feedback control loops. ATP adenosinetriphosphat; ADP adenosine-5’-
phosphosulphate; APSK APS kinase; PAPR PAP-reductase; PAPS phosphoadenosine-
phosphosulphate (Hesse et al., 04; Lüttge et al., 99). 

1.3 Formation of organosulfur compounds and their con-
tribution to human health 

The health related organosulfur compounds of Allium species can be easily recog-

nized by their flavour. The nature and origin of these flavour compounds have been 
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studied since the 1940s. It was shown that once the plant tissue is damaged, stable fla-

vour precursors react to form a series of volatile and non-volatile S compounds. These 

compounds belong to the group of secondary metabolites which function in key activi-

ties including reproduction, defence, pathogenicity, stress resistance and resource stor-

age (Jones et al., 04). 

The cysteine and glutathione metabolisms are involved in biosynthesis of organosul-

fur precursors in the Alliums. Therefore, I focus on the biosynthetic pathway of the 

health related flavour precursors, the (+)-S-alk(en)yl cysteine sulphoxides (CSOs) and 

their γ-glutamyl peptide (γGPs) relatives decribed by Jones (04). 

There are four relatively stable, odourless COSs precursors in the different Allium 

species (Fig. 5) known as S-methyl cysteine sulphoxide (MCSO, methiin; present in 

most Alliums, some Brassicaceae), S-allyl cysteine sulphoxide (ACSO, alliin; character-

istic of garlic), S-transprop-1-enyl cysteine sulphoxide (PeCSO, isoalliin; characteristic 

of onion), and S-propyl cysteine sulphoxide (PCSO, propiin; in onion and related spe-

cies). After cleavage, the vacuolar enzyme alliinase (EC4.4.1.4.) rapidly lyses them to 

form sulfenic acids (R-SOH), which immediately condense to form pyruvate, ammonia 

and the alkyl alkanethiosulfinates (R-SS(O)-R) (Fig. 4; Lawson, 93; Jones et al., 04). 

O
I
RSCH2CHNH2COOH  + H2O → [RSOH]     + NH3 + CH3COCOOH 
(cysteine sulfenic acid)                (thiosulfinate)                (pyruvic acid)

 

Fig. 4: Reaction from cysteine to sulfenic acid and pyruvic acid (Schwimmer and Weston, 61). 

 

The thiosulfinates are very unstable and continue to react, which is traceable by the 

changing smell (Lawson, 93). Allicin is one of the compounds that undergoes chemical 

reaction and quickly transforms into other organosulfur compounds including 

alk(en)yl, ajoenes and vinyldithiins (Kodera et al., 03). The lachrymatory factor is fol-

lowing the alliinase action on PeCSO and is typical for onions (Imai et al., 02). PeCSO 

was found to correlate with pyruvic acid concentration in onions, while pyruvic acid 

concentrations was correlated with S concentrations in the nutrient solution (Randle et 

al., 95). 

Beside CSOs, a number of γ-glutamyl peptides (γGP) derivates of the described fla-

vour compounds have been identified within Allium species (Whitaker, 76). They do 

not contribute directly to flavour, but are part of the biosynthesis and may function as 

reservoirs for N and S. 
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Fig. 5: Biosynthetic pathway of cysteine to thiosulfinates 

 

For human consumption, the organosulfur compounds are of particular interest, be-

cause they have several good attributes assigned. They are suggested to be biologically 

active as antibiotics, as agents in reducing the risk factors of cardiovascular disease, 

and as blood lipid-reducing agents. They also are gaining growing interest as potential 

anticancer agents (Lawson, 93; Valli and Giardina, 02; Kodera et al., 03). These health 

related compounds have been mainly investigated in garlic and onion. For Allium spe-

cies, the S-allyl group might be the key structure responsible for the biological activity 

(Goldman et al., 96; Kodera et al., 03). Recently, the biological activity of water-soluble 

organosulfur compounds extracted from garlic, such as S-allyl-L-cysteine and S-

allylmercapto-L-cysteine, have become of public interest because they are stable, 

odourless and safe (Kodera et al., 03). 
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1.4 Characteristics of the test plant species 

1.4.1 Alliaceae 

The family Alliaceae contains about 700 species, including economically important 

vegetables and flowering ornamentals as well as wild species from Europe, Asia, and 

America (Fenwick and Hanley, 85). They originated in the mountainous region of cen-

tral Asia. They are perennial plants that can develop roots, rhizomes and especially 

bulbs as an organ of storage and develop succulent adventitious roots without hairy 

roots. They have a characteristic Allium odour and flavour that is aroused by steroidic 

saponines (S containing antibacterial oils, e.g., Alliin, Allicin) and chelidonic acid. Most 

Allium species preferentially grow in open, sunny, aridic habitats of the warm temper-

ate zone, but many have adapted to other climates. They can be found at high latitude 

(chive up to 70° n. latitude) and in tropical areas. Some of them have summer (onion, 

garlic) and some have winter dormancy (chive). Allium plants are often colonized by 

arbuscular mycorrhizae. 

1.4.1.1 Chinese chive (Allium tuberosum Rottler ex Sprengel) 

Chinese chive has been used for culinary and medicinal purposes. Three horticultural 

products are harvested: the green and blanched leaves, and the closed flower buds. All 

parts of the plant have a mild garlic flavor and are mainly used as a fresh culinary herb 

(Larkom, 94). The leaf length (20 cm), dark green colour, flavour, and tenderness are 

quality parameters. The rhizome essentially replaces the poorly formed bulb as the 

storage structure (Rubatzky and Yamaguchi, 97). 

Chinese chive is propagated from seeds and grown in beds as a semi-permanent crop 

for 4 to 5 years (Cantwell et al., 96). The leaves grow best at 20 °C (Rubatzky and Yama-

guchi, 97). 

1.4.1.2 Bunching onion 

Chinese bunching onion (Allium fistulosum L.) is used in the kitchen for its flavor 

and mild pungency. The seeds are sown from spring until summer and the plants are 

harvested in the following winter until spring or summer. If wanted they are earthed up 

during growth to get a long white stalk. Bunching onion is hardy and can be harvested 

throughout the year. It is harvested at several stages, depending if the green young 

leaves or the white stem are preferred. The pseudostems vary in length and thickness, 

but can be up to 50 cm long and 3.5 cm wide (Brewster, 94; Kitazawa, 06). 
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1.4.1.3 Leek 

Leek is not known as a wild plant and was probably cultivated from A. ampelopra-

sum L. for culinary purposes. Seedlings are planted on a bed system from early spring 

until late July. They are earthed up during growth to reach a higher length of blanched 

sheath. Similar to bunching onions, the leek plant is a very hardy crop and in many 

parts of Europe it can stand in the field and be harvested throughout the year. Optimal 

growth conditions are reached at temperatures about 22 °C combined with a good water 

supply (Brewster, 94). 

1.4.2 Lettuce 

Lettuce is an annual vegetable (Lactuca sativa and varieties) of the family As-

teraceae. It probably originated in the East Indies or Asia Minor and possibly de-

scended from wild lettuce (L. scariola). L. sativa has been grown as a salad plant since 

antiquity. Three different kinds of lettuce are cultivated: head, or cabbage, lettuce; the 

leaf, or loose, type; and Cos lettuce, or romaine (Encyclopedia, 03). Lettuce (Lactuca 

sativa) seeds are germinated at 10 °C and transplanted from early spring until summer 

and harvested starting from May. Cabbage lettuce is slower in growth, whereas the 

outer leaves of loose-leaf lettuce can be harvested earlier and repeatedly. Optimal 

growth conditions are reached at temperatures about 15-20 °C (Baake, 06). 

1.4.3 Pelargonium 

Wild pelargonium (Pelargonium peltatum) plants originated in the South African 

region, where they grow in the full sun and are exposed to periodic dry seasons. Horti-

culturists have bred about 250 species that are mainly cultivated as hybrids. Pelargo-

nium plants are mainly propagated by rooting tip cuttings from branches of vegetative 

stock plants at air temperatures of 16 °C to 19 °C in a greenhouse. After 16-20 days, 

they are transplanted and the temperature is decreased to 15 °C. Six weeks later they 

have their first buds and can be sold fully in flower after 8 weeks. The substrate usually 

used is a mixture of compost, peat, and clay (Elsner et al., 95; Zimmer, 91). 

1.4.4 Poinsettia 

Wild poinsettia (Euphorbia pulcherrima) plants originated in the plateau of Mexico 

with a mean annual temperature of 18 °C and thrive and prosper on shady and moist 

sites. Poinsettia plants are long-night plants whose flowering is initiated when day 

length is reduced to a critical point (12 h and 20 min). If the day length is reduced con-

tinuously, colourful bracts surround the flowers. They are sold normally around 

Christmas time. Optimum day temperatures are usually 21 °C to 29 °C and in the night 

16 °C to 21 °C. Poinsettia plants are propagated by rooting tip cuttings from branches of 
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vegetative stock plants around July and August. To generate a vigorous root system 

they require 3-4 weeks. The substrate can be a mixture of sand, peat, perlite, vermicu-

lite, or bark (Ecke et al., 90; Zimmer, 91). 

1.5 Compost 

Compost consists mainly of partly decayed organic material. It is used as a fertilizer 

or as a soil ameliorant for increasing humus content in vegetable farming, home gar-

dens, flowerbeds, lawns, and greenhouses. Compost is usually composed of plant mate-

rials (e.g., grass clippings, vegetable tops, garden weeds, hay, tree leaves, sawdust, and 

peat) mixed with manure and soil (Encyclopedia, 03). Compost quality can be rated 

based on a variety of compost properties. High quality compost has several require-

ments that have to be achieved. Quality criteria for composts are specified in Germany 

in various regulations (Stöppler-Zimmer et al., 93; Anonymus, 98). These include the 

following aspects: clearance certificate of epidemic hygiene, maximum allowed impuri-

ties, portion of stones, plant compatibility, degree of decomposition, water content, 

organic matter, parameters subject to declaration such as class and structure of com-

post, maximum grain size, raw density, salt content, pH-value, plant nutrients, heavy 

metals etc. (Hams and Becker, 99). For plant cultivation in horticulture, compost can 

have a positive effect on plant yield and quality due to supply of humus, fertilization 

attributes, improvement of soil-physical properties and the cation exchange capacity, 

increase of the soil pH, and biological soil activity (Stöppler-Zimmer et al., 93). The 

different characteristics can be influenced by the ingredients of the compost. The salt 

concentration for example, can be reduced by amendment with green residues like 

wood and branches, but grass residue increases it. The KCl concentration is normally 

between 3 and 8 g·L-1, while that of NaCl is usually lower. Typical values for available 

macronutrient concentrations (mg·L-1) of composts from green residues are: N, 50 to 

200; P, 109 to 305; K, 415 to 1245; and Mg, 150 to 300; with pH between 6.5 and 8.5 

(Stöppler-Zimmer et al., 93). 

1.6 Research focus 

This thesis focuses on the interface of science and praxis. It investigates the prospects 

of arbuscular mycorrhizal fungi, in combination with various fertilizers to contribute to 

growth, nutrient uptake, flowering, and production of secondary metabolites of horti-

cultural plants. One main emphasis of the present work was to address issues of current 

importance to organic horticulture. 

Four main topics are included in the work: 

http://www.answers.com/main/ntquery?method=4&dsid=2040&dekey=humus&curtab=2040_1
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a) Mycorrhization 

Vegetables and ornamental plants are often cultivated on peat-based substrates or in 

semi-hydroponic systems with, e.g., perlite. In organic farming the use of peat substi-

tutes, like compost, is encouraged. As examples of different cultivation systems, peat-

compost substrates and perlite were used. All of the chosen substrates were expected 

not to contain any mycorrhizal infectious material. It was therefore of interest if a my-

corrhization of different plant species was possible on these substrates. 

 

b) Plant growth and nutrient uptake 

Plant growth and nutrient uptake depend on the mycorrhizal species and on the nu-

trient availability of fertilizers. Several different AM inocula can be purchased commer-

cially. Besides three different commercial inocula, two single strains isolated from or-

ganically managed and natural habitats were tested for their contribution to growth 

and nutrient uptake of the plants. Both, plants and AM, also rely on the fertilizer form 

that is supplied. Therefore, several fertilizers were tested, including organic fertilizers 

like compost and horn meal, and the mineral fertilizers rock phosphate, sulfate, ammo-

nium, and nitrate. 

 

c) Flowering 

Flower development is important for ornamental crop production. Earlier flower de-

velopment of mycorrhized plants has often been observed by scientists. This was ex-

plained by a higher nutrient supply or hormonal induction. An experiment was con-

ducted with two ornamental plants under organic management conditions with 

compost and horn meal as fertilizers. 

 

d) Plant secondary metabolites 

Mycorrhizal fungi have been reported to influence secondary plant metabolism. As 

Allium species are known for their health related compounds and dependency on my-

corrhizal fungi, they were chosen to investigate the contribution of mycorrhizal fungi to 

plant composition. The flavor and health related compounds of Allium plants consist 

mainly of organosulfur compounds. These organosulfur compounds can be influenced 

by sulfur and nitrogen fertilization. Broadly speaking, the more sulfur, the more or-

ganosulfur compounds. Recent experimental designs though have not taken the unspe-

cific competition between sulfate and nitrate uptake into account. Therefore different 

ammonium and nitrate ratios were chosen for the experiments. Moreover, a high con-

centration of ammonium in the external solution has been reported to be toxic for 

plants. In contrast, ammonium is the most important source of mineral nitrogen for 
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microorganisms. Therefore arbuscular mycorrhizal fungi were included in the experi-

ment to test their influence not only on the secondary plant metabolism but also on 

plant growth. 

 

From these main topics the flowing hypotheses were generated: 

 

AM will colonize plant roots on peat, peat-compost and perlite substrates. 

AM will increase shoot dry weight and shoot nutrient concentrations on peat sub-

strates with low P available fertilizers, with higher compost amendments, and on perlite 

with a high ammonium:nitrate ratio. 

 AM colonization will increase P mineralization from rock phosphate on peat sub-

strates. 

 Single AM strains originating from organically managed soils will be superior in 

the mobilization of P from rock phosphate compared to AM strains from natural 

habitats or an all purpose horticulture commercial mixed inoculum. 

AM will increase flower and bud development. 

In Allium plants fertilization with a higher ammonium:nitrate ratio, AM will increase 

plant growth, stimulate the secondary plant metabolism, and consequently increase 

plant production of organosulfur compounds. 

An increased ammonium:nitrate ratios in the external solution will increase the up-

take of sulfate and therefore increase the production of organosulfur compounds in 

Allium plants. 

 

This work was done in cooperation with the Research Institute of Organic Agricul-

ture (FiBL) in Switzerland, the Faculty of Organic Agricultural Sciences at the Univer-

sity of Kassel in Germany, and the Chinese Agricultural University of Bejing in China. 
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2 Effect of Mycorrhizal Inoculation and Compost 
Supply on Growth and Nutrient Uptake of Young 
Leek Plants Grown on Peat-based Substrates 

2.1 Abstract 

Organic horticultural production systems often are characterized by the use of bene-

ficial soil micro-organisms because the application of soluble inorganic P or N fertiliz-

ers is not endorsed. Due to the limited supply of soluble nutrients in organic production 

systems, nutrient deficiency may limit plant growth and yield. The sole use of peat for 

pot-based cultures is also discouraged in organic production systems. Therefore, viable 

alternatives for highly soluble fertilizers and pure peat substrates have been studied 

using leek [Allium ampeloprasum L. var. Porrum] as a test plant. Plants were grown on 

peat-based substrates with different rates of compost additions, and with and without 

inoculation with arbuscular mycorrhizal (AM) fungi. Inoculation with a commercial AM 

fungus inoculum resulted in colonization rates of up to 70% of total root length, 

whereas not inoculated plants remained free of root colonization. Mycorrhizal fungus 

colonization increased shoot Zn and K concentrations, but did not significantly affect 

shoot dry matter or shoot N and P concentrations. In contrast, compost addition in-

creased plant growth, and also increased P and K concentrations in plants. I conclude 

that plants with high rates of mycorrhizal colonization can be obtained on peat-based 

substrates, but that under these conditions plants may not consistently benefit in 

growth from the mycorrhizal symbiosis. In contrast, additions of compost are a possible 

means to improve the substrate quality in organic horticultural production.  

2.2 Introduction 

Peat-based substrates are widely used in horticulture to produce seedlings for out-

planting or to grow commercial crops. These substrates are usually supplemented with 

soluble fertilizers in conventional production systems to achieve optimal supply of nu-

trients such as N and P.  

The use of synthetic chemical fertilizers is discouraged in organic horticulture. The 

activity of soil microorganisms should contribute to the mobilization of mineral nutri-

ents in the soil (Herrmann and Plakolm, 91). It is sometimes assumed that conven-

tional methods of applying highly soluble nutrients in combination with pesticides may 

have a negative effect on plant quality for human consumption (Asami et al., 03). 
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The use of peat is also critically viewed for other reasons by organic growers. Peat is a 

limited natural resource and use of peat at the present rates is not sustainable (George 

and Eghbal, 03; Joosten and Clarke, 02). 

Official guidelines for organic growers, presented e.g. by the European Union (04) 

and organic growers associations in many countries, mandate the use of organic or 

non-soluble fertilizers and a reduction of peat amendments to growth substrates to a 

maximum of 70% in the next few years (George and Eghbal, 03). This results in prob-

lems for producers, because many vegetable and ornamental plants have a high nutri-

ent demand for satisfactory growth and yield. In addition, often only high quality vege-

table products or ornamental plants without any deficiency symptoms can be marketed. 

 

For the long-term economic success of ecological greenhouse horticulture, it is there-

fore important (a) to reduce the amount of peat in pot cultures without loss of plant 

quality, and (b) to define methods to improve nutrient supply from organic sources. 

 

Various substitute materials have been tested to replace peat at least partly in growth 

substrates. Such substitute materials can consist of bark, coconut residues (Linderman 

and Davis, 03b), other bio-solids (Ozores-Hampton et al., 99), or compost (Veeken et 

al., 04). Compost has been widely used in traditional agriculture and horticulture and 

has beneficial effects, for example, on soil structure or soil biota (Carpenter-Boggs et 

al., 00; Wells et al., 00). Compost applications were avoided in many modern green-

house horticultural systems due to a risk of transmitting plant diseases with compost 

applications. However, high quality composts, e.g. produced from organic household 

waste, can be almost free of pathogenic micro-organisms and may even have a suppres-

sive effect on soil born diseases (Schüler et al., 89). High quality composts also have a 

high nutrient content. A substrate of 20% high quality compost mixed with peat is 

therefore recommended for current practice of organic horticulture in Germany and 

Switzerland (George and Eghbal, 03). 

 

An improvement of the plant nutrient status in organic operations may require the 

application not only of composts, but also of other organic fertilizers. In addition, a 

"living" component, i.e. rhizosphere or soil micro-organisms, may help the plants to 

mobilize and acquire nutrients from the substrate. A group of soil micro-organisms that 

live in very intimate contact with the root are the arbuscular mycorrhizal (AM) fungi. 

These fungi are known to assist the plant in the uptake of nutrients and to improve 

plant growth (Douds et al., 05), including growth of Allium species (Dickson et al., 99), 

on soils low in phosphorus (P). They occur both in natural ecosystems and in agricul-

tural soils (Smith and Read, 1997). AM fungus colonization often leads to increased 
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plant uptake of P, nitrogen (N), zinc (Zn), and copper (Cu), and sometimes also of po-

tassium (K) (George, 00). Phosphate from organic fertilizers may be particularly acces-

sible to AM colonized plants (Linderman and Davis, 04). In addition, much published 

evidence shows disease suppression in plants due to colonization by AM fungi 

(Kasiamdari et al., 02). Mycorrhizal fungi can also stabilize soil aggregates (Piotrowski 

et al., 04), and some reports show that mycorrhizal plants may be more resistant to 

stresses such as drought (Neumann and George, 04) or salinity (Tian et al., 04). Plant 

phytohormone levels can also be affected by mycorrhizal fungus colonization (Shaul-

Keinan et al., 02). 

 

Only a few studies have investigated the effect of compost supplements on mycorrhi-

zal and non-mycorrhizal plant seedlings. Substrates with composts may be adequate for 

mycorrhizal plants (Goswani and Jamaluddin, 01; Linderman and Davis, 01), if the 

quality of the compost is sufficient (Boddington and Dodd, 00; Raviv et al., 98). Sáinz 

et al. (98), however, pointed out that compost additions may reduce mycorrhizal root 

length colonization and therefore the activity of AM fungi. Thus, at present it is not 

clear whether compost additions and mycorrhizal fungus inoculation are complemen-

tary measures to increase yield and yield stability in organic operations. 

 

Therefore, I utilized leek as a test plant in two experiments studying whether (a) 

commercial or specifically prepared peat-based substrates support AM fungus coloniza-

tion of plants, (b) AM fungus colonization is beneficial to plants on these substrates, 

and (c) compost additions affect the contribution of AM fungi to plant growth. The aim 

was to increase the understanding of the role of AM fungi in plant growth on organic 

substrates, and to advise producers on optimal compost and AM fungi addition treat-

ments. 

2.3 Material and Methods 

2.3.1 Overview on experimental design and cultivation 

Seeds of leek (Allium ampeloprasum L. var. Porrum ‘Prelina’) were placed in a com-

mercial potting mix (KKS Bio-Potgrond, Klasmann-Deilmann GmbH, Geeste-Gross 

Hesepe, Germany) and kept for four weeks in trays placed in a greenhouse to allow 

germination and early plant growth. The trays were irrigated by hand to maintain op-

timal moisture conditions. Seedlings were then transplanted to 250-ml pots with two 

seedlings per pot. In Experiment 1, a commercial potting substrate was used. In Ex-

periment 2, two substrates with different addition rates of compost (20% compost; 
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40% compost) were used (see below). The substrates were inoculated with one of three 

different types of AM fungus inocula (Pla, Bio, Tri) or remained without AM fungi 

(NAM). Five replications were used for each treatment in both experiments. The first 

experiment was placed in a greenhouse, the second experiment in a climate chamber. 

 

Drip irrigation (40 ml·min-1) was used once a day in the climate chamber (total of 40 

ml) and twice a day in the greenhouse (total of 40 to 80 ml depending on weather condi-

tions) to maintain favorable water conditions in the substrate. Once a week the sub-

strate was soaked with water to equalize the water content of the pots. The pots were 

standing on saucers and nutrient loss through leaching was prevented.  Experiment 1 

was carried out from 30 Aug. to 23 Oct. 2002 in a greenhouse facility at Großbeeren 

(long. 13°20´E; lat. 51°22´N), Germany. Average air temperatures in the greenhouse 

during this time were 21 to 24 (max. 30 °C) day/17 to 20 °C night and relative humidity 

was on average 70%. For experiment 2, a climate chamber was used with a light period 

of 16 h day/8 h night, a temperature of 22 C° day/18 °C night, and a relative humidity of 

70% day/80% night. Light intensity provided by lamps (Agro Son T 400, Phillips, Ham-

burg, Germany) was between 450 and 600 µmol·m-2·s-1 at different positions in the 

chamber. Pots were re-arranged in regular intervals in both experiments. Pots were 

always arranged in a completely randomised design. 

2.3.2 Substrate preparation and characterization 

All substrates used in this study were suitable for organic production. In Experiment 

1, a commercial substrate (KKS Bio-Potgrond, Klasmann-Deilmann GmbH, Geeste-

Gross Hesepe, Germany) was used that contained 80% v/v sphagnum peat (black peat) 

and 20 % v/v compost of green residues. The substrate also contained clay material, 

lime, horn meal and Thomas phosphate. This substrate is commonly used by organic 

growers in Germany. The extractable nutrients (extraction by CaCl2 [N] and CAL [P, K]; 

information from the supplier) in this substrate were for N at 300-400 mg·L-1, P at 109-

153 mg·L-1, and K at 290-415 mg·L-1. The substrate had a salt content of 1-2 g·L-1 and had 

a pH (CaCl2) of 5-6.  

 

In Experiment 2, the effect of increased compost additions to peat were tested. The 

compost was prepared from yard waste, shredded trees and bushes (Bruns, 98; Bruns 

and Schüler, 00). The material used had a wide C/N ratio (40:1) at the beginning of the 

composting process. After three months of composting extractable nutrient content in 

the compost was for N at 26 mg·L-1, for P at 335 mg·L-1, and for K at 1736 mg·L-1 (extrac-

tion by CaCl2 [N] and CAL [P, K]; C. Bruns, personal communication). The substrate 

had a salt content of 2.8 g·L-1 and had a pH (CaCl2) of 6.9. The compost was mixed with 
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sphagnum peat from the Baltic region (white peat) to obtain a compost substrate with 

20% and 40% compost by volume. The substrates were limed with CaO to a pH of 6.2 

and sieved to 5 mm. The compost substrate was of similar or higher horticultural qual-

ity as the commercial substrate (KKS Bio-Potgrond) used in Experiment 1. 

Addition of 20% compost supplemented N at 5 mg·L-1, P at 67 mg·L-1, and K at 347 

mg·L-1 to the substrate (C. Bruns, personal communication). In addition, N fertilizer 

was added to the substrate one day before the start of the experiment. The N fertilizer 

(a mixture of 33% horn meal 0-2 mm, containing 10% N, and 66% horn meal 2-6 mm, 

containing 14% N) was uniformly mixed into the substrate (7600 mg·L-1). Previous ex-

perience (C. Bruns, personal communication) suggests that two weeks after planting 

25% of the added N was available to the plants, and that eight weeks after planting 85% 

of the added N was available. Therefore, the plant available N content of the compost 

substrate together with the horn meal fertilizer added up to 200 mg·L-1 (50 mg/pot) in 

the first two weeks after planting. The 40% compost substrate was fertilized with less N 

fertilizer (7400 mg·L-1), to account for the higher input of nutrients by the increased 

compost addition. 

2.3.3 Water-holding capacity 

The maximum water-holding capacities of all the substrates were evaluated following 

the method of Schaller (88): 50 g of the substrate was filled into a glass tube that was 

closed with fine gauze, and left soaking in water over night to absorb water through 

capillary rise. Shortly before the end of incubation time, water was raised in the sur-

rounding vessel until water was visible at the soil surface. The surplus water dripped 

out when the tubes were allowed to stand on moist sand, allowing for the measurement 

of the maximum water-holding capacity (WC in g). The maximum water-holding capac-

ity (WC in %) was calculated with the weight of the dried substrate (DW in g) (105 °C 

for 12h): WC % = 100 x (WC g) x (DW g)-1. The maximum water-holding capacities were 

480, 420 and 550% in the commercial substrate (KKS), the 20% compost substrate and 

the 40% compost substrate, respectively. 

2.3.4 Inoculation with AM fungi 

Inoculation with AM fungi in Experiment 1 was carried out with one of three differ-

ent commercially available inocula: Pla (TerraVital Hortimix with G. mosseae, G. intra-

radices, G. claroideum and G. microaggregatum, >50 infective units per ml inoculum; 

Plantworks Ltd., Heeley Close, Sittingbourne, Kent, UK), Bio (Endorize-Mix  with G. 

mosseae, G. intraradices, Glomus sp., infective units not specified; Biorize, Rue Sainte 

Anne, Dijon, France), and Tri (G. mosseae, Glomus intraradices, and  G. etunicatum, 

50 infective units per ml inoculum; Triton, AMykor GmbH, Wolfen, Germany). Inocula 
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were mixed uniformly into the potting substrate before planting the seedlings. Addition 

rates were used according to the suppliers' recommendation and were Pla 5% v/v, Bio 

5% v/v, and Tri 3% v/v. The same inocula were used in Experiment 2. Non-mycorrhizal 

(NAM) treatments were supplied with autoclaved (121 °C for 20 min) Pla inoculum. In 

addition, a filtrate (589/3 blue ribbon paper filter, Schleicher & Schuell Bioscience 

GmbH, Dassel, Germany) of non-sterilized Pla inoculum also was added to NAM pots 

in an effort to supply similar amounts of nutrients and micro-organisms other than AM 

fungi to all treatments. 

2.3.5 Harvest and plant analysis 

Both experiments ended eight weeks after planting. Shoots were separated from the 

roots, fresh weight (FW) recorded, washed and dried at 80 °C for two days, and dry 

weight (DW) also recorded. The shoots were ground in a centrifugal grinder using a 

0.25 mm sieve. 

The roots were washed and separated from the substrate with running cold water us-

ing a set of sieves (smallest sieve size 1 mm). The FW and DW were recorded and a rep-

resentative sub sample for assessment of mycorrhizal fungus colonization was taken 

and stored in 10% isopropanol. 

Shoot samples were dry ashed and dissolved in 18.5% HCl. Potassium, Zn, and Cu 

(Experiment 2 only) were analyzed with an atomic absorption spectrophotometer 

(Perkin Elmer 3300, Überlingen, Germany) and P photometrically with an EPOS-

Analyzer 5060 (Eppendorf, Hamburg, Germany). Nitrogen was determined after dry 

oxidation by the DUMAS method (Elementar Vario EL, Hanau, Germany). 

Mycorrhizal fungus colonization of roots was determined following the method of 

Koske and Gemma (89) with slight modifications. Roots were cleared with 10% KOH, 

acidified with 2N HCl, and stained with 0.05% trypan blue in lactic acid. Percentage 

root length colonization was determined with a microscope (Zeiss, Stemi2000, Göttin-

gen, Germany) at 50x using the grid line intersection method (Giovannetti and Mosse, 

80). 

2.3.6 Statistics 

Data in Experiment 1 were subjected to a one-way analysis of variance, with inocu-

lum type as treatment levels (n = 5). Mean separation was carried out with the New-

man-Keuls method (P < 0.05). In Experiment 2, data were analyzed by a two-factorial 

analysis of variance, with compost addition rates and mycorrhizal inoculation as ex-

perimental factors (n = 5). Data were analyzed using Statistica 6.1 (StatSoft, Tulsa, OK, 

U.S.) software. 
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2.4 Results 

2.4.1 Experiment 1 

Roots were colonized by AM fungi in treatments with live mycorrhizal inoculum (Fig. 

6). The percentages of colonized root length in AM plants were between 20 and 30%, 

but were not significantly different between the three different mycorrhizal inocula. 

The treatment without live mycorrhizal inoculum (NAM) remained free of mycorrhizal 

root colonization. 
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Fig. 6: Percentage root length of leek plants colonized by AM fungi eight weeks after planting 
on commercial growing substrate (Experiment 1; left) or in compost-peat substrates (Experiment 
2; center and right). In both experiments, plants were either non-inoculated with mycorrhizal 
fungi or were inoculated with one of three mycorrhizal inocula (Pla, Bio, Tri). Differences be-
tween Pla, Bio, and Tri treatments within each experiment were tested with a Newman-Keuls 
test (P<0.05). Different letters denote significantly different means; means of 5 observations ± 
SE (Т). 

 

Shoot (Tab. 1) and root (data not shown) dry weights were not significantly affected 

by the inoculation treatments. Similarly, AM fungus root colonization had no signifi-

cant effect on shoot N, P, and Zn concentrations. In contrast, K shoot concentrations 

were increased in mycorrhizal plants (Tab. 1). The highest K concentration was meas-

ured in shoots of the Pla treatment. 
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Tab. 1: Experiment 1 (commercial substrate). Shoot dry weight (DW) and shoot element (N, 
P, K, and Zn) concentrations of leek plants eight weeks after planting. Plants were either non-
inoculated with mycorrhizal fungi (NAM), or were inoculated with one of three mycorrhizal in-
ocula (Pla, Bio, Tri). Effects of the treatment (mycorrhizal inoculation (m)) were tested with a 
one-way ANOVA. Different letters denote significant differences between means as determined 
by the Student-Newman-Keuls test (P<0.05). Values are means of 5 observations ± SE. 

 DW Element concentration 

                .    g pot-1   .        .                          g [kg DW] -1                     .    mg [kg DW]-1  

. N P K Zn    .

NAM 1.1 ± 0.1 13.0 ± 0.3 2.9 ± 0.1 16.3 ± 1.2a 32.2 ± 2.6 

Pla 1.2 ± 0.0 13.6 ± 0.6 2.7 ± 0.1 35.8 ± 2.1c  38.4 ± 2.3 

Bio 0.9 ± 0.1 12.2 ± 0.5 3.1 ± 0.0 25.9 ± 0.6b 35.4 ± 1.6 

Tri 1.0 ± 0.2 14.1 ± 0.5 3.2 ± 0.2 23.8 ± 1.6b 38.4 ± 3.9 

 

P (m) 0.225 0.070 0.104 <0.001 0.350 
 

2.4.2 Experiment 2 

The percentage root length colonization with AM fungi in Experiment 2 was higher 

(t-test; P< 0.05) in 20% compost than in 40% compost (Fig. 6). Highest root coloniza-

tion rates were observed in 20% compost, in the Bio treatment. However, root coloniza-

tion was not significantly different between the three live mycorrhizal inocula in 40% 

compost. As in Experiment 1, NAM plant roots remained free of AM fungi. 

 

Shoot (Tab. 2) and root (data not shown) dry weights were not significantly affected 

by the treatments. Shoot dry weight was much higher in Experiment 2 (Tab. 2) than in 

Experiment 1 (Tab. 1). Shoot N, Zn and Cu concentrations were not significantly af-

fected by the compost treatments. Shoot P and K concentrations were increased in the 

40% compost treatment compared to the 20% compost treatment. Shoot Zn concentra-

tions were significantly increased in mycorrhizal compared to non-mycorrhizal plants 

at 20% compost supply (Tab. 2). At 40% compost supply, shoot of plants in the Bio 

treatment had the highest Zn and Cu concentrations. 

 

 

 

 

 

 

 



Chapter 2 

31 

Tab. 2: Experiment 2 (compost addition rate) Shoot dry weight (DW) and shoot element (N, 
P, K, Zn and Cu) concentrations of leek plants eight weeks after planting. Plants were grown on 
compost-peat substrate with 20% compost or 40% compost, and were either non-inoculated 
with mycorrhizal fungi (NAM) or were inoculated with one of three mycorrhizal inocula (Pla, Bio, 
Tri). Effects of the treatments (compost addition rate (c); mycorrhizal inoculation (m)) were 
tested with a two-way ANOVA. Different letters denote significant differences between means 
within one level of compost addition rate as determined by the Student-Newman-Keuls test 
(P<0.05). Values are means of 5 observations ± SE. 

 

 DW Element concentration                                  

 .  g pot-1     . .                         g [kg DW]-1  . .  mg [kgDW]-1 .. 

.         N P K Zn Cu     . 

20% compost 

NAM 5.6 ± 0.3 9.2 ± 0.3 0.9 ± 0.0 11.9 ± 0.5 14.2 ± 0.7a 2.3 ± 0.2a 

Pla 5.3 ± 0.3 10.8 ± 0.7 0.9 ± 0.0 13.1 ± 0.7 21.4 ± 2.3b 2.4 ± 0.4a 

Bio 5.8 ± 0.4 9.4 ± 0.7 1.0 ± 0.1 10.8 ± 0.4 23.2 ± 1.6b 2.8 ± 0.4a 

Tri 6.0 ± 0.8 10.1 ± 0.6 1.1 ± 0.0 11.0 ± 1.5 26.4 ± 2.2b 2.2 ± 0.2a 

 

40% compost 

NAM 5.1 ± 0.3 9.1 ± 0.6 1.5 ± 0.0 15.0 ± 0.7 14.8 ± 0.6a 2.0 ± 0.0a 

Pla 7.2 ± 0.5 9.2 ± 0.6 1.5 ± 0.1 13.8 ± 0.4 16.4 ± 1.4a  2.0 ± 0.0a 

Bio 5.5 ± 0.6 8.9 ± 0.7 1.6 ± 0.1 15.4 ± 1.0 25.0 ± 3.9b 3.0 ± 0.3b 

Tri 7.0 ± 0.6 9.9 ± 0.6 1.4 ± 0.1 13.8 ± 1.0 19.2 ± 1.6ab 2.2 ± 0.2a 

 

P (c) 0.157 0.174 <0.001 <0.001 0.100 0.549 

P (m) 0.108 0.295 0.279 0.573 <0.001  0.018 

P (c x m) 0.061 0.578 0.024 0.183 0.102 0.669 
 

2.5 Discussion 

Compost addition to peat can be a source of plant nutrients and at the same time 

contribute to the protection of global peat resources. Compost addition rates of 20% 

[v/v] to a peat based substrate are now in use for commercial substrates. The present 

results show that a compost addition rate of 40% can also be recommended. Plants had 

increased P and K uptake on these substrates, and plant element concentrations did not 

indicate any risk of toxicity. Compost used for this purpose must be low in salt content, 

and of course should also be free of contamination with heavy metals or organic toxins. 

Compared to standard values for leaves of Allium cepa (Bergmann, 93), element con-

centrations indicated deficient supply of N in both experiments; and low supply of P, 

Zn and K in Experiment 2. Low N concentrations of plants in both experiments (Tab. 1 
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and (Tab. 2) show that even relatively high compost additions and addition of horn 

meal at moderate rates cannot supply sufficient N to plants during periods of fast 

growth. Nitrogen nutrition of potted plants in ecological production systems remains 

problematic. Possible solutions include liquid organic N fertilizers (such as vinasse) 

and addition of organic N fertilizers to the substrate some time before planting. 

 

The lower shoot dry weight in Experiment 1 compared to Experiment 2 was probably 

explained by sub-optimal growth conditions (high temperatures) in the greenhouse 

compared to the climate chamber. In contrast, N deficiency was less severe in Experi-

ment 1 than in Experiment 2 (see Tab. 1 and Tab. 2) for shoot N concentrations, per-

haps because compost and additional N (horn meal) was supplied to the plant substrate 

in Experiment 2 directly before the start of the experiment, whereas in Experiment 1 

the commercial substrate was supplied with additional nutrients several months before 

the start of the experiment, so that more N from horn meal became available during 

this time. 

 

All three test substrates did not support spontaneous mycorrhizal colonization of the 

leek plants. This indicates that the peat, but also the added compost contained no or 

very low amounts of infectious mycorrhizal material. Probably, the density of mycorrhi-

zal propagules is low in certain types of green material used for compost preparation, 

and high temperatures during composting further reduce the number of live mycorrhi-

zal propagules. It is likely, that this finding applies in general to peat-compost sub-

strates. If producers plan to use mycorrhizal plants on organic potting substrates, for 

example because of superiority of mycorrhizal plants in disease resistance or flowering 

ability, the application of mycorrhizal inoculum is necessary. 

 

All three commercial inocula used successfully colonized the roots. The extent of root 

colonization was different between the inocula only in Experiment 2 (20% compost), 

and this difference was not clearly related to different effects of the inocula on plant 

activity. For example, although Bio inoculum caused the highest colonization rate in 

this case, shoot Zn concentrations were not higher in Bio plants than in Pla or Tri 

plants. Thus, the present data indicate that the use of all three types of inocula can be 

recommended, but further tests with more inocula and under various environmental 

conditions are required to generalize this result. 

 

Root colonization by Bio and Tri inocula was greater in 20% compost versus 40% 

compost (Fig. 6), very likely because of the lower level of nutrients (especially P) sup-

plied in the 20% compost treatment versus 40%. Only the supply of N, but not of other 
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nutrients, was equilibrated between 20% and 40% compost addition rate. A decrease of 

colonization with increased supply of mineral nutrients, especially of P (Boddington 

and Dodd, 00; Douds and Reider, 03), or with addition of certain types of compost or 

peat (Linderman and Davis, 03a; Sáinz et al., 98; Wang et al., 93), has often been ob-

served. It is also possible that the higher water capacity of the 40% compost substrate 

had some effect on mycorrhizal colonization. Some AM fungi show a lower hyphal 

growth in moist soils (Smith and Read, 97). 

 

Under the conditions of both experiments, plant dry weight was not affected by my-

corrhizal fungus colonization, although colonization rates were considerable. Decreases 

of shoot growth upon mycorrhizal colonization are sometimes observed, in particular at 

sub-optimal light conditions for plant growth (Smith and Gianinazzi-Pearson, 90). In 

the present experiments, light supply was probably sufficient to allow for carbon fixa-

tion to sustain carbon expenses for mycorrhizal fungus colonization without negative 

impact on plant growth. Increases in shoot growth upon mycorrhizal colonization are 

often observed on substrates with low nutrient availability, in particular on substrates 

with low P availability. In the present experiment, plants had low N shoot concentra-

tions (Tab. 1 and Tab. 2) and probably were limited in growth mainly by low N avail-

ability in the substrate. AM fungus hyphae can transport N to the plant, but not to an 

extent that N deficiency of fast-growing plant species can be overcome (Hawkins and 

George, 99). It is surprising, however, that P concentrations were not increased in my-

corrhizal plants compared to non-mycorrhizal counterparts. Most evidence of increased 

P uptake in mycorrhizal plants comes from experiments and observations on mineral 

soils. Some evidence indicates that also freshly applied organic P sources can be utilized 

by AM fungi (Feng et al., 03). However, it is possible that plant P uptake from organic 

substrates such as peat or compost is less dependent on AM fungus colonization than P 

uptake from soils with mineral P sources. Compost may contain P sources that are ei-

ther readily accessible to plants, or are inaccessible to plants and AM fungi alike 

through physico-chemical fixation in form of condensed calcium phosphates such as 

apatites or octacalcium phosphates (Frossard et al., 02; Grey and Henry, 99). Alterna-

tively, the AM fungi contained in the commercial inocula used in this study may be spe-

cifically adapted to P supply conditions in mineral soil. 

 

Hyphae of AM fungi can transport not only N and P (George et al., 92), but also Cu 

(Li et al., 91), Zn and probably K (George, 00). This can lead to increased K and Zn con-

centrations in mycorrhizal plants. The present data confirm increased Zn uptake in 

mycorrhizal compared to non-mycorrhizal plants (Tab. 2) when the Zn status of non-

mycorrhizal plants was relatively low (Experiment 2). When the Zn status of non-
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mycorrhizal plants was higher (Experiment 1), the effect of AM fungi colonization on 

Zn uptake was less. 

 

In conclusion this experiment indicated that (a) a compost addition rate of 40% in a 

peat based substrate can produce a growth substrate of high quality for ecological pro-

duction, (b) peat-compost organic substrates did not contain live AM fungus 

propagules, (c) commercial inocula were used successfully to obtain high AM fungus 

colonization rates of potted plants, (d) AM fungus colonization can actively support 

plant Zn or K uptake on these substrates, and (e) plant P uptake and growth were not 

increased by AM colonization. Perhaps, P bound in substrates in organic form is less 

available to many AM fungi than P bound to soil minerals. 
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3 Accessibility of phosphate to lettuce plants in-
oculated with arbuscular mycorrhizal species 
from different origins and grown on peat sub-
strate with phosphate fertilizers of varying plant 
availability 

3.1 Abstract 

Rock phosphate in a fertilizer frequently used in organic horticulture. However, min-

eralization of rock phosphate can be too slow to meet the high nutrient demand of 

young plants. The use of beneficial soil microorganisms can contribute to plant nutrient 

uptake and growth. In this study, it was examined growth and N, P, K, Zn and Mg up-

take of lettuce plants inoculated with different species of arbuscular mycorrhizal fungi 

and fertilized with either rock phosphate, highly soluble P, or without added P fertilizer, 

using cabbage lettuce [Lactuca sativa L. ‘Nadine’] and loose-leaf lettuce [Lactuca sa-

tiva L. ‘Smile’] as test plants. Plants were grown on peat substrates with and without 

arbuscular mycorrhiza (AM). Inoculation with AM from differently managed soils re-

sulted in colonization rates of up to 65%. AM inoculation did not promote dry matter 

production of lettuce grown on substrates with low P availability. Although AM in-

creased shoot N, Mg, and Zn concentrations, shoot P concentration was not increased. 

Differences in some parameters were observed between AM species, but not from the 

non-mycorrhizal control. Loose-leaf lettuce was best at utilizing P from rock phosphate, 

producing similar dry weight as with soluble P fertilizer. It is concluded that AM did not 

have a beneficial effect for lettuce plants with regards to P acquisition. 

3.2 Introduction 

Phosphorus (P) is an essential macronutrient involved in many physiological and 

biochemical processes, such as photosynthesis, synthesis of proteins and vitamins, or 

as a component of biomembranes. P is taken up from the soil solution as phosphate, 

and during periods of rapid growth crops may take up as much as 2.5 kg P2O5 per hec-

tare-day (Johnston and Steén, 00). To maintain optimum crop productivity on soils 

with low P availability, crops need to be fertilized with readily plant available P in ade-

quate amounts (Johnston and Steén, 00). 

In organic horticulture, the only forms of P fertilizer that are allowed are organic ma-

terial (e.g. chicken manure) and rock phosphate (European Union, 04). On soils with a 

pH above five, rock phosphate is a slowly soluble fertilizer (Steffens et al., 05; El Des-
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sougi et al., 03) that usually produces a poorer plant growth response than do highly 

soluble chemical P fertilizers (Steffens et al., 05). Phosphate-solubilizing microorgan-

isms might help to increase plant availability of rock phosphate, particularly in organic 

horticulture. 

Arbuscular mycorrhizal (AM) fungi is a plant roots colonizing microorganism, that 

has often been observed in agricultural soils all over the world, generally with beneficial 

effects for the crop plants (Morgan et al., 05). Organic management has been reported 

to increase the biodiversity of AM fungi compared to conventionally-managed soils 

(Mäder et al., 02; Oehl et al., 04; 05). In addition, organic fertilization supports the 

development of AM fungi, whereas highly plant available mineral fertilization regimes, 

which are avoided in organic plant production, have been shown to inhibit AM fungi 

(05b; Gryndler et al., 05a). It can be hypothesized that some of the AM strains isolated 

from organically-managed soils may have special attributes that would increase the 

plant availability of nutrients from fertilizers used specifically in organic agriculture, 

e.g., rock phosphate or horn meal. As a result, these AM species may have a higher 

benefit for their symbiont and thus be reciprocally supported and favoured by selection. 

AM has been reported to increase P uptake from rock phosphate in Zea mays L. 

grown on acidic soils (Alloush and Clark, 01) and in barley lacking root hairs (Chen et 

al., 05), and it has increased the yield of Alfalfa fertilized with rock phosphate (Barea et 

al., 02). In combination with organic matter or phosphate-solubilizing bacteria, AM 

fungi can be very efficient in exploiting rock phosphate (Barea et al., 75, 02; Duponnois 

et al., 05). Mechanisms for mobilization of P may include lowering of pH in the growth 

substrate (Li et al., 91; Son et al., 06), excretion of organic acids such as α-ketoglutaric 

acid (Duponnois et al., 05), or excretion of phosphatases. The excretion of phosphata-

ses as a mobilization mechanism for hydrolyzing organic phosphates is similar for AM 

fungi and plants (Joner and Johansen, 00, Koide and Kabir, 00), but acidic phosphata-

ses may also solubilize rock phosphate. Phosphorus is the least mobile macronutrient 

in soil, because it is readily sorbed (e.g., to metal oxides), occurs in mineral forms of 

low solubility (e.g., calcium phosphates such as apatite), and can be incorporated into 

organic molecules which are poorly availabile to plants (Marschner, 95; Frossard et al., 

02). The advantage of mycorrhizal roots compared to non-mycorrhizal roots is that the 

hyphae exploit a higher soil volume than the root by penetrating soil pores that are not 

reachable by plant roots (Drew et al., 03). AM hyphae increase the absorptive surface 

area of the root and take up mobilized P quickly before it is bound again. 

 

It is hypothesized that (a) AM fungi inoculation will increase the dry weight and nu-

trient uptake of plants grown on substrates with low P supply due either to low P fertili-

zation or to low solubility of applied rock phosphate fertilizer, (b) AM strains originat-
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ing from organically-managed or natural habitats will be superior in the mobilization of 

P from rock phosphate compared to a non-organically propagated commercial inocu-

lum (Exp. 2), (c) soluble P fertilizer will produce the highest shoot dry weight and shoot 

P concentration and will suppress root length colonization by AM, compared to rock 

phosphate and low P fertilization, and (d) slowly-soluble rock phosphate fertilizer will 

provide a longer-lasting source of P fertilization than highly-soluble phosphate fertil-

izer, and thus it's beneficial effects will become more evident with time. 

 

The aim of this research was to investigate the effect of arbuscular mycorrhizal fungi 

on growth and nutrient uptake of lettuce grown on a peat substrate fertilized with ei-

ther rock phosphate, soluble P, or without added P fertilizer. 

Three different AM inocula, one isolated from an organic-dynamically managed soil, 

one from a nature conservation area, and one that was commercially propagated, were 

tested for their effect on shoot dry weight production, shoot N, P, K, Zn, and Cu concen-

trations, and root colonization rate of two lettuce varieties. 

3.3 Materials and Methods 

3.3.1 Overview of experimental design and cultivation 

In Experiment 1, seeds of cabbage lettuce (Lactuca sativa L. ‘Nadine’, Rijk Zwaan) 

were germinated directly in 500 ml pots filled with a commercial white peat substrate 

containing particles of volcanic clay (Fruhstorfer Erde, Hawita Gruppe, Vechta, Ger-

many) in a dark climate chamber at 10 °C and 80% humidity for one week. Two seed-

lings per pot (n=5) were grown for 8 weeks in a greenhouse facility at Großbeeren, 

Germany (long. 13°19´60´E; lat. 51°22´0´N), during the summer of 2003. Average air 

temperature in the greenhouse during this time was 23 °C (min 11 °C and max. 36 °C) 

during the day and 17 °C (min. 11 °C and max. 29 °C) at night. Relative humidity was on 

average 69% during the day and 83% at night. The daily (14 h) mean light intensity 

(PAR) was 17.6 mol·m-2 (max. 674 µmol·m-2·s-1). The plants were irrigated by hand with 

distilled water to maintain optimum substrate moisture for plant growth. The soil 

moisture at the beginning of the experiment was 60%. Every second or third day the 

pots were weighed and the water content of the substrate was equalized. 

In Experiment 2, seeds of loose-leaf lettuce (Lactuca sativa L. ‘Smile’, Bruno Nebe-

lung GmbH & Co.) were germinated in a dark climate chamber at 10 °C and 80% hu-

midity and transferred to separate 750-ml pots filled with a commercial white peat sub-

strate with clay (Terreau Universal Gepac, Einheitserde + Humuswerk, Sinntal-Jossa, 

Germany). Two seedlings per pot (n=4) were grown during the summer of 2004 for 10 
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weeks in a greenhouse facility at Großbeeren. The average air temperature in the 

greenhouse during this time was 21 °C (min. 15 °C and max. 31 °C) during the day and 

20 °C (min. 15 °C and max. 32 °C) at night. Relative humidity was on average during the 

day 61% and at night 64%. The daily (14 h) mean light intensity (PAR) was 13.0 mol·m-2 

(max. 1337 µmol·m-2·s-1) during the day. The plants were irrigated each day by hand 

with 60 to 120 ml distilled water to maintain optimum substrate moisture for plant 

growth. 

The pots allowed free drainage from the bottom. Leachate was collected for each pot 

using a saucer, and was returned to the substrate to prevent loss of nutrients. The pots 

were arranged in a completely randomized design, and were re-arranged at regular in-

tervals. 

3.3.2 Substrate preparation 

Three different P fertilization treatments were used: no added P (nP), rock phosphate 

(rP), and soluble P (sP). 

In the first experiment, the extractable nutrients before fertilization (extraction by 

CaCl2 [N] and CAL [P, K]; analysed by laboratory of the supplier) in the substrate were 

(mg·L-1): N, 24; P, 3; and K, 12; with a salt (mainly KCl) concentration of 0.34 g·L-1 and a 

pH (CaCl2) of 5.8. The nP treatment was fertilized with K2SO4 at 178 mg·L-1 to provide 

equal amounts of K. The rP treatment was fertilized with rock phosphate (P2O5 31%) at 

493 mg·L-1, and the sP treatment with KH2PO4 at 280 mg·L-1, for a P addition rate of 64 

mg·L-1 in these two treatments. In addition, N fertilizer was added to the substrate one 

day before the start of the experiment. The N fertilizer (a mixture of 33% horn meal 0-2 

mm, containing 10% N, and 66% horn meal 2-6 mm, containing 14% N) was uniformly 

mixed with the substrate (horn meal at 6670 mg·L-1). Previous experience (C. Bruns, 

personal communication) indicated that two weeks after planting, 25% of the added N 

was available to the plants, and that eight weeks after planting, 85% of the added N was 

available. Under this assumption, the plant available N content of the commercial peat 

substrate together with the horn meal fertilizer added N was 200 mg·L-1 in the first two 

weeks after planting. After two weeks of growth each pot was additionally fertilized 

with 40 ml of 5% vinasse solution, containing N at 120 mg·pot-1, because of N deficiency 

symptoms. The substrate was also fertilized with K+ at 400 mg·L-1 and Mg2+ at 80mg·L-1 

(30-10 K2O – MgO), Fe2+ at 1.5 mg·L-1 (Fe-Chelat DTPA 6%), Zn2+ at 7.7 mg·L-1 (ZnSO4), 

and Cu2+ at 7.7 mg·L-1 (CuSO4). 

In the second experiment, the extractable nutrients before fertilization (extraction by 

CaCl2 [N] and CAL [P, K]; analysed by laboratory of the IGZ) in the substrate were: N, 

50 mg·L-1; P, 34 mg·L-; and K, 67 mg·L-1. The substrate had a salt concentration of <0.8 

mg·L-1 and a pH (CaCl2) of 6.0. The nP and rP treatments were fertilized with K2SO4 at 
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120 mg L-1. The rP treatment was fertilized with rock phosphate (P2O5 31%) at 331 

mg·L-1, and the sP treatment with KH2PO4 at 188 mg·L-1, for a P addition rate of 43 

mg·L-1 in these two treatments. Nitrogen was also added as horn meal (horn meal at 

7130 mg·L-1). Seven weeks after planting each pot was additionally fertilized with 3 g 

horn meal (2-6 mm) because of N deficiency symptoms. Potassium was added at 279 

mg·L-1, Mg2+ at 80mg·L-1 (30-10 K2O–MgO and MgSO4), Fe2+ at 1.5 mg·L-1 (Fe-Chelat 

DTPA 6%), Zn2+ at 7.7 mg·L-1 (ZnSO4), and Cu2+ at 7.7 mg·L-1 (CuSO4). Initial nutrient 

concentrations of the substrates used in the two experiments were almost similar, with 

P at 67/77 mg·L-1, K+ at 492/400 mg·L-1, Mg2+ at 80/80 mg·L-1, and N at 824/930 mg·L-1, 

respectively. 

3.3.3 Inoculation with AM fungi 

Inoculation with AM fungi in both experiments was carried out with one commer-

cially available inoculum (‘Pla’) (TerraVital Hortimix with G. mosseae, G. intraradices, 

G. claroideum and G. microaggregatum, >50 infective units per ml inoculum; Plant-

works Ltd., Heeley Close, Sittingbourne, Kent, UK). In experiment 2, two single strain 

inocula (isolated by F. Oehl, University of Basel, Switzerland) were used. The first one 

(‘34’), from an organic-dynamically managed soil (G. etunicatum, ISCB 34, DOK ex-

periment, Switzerland; Redecker, 06) and the other ('47') from a nature conservation 

area (G. lamellosum, ISCB 47, neglected grassland, Kaiserstuhl, Germany; Redecker, 

06). The inocula were mixed uniformly (5% v/v) into the potting substrate before the 

seedlings were planted. Non-mycorrhizal (NAM) treatments were supplied with auto-

claved (121°C for 20 min) Pla inoculum. In addition, a filtrate (589/3 blue ribbon paper 

filter, Schleicher & Schuell Bioscience GmbH, Dassel, Germany) of non-sterilized Pla 

inoculum was also added to NAM pots to establish a similar microflora in Pla and NAM 

treatments. 

3.3.4 Harvest and plant analysis 

The cabbage lettuce was cut above the soil surface. The loose-leaf lettuce was har-

vested the first time after seven weeks of growth, leaving 3 to 5 leaves on the plant, and 

three weeks later the whole shoot was cut above the soil surface. Shoot fresh weight 

(FW) was recorded and, after drying for two days at 80°C, dry weight (DW) was also 

recorded. The shoots were ground in a centrifugal grinder using a 0.25-mm sieve. Shoot 

samples were dry ashed and dissolved in 18.5% HCl. Potassium, Zn, and Cu were ana-

lyzed with an atomic absorption spectrophotometer (Perkin Elmer 3300, Überlingen, 

Germany) and P and Mg were measured photometrically with an EPOS-Analyzer 5060 

(Eppendorf, Hamburg, Germany). Nitrogen was determined after dry oxidation by the 

DUMAS method (Elementar Vario EL, Hanau, Germany). 
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For the investigation of AM fungal root length colonization, representative samples 

were taken from the contents of the planting pots, and roots were washed free from the 

peat substrate using a set of sieves (smallest sieve size 1 mm). The root samples were 

stored in 10% isopropanol. Mycorrhizal fungus colonization of roots was determined 

following the method of Koske and Gemma (Koske and Gemma, 89) with slight modifi-

cations. Roots were cleared with 10% KOH, acidified with 2N HCl, and stained with 

0.05% trypan blue in lactic acid. Percentage root length colonization was determined 

with a microscope (Zeiss, Stemi2000, Göttingen, Germany) at 100x using the grid line 

intersection method (Giovannetti and Mosse, 80). 

3.3.5 Statistics 

The data were analyzed by a two-factorial analysis of variance, with phosphorus fer-

tilization treatments and mycorrhizal inoculation as experimental factors (Exp. 1, n = 5; 

Exp. 2, n = 4). If variance homogeneity was not present an analysis of variance was 

used with the SAS procedure MIXED in consideration of possible heterogeneity of vari-

ance (i.e. in dependency of the feature variability it was worked with a joint sample 

variance or with different sample variances within each fertilization treatment and/or 

within each mycorrhizal inoculation treatment). Mean separation was carried out with 

the Tukey test (p < 0.05). For the second harvest the Dunnett T3 test was used in case of 

heterogeneity of variance. Root length colonization rate was analyzed with a Kruskal-

Wallis Test. Data were analyzed using SPSS 13.0 (Chicago, Illinois, U.S.) and SAS 9.1 

(SAS Institute GmbH, Heidelberg, Germany) software. 

3.4 Results 

3.4.1 Mycorrhizal colonization 

In the first experiment, the root length colonization rate in treatments with live my-

corrhizal inoculum averaged 24.3 ± 7.5%. The percentage of colonized root length in AM 

plants in the different P treatments did not differ significantly (nP at 18.0 ± 9.8%; rP at 

11.8 ± 7.3%; sP at 6.7 ± 6.5). In the second experiment, the root length colonization rate 

in treatments with live mycorrhizal inoculum averaged 65.2 ± 2.2%. The percentage of 

colonized root length in AM plants in the different P treatments did not differ signifi-

cantly (nP at 53.2 ± 5.9%; rP at 73.8 ± 8.1%; sP at 66.7 ± 3.6). In both experiments the 

treatment without live mycorrhizal inoculum (NAM) remained free of mycorrhizal root 

colonization. 
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3.4.2 Shoot dry weight, nutrient concentration and content 

Shoot dry weight. In experiment 1, shoot dry weight was significantly affected by P 

fertilization treatment, increasing in the order nP < rP < sP (Tab. 3). In contrast, shoot 

dry weight in the first harvest (7 weeks) of the second experiment was similar in the rP 

and sP treatments, which both had significantly higher values compared to the nP 

treatment (Tab. 4). At the second harvest (10 weeks), plants in the rP treatment had the 

highest shoot dry weight, followed by the sP treatment and then by the nP treatment. 

The second harvest included leaves not harvested in the first harvest as well as leaves 

formed during the intervening three weeks between harvests. 

Tab. 3: Experiment 1 Shoot dry weight (DW) and shoot nutrient (N, P, K, Zn and Cu) concen-
trations and N content of cabbage lettuce plants eight weeks after planting. Plants were grown 
on three P fertilization treatments (non P (nP), rock phosphate rP, soluble P (sP)), and were 
either non-inoculated with mycorrhizal fungi (NAM) or were inoculated with a commercial my-
corrhizal inocula (Pla). Effects of the treatments (P fertilization (f); mycorrhizal inoculation (m)) 
were tested with a two-way ANOVA. Different letters denote significant differences between 
means within one main factor as determined by the Tukey- test (P<0.05). Values are means of 
5 observations ± standard error of the mean (SE). Cu concentrations were not significantly dif-
ferent and on average 3.73 ± 0.45 mg kg-1. 

 

 DW Element concentration Content 

 . g pot-1 . . g [kg DW]-1 . mg [kg DW]-1   mg pot-1 

.  N P K Zn N  . 

NAM 5.9 ± 1.3 34 ± 4a 1.7 ± 0.2 47 ± 2 63.9 ± 4.6a 179 ± 11a 

Pla 5.9 ± 1.3 37 ± 5b 1.7 ± 0.2 45 ± 3 68.1 ± 5.5b 195 ± 14b 

      

nP 3.6 ± 0.1a 45 ± 2c 1.2 ± 0.0a 52 ± 1b   6.7 ± 2.7c 160 ±   5a 

rP 5.5 ± 0.1b 37 ± 3b 1.9 ± 0.1b 47 ± 3b 68.1 ± 3.0b 196 ±   8b 

sP 8.5 ± 0.0c 24 ± 2a 1.9 ± 0.1b 40 ± 1a 53.3 ± 2.0a 205 ± 13b 

      

P (f) <0.001   0.003 <0.001 <0.001 <0.001 <0.001 

P (m)   0.942 <0.001   0.102   0.355   0.046   0.021 

P (f x m) 0.590   0.878   0.153   0.492   0.392   0.337 
 

In both experiments, inoculation with live mycorrhizal fungi did not increase shoot 

dry weight significantly compared to the non-mycorrhizal control (Tab. 3 and Tab. 4). 

In the first harvest of the second experiment, the 'Pla' treatment had the highest shoot 

dry weight over all P fertilization treatments and had significantly higher DW than that 

of treatment '47'. At the second harvest, this effect was maintained only in the rP treat-

ment (Tab. 4). At the second harvest, the mean shoot dry weight of treatment '34' was 

highest in all P fertilization treatments except for rP, although differences were not sig-

nificant, because of the high variance of the data. At the second harvest, plants of 

treatment '47' had the highest shoot dry weight on the sP treatment, whereas for all 
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other mycorrhizal treatments, shoot dry weight at the second harvest was highest when 

plants received rock phosphate. 

Tab. 4: Experiment 2 Shoot dry weight (DW) after 7 and 10 weeks and shoot nutrient (P, K, 
Mg and Zn) concentrations 7 weeks after planting of loose-leaf lettuce plants. Plants were 
grown on three P treatments (non P (nP), rock phosphate (rP), soluble P (sP)), and either non-
inoculated with mycorrhizal fungi (NAM) or inoculated with mycorrhizal inocula (Pla, ‘34’, ‘47’). 
Effects of the treatments (P fertilization (f); mycorrhiza inoculation (m)) were tested with a two-
way ANOVA. Small letters denote significant differences between means within one P fertiliza-
tion treatment and capital letters denote significant differences within one mycorrhizal treatment 
as determined by the Tukey-test (P<0.05). Values are means of 4 observations ± SE. 

 

 . 7 weeks ..10 weeks. 

 DW Element concentration  DW 

 . g pot-1 . . g [kg DW]-1 . mg [kg DW]-1. g pot-1. 

.f m  P K Mg Zn . 

nP NAM 3.1 ± 0.3A 1.4 ± 0.1abA 69 ± 4B 7.1 ± 1.2ab 121 ± 2 12 ± 1A 

 Pla 3.9 ± 0.7A 1.4 ± 0.2abA 65 ± 11A 7.8 ± 1.4ab 117 ± 2   9 ± 3A 

 ‘34’ 3.1 ± 0.1A 1.7 ± 0.0bA 69 ± 2B  10.6 ± 0.3bB 147 ± 6B 18 ± 2A 

 ‘47’ 3.4 ± 0.4A 1.1 ± 0.1aA 67 ± 7B 4.1 ± 0.8a   95 ± 2 13 ± 2A 

       

rP NAM 4.9 ± 0.0abB 2.8 ± 0.6AB 40 ± 2A 6.6 ± 2.0 100 ± 1 43 ± 2bB 

 Pla 5.3 ± 0.3bAB 1.9 ± 0.2AB 35 ± 1A 5.8 ± 0.5   98 ± 5 44 ± 1bB 

 ‘34’ 4.9 ± 0.1abB 1.9 ± 0.3A 37 ± 1A 7.2 ± 1.8AB 116 ± 2AB 44 ± 4abB 

 ‘47’ 4.2 ± 0.4aAB 1.7 ± 0.2A 29 ± 3A 3.2 ± 0.5  67 ± 7 29 ± 1aB 

       

sP NAM 5.4 ± 0.2abB 4.0 ± 0.2B 39 ± 2abA 5.0 ± 0.5  61 ± 5 24 ± 11AB 

 Pla 5.9 ± 0.2bB 3.3 ± 0.4B 37 ± 2abA 5.5 ± 0.5  85 ± 9 26 ± 10AB 

 ‘34’ 5.2 ± 0.3abB 3.7 ± 0.1B 40 ± 1bA 5.6 ± 0.1A  67 ± 1A 37 ± 3B 

 ‘47’ 4.7 ± 0.1aB 3.2 ± 0.1B 31 ± 1aA 5.1 ± 0.6  64 ± 5 36 ± 1B 

       

P (f) <0.001 <0.001 <0.001 0.011 <0.001 <0.001 

P (m)   0.009   0.025   0.210 0.002   0.015   0.064 

P (f x m)   0.689   0.287   0.777 0.009   0.035   0.014 

 

Shoot nutrient concentration. In the first experiment, shoot P concentration was 

equally high in the rP and sP treatments, but significantly lower in the nP treatment. 

Shoot N and Zn concentrations were contrariwise lowest in the sP treatment and high-

est in the rP treatment. Shoot K concentration was highest in the shoots of the nP and 

rP plants, but significantly lower in the sP treatment. 

In the second experiment, statistical analysis of the main factor fertilization revealed 

that shoot P concentration increased significantly in the order nP < rP < sP. Within 

treatments '34' and '47', shoot P concentration was not significantly different between 

the nP and the rP plants (Tab. 4). 

The main factor fertilization, revealed that shoot K concentrations of the rP and sP 

treatment were equal but significantly lower than the nP treatment (Tab. 4). Shoot Mg 
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and Zn concentrations between the three P fertilization treatments were not signifi-

cantly different within the NAM, 'Pla' and '47' treatments. Only treatment '34' showed 

an effect similar to that seen in the first experiment, with lower shoot Mg and Zn con-

centrations in the sP treatment, compared to the nP treatment (Tab. 4). 

 

In the first experiment, the 'Pla' treatment had no influence on shoot P concentra-

tion, but significantly increased shoot N and Zn concentrations (Tab. 3). 

Comparing the mycorrhizal treatments over all P fertilization treatments in the sec-

ond experiment, shoot P concentration was highest in the NAM and '34' treatments, 

although individual comparisons showed an effect only between treatments '34' and '47 

in the nP treatment (Tab. 4). Statistical analysis of the main factor mycorrhiza showed 

that it had no significant effect on shoot K concentration, but individual comparisons 

within fertilization treatments showed that in the sP treatment,  treatment '34' had a 

significantly higher shoot K concentration than that of treatment '47' (Tab. 4). Shoot 

Mg concentration was elevated in treatment '34' across all P fertilization treatments, 

but significantly higher only in comparison with treatment '47' in the nP treatment 

(Tab. 4). Individual comparisons of Zn concentration within each P fertilization treat-

ment did not reveal any significant differences. In general, shoot Zn concentration was 

highest in treatment '34' on the nP and rP treatments, whereas in the sP treatment, 

treatment 'Pla' had the highest Zn concentration. Recapitulating the second experi-

ment, it can be said that within the P fertilization treatments, shoot P, K, Mg, and Zn 

concentrations were almost always increased in treatment '34' and almost always de-

creased in treatment '47', but were never significantly different from the NAM treat-

ment. 

 

For the investigation of mycorrhizal performance on rock phosphate, nutrient con-

centrations of P, K, Mg and Zn were also analyzed after the second harvest (Tab. 5). The 

mycorrhizal treatments did not show any effect on shoot P or Zn concentrations. The 

NAM treatment had the highest shoot K concentration, followed by treatment 'Pla'. 

Treatment '47' had the lowest shoot K concentration. Shoot Mg concentration was sig-

nificantly higher in treatments 'Pla' and '34' than in treatment '47' (Tab. 5). 

 

Tab. 5: Experiment 2. Shoot nutrient (P, K, Mg and Zn) concentrations of loose-leaf lettuce 
plants 10 weeks after planting. Plants were grown on rock phosphate (rP) and were either non-
inoculated with mycorrhizal fungi (NAM) or were inoculated with a three mycorrhizal inocula 
(Pla, ‘34’, ‘47’). Effect of the mycorrhizal treatment (m) was tested with a one-way ANOVA. 
Small letters denote significant differences between means as determined by the Dunnett T3-
test (P<0.05). Values are means of 4 observations ± SE. 



Chapter 3 

 

45 

 Element concentration  

  g [kg DW]-1 . mg [kg DW]-1 

.  P K Mg Zn . 

rP NAM 3.6 ± 0.6 14.5 ± 0.9c 6.6 ± 1.0ab 60 ± 5 

 Pla 2.5 ± 0.2 12.3 ± 0.8bc 7.7 ± 0.5b 67 ± 5 

 ‘34’ 2.7 ± 0.3 10.7 ± 0.7ab 6.9 ± 0.3b 66 ± 3 

 ‘47’ 2.6 ± 0.0   8.7 ± 0.5a 4.6 ± 0.2a 56 ± 3 

      

P (m) 0.153 <0.001 0.014 0.152 
 

Shoot nutrient content. In the first experiment, shoot P, K and Zn content increased 

significantly in the order nP < rP < sP, but mycorrhiza had no significant influence 

(data not shown). Shoot N content was equally high in the rP and sP treatments and 

significantly higher than in the nP treatment (Tab. 3). The 'Pla' treatment increased N 

content significantly over that of the NAM treatment. 

In contrast, in the second experiment only shoot P content in the NAM treatment 

was significantly increased by P fertilization treatment in the pattern nP < rP < sP (Tab. 

6). Shoot P content of treatments 'Pla', '34', and '47' were similar in the nP and rP 

treatments but elevated in the sP treatment. Calculated over the two harvests (Tab. 7), 

the NAM treatment had the highest P content within the rP treatment, although the 

difference was not significant. 

Shoot K content within mycorrhizal treatments '34' and '47', was significantly higher 

on the nP treatment compared to the rP treatment (Tab. 6). Analysis of the main factor 

P fertilization revealed that shoot Mg content was significantly higher in the sP treat-

ment compared to the nP treatment, while that of the rP treatment was not significantly 

different from the other two. Within mycorrhizal treatments, shoot Zn content was sig-

nificantly affected by P fertilization only within treatment '34', where it was higher in 

the rP treatment than in the sP treatment (Tab. 6). 
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Tab. 6: Experiment 2. Shoot nutrient (P, K, Mg and Zn) content of loose-leaf lettuce plants 
seven weeks after planting. Plants were grown on three P fertilization treatments (non P (nP), 
rock phosphate rP, soluble P (sP)), and were either non-inoculated with mycorrhizal fungi 
(NAM) or were inoculated with a three mycorrhizal inocula (Pla, ‘34’, ‘47’). Effects of the treat-
ments (phosphate fertilization (f); mycorrhizal inoculation (m)) were tested with a two-way 
ANOVA. Small letters denote significant differences between means within one level of P fertili-
zation treatment and capital letters denote significant differences within one mycorrhizal treat-
ment as determined by the Tukey-test (P<0.05). Values are means of 4 observations ± SE. 

 

 

 Element content 

  . mg·pot-1 . . µg·pot-1 .  

f m P K Mg Zn . 

nP NAM   4.0 ± 0.2abA 207 ± 11 21 ±   2ab 356 ± 16  

 Pla   5.0 ± 0.5abA 231 ± 22 28 ±   3bc 420 ± 39  

 ‘34’   5.2 ± 0.3bA 215 ±   4B 33 ±   2c 457 ± 25AB  

 ‘47’   3.5 ± 0.2aA 219 ±   7B 13 ±   1a 307 ± 21    

       

rP NAM 13.7 ± 3.0B 197 ± 11b 33 ± 10 490 ± 59b  

 Pla 10.0 ± 1.4A 188 ±   6b 31 ±   4 524 ± 46b  

 ‘34’   9.3 ± 1.5A 178 ±   7bA 34 ±   8 556 ± 68bB  

 ‘47’   7.1 ± 0.3AB 121 ±   3aA 13 ±   1 278 ± 10a   

       

sP NAM 21.8 ± 0.9bC 210 ±   6b 27 ±   3 327 ± 22ab   

 Pla 19.1 ± 2.0abB 217 ±   6b 32 ±   3 500 ± 57b   

 ‘34’ 18.9 ± 1.2abB 209 ± 16abAB 29 ±   1 345 ± 23abA  

 ‘47’ 15.0 ± 0.9abB 148 ±   7aA 24 ±   4 306 ± 35a   

       

P (f) <0.001 <0.001 0.038   0.005  

P (m)   0.003 <0.001 0.002 <0.001    

P (f x m)   0.031   0.002 0.107   0.035  
 

A mycorrhizal effect could be seen within the nP treatment, where shoot P content 

was significantly higher in treatment '34' than in treatment '47'. In the sP treatment, 

shoot P content was highest in the NAM treatment, though not significantly (Tab. 6). 

Over all P treatments, shoot K content was significantly higher in treatments NAM, 

'Pla', and '34' than in treatment '47'. Shoot Zn content was significantly increased 

within the rP treatment by the NAM, 'Pla', and '34' treatments. Whereas within the sP 

treatment, the only significant difference in shoot Zn content was that treatment 'Pla' 

had a higher value than that of treatment '47'. 

The sum of the shoot nutrient contents from both harvests of the rP treatment of ex-

periment 2 are summarized in Tab. 7. The four mycorrhizal treatments did not differ in 

their total shoot P content. Treatment '47' had significantly lower total shoot K, Mg, 
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and Zn contents in comparison to the other three mycorrhizal treatments, the 'Pla' 

treatment, and the 'Pla' and '34' treatments, respectively. 

 

Tab. 7: Experiment 2. Sum of shoot nutrient (P, K, Mg, and Zn) content of loose-leaf lettuce 
plants harvested seven and ten weeks after planting. Plants were grown on rock phosphate (rP) 
and were either non-inoculated with mycorrhizal fungi (NAM) or were inoculated with three my-
corrhizal inocula (Pla, ‘34’, ‘47’). Effect of the mycorrhizal treatment (m) was tested with a one-
way ANOVA. Small letters denote significant differences between means as determined by the 
Dunnett T3-test (P<0.05). Values are means of 4 observations ± SE. 

 

 Total element content of two harvests  

   . mg pot-1 . . µg pot-1 . 

.  P K Mg Zn . 

rP NAM 24 ± 5 241± 12b 52 ± 13ab 669±  69ab 

 Pla 23 ± 3 253 ±  7b 72 ±   9b 882 ± 50b 

 ‘34’ 22 ± 2 230 ±  8b 67 ±   8ab 876 ± 71b 

 ‘47’ 18 ± 1 158 ±  3a 32 ±   1a 515 ± 22a 

      

P (m) 0.488 <0.001 0.028 0.001 
 

3.5 Discussion 

3.5.1 Mycorrhiza colonization 

The commercially available peat substrates did not contain any infectious mycorrhi-

zal propagules, but inoculated mycorrhiza could develop in it and colonized lettuce 

plant roots at a sufficient rate. Mycorrhizal colonization and growth of extraradical my-

celium can be suppressed by a high P supply such as that provided by fertilization with 

highly soluble mineral fertilizer (05b; Gryndler et al., 05a; Valentine et al., 01). It was 

therefore expected to have increasing root length colonization with decreasing P avail-

ability. This was verified in the first experiment. In the second experiment, root length 

colonization was highest on the rP treatment. Root length colonization on soils fertil-

ized with slowly soluble rock phosphate has been described to increase compared to the 

colonization rate observed on soil low in phosphate (Alloush and Clark, 01), but these 

findings were observed on acidic soils (< pH 5), whereas the substrate used in the sec-

ond experiment was only slightly acidic (pH 6.0). Perhaps the high colonization rates 

observed in the rock phosphate treatment of the current study are evidence that the 

plants sensed the large P pool and, in their eagerness to exploit it, supported mycorrhi-

zal growth. The regulation of AM hyphal growth by plants has been clarified (Vierheilig, 
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04; Pinior et al., 99). The differences in root length colonization between the two ex-

periments may be explained by the longer growth period of the second experiment. 

3.5.2 Comparison of shoot dry weight and shoot elements of all 
treatments 

Shoot N, Cu (Exp. 1) and P (Expt. 1 & 2) concentrations were low in comparison to 

the literature (Bergmann, 93), whereas shoot K, Zn (Exp.1 & 2) and Mg (Exp. 2) con-

centrations were in the medium to high range. 

Shoot dry weight. Plant growth is dependent on nutrient availability to the plant. Be-

cause rock phosphate is a slowly soluble fertilizer, it was expected that the plants of the 

rP treatment would gain a smaller dry weight than those of the sP treatment. This was 

demonstrated in the first experiment, where shoot dry weight increased with solubility 

and amount of P fertilizer. In contrast to the first experiment, shoot dry weights in the 

rP and sP treatments of the second experiment were equal at both harvests, meaning 

that the amount of P fertilizer available to the plant had an influence on growth, but not 

the solubility of the different P fertilizers. Plant P availability of the slowly soluble rock 

phosphate must have been similar to that of the highly soluble P fertilizer. 

Rock phosphate can be solubilized by a decrease in pH or by microorganisms 

(Villegas and Fortin, 01). The initial pH was only slightly acidic (pH 6.0) in the second 

experiment. Moreover, a significant positive effect on shoot dry weight by the microor-

ganism AM fungi was not visible in both experiments. In the second experiment, high-

est dry weight was observed in the 'Pla' treatment at the first harvest and in treatment 

'34' at the second harvest, but the variance was too high to reveal significant differences 

compared to the NAM treatment. In treatment '47', plant dry matter production was 

significantly reduced on the rP treatment at the second harvest. This effect has been 

regularly observed (Koide and Mosse, 04; Lerat et al., 03). It has been explained as re-

sulting from the plant's becoming independent of the fungal nutrient contribution, 

while continuing to loose carbohydrate needed for plant growth to the fungus. 

Therefore the reasons for the higher plant availability of rock phosphate could have 

been several: first, after fertilization the pH might have been reduced, increasing plant-

available P; second, the peat substrate or the mycorrhizal inocula might have contained 

bacteria that were able to solubilize rock phosphate; and third, most likely the absorp-

tive surface area of the plants treated with rock phosphate had been increased. The in-

vestigation of the elements in the shoot gives further information for the interpretation 

of these results. 

Shoot elements. In both experiments it was expected that AM fungi may increase P 

uptake into the plant, as observed on soils low in P (Grimoldi et al., 05; Asghari et al., 

05). In the first experiment, AM played a role in the uptake of N and Zn only. This cor-
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responds with a finding in the literature (George, 00), but the dry weight was not in-

creased, indicating that increased N concentration was not high enough to contribute to 

the growth of the plant. A reason for the missing mycorrhizal P effect might be the fine 

root architecture of lettuce. Plants that develop a dense finely branched root system 

with many root hairs are less dependent on mycorrhiza (Baylis, 72). Tests with hairless 

mutants showed that mycorrhiza hyphae take over the function of root hairs indicating 

that they have similar responsibilities (Jakobsen et al., 05; Chen et al., 05). It has also 

been shown that AM fungi can take over the full function of P uptake by root hairs, 

without showing any effects in growth, P content, or AM colonization (Smith et al., 04). 

In the second experiment, shoot P concentration and content on the nP treatment 

were increased by treatment '34' (compared to treatment '47'), but did not differ from 

the NAM treatment. In the rP and sP treatments, no positive mycorrhizal effect on 

shoot P concentration or content was found. In contrast, the NAM treatment had the 

highest means. This could be due to the fact that the plants were sufficiently supplied 

with P and the contribution by the fungus was not necessary (Koide and Mosse, 04; 

Lerat et al., 03), although comparison with shoot P concentrations in the literature 

(Bergmann, 93) suggested low P supply in the rP and sP treatments as well as in the nP 

treatment. 

Potassium, Mg and Zn have also been reported to be increased by mycorrhiza 

(George, 00; Smith and Read, 97), but their shoot concentrations were not increased by 

any live mycorrhizal treatment over those of the NAM treatment. Comparing the three 

P fertilization treatments among each other, shoot Mg and Zn concentrations of treat-

ment '34' increased in the order sP < rP < nP. This indicates that the mycorrhizal strain 

'34' is suitable for the contribution of Mg and Zn to plants grown on peat substrates 

with low plant phosphate availability. 

 

The low P concentrations in the nP treatment in both experiments and the observed 

increase in shoot P concentration in the order nP < rP < sP in the second experiment, 

mirrored nicely the availability of the P fertilizer in the substrate. Moreover, shoot P 

contents revealed that the transport and accumulation of P from the substrate into the 

shoot was higher in the sP treatment than in the rP and nP treatment. This confirms 

the hypothesis that during seven weeks of growth the soluble P fertilizer was available 

in higher amounts than rock phosphate. 

The rising shoot K and Zn concentrations in the nP and/or rP treatments compared 

to the sP treatment were in the first experiment a result of slower growth and thus less 

dilution of these elements in the plant tissue (Tab. 3 & Tab. 4). In the second experi-

ment, at least in treatments '34' and '47', the high shoot K concentrations were not an 

effect resulting from slow growth only, because shoot K content was also higher in the 
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nP treatment than in the rP and sP treatments (Tab. 6). Although not always signifi-

cant, shoot Zn content was slightly higher on the rP and nP than on the sP treatment 

(Tab. 6). These findings, in conjunction with the equal shoot Mg and Zn contents in the 

nP and rP treatments, lead to the assumption that Mg and Zn transport and accumula-

tion into the shoot were supported by the low P availability of the substrate. Most nu-

trient uptake in plants is driven by the electrochemical gradient across the plasma 

membrane, of which a major part is induced by the H+-ATPase activity, which is also 

responsible for the uptake of K, Zn, (Gilroy and Jones, 00) and probably also Mg. The 

main sites of H+-ATPase activity and nutrient uptake are the root hairs, which have 

been shown with Arabidopsis to increase density extremely on P-deficient soils 

(Gahoonia and Nielsen, 98; Ma et al., 01). Hence one mechanism for the higher shoot 

content of K, Zn and Mg on the nP and also partially on the rP treatment might have 

been higher root hair density, resulting in an increased root surface and nutrient up-

take in the NAM treatment. In the 'Pla', '34' and '47' treatments, it is possible that the 

AM had taken over the responsibilities of the root hairs (Jakobsen et al., 05; Chen et al., 

05) leading to the same result. 

Shoot N content in the rP treatment of the first experiment was an exception (Tab. 

3). The rP treated plants not only had a significantly higher shoot N concentration, but 

also a shoot N content equal to that of the sP treatment. It may be assumed that sP 

treated plants grew better because of a higher uptake of phosphate, but were not able to 

cover their increased N demand by mobilising more N from the horn meal than the rP 

treated plants. 

3.5.3 Comparison of mycorrhiza inocula of different origin on rock 
phosphate 

Treatment with live mycorrhizal fungi on rock phosphate failed to significantly in-

crease shoot dry weight, P concentration, or P content of lettuce. It can therefore be 

assumed that the tested AM isolates did not increase the ability of lettuce plants to mo-

bilize rock phosphate over that of non-mycorrhizal controls. Mycorrhiza was reported 

to take up P from rock phosphate and increase P concentration and content in Zea 

mays L. grown on acidic soils (Alloush and Clark, 01), and in combination with pH-

reducing phosphate-solubilizing rhizobacteria Enterobacter sp. (Barea et al., 02). Evi-

dently, no pH-reducing or phosphate-solubilizing bacteria were present in the commer-

cial substrates used in this study. The pH of the commercial peat substrate was proba-

bly too high to contribute to the mobilization of P from rock phosphate, although the 

pH was not tested at the end of the experiment. A mycorrhizal effect has been reported 

with hairless barley mutants, whereas their mycorrhized wild relatives (Hordeum vul-

gare) had decreased dry weight and shoot P content on rock phosphate (Chen et al., 
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05). The authors suggested that the wild type's finely branched root system rendered it 

independent of AM-mediated P acquisition. Similarly, lettuce plants develop a very fine 

and dense root system and may not have to rely on mycorrhizal mycelia to provide the 

surface area needed for efficient P acquisition. 

The only AM effect observed on rock phosphate was an increase of the shoot N con-

tent compared to the NAM treatment in the first experiment (Tab. 3). In the second 

experiment ‘Pla’ and ‘34’ treatments could increase Mg, K, or Zn content compared to 

the ‘47’ treatment only, but not compared to the non-mycorrhizal plants (Tab. 7). 

 

It can be concluded that (a) the rate of colonization of lettuce roots by AM mycorrhi-

zal fungi was not significantly affected by the P fertilization treatments used in this 

study, (b) mycorrhization increased lettuce shoot N, Mg, and Zn concentrations, but 

not dry weight or P concentration, (c) dry matter production of lettuce was not depend-

ent on mycorrhizal hyphae to solubilize and take up P either from rock phosphate or 

from the low P treatment, probably because of the finely branched root architecture of 

lettuce plants, (d) slow-release P fertilization did not provide a benefit, compared to 

soluble P fertilization, in terms of plant dry weight over a 10-week growth period, (e) 

the commercial peat substrate probably did not included any pH-reducing or phos-

phate-solubilizing bacteria that would interact with AM, (f) when P availability was low, 

lettuce plants increased their shoot K, Mg, and Zn uptakes, probably by increasing the 

root surface area via increased root hair or external hyphae density, (g) loose-leaf let-

tuce was superior to cabbage lettuce in the utilization of P gained from rock phosphate, 

producing similar dry weight as with soluble P fertilizer, and (h) of the AM inocula 

tested, both, the commercially available 'Pla' inoculum and isolate '34' from an organic-

dynamically managed soil performed best on the rock phosphate treatment, compared 

to isolate '47' from a nature conservation area. It can be speculated that isolate '47' was 

not efficient in using rock phosphate because natural conservation areas are generally 

not fertilized and therefore species with qualities others than fertilizer use efficiency 

have been established. Arbuscular mycorrhizae, particularly colonization by '47', 

tended to decrease plant ability to respond to rock phosphate fertilization, compared to 

the non-mycorrhizal control. 
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4 Performance of ornamental plants grown on or-
ganic compost substrate and inoculated with 
arbuscular mycorrhizal fungi  

4.1 Abstract 

Two challenges frequently encountered in the production of ornamental plants in or-

ganic horticulture are: 1) the rate of mineralization of P and N from organic fertilizers 

can be too slow to meet the high nutrient demand of young plants, and 2) the exclusive 

use of peat as a substrate for pot-based plant culture is discouraged in organic produc-

tion systems. In this situation the use of beneficial soil microorganisms in combination 

with high quality compost substrates can contribute to adequate plant growth and 

flower development. In this study, possible alternatives to highly soluble fertilizers and 

pure peat substrates were examined using pelargonium [Pelargonium peltatum L’Her.] 

and poinsettia [Euphorbia pulcherrima Willd. ex Klotzsch] as test plants. Plants were 

grown on peat-based substrates with different rates of compost addition (Experiment 1) 

and with and without arbuscular mycorrhizal (AM) fungi (Experiment 1 & 2). Inocula-

tion with all three commercial AM inocula resulted in colonization rates of up to 36% of 

total root length for pelargonium and 2% for poinsettia, whereas non-inoculated plants 

remained free of root colonization. Increasing the rate of compost addition increased 

shoot dry weight and shoot nutrient concentrations, but fertilization with compost did 

not always completely meet plant nutrient demand. Mycorrhizal colonization increased 

the number of buds and flowers in both plant species as well as shoot P and K concen-

trations in pelargonium, but did not significantly affect shoot dry matter or shoot N 

concentration. It is concluded that addition of compost in combination with mycorrhi-

zal inoculation has the capability to improve plant nutrient status and flower develop-

ment. 

4.2 Introduction 

Two critical factors in the commercial production of flowering ornamental plants are 

choice of growth substrate and choice of fertilization method. Most pot-grown orna-

mental plants are produced and sold in peat-based substrates. In conventional produc-

tion systems, these substrates are usually supplemented with soluble fertilizers in order 

to achieve optimal supply of nutrients such as N and P.  

In organic horticulture, however, the use of synthetic chemical fertilizers is discour-

aged. In such horticultural systems the activity of soil microorganisms is central for the 
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mobilization of nutrients in the substrate (Herrmann and Plakolm, 91). Moreover, the 

use of peat is viewed critically, because peat is a limited natural resource, and use of 

peat at the present rate is not sustainable (George and Eghbal, 03; Joosten and Clarke, 

02). The European Union (04) and organic growers' associations of many countries 

published official guidelines for organic growers to demand the use of organic and non-

soluble fertilizers. They also support a reduction of peat addition to growth substrates 

to a maximum of 70% in the next few years (George and Eghbal, 03). These guidelines 

generate problems for horticulturists, because many ornamental plants require a high 

nutrient availability in a short growth period. In addition, low quality ornamental 

plants with deficiency symptoms can not be marketed. 

To meet the challenge for a successful economic ecological greenhouse horticulture 

on a long-term it is important (a) to characterize methods to improve nutrient supply 

from organic sources, and (b) to find alternative substrates for peat in pot cultures 

without loss of plant quality. 

To reduce peat at least partly in growth substrates, various alternative organic mate-

rials, such as bark, coconut residues (Linderman and Davis, 03c; Ozores-Hampton et 

al., 99), or compost (Veeken et al., 04), have been tested. Compost is a substrate that is 

traditionally used in agriculture and horticulture due to its beneficial effect, for exam-

ple, on soil stability or soil biota (Carpenter-Boggs et al., 00; Wells et al., 00). However, 

in many modern greenhouse horticultural systems producers avoid compost applica-

tion, because they fear the transmission of plant diseases. This risk is relatively low in 

high quality compost. It can not only be almost free of pathogenic microorganisms, but 

may even benefit the plants by suppressing soil born diseases (Schüler et al., 89) and 

providing a high nutrient content. Therefore at least 20% high quality compost is rec-

ommended to be mixed with peat for a substrate currently used in organic horticulture 

in Germany and Switzerland (König, 04; Bioland, 05; Naturland, 06; Demeter, 04). 

The sole application of compost as nutrient source for plants may require additional 

amendment of other organic fertilizers to meet the plant demands. Moreover, soil mi-

croorganisms may help plants to improve the plant nutrient status. A group of soil mi-

croorganisms living in symbiosis with several plant species are the arbuscular my-

corrhizal (AM) fungi. These fungi are capable to support the uptake of nutrients into 

the plant, such as phosphorus (P), nitrogen (N), zinc (Zn), copper (Cu), and sometimes 

potassium (K) (George, 00), and to increase plant dry weight on soils low in these nu-

trients (Douds et al., 05). For AM-colonized plants P from organic fertilizers may be 

particularly accessible (Linderman and Davis, 04). In addition, AM colonization of 

plants resulted in suppression of diseases (Kasiamdari et al., 02), and more resistant to 

stresses such as drought (Neumann and George, 04; Pinior et al., 05) or salinity (Tian 

et al., 04). In soils AM fungi can also stabilize soil aggregates (Piotrowski et al., 04). 
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Plant and fungus exchange several signals in the roots, including hormones like the 

cytokinin isopentenyl adenosine, the auxin conjugate indole-3-butyric acid, or gibberel-

lins (Barker and Tagu, 00; Shaul-Keinan et al., 02; Fitze et al., 05). 

Arbuscular mycorrhizal colonization may induce earlier flowering and increased 

flower numbers (Nowak, 04; Gaur and Adholeya, 05; Usha et al., 05). This trait of AM 

fungi is of particular interest to horticultural production. Floral development starts 

after a period of vegetative growth, during which the plant maximizes leaf area for high 

photosynthesis (Krizek and Fletcher, 05). The major signals for flower development are 

e.g. photoperiod, gibberellin, and vernalization, as tested in Arabidopsis thaliana mu-

tants (Jack, 04). Pelargonium is independent of day length and starts flowering after a 

certain number of light hours, whereas flowering of poinsettia is induced by a short day 

photoperiod (Elsner et al., 95; Zimmer, 91). 

Variation in the levels of P and K supplied to plants has been shown to affect flower-

ing in some instances. As an example, a higher P supply is recommended for optimal 

development of poinsettia flowers compared to the earlier vegetative growing period 

(Zimmer, 91). Poulton et al. (02) observed a significantly higher number of tomato 

flowers and slightly increased shoot P concentration with mycorrhizal colonization on 

low P substrates, whereas shoot dry weight was not significantly affected. On peat sub-

strate with organic NPK fertilizer, mycorrhizal pelargonium plants flowered earlier and 

had increased N, P, and K concentrations at low nutrient supply as well as increased P 

concentrations at high nutrient supply, while the number of flowers and the leaf dry 

weight were unaffected (Nowak, 04). Zinnia and Tagetes plants had an increased num-

ber of flowers after mycorrhization, but final dry weight as well as K and P concentra-

tions were unaffected (Aboul-Nasr, 96). Gaur and Adholeya (05) tested five ornamental 

plant species on a soil:compost mixture and found earlier flowering, a significantly 

higher number of flowers, and increased shoot P concentrations only for Callistephus. 

The flower timing of cotton was not changed by different K supply and leaf K concen-

trations (Reddy and Zhao, 05).  

The effect of compost addition on mycorrhizal and non-mycorrhizal plant seedlings 

has been only scarcely investigated. Compost containing substrates may be appropriate 

for mycorrhizal plants (Goswani and Jamaluddin, 01; Linderman and Davis, 01) if the 

quality of the compost is adequate (Boddington and Dodd, 00; Raviv M et al., 98; 

Perner et al., 06). Anyway, compost amendment may suppress mycorrhizal coloniza-

tion and therefore the activity of AM fungi (Sáinz et al., 98). Thus, until now it is not 

clear whether mycorrhizal inoculation in combination with compost addition increase 

yield and flower production in organic management systems. 

Therefore, we utilized poinsettia and pelargonium as test plants in two experiments 

studying whether (a) increasing the rate of compost application contributes to plant dry 
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weight and N, P, and K supply, (b) commercially- or specifically-prepared peat-compost 

substrates support AM fungus colonization of plants, (c) AM fungus colonization is 

beneficial to plants on these substrates with regard to dry weight and N, P, K, and Zn 

supply, and (d) AM fungus colonization increases production of flowers and buds. The 

aim was to increase the understanding of the role of AM fungi in plant growth on or-

ganic substrates. 

4.3 Material and Methods 

4.3.1 Overview of experimental design and cultivation 

In Experiment 1, single seedlings of pelargonium (Pelargonium peltatum ‘Balcon 

Imperial Compact’, Silze, Weener Halte, Germany) were placed in separate 250-ml pots 

filled with a peat substrate with an addition of 20% or 40% compost. Drip irrigation (40 

ml·min-1) was used every second day (total of 40 ml) to maintain favorable water condi-

tions in the substrate. Additionally, every 3rd or 4th day the pots were weighed to equalize 

the water content of the pots. The experiment was carried out from 11 Sep. to 23 Oct. 

2002 (6 weeks) in a greenhouse facility at Großbeeren (long. 13°19´60´E; lat. 51°22´0´N), 

Germany. Average air temperature in the greenhouse during this time was 23 °C (min 

17 °C and max. 27 °C) during the day and 18 °C (min. 17 °C and max. 25°C) at night. 

Relative humidity was on average 66% during the day and 77% at night. The daily (10.5 

h) mean light intensity (PAR) was 8 mol·m-2 (max. 662 µmol·m-2·s-1). 

 

In Experiment 2, single seedlings of poinsettia (Euphorbia pulcherrima ‘Cortez Red’, 

IGZ, Erfurt) were placed in separate 500 ml pots filled with a commercial growth sub-

strate (see below). The plants were grown from 27 March to 22 May 2003 (8 weeks) in 

the greenhouse facilities at Großbeeren. The average air temperature in the greenhouse 

during this time was 24 °C (min. 18°C and max. 32°C) during the day and 20 °C (min. 16 

°C and max. 24 °C) at night. Relative humidity was on average during the day 77% and 

at night 82%. The daily (12.5 h) mean light intensity (PAR) was at 13 mol·m-2 (max. 1337 

µmol·m-2·s-1) during the day. Pots were rearranged at regular intervals in both experi-

ments. Pots were always arranged in a completely randomized design in both experi-

ments. 

4.3.2 Substrate preparation and characterization 

All substrates used in this study were suitable for organic production. The compost 

was prepared from yard waste, shredded trees and bushes (Bruns, 98; Bruns and 
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Schüler, 00). The material used had a wide C/N ratio (40:1) at the beginning of the 

composting process. After three months of composting the extractable nutrient content 

in the compost of Experiment 1 (pelargonium) was: N, 150 mg·L-1; P, 360 mg·L-; and K, 

1535 mg·L-1 (extraction by CaCl2 [N] and CAL [P, K]; C. Bruns, personal communica-

tion). The compost had a salt content of 2.2 g·L-1 and a pH (CaCl2) of 7.1. The compost 

was mixed with sphagnum peat from the Baltic region (white peat) to obtain a compost 

substrate with 20% or 40% compost by volume. The substrates were limed with CaO to a 

pH of 6.2 and sieved to 10 mm. In addition, N fertilizer was added to the substrate one 

day before the start of the experiment. The N fertilizer (a mixture of 33% horn meal 0-2 

mm, containing 10% N, and 66% horn meal 2-6 mm, containing 14% N) was uniformly 

mixed into the substrate (20%: 6700 mg·L-1 and 40%: 5500 mg·L-1).  

In previous work with this substrate and fertilizer (C. Bruns, personal communica-

tion), it had been observed that 25% of the added N became available to plants within 

two weeks after planting, and that within eight weeks after planting 85% of the added N 

was available. Therefore, the plant-available N content of the compost substrate to-

gether with the horn meal fertilizer added by calculation up to 200 mg·L-1 in the first 

two weeks after planting in both compost addition treatments. 

 

In experiment 2 with poinsettia plants, a commercial substrate (KKS Bio-Potgrond, 

Klasmann-Deilmann GmbH, Geeste-Gross Hesepe, Germany) was used that contained 

approximately 80% (v/v) sphagnum peat (black peat) and approximately 20% (v/v) 

compost of green residues. The substrate also contained clay material, lime, horn meal, 

and Thomas phosphate. This substrate is commonly used by organic growers in Ger-

many. The extractable nutrients (extraction by CaCl2 [N] and CAL [P, K]; information 

from the supplier) in this substrate were: N, 300-400 mg·L-1; P, 109-153 mg·L-1; and K, 

290-415 mg·L-1. The substrate had a salt content of 1-2 g·L-1 and a pH (CaCl2) of 5-6. 

4.3.3 Inoculation with AM fungi 

Inoculation with AM fungi in both experiments was carried out with three different 

commercially available inocula: Pla (TerraVital Hortimix with G. mosseae, G. intra-

radices, G. claroideum and G. microaggregatum, >50 infective units per ml inoculum; 

Plantworks Ltd., Heeley Close, Sittingbourne, Kent, UK), Bio (Endorize-Mix  with G. 

mosseae, G. intraradices, Glomus sp., infective units not specified; Biorize, Rue Sainte 

Anne, Dijon, France), and Tri (G. mosseae, Glomus intraradices, and  G. etunicatum, 

50 infective units per ml inoculum; Triton, AMykor GmbH, Wolfen, Germany). The 

inocula were mixed uniformly into the potting substrate before planting the seedlings. 

Addition rates were used according to the suppliers' recommendation and were: Pla, 

5% (v/v); Bio, 5% (v/v); and Tri, 3% (v/v). Non-mycorrhizal (NAM) treatments were 
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supplied with autoclaved (121°C for 20 min) Pla inoculum. In addition, a filtrate (589/3 

blue ribbon paper filter, Schleicher & Schuell Bioscience GmbH, Dassel, Germany) of 

non-sterilized Pla inoculum was added to NAM pots in an effort to supply similar 

amounts of nutrients and microorganisms other than AM fungi to all treatments. 

4.3.4 Harvest and plant analysis 

Pelargonium buds and flowers were counted and removed three times during the ex-

periment, and the individual counts were combined. Poinsettia buds and flowers were 

counted at the end of the experiment. Shoots were separated from roots, and shoot 

fresh weight (FW) was recorded. Shoots were then dried at 80°C for two days, and dry 

weight (DW) was recorded. The shoots were ground in a centrifugal grinder using a 

0.25-mm sieve. Shoot samples were dry ashed and dissolved in 18.5% HCl. Potassium 

and Zn were analyzed with an atomic absorption spectrophotometer (Perkin Elmer 

3300, Überlingen, Germany). Phosphorus was analyzed photometrically with an EPOS-

Analyzer 5060 (Eppendorf, Hamburg, Germany). Nitrogen was determined after dry 

oxidation by the DUMAS method (Elementar Vario EL, Hanau, Germany). 

For the investigation of root dry weight the whole pot (Expt. 1) or one quarter of the 

pot (Expt. 2) was washed to separate the roots from the substrate with running cold 

water using a set of sieves (smallest sieve size 1 mm). The root FW and DW were re-

corded and a representative subsample for assessment of mycorrhizal fungus coloniza-

tion was taken and stored in 10% isopropanol. Mycorrhizal fungus colonization of roots 

was determined following the method of Koske and Gemma (89) with slight modifica-

tions. Roots were cleared with 10% KOH, acidified with 2 N HCl, and stained with 

0.05% trypan blue in lactic acid. The colonization rate of poinsettia roots is difficult to 

determine under the microscope, because poinsettia roots are very hard and darkened 

quickly. A reason could be the latex in the cell sap of poinsettia plants (Ibanez et al., 

04). Therefore, poinsettia roots were additionally bleached with 2% H2O2 solution. Per-

centage root length colonization was determined with a microscope (Zeiss, Stemi2000, 

Göttingen, Germany) at 100x using the grid line intersection method (Giovannetti and 

Mosse, 80).  

4.3.5 Statistics 

In Experiment 1, data were analyzed by a two-factorial analysis of variance, with 

compost addition rate and mycorrhizal inoculation as experimental factors (n = 4). 

Data in Experiment 2 were subjected to a one-way analysis of variance, with inoculum 

type as experimental factor (n = 4). Mean separation was carried out with the Tukey-

test (p < 0.05) on case of variance homogeneity, otherwise with a Wilcoxon-test (p < 
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0.05). Individual treatment differences were subject to t-test. Data were analyzed using 

Statistica 6.1 (StatSoft, Tulsa, OK, U.S.) software. 

4.4 Results  

4.4.1 Experiment 1 

Colonization of pelargonium roots by AM was not significantly different between the 

two compost addition levels. Average root length colonization across both compost ad-

dition levels for the different inocula was (± SE): Pla, 36 ± 4%; Bio, 34 ± 4%; and Tri, 15 

± 5%. Non-inoculated plants remained free of mycorrhizal colonization, although the 

substrate has not been sterilized before use. 

Tab. 8: Experiment 1 (pelargonium). Shoot and root dry weight (DW), and number of buds 
and flowers of pelargonium plants six weeks after planting. Plants were grown on compost-peat 
substrate with 20% compost or 40% compost addition rate, and were either non-inoculated with 
mycorrhizal fungi (NAM) or were inoculated with one of three mycorrhizal inocula (Plantworks 
(Pla), Biorize (Bio), Triton (Tri)). Effects of the treatments (mycorrhizal inoculation (m); compost 
addition rate (c)) were tested with a two-way ANOVA. Different letters denote significant differ-
ences between means within one factor as determined by the Tukey test (P<0.05). Values are 
means of 4 observations ± standard error of the mean (SE). 

 Shoot DW Root DW Buds & flowers 

. g pot-1    g pot-1   no pot-1 

inoculum 

NAM 2.4 ± 0.1 0.19 ± 0.02a   9 ± 3a 

Pla 2.3 ± 0.1 0.16 ± 0.03a 18 ± 3b 

Bio 2.5 ± 0.1 0.20 ± 0.04ab 16 ± 2ab 

Tri 2.5 ± 0.1 0.27 ± 0.02b 15 ± 4ab 

 

compost    

20% 2.3 ± 0.1a 0.21 ± 0.02 13 ± 3 

40% 2.5 ± 0.1b 0.20 ± 0.03 15 ± 2 

    

P (m) 0.362 0.009 0.039 

P (c) 0.003 0.444 0.387 

P (m x c) 0.845 0.087 0.967 
 

 

Shoot dry weight was significantly higher on 40% compost than on 20% compost 

substrate, but it was not significantly affected by inoculation with AM (Tab. 8). Root 

dry weight was not influenced by compost treatment, but was significantly enhanced in 

the Tri treatment compared to the NAM treatment (Tab. 8). 
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The number of buds and flowers was not significantly influenced by compost addi-

tion rate (Tab. 8). The Pla treatment significantly increased the number of buds and 

flowers compared to the NAM treatment. Comparison of the individual treatment com-

binations (Fig. 7) showed that on the 40% compost substrate, the number of buds and 

flowers was higher also in the Bio and Tri treatments than in the NAM treatment. 

 

Tab. 9: Experiment 1 (pelargonium). Concentration and content of N, P, and K in shoots of 
pelargonium plants six weeks after planting. Plants were grown on compost-peat substrate with 
20% compost or 40% compost, and were either non-inoculated with mycorrhizal fungi (NAM) or 
were inoculated with one of three mycorrhizal inocula (Plantworks (Pla), Biorize (Bio), Triton 
(Tri)). Effects of the treatments (mycorrhizal inoculation (m); compost addition rate (c)) were 
tested with a two-way ANOVA. Different letters denote significant differences between means 
within one factor determined by the Tukey test (P<0.05). Values are means of 4 observations ± 
SE. 

 Element concentration  Element content 

 . g·[kg DW]-1 . . mg·pot-1 . 

. N P K N P K . 

inoculum       

NAM 26.1 ± 0.8 2.1 ± 0.0a   9.2 ± 0.7a 62.1 ± 2.3 5.0 ± 0.2a 21.7 ± 1.3a 

Pla 26.4 ± 0.4 2.6 ± 0.1b 21.0 ± 1.6c 60.1 ± 2.9 5.9 ± 0.2b 47.4 ± 2.7c 

Bio 25.8 ± 0.9 2.7 ± 0.1b 14.9 ± 1.0b 63.7 ± 2.1 6.8 ± 0.2c 36.5 ± 1.5b 

Tri 24.3 ± 1.7 2.2 ± 0.1a   9.9 ± 0.9a 59.8 ± 2.5 5.5 ± 0.2ab 24.4 ± 2.4a 

     

compost       

20%  25.1 ± 0.8 2.0 ± 0.1a 14.2 ± 1.0 56.7 ± 1.8a 4.5 ± 0.2a 31.9 ± 2.5 

40%  26.2 ± 1.1 2.8 ± 0.1b 13.3 ± 1.1 66.1 ± 3.2b 7.1 ± 0.3b 33.1 ± 1.5 

       

P (m) 0.281 <0.001 <0.001   0.448 <0.001 <0.001 

P (c) 0.176 <0.001   0.259 <0.001 <0.001   0.476 

P (c x m) 0.311   0.923   0.896   0.769   0.575   0.301 
 

 

Shoot N and K concentrations were not significantly different between the 20% and 

40% compost substrates (Tab. 9). Shoot P concentration was significantly higher on 

40% than on 20% compost substrate. Inoculation did not induce significant differences 

in shoot N concentration (Tab. 9). Shoot P and K concentrations were significantly in-

creased by the Pla and Bio treatments on both substrates. The concentration of K in 

shoots was especially high in the Pla treatment.  The shoot Zn concentration was not 

influenced by AM or compost addition rate (data not shown). 

The 40% compost treatment significantly increased shoot content of N and P com-

pared to the 20% compost substrate (Tab. 9), whereas shoot K content was not influ-

enced by compost additional rate. Inoculation with AM did not induce significant dif-
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ferences in shoot N content. Compared to the NAM treatment, shoot P and K content 

were significantly increased by the Pla and Bio treatments, with P content highest in 

the Bio treatment and K content highest in the Pla treatment. 

0

5

10

15

20

25

NAM Pla Bio Tri NAM Pla Bio Tri NAM Pla Bio Tri

20% compost         40% compost        Commercial substrate

Pelargonium (Expt. 1) Poinsettia (Expt. 2)

N
um

be
r o

f b
ud

s 
an

d 
flo

w
er

s

a

a

bbb

a

b

abab

bbb

 

Fig. 7: Number of buds and flowers of pelargonium and poinsettia plants six (Exp. 1) and 
eight (Exp. 2) weeks after planting in compost-peat substrates (Exp. 1), or on commercial grow-
ing substrate (Exp.2). In both experiments, plants were either non-inoculated with mycorrhizal 
fungi or were inoculated with one of three mycorrhizal inocula (Plantworks (Pla), Biorize (Bio), 
Triton (Tri)). Different letters denote significant differences between means of mycorrhizal inocu-
lation treatmenrs determiened by a Tukey test (Exp. 1; P<0.05) or by a Wilcoxon test (Exp. 2; 
(P<0.05). Means of 4 observations ± SE (τ). 

4.4.2 Experiment 2 

Mean root length colonization of poinsettia plants on the commercial substrate for all 

three inocula was 2±1%. Although many roots were rated as non-mycorrhizal, my-

corrhizal structures were well expressed in some part of the root system. The non-

inoculated plants remained free from mycorrhizal colonization. Shoot dry weight was 

not significantly affected by inoculation, although the NAM treatment had the highest 

and the Tri treatment the lowest dry weight (Tab. 10). Root dry weight was also not 

significantly affected by inoculation. 
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Tab. 10: Experiment 2 (poinsettia). Shoot and root dry weight, and shoot element (N, P, K) 
concentrations, and shoot N content of poinsettia plants eight weeks after planting. Plants were 
grown on a commercial compost substrate, and were either non-inoculated with mycorrhizal 
fungi (NAM) or were inoculated with one of three mycorrhizal inocula (Plantworks (Pla), Biorize 
(Bio), Triton (Tri)). Effects of the treatment (mycorrhizal inoculation (m)) were tested with a one-
way ANOVA. Values are means of 4 observations ± SE. 

  Dry weight Element concentration 

 . g pot-1 . . g [kg DW]-1  . 

.  shoot root N P K . 

NAM 9.2 ± 0.3 0.19 ± 0.04 15.5 ± 0.5  2.3 ± 0.1 14.6 ± 0.4 

Pla  7.0 ± 1.1 0.18 ± 0.05 17.7 ± 2.0 2.8 ± 0.4 17.7 ± 1.6 

Bio  7.6 ± 0.4 0.27 ± 0.03 15.0 ± 1.0 2.5 ± 0.2 18.5 ± 2.1 

Tri  6.2 ± 1.2 0.14 ± 0.03 17.2 ± 1.7 3.2 ± 0.3 20.0 ± 1.6 

       

P (m) 0.222 0.176 0.521 0.147 0.232 
 

 

However flower and bud production was significantly increased by mycorrhizal colo-

nization with all three types of inoculum (Fig. 7, p < 0.05; Wilcoxon test). 

Shoot N, P and K concentrations were not significantly influenced by inoculation 

(ANOVA; Tab. 10). Shoot concentrations of P and K were non-significantly increased 

with inoculation. Comparison of individual treatments by t-test showed a significant 

increase of shoot P and K concentrations in the Tri treatment when compared to the 

NAM treatment (P: P=0.035; K: P=0.047). Shoot Zn concentration and shoot N, P and K 

content were not significantly influenced by inoculation (data not shown).  

4.5 Discussion 

Roots of inoculated pelargonium plants were well colonized with mycorrhizal fungi.  

This was true at both compost addition rates (20% and 40%) and for all three commer-

cial inocula. Poinsettia, grown on a commercial substrate, in contrast had a very low 

colonization rate. The lower infection rate of poinsettia may not be species specific, but 

may rather be due to substrate properties. Further experiments on compost substrate 

showed that a colonization rate up to 40% is possible in poinsettia on these substrates 

(Perner, data unpublished). The growth of AM fungi can be suppressed in moist soils 

(Smith and Read, 97) or in soils with a high nutrient supply where plants are not de-

pendent on the symbiosis (Koide and Mosse, 04). 

The observation that all three horticultural substrates used in this study did not sup-

port spontaneous mycorrhizal colonization is of high practical significance. Horticul-
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tural producers must use inoculation and relatively low nutrient addition rates if they 

intend to grow mycorrhizal plants on these substrates. 

 

A comparison of the nutrient concentrations of the pelargonium shoots in the pre-

sent study with literature values for adequately fertilized plants (Bergmann, 93) showed 

a sufficient supply of N and Zn to the plant in this study. At the both rates of compost 

addition, shoot P and K concentrations were low in the NAM and Tri treatments, 

whereas the plants treated with Pla and Bio were provided with higher P concentrations 

and adequate K concentrations. Pelargonium plants grown with the high rate of com-

post addition and Pla or Bio had a shoot P concentration indicating sufficiency. In-

creasing the rate of compost amendment of the substrate from 20% to 40% had a sup-

porting effect on the growth of pelargonium plants. This effect may be due to increased 

P supply, as evidenced by the increased shoot P concentration of plants grown in the 

40% compost treatment. Another reason could have been the higher water holding ca-

pacity of peat-based substrates with higher compost addition rate (Perner et al., 06). 

Inoculation with mycorrhizal fungi did not result in an increased pelargonium shoot 

dry weight. On soils deficient in P, mycorrhizal colonization supports plant develop-

ment by supplying the plant with additional P, and sometimes with N, K or Zn (George, 

00; Nowak, 04). Although we found low P concentrations in shoot tissue, substrate P 

availability may still have been too high to allow an AM-dependent shoot enhancement 

effect. Alternatively, on organic substrates some mycorrhizal fungi may be less effective 

in P uptake than on mineral soils (Perner et al., 06). 

Both a reduction and an increase of root growth upon mycorrhizal colonization has 

been observed under favourable conditions (Liu et al., 04; Martin and Stutz, 04). In the 

present experiment, the higher root dry weight in the Tri treatment had no conse-

quences for shoot dry weight or for the number of bud and flowers of pelargonium 

plants. 

The contribution of AM fungi to plant nutrient uptake is often particularly evident in 

plants that are deficient in a certain nutrient. Thus, it is not surprising that no my-

corrhizal effect on pelargonium shoot N or Zn concentrations was found in the present 

study. In the case of pelargonium shoot P and K concentrations, a mycorrhizal effect 

was evident. These findings correspond with those of Nowak (04) in a study of pelargo-

nium provided with low NPK supply. Mycorrhizal fungi are well known for their effi-

cient P uptake, but the contribution of K to plants by AM has been described more 

rarely and specifically on acidic soils (see e.g., Clark and Zeto, 00; Alloush and Clark, 

01). It is possible that small aggregates of compost and peat remained acidic in the 

limed substrate, and that hyphae entered these acidic aggregates and exploited addi-
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tional K sources. Moreover, the decomposition of the organic material released humic 

acids with the consequence of decreased pH and increased availability. 

The pelargonium shoot P concentration was not increased when Tri inoculum was 

used. With this inoculum AM-acquired P was likely incorporated preferentially in the 

roots, leading to a considerable increase in root dry weight in this treatment. 

 

A comparison of the nutrient concentrations of the poinsettia shoots with literature 

values (Bergmann, 93; Zimmer, 91) indicated for the present study a sufficient supply 

of Zn but an insufficient supply of N. Shoot P and K concentrations were low in the 

NAM treatment, whereas plants treated with Pla, Bio, and Tri had concentrations of 

these two elements that were close to the lower limit of sufficient supply (3 g kg-1 for P 

and 15 g kg-1 for K; Bergmann, 93; Zimmer, 91). The low N concentrations observed in 

the poinsettia plants in the present study indicate that the mineralization rate of N in 

the substrate was inadequate to meet plant N demands. 

For poinsettia, neither root dry weight nor shoot dry weight was significantly affected 

by mycorrhizal colonization. The observed tendency of a lower dry weight in the inocu-

lated treatments could be a result of carbon demand of the mycorrhizal fungus that 

could not be compensated by the nutrients supplied by the fungus (Mortimer et al., 05). 

Shoot nutrient concentrations of poinsettia were not significantly affected by AM in-

oculation. This may be due to the low mycorrhizal colonization rates in poinsettia or 

due to higher nutrient availability in the substrate used for Experiment 2. The signifi-

cance of the K and P concentrations between the Tri and NAM treatments is probably 

due to the slower growth of the inoculated plants, which can result in elevated concen-

trations of P and K. 

 

Bud 

The number of buds and flowers increased with AM inoculation. A similar increase in 

buds and flowers of Tagetes, Zinnia, Callistephus and tomato with mycorrhizal coloni-

zation has been described previously (Aboul-Nasr, 96; Gaur and Adholeya, 05; Poulton 

et al., 02). The rate of compost amendment to the substrate had no influence on the 

number of buds and flowers in pelargonium, and, in both species, the number of buds 

and flowers did not correspond with either shoot N or shoot Zn concentration. In pe-

largonium, shoot concentrations of P and K were increased in the Pla and Bio treat-

ments, but only shoot K concentration corresponded with the number of buds and 

flowers.  

Bud and flower production of poinsettia was strongly influenced by inoculation with 

mycorrhiza. Shoot P and K concentrations indicated sufficiency only in the inoculated 

treatments. However, the effect of mycorrhizal colonization on flowering can not be 
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clearly linked to better nutrient status in mycorrhizal plants, because the differences in 

shoot nutrient concentrations between mycorrhizal and non-mycorrhizal plants were 

not sufficiently distinct. 

Potassium is involved in a wide range of functions in plants: photosynthesis, enzyme 

activation, protein synthesis, osmotic potential, and as a counterion to inorganic ions 

and organic biopolymers (Marschner, 95). It has also been shown that K acts as a car-

rier ion in xylem and phloem, transporting solutes, assimilates, and hormonal stress 

signals such as abscisic acid (Peuke et al., 02) Higher levels of K in the plants could in-

duce faster rates of transport of hormones, such as gibberellins, that induce bud pro-

duction. Thus, mycorrhizal colonization may either directly influence plant hormoneal 

balance, or may indirectly affect plant hormone levels by altered plant nutrient status. 

 

It was concluded that (a) AM colonization was established in pelargonium plants on 

horticultural substrates, irrespectively of varied rate of compost addition to the sub-

strate, (b) increasing the rate of compost amendment moderately increased pelargo-

nium shoot dry weight due to higher nutrient supply, but compost-peat substrates may 

still require additions of, for example, NPK sources to result in plant nutrient suffi-

ciency, and (c) AM had no effect on shoot dry weight or shoot N concentration of the 

studied species, but it increased shoot P and K concentrations on compost-peat sub-

strates low in P and K supply.  

It was also conclude that bud and flower production (d) was not affected by the rate 

of compost amendment of the substrate, and (e) can be increased or accelerated by in-

oculation with a commercial mycorrhizal inoculum. Increase of bud and flower produc-

tion may have been the result of AM-mediated increases in plant nutrient (especially K) 

concentrations in combination with a possible hormonal effect induced by the presence 

of mycorrhizal colonization. Mycorrhizal plants may accumulate nutrients in a shorter 

time span, so that they are earlier in life sufficiently supplied with nutrients to initiate 

flower development.  
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5 Influence of nitrogen speciation and mycorrhizal 
colonization on growth and composition of Chi-
nese bunching onion 

5.1 Abstract 

In recent years, interest in cultivating Allium species with enhanced health benefits 

and/or destinct flavor has grown. Concentrations of the phytochemicals determining 

these desired characteristics may be influenced by plant supply with sulfur and nitro-

gen. These relations were examined with the test plant bunching onion [Allium fistulo-

sum L.], using three different ammonium:nitrate ratios in combination with an arbus-

cular mycorrhizal (AM) fungus (Glomus mosseae), in terms of changes in dry weight, 

nutrient composition (N, NO3
-, P, S), singular sugars (glucose, fructose and sucrose), 

total soluble solids, and organosulfur compounds (measured as pyruvic acid). The ex-

periment was carried out in a greenhouse using perlite as substrate with application of 

nutrient solution at regular intervals. 

In non-mycorrhizal plants, low and intermediate ammonium:nitrate ratios sup-

ported adequate growth of A. fistulosum compared to decreased growth and wilting 

symptoms observed at an high ammonium:nitrate ratio. Mycorrhizal colonization dras-

tically increased dry matter production of plants in the high and intermediate ammo-

nium:nitrate ratio treatments. In these treatments, drainage pH was distinctly lower 

than at the low ammonium:nitrate ratio. Shoot N concentration was increased at the 

high ammonium:nitrate ratio. Shoot P concentration also increased with higher am-

monium supply rate. N speciation and AM colonization had little effect on shoot sulfur 

concentration, sugars or soluble solid compounds. The total yield of pyruvic acid was 

significantly affected both by N speciation and by AM colonization. The highest pyruvic 

acid yield was obtained in mycorrhizal plants supplied with an low ammonium:nitrate 

rate. However, A. fistulosum plants supplied with an intermediate ammonium:nitrate 

ratio, also produced satisfactory pyruvic acid yield when they were mycorrhizal. 

5.2 Introduction 

In the following two chapters 4 and 5 two different Allium species were used to ob-

serve the influence of AM fungi in combination with different ammonium:nitrate ratios 

in N supply on the secondary plant metabolism. 

Allium species are grown worldwide and are popular in many countries. They are of 

importance in many diets, because of their nutritional significance (Keiss et al., 03; 
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Bergès et al., 04). Bunching onion is a particularly popular vegetable in many regions of 

China. There is a growing interest in cultivation of foods with increased levels of phyto-

chemicals that provide health benefits and have defined flavor properties (Griffiths et 

al., 02). 

The precursors of certain of these desirable phytochemicals in Allium species are S-

alk(en)yl-L-cysteine sulfoxides, which are biosynthetically derived from cysteine and 

glutathione. When tissue is damaged, these precursors are activated by the enzyme alli-

inase to produce pyruvic acid, ammonia and sulfenic acids. The unstable sulfenic acids 

react to form a variety of sulfides, thiosulfinates and minor sulfur (S) containing prod-

ucts (Jones et al., 04). Many of these S containing compounds and elementary S have 

been linked to the defense against microbial pathogens (Cooper and Williams, 04; 

Bloem et al., 05; Jones et al., 04; Rausch and Wachter, 05). Earlier studies have shown 

that the level of pyruvic acid in onion juice correlates with flavor compound pungency 

(Schwimmer and Weston, 61). The formation of pungent compounds and sugars 

(Randle, 92b; Randle and Bussard, 93; McCallum et al., 05) and especially health re-

lated organosulfur compounds (Keiss et al., 03), may be increased in Allium plants by 

an increased supply of sulfur. Other studies have not only shown that S influences or-

ganosulfur compounds, but a specific experiment conducted by Coolong and Randle 

(03) found that even in soils with sufficient S supply, the N level can affect the forma-

tion of organosulfur compounds, particularly the S-alk(en)yl-L-cysteine-sulfoxides. The 

reason is that the S uptake by roots in most higher plants is supported by high-affinity 

proton/sulfate transporters (Smith et al., 95; 97; Takahashi et al., 97; Hawkesford, 03). 

The basic regulation by S is additionally controlled by the carbon (C) and N status 

(Maruyama-Nakashita et al., 04; Hesse et al., 04). It was found that S uptake and as-

similation is dependent as well upon the constant supply of the precursor of cysteine, o-

acetylserine (OAS), which depends upon N and C availability (Koprivova et al., 00; 

Kopriva et al., 02). O-acetylserine holds an extraordinary position in the association of 

N with the S metabolism (Leustek et al., 00; Saito, 00). 

The uptake of nitrate (NO3
-) and sulfate (SO4

2-) is followed by an immediate reduc-

tion to ammonia (NH3), which is incorporated into amino acids, and sulfide (S2-), re-

spectively. Both reactions need six electrons at a time for each anion (Lüttge et al., 99). 

The uptake of NH4
+ and integration into amino acid is less energy consuming than 

starting from NO3
-. This could certainly be an advantage for the plant, because as a con-

sequence it is left with higher SO4
2- reduction rate which may lead to more secondary 

metabolites. This is particularly true for plants that are grown under insufficient light 

conditions to provide the plant with enough reduction equivalents. 

Uptake of SO4
2- is in unspecific competition with NO3

- and has been reported to in-

crease with increasing NH4
+ supply (Van den Berg et al., 05). It was therefore hypothe-
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sized that with a higher ammonium:nitrate ratio in supply, S uptake and subsequently 

organosulfur compounds will increase. 

Allium plants are often colonized by AM fungi. Allium growth can be highly depend-

ent on mycorrhizal colonization (Smith and Read, 97). Earlier work has shown that 

yield and quality of Allium plants may be increased after mycorrhizal colonization 

(Fusconi et al., 05), but results were not always reproducible. In particular, mycorrhizal 

effects on plant growth often occur on low-phosphorus (P) soils only. The effect is 

based on the characteristic of hyphae to exploit a larger soil volume than roots alone 

and to supply considerable amounts of P to the plant according to the plant’s demand. 

Phosphorus is often fixed to soil particles and P exchange with the soil solution and 

subsequent diffusion in the soil solution slow are processes. Because of the shorter dif-

fusion distance to the surface of hyphae than to the surface of roots, mycorrhizal plants 

absorb the soil P more efficiently than non-mycorrhizal plants (George, 00). 

High P concentration in roots may lead to lower mycorrhizal colonization rates and 

to decreased growth of extraradical mycorrhizal mycelium (Sanders, 75; Bruce et al., 

94; Valentine et al., 01). Therefore, it is often argued that consequences of mycorrhizal 

colonization are neglible in practical agriculture or horticulture where substrate P sup-

ply is often quite high. In the present experiment, plants were supplied with sufficient P 

in a flow through potting system. Consequently, it was expected that mycorrhizal ef-

fects on plant P uptake are minimal under the present experimental conditions. 

The supporting effect of AM colonization is not only known for nutrients uptake, but 

it can also influence the secondary metabolism of a plant, monitored for example as 

earlier flowering or reduced flower ethylene production (Backhaus, 83; Besmer and 

Koide, 99). Mycorrhizal fungi is also beneficial for plants that are stressed by drought 

(Neumann and George, 04), salinity (Tian et al., 04), or heavy metals (Andrade et al., 

04; Leung et al., 06; Rivera-Becerril et al., 05). Ammonium supply in high concentra-

tions can also be toxic to plants. Plants preferentially take up NO3
-, whereas for micro-

organisms NH4
+ is the most important source of mineral nitrogen (Stitt et al., 02). 

Therefore we hypothesize that mycorrhiza supports the plants in their uptake of NH4
+ 

and influences the secondary metabolites, such as organosulfur compounds. 

 

Thus, the objective of the present research was to determine comprehensively the ef-

fects of (a) different supplied ammonium:nitrate ratios, and (b) mycorrhizal coloniza-

tion on shoot dry weight, nutrient status (N, NO3
-, P, S), plant composition (soluble 

solid compounds, glucose, fructose, and sucrose) and concentration and total content 

of health-related organosulfur compounds (measured indirectly as pyruvic acid) of 

bunching onion. 
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5.3 Material and Methods 

5.3.1 Overview on experimental design and cultivation 

Seeds of bunching onion, Allium fistulosum (Chinese cultivar Zhang Qui), were sus-

pended in water with 10% H2O2 (10 min) for surface sterilization. Afterwards they were 

washed with distilled water three times. Furthermore the seeds were germinated in the 

greenhouse on filter paper moistened with saturated CaSO4 solution. Eight days after 

sowing, five seedlings with similar root length were transferred to a 1750 ml pot filled 

with Perlite (Knauf Perlite GmbH, Dortmund, Germany) and moistened with distilled 

water. The substrate Perlite (Knauf Perlite GmbH, Dortmund, Germany) was rinsed 

with distilled water before use on a 1 mm sieve to obtain a uniform substrate of 1-3 mm 

and to prevent cation accumulation on the fraction <1 mm in advance. Furthermore the 

substrate was autoclaved at 121 °C for 20 min. 

The pots were filled with 7.5-cm layer of perlite. Then a 2-cm layer of 10% v/v my-

corrhizal inoculum with perlite was introduced and covered with 1.5 cm of perlite. The 

mycorrhizal fungi used was a Chinese Glomus mosseae isolate (BEG 189), provided by 

Gu Feng, CAU, China. In non-mycorrhizal (NAM) treatments sterilized mycorrhiza 

inoculum was applied (autoclaved at 121 °C for 20 min). In addition, the drain of non-

sterilized mycorrhiza inoculum was filtered (589/3 blue ribbon paper filter, Schleicher & 

Schuell Bioscience GmbH, Dassel, Germany) and added to the NAM pots. This was 

done in an attempt to supply similar amounts of nutrients and microorganisms except 

AM fungi to all treatments. 

The tops of the pots were covered with black/white plastic film (white side up) to re-

duce evaporation and algae growth. When the first true leaf emerged, the seedlings 

were supplied twice a day with a fifth-strength Hoagland solution at pH 5.6 (Hoagland 

and Arnon, 38) with MES buffer added. From the fifth leaf stage onwards, 14 days after 

planting, the plants were watered twice a day with a third-strength modified Hoagland 

solution. Sufficient solution was applied so that at least one-third of the applied amount 

of solution drained from the pots.  

Nitrogen was provided at ammonium:nitrate ratios of 6:94 (low), 43:57 (intermedi-

ate), or 100:0 (high). The nutrient solutions consisted of the following macronutrients 

(mM) NO3
- 6.6, 3.3, 0 and NH4

+ 0.4, 4.3, 15 depending on the N-treatment; K+ 2.9; PO4
3- 

0.4; Mg2+ 1.6; SO4
2- 1.6, 1.6, 1; Ca2+ 3.6; Cl- 4.33,12.1, 26.0; and micronutrients (µM) Fe2+ 

5.5; Mn3+ 2.5; Zn2+ 0.4; BO3
3- 18; Cu2+ 0.3; MoO4

2- 0.2. A pH of 5.6 was maintained by 

adding MES-buffer at 0.7mM and NaOH. The compounds used for preparation of the 

nutrient solution were Ca(NO3)2, KNO3, NH4NO3, (NH4)2SO4, NH4Cl, KH2PO4, MgSO4, 
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MgCl2, KCL, CaSO4, CaCl2, MES-buffer, Fe DTPA, MnSO4, ZnSO4, H3BO3, CuSO4, 

H2MoO4. 

The difference in N as NO3
- and S supply has its origin by calculating the MES buffer 

(C6H13NO4S) into the nutrient solution as a nutrient salt. In the end of the experiment, 

the buffer was seen as an inert substance. The high ammonium:nitrate ratio was chosen 

as an extreme treatment, because a mistake was done in the calculation of the molari-

ties of the ammonium salts, (NH4)2SO4 and NH4Cl. Anyway, the nutrient solution re-

mained unchanged during the whole experiment. The plants were rinsed with distilled 

water once a week, to prevent accumulation of supplied solutes on the perlite. 

 

The experiment was carried out between 24 July to 6 Oct. 2004 in a greenhouse facil-

ity at Großbeeren, Germany (long. 13°20´E; lat. 51°22´N). Average air temperature in 

the greenhouse during this period was 22 °C (max. 36 °C) during the day and 18 °C 

(min. 13 °C) at night. Relative humidity was on average 60% during the day and 70% at 

night. The daily (13 h) mean light intensity (PAR) was at 6.8 mol·m-2 (max. 660 µmol·m-

2·s-1). The pots were arranged in a completely randomized design. 

5.3.2 Harvest and plant analysis 

Leaves were counted on each plant 10 weeks after planting. Harvest was carried out 

14 weeks after planting in the morning after 2h light. Shoots were separated from the 

roots. The shoots were cut lengthwise, to provide samples for the analysis of total pyru-

vic acid (PA) and soluble solid compounds (SSC) from fresh material. For sugar analy-

sis (glucose, fructose (reduced sugars, RS) and sucrose), another sample was separated 

into bulbs and leaves and frozen at -20 °C. The remainder of the shoots was dried at 60 

°C for two days, and dry weight (DW) recorded. Shoots were ground in a centrifugal 

grinder with a 0.25-mm sieve and used for nutrient analysis of total N, NO3
-, P, and S. 

Samples of the roots were taken by cutting the root and substrate with sharp knifes 

into equal portions. Roots were separated from the substrate by rinsing with running 

cold water using a set of sieves (smallest sieve size 1 mm). Roots were then cut in 1-cm 

pieces and stored in 10% isopropanol for determination of mycorrhizal colonization. 

Total root dry weight was not determined. 

Shoot samples were dry ashed and dissolved in 18.5% HCl. Phosphorus was analyzed 

photometrically with an EPOS-analyzer 5060 (Eppendorf, Hamburg, Germany). Nitro-

gen was determined after dry oxidation by the DUMAS method (Elementar Vario EL, 

Hanau, Germany). Nitrate concentration was measured potentiometricly with a NO3
- 

ionplus Sure-Flow® electrode (Orion-Research, Beverly; USA) as described in the 

manufacturer's manual. Total S was analyzed in an elementary analyzer (high tempera-

ture oxidation) and detected with NDIR (multi EA 2000, Analytik Jena AG, Germany). 



Chapter 5 

72 

For sugar analysis, 10 g of frozen shoot material was homogenised with water and 

boiled to denature the sugar enzymes. In the filtrate, sucrose, glucose and fructose were 

determined by an enzymatic reaction (test kit of r-biopharm, Roche, Darmstadt, Ger-

many) and measured with a spectrophotometer at 340 nm (SPEKOL 221, Carl Zeiss, 

Jena, Germany). 

Soluble solids compounds (SSC) were determined by extracting the juice from at 

least 10 g of fresh sample in a household centrifuge juicer and subsequent measure-

ment with a hand-held refractometer (digital refractometer PR-1, Atago, Tokyo, Japan). 

The measurement is based on the capacity of dissolved sugar in a juice to deviate light 

and gives the proximate sugar total content in °Brix (Ahlers, 01; OECD, 02). 

Total PA was analysed in 15 g of ruptured shoot tissue using the method modified 

and described by Schwimmer and Weston (61), Randle and Bussard (93), and Ketter 

and Randle (98). The fresh shoot tissue was homogenized with 30 ml distilled water, 

after 20 min mixed with 5% trichloroacetic acid solution (1:1) and stored for 1h. The 

filtrate was mixed with the indicator 0.0125% 2,4-dinitrophenylhydrazine in 2N HCl, 

then alkalined with 0.6 N NaOH, and the measured transmission at 420 nm. Back-

ground levels of PA of intact onion tissues were assumed to be negligible and constant 

(Yoo and Pike, 01), so that background PA was not measured. 

Mycorrhizal colonization of roots was determined following the method of Koske and 

Gemma (89). Roots were cleared with 10% KOH, acidified with 2N HCl, and stained 

with 0.05% trypan blue in lactic acid. Percentage root length colonization was deter-

mined in the stained samples using a microscope (Zeiss, Stemi2000, Göttingen, Ger-

many) at 50x (grid line intersection method, Giovannetti and Mosse, 80). 

5.3.3 Statistics 

Data (n = 5) were subjected to a two-way analysis of variance, with inoculation and 

ammonium:nitrate ratios in supply as experimental factors. Within each factor, differ-

ences between means were tested by the Tukey method (N speciation) or by t-tests (AM 

inoculation). Data were analyzed using Statistica 6.1 (StatSoft, Tulsa, OK, USA) soft-

ware. 

5.4 Results 

5.4.1 Mycorrhizal colonization and plant growth 

Roots were colonized by AM fungi in treatments with live mycorrhizal inoculum. The 

apparent root length colonization rate was low (0.8 to 1.3% colonization) and was not 
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significantly affected by N speciation treatment. Not inoculated plants were free of my-

corrhizal colonization. 

N speciation affected the number of leaves and shoot dry weight (Tab. 11). At the high 

ammonium:nitrate ratio, shoot growth was significantly suppressed and leave tips were 

wilting, especially in the NAM treatment. The number of leaves and shoot dry weight in 

the other two N speciation treatments did not differ significantly except for an increase 

in dry weight of the NAM plants at the low ammonium:nitrate ratio compared to the 

intermediate ratio. 

Tab. 11: Effect of N speciation (N) and AM treatments (m) on leaf number (10 weeks after 
planting) and on shoot dry weight and pyruvic acid (PA) concentration (14 weeks after planting) 
of Allium fistulosum. Plants were supplied with three different ammonium:nitrate ratios and ei-
ther inoculated with AM (AM) fungi or non-inoculated (NAM). Effects of the treatments were 
tested with a two-way ANOVA. Differences between the levels of AM treatments are denoted as 
significant (*) or non-significant (ns) (t-test). Differences between the levels of N speciation are 
denoted with capitalized letters either italicized (NAM) or non-italicized (AM), as determined by 
Tukey tests (P<0.05). Values are means of 5 observations and standard error of mean (SE) (±). 

Leaf number Dry weight PA

. n° pot -1 g pot-1 µmol pot-1 .

NH4 : NO3 high

NAM 3.4 ± 0.2A 3.2 ± 0.5A 217 ± 23A

AM 4.1*± 0.1A 7.4*± 0.2A 448*± 30A

NH4 : NO3 intermediate

NAM 4.3 ± 0.2B 7.1  ± 0.4 B 481 ± 33B

AM 4.8*± 0.1B 9.5*± 0.5B 741*± 91AB

NH4 : NO3 low

NAM 4.8 ± 0.1B 9.9 ± 0.5C 629 ± 39C

AM 4.8ns± 0.1B 10.8ns± 0.8B 872ns± 160B

P ( N) <0.001 <0.001 <0.001

P (m) <0.001 <0.001 <0.001

P (N x m) 0.017 0.022 0.982

Leaf number Dry weight PA

. n° pot -1 g pot-1 µmol pot-1 .

NH4 : NO3 high

NAM 3.4 ± 0.2A 3.2 ± 0.5A 217 ± 23A

AM 4.1*± 0.1A 7.4*± 0.2A 448*± 30A

NH4 : NO3 intermediate

NAM 4.3 ± 0.2B 7.1  ± 0.4 B 481 ± 33B

AM 4.8*± 0.1B 9.5*± 0.5B 741*± 91AB

NH4 : NO3 low

NAM 4.8 ± 0.1B 9.9 ± 0.5C 629 ± 39C

AM 4.8ns± 0.1B 10.8ns± 0.8B 872ns± 160B

P ( N) <0.001 <0.001 <0.001

P (m) <0.001 <0.001 <0.001

P (N x m) 0.017 0.022 0.982

The numbers of leaves 10 weeks after planting and dry weight of the shoots at harvest 

were also affected significantly by colonization with AM fungi (Tab. 11). Colonization 

with AM fungi increased shoot growth at the high and intermediate ammonium:nitrate 

ratios, but not when NO3
- was dominant N speciation treatment. 

5.4.2 pH of the nutrient solution and the drain 

The pH of the drain was elevated, compared to that of the applied solution, in all 

treatments at the beginning of the experiment when the plants were young (Fig. 8). 

Towards the end of the experiment, the pH of the drain in the high ammonium:nitrate 
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ratio clearly decreased. The drain from the ratio of intermediate was slightly acidified, 

whereas drain pH at the low ammonium:nitrate ratio remained higher than that of the 

applied solution (Fig. 8). 
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Fig. 8: Effect of N speciation on pH of the drain during the experiment. 

5.4.3 Mineral elements 

Shoot N concentration was highest at the high ammonium:nitrate ratio (Tab. 12). 

Shoot S concentration was also significantly influenced by N-speciation treatment, with 

the highest concentration in NAM plants at the high ammonium:nitrate ratio. Shoot 

N/S ratio was highest in AM plants at the high ammonium:nitrate ratio. Shoot P con-

centration increased significantly with increased rate of NH4
+ supply. Shoot NO3

- con-

centration was significantly enhanced at the low ammonium:nitrate ratio. 
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Tab. 12: Effect of N speciation (N) and AM treatments (m) on shoot N/S-ratio, N, NO3
-, S, and P 

concentration and content 14 weeks after planting of Allium fistulosum. Plants were supplied 
with three ammonium:nitrate ratios and inoculated with AM (AM) fungi or non-inoculated (NAM). 
Effects of the treatments were tested with a two-way ANOVA. Differences between the levels of 
AM treatment are denoted as significant (*) or non-significant (ns) (t-test). Differences between 
the N speciation are denoted with capitalized letters either italicized (NAM) or non-italicized 
(AM), as determined by Tukey tests (P<0.05). Values are means of 5 observations and SE (±). 

 Shoot element concentration   

 . g [kg DW]-1 . . 

. N S P NO3 N/S-ratio  . 

NH4 : NO3 high       

NAM 46.2  ± 1.7B 5.6  ± 0.1B 5.1 x 2.9 x 8.2  ± 0.1A 

AM 47.8ns± 1.2B 4.8*± 0.1A 5.2 ± 0.1C 5.0 ± 0.6A 9.9*± 0.2B 

NH4 : NO3 intermediate      

NAM 41.6  ± 0.8A 5.0  ± 0.2A 4.3  ± 0.3B 3.7  ± 0.3A 8.4  ± 0.3A 

AM 42.1ns± 0.4A 4.8ns± 0.1A 4.4ns± 0.2B 5.3*± 0.4A 8.7ns± 0.2A 

NH4 : NO3 low      

NAM 41.2  ± 0.4A 5.2  ± 0.2AB 3.8  ± 0.2A 6.0  ± 0.5B 7.9  ± 0.3A 

AM 42.3ns± 1.2A 5.2ns± 0.2A 3.7ns± 0.1A 7.1ns± 0.6B 8.1ns± 0.3A 

      
P (N) <0.001 0.049 <0.001 <0.001 0.003 

P (m)   0.199 0.014   0.788 <0.001 0.002 

P (N x m)   0.853 0.024   0.931   0.748 0.018 

 Shoot element total content  

 . mg pot-1  

. N S P   NO3     . 

NH4 : NO3 high      

NAM 127  ± 37A 15  ± 4A 25 x 14 x 

AM 354*± 13A 36*± 1A 38 ± 1A  36 ± 4A 

NH4 : NO3 intermediate     

NAM 297  ± 18B 35  ± 2B 30  ± 1A 26  ± 3A 

AM 416*± 19AB 48*± 3AB 44*± 3A 52*± 4A 

NH4 : NO3 low     

NAM 390  ± 23B 49  ± 3C 36  ± 2A 56  ± 4B 

AM 455ns± 34B 57ns± 6B 40ns± 3A 76ns± 8B 

     
P (N) <0.001 <0.001   0.186 <0.001 

P (m) <0.001 <0.001 <0.001 <0.001 

P (N x m)   0.032   0.377  0.180   0.846 
X single measurements of a combined sample of five replications 
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Colonization with AM fungi had no influence on shoot N or P concentration, but it 

decreased shoot S concentration at the high ammonium:nitrate ratio. Shoot NO3
- con-

centration was increased by AM colonization at the high and intermediate ammo-

nium:nitrate ratios. Shoot N/S ratio was significantly enhanced by AM colonization at 

the high ammonium:nitrate ratio. 

Shoot N total content was significantly lower at the high ammonium:nitrate ratio 

compared to the other two ammonium:nitrate ratios, irrespectively from AM coloniza-

tion (Tab. 12). The same pattern applied to the S total contents of AM plants. The S to-

tal content of NAM plants was significantly different between the three ammo-

nium:nitrate ratios, with the highest S total content at the high ammonium:nitrate 

ratio. Shoot P was not significantly influenced by N-speciation. Shoot NO3
- total content 

was significantly higher at the low ammonium:nitrate ratio than in the other two am-

monium:nitrate ratios. 

Mycorrhizal plants had increased shoot N, S, P, and NO3
- total contents at the high 

and intermediate ammonium:nitrate ratios compared to corresponding NAM plants. 

5.4.4 Sucrose, reducing sugars, pyruvic acid, and soluble solid com-
pounds 

The concentration of reducing sugars (glucose and fructose) in the green part of the 

shoot (leaves) was significantly increased at the high and intermediate ammo-

nium:nitrate ratios compared to plants at the low ammonium:nitrate ratio, at 8.1 ± 0.2b, 

7.9 ± 0.1b and 6.8 ± 0.1a g [kg DW]-1 (means of AM and NAM plants), respectively, but 

not by AM colonization. In contrary, sucrose concentration was significantly increased 

by AM colonization, from 1.6 g [kg DW]-1 in NAM plants to 2.4 g [kg DW]-1 in AM 

plants, but were not influenced by the different ammonium:nitrate ratios. The concen-

trations of reducing sugars and sucrose in the bulbs were not significantly different 

between the treatments.  

Plant SSC were not affected by different ammonium:nitrate ratios or by AM coloniza-

tion. Mean SSC concentration was determined as 4.2 °Brix. 

Shoot PA concentration, a measure of gross flavor intensity, did not respond signifi-

cantly to N-speciation or AM treatment (data not shown). Shoot PA total content was 

enhanced by increasing the rate of NO3
- supply, and it was also enhanced by AM coloni-

zation at the high and intermediate ammonium:nitrate ratios (Tab. 11). Shoot PA total 

content of AM plants at the intermediate ammonium:nitrate ratio was not significantly 

different from that observed in AM and NAM plants of the high NO3
- treatment. 
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5.5 Discussion 

5.5.1 Colonization 

All inoculated plants became mycorrhizal in the present experiment, but apparent 

root colonization rates remained low compared to earlier observations with Allium 

plants. The low root colonization rates may be related to the fact that after 14 weeks of 

growth, the oldest roots had begun to break down, and the early colonization was no 

longer visible. Additionally, the nutrient solution supported the plants with sufficient 

nutrients, especially with P. High P supply can depress mycorrhizal root colonization 

even if photon irradiance is high (Son and Smith, 88; Smith and Gianinazzi-Pearson, 

90; Pearson JN et al., 91). High P within the roots of Allium cepa L. might influence the 

rate of spread of the fungus and the growth of the extraradical mycelium (Sanders, 75).  

Plant colonization with AM fungi in the present experiment were more tolerant to 

high NH4
+ fertilization, which was accompanied by low pH in the medium. Hyphae of 

at least some mycorrhizal fungi have a higher ability to take up NH4
+ than NO3

- 

(Hawkins et al., 00). Recent experiments have shown that both NO3
-- and NH4

+-N is 

assimilated into arginine at the tip of the hyphae, transported in the hyphae, and trans-

ferred probably as ammonia (NH3) at the fungus-plant interface (Govindarajulu et al., 

05). Thus, in mycorrhizal plants the acidification related to NH4
+ uptake does not occur 

concentrated in the immediate rhizosphere, but also in the hyphosphere, so root dam-

age due to acidification may be reduced in mycorrhizal plants. 

5.5.2 The pH of the nutrient solution and the drain 

An acidification of the rhizosphere takes place when NH4
+ is incorporated into the 

plant and, in exchange, H+ ions are excreted (Marschner, 95). The MES buffer used in 

this experiment was not sufficiently strong to prevent these changes. It is possible that 

the volume of the solution used at each irrigation interval was too small to buffer the H+ 

ions efficiently. Previous experiments with MES buffer (Bugbee and Salisbury, 85; 

Miyasaka et al., 88; Hawkins et al., 00) used either hydroponic systems or a steady drip 

irrigating system. 

5.5.3 Number of leaves and shoot dry weight 

In the present experiment, plant growth was inhibited by increased rates of NH4
+ 

supply, but this inhibition was to some extent compensated for by AM colonization. A 

similar result was also observed by Bago and Azcón-Aguilar (97) in Allium cepa. 
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Hawkins and George (Hawkins and George, 01) found that although NO3
-
 fed wheat 

plants were larger than NH4
+ fed plants, colonization with AM increased shoot dry 

weight in both N fertilization treatments. 

 

Ammonium ions are in most soils readily adsorbed by soil particles, but in nutrient 

solutions growth depression caused by sole NH4
+ supply (>1 mM N) can be distinct 

(Marschner, 95). Whereas NO3
- can be stored in vacuoles without detrimental effect, 

NH4
+ and in particular its equilibrium partner NH3 are toxic to the plant at quite low 

concentrations. The concentration of NH4
+ in the cytoplasm is usually lower than 15µM. 

The main pathway of detoxification within the plant is the formation of amino acids, 

amides and related compounds. To compensate for the change in charge, protons are 

released into the rhizosphere, resulting in a decline in rhizosphere pH that can affect 

root growth and, as a consequence, cause leaf wilting (Marschner, 95; Claussen and 

Lenz, 95). On the other hand, Date et al. (05) found that addition of chlorid (Cl) at 8.5 x 

10-3 mM with 0.67 mM NH4
+ to a nutrient solution caused wilting of lettuce leaf tips, 

because of the formation of chloramines in the solution. It has been observed that nu-

trient solutions containing Cl up to 5 mM did not have toxic Cl effects on most plants 

(V. Römheld, personal communication). With increasing rate of NH4
+ supply, Cl con-

centrations in the nutrient solution of the present experiment were 4, 12 and 26 mM. 

Leaf wilting occurred at the highest NH4
+ supply ratio only, suggesting an effect of high 

Cl supply. Such wilting was not observed in AM plants that were perhaps better pro-

tected against Cl toxicity. Another reason for decreased growth with increased NH4
+

 

supply may be the occurrence of NO3
- deficiency. Nitrate deficiency was apparent in a 

study where 2mM NH4
+ was the sole N supply (Walch-Liu et al., 00). 

Even at mixed ammonium:nitrate supply external NH4
+ strongly suppresses net up-

take of NO3
- (Kronzucker et al., 99a). One explanation for the suppression of net NO3

- 

influx by NH4
+ in the plasma membrane could be the inhibition of the inducible high-

affinity NO3
- transport system (Kronzucker et al., 99a). These earlier observations were 

supported by the present findings on shoot NO3
- concentration. Shoot NO3

- concentra-

tions, but not shoot N concentrations were decreased in the intermediate ammo-

nium:nitrate ratio compared to a low ratio.  

 

Other inhibiting effects may also be associated with supply of NH4
+ as the sole N 

source: uncoupling of photophosphorylation, lack of carbohydrates or nutrients, and 

impairment of water status (Walch-Liu et al., 00). These effects are unlikely to have 

been important in the present study, as the plants were well provided with light and 

nutrients, and had no drought stress. 
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5.5.4 Mineral elements 

Compared to standard values for leaves of Allium cepa (Bergmann, 93), element con-

centrations in the present experiment indicated sufficient supply of N and P. 

As expected, shoot NO3
- concentrations were significantly reduced with increasing 

ammonium:nitrate ratio. The decreased shoot NO3
- concentrations at the high and in-

termediate ammonium:nitrate ratios indicate that intercellular NO3
- was immediately 

metabolized in the plant, whereas at the low ammonium:nitrate ratio, surplus NO3
- was 

stored in vacuoles. Additionally, AM colonization significantly enhanced shoot NO3
- 

concentration (Tab. 12). This effect is surprising in view of the fact that hyphae of my-

corrhizal fungi may prefer NH4+ as an N source. However, mycorrhizal fungi can also 

take up NO3- (Govindarajulu et al., 05). Alternatively, NH4+ uptake by hyphae may 

downregulate root NH4+ uptake, leading to higher shoot NO3- concentrations and to-

tal contents in mycorrhizal plants. Anyway, in cases where shoot NO3- concentrations 

should be kept low, non-mycorrhizal plants may be preferable to mycorrhizal plants. 

The increased shoot N and S concentrations at the high ammonium:nitrate ratio 

compared to the other ratios were probably due to the decreased shoot dry weight in 

this treatment. This was confirmed by the low N and S total content in that treatment 

(Tab. 12). In contrast to S concentrations, P concentrations increased with increasing 

rate of NH4
+ supply. In general, NH4

+ absorption into roots may support the uptake of 

anions to maintain ionic balance in the plant (Marschner, 95; Van Beusichem et al., 

88). This effect was evident for PO4
3-, but not for SO4

2- uptake. Sulfate was supplied at 

much higher concentrations than PO4
3- in the nutrient solution, while final S and P 

concentrations in the shoot were not distinctly different (Tab. 12). Thus, plant P accu-

mulation probably depend more on active uptake process than plant S accumulation. 

Mycorrhizal colonization did not result in increased shoot N or P concentrations. N 

and P supply to roots with the nutrient solution was sufficient, so that additional up-

take via hyphae was probably small and not detectable. For shoot S concentrations, an 

AM effect was observed at the high ammonium:nitrate ratio. In this case the S concen-

tration was significantly higher in the NAM treatment, probably due to restricted shoot 

growth in those plants. 

5.5.5 Sugars, PA and SSC 

Observed concentrations of reducing sugars in leaves correspond with those found by 

Randle and Bussard (93) and Randle (92a) in Allium cepa, whereas SSC was slightly 

lower than those of Randle (92a) and Randle and Bussard (93). The SSC are usually 

used to control the degree of maturation and quality in fruits and vegetables (Ahlers, 

01; OECD, 02). It is an approximate value of the sugar concentration of the juice. 
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Concentrations of reducing sugars and sucrose as found in the present study are part 

of the Allium flavor. Nitrogen and soluble sugars are also the main substances required 

for leaf growth and expansion (Walch-Liu et al., 00). After transport of amino acids to 

the leaves, their metabolism requires a substantial consumption of fixed carbon (C ) 

(Raab and Terry, 95). It has been frequently stated that root growth and therefore 

whole plant growth of NH4
+-fed plants is restricted by low availability of carbohydrates 

due to excessive consumption of soluble sugars for NH4
+ assimilation (detoxification) 

in root tissue (Kafkafi, 90). In contrast to expectations in the present study shoot glu-

cose and fructose concentrations were highest in the treatment with dominant NH4
+ 

supply. It is likely that Cl toxicity, low pH or nitrate deficiency restricted shoot growth 

more than photosynthesis in this treatment, so that some sugars could accumulate.  

In leaves of AM-colonized plant, sucrose concentration was higher than in leaves of 

non-mycorrhizal plants. Thus, consumption of hexoses, the metabolite of hydrolization 

of sucrose by an acid invertase (Schubert et al., 03), by mycorrhizal fungi was probably 

limited, in line with low root colonization rate. 

Observed PA concentrations were consistent with the results of Randle (92a) and 

Randle and Bussard (93) in onion. His results had shown that PA concentration in-

crease with S concentration in the plant. This could not be confirmed in the present 

experiment. It is likely that the S supply with the nutrient solution was sufficient to 

meet plant S demand in all treatments, thereby masking possible effects of N speciation 

and AM treatment on shoot S and PA concentration. Under these circumstances, high-

est shoot PA yield was obtained in mycorrhizal plants and at dominant nitrate supply 

(Table 1). 

 

In conclusion, this experiment demonstrated that (a) bunching onion shoot dry 

weight decreased with increasing rate of NH4
+

 supply, but the decrease was mitigated or 

eliminated by AM colonization, (b) AM colonization increased shoot dry weight at high 

rate of NH4
+

 supply (low substrate pH), and (c) pyruvic acid shoot yield was increased 

at higher rate of NO3
- supply and by mycorrhizal colonization. 

Allium fistulosum performed best at an low ammonium:nitrate ratio, but when sup-

ported by AM fungi it produced similar amounts of pyruvic acid at an intermediate 

ammonium:nitrate ratio. 
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6 Influence of sulfur supply, nitrogen speciation, 
and arbuscular mycorrhizal colonization on 
growth and composition of Chinese chive 

6.1 Abstract  

Allium species form compounds during their growth that are interesting for the con-

sumer because of their health benefits and flavor. Their concentrations are influenced 

by S and N. To test those relations three factors were used in the present two experi-

ments on Chinese chive [Allium tuberosum Rottler ex Sprengel]: 1. Increasing S con-

centrations in the substrate, 2. three different ratios of ammonium and nitrate in com-

bination with AM fungi. These factors were tested regarding dry weight, nutrient 

composition (N, P, Mg, S, NO3
-), single sugars (glucose, fructose, sucrose), total soluble 

solid and health related organosulfur compounds, measured indirectly as pyruvic acid. 

In the first experiment the supply of low S concentrations to the substrate resulted in 

deficiency symptoms, but in similar growth at intermediate and high S supply. The in-

creasing S concentrations in the substrate increased shoot S concentrations and pyruvic 

acid concentrations, but had no influence on the soluble solid compounds. 

In the second experiment inoculation with a commercial inoculum resulted in colo-

nization rates of 43% of total root length for the highest NO3
- supply, decreasing with 

increasing NH4
+ supply, but had only a low impact on the plant growth and composi-

tion. Mycorrhizal colonization increased shoot S concentrations, but did not signifi-

cantly increase shoot dry weight, shoot N, P, K, Mg and NO3
- concentrations, sugar, or 

pyruvic acid concentrations. In contrast, the N speciation had a high impact. Plants 

grown at an ammonium:nitrate ratio of 50:50 did not show any NH4
+ toxicity symp-

toms which showed in equally shoot dry weight as at a ratio of 5:95. Additionally the N 

and pyruvic acid concentrations were increased at an ammonium:nitrate ratio of 50:50 

compared to the ratio of 5:95. Therefore, we conclude that the supply of an ammo-

nium:nitrate ratio of 50:50 is preferential to dominant NO3
- fertilization for Allium tu-

berosum to produce a high yield of health related organosulfur compounds. 

6.2 Introduction 

The introduction of chapter 4 gave a summary of the recent findings and coherences 

on the plant quality regarding the health related organosulfur compounds of Allium 
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species. In chapter 4 it has been speculated that the effect of N speciation may have 

been masked by a high S supply. Therefore a second experiment has been conducted 

with reduced S supply using Chinese chive as a test plant. 

Additionally an experiment has been included that investigated the concentration of 

organosulfur compounds in Allium tuberosum as a function of S supply.  Earlier studies 

have shown that the level of pyruvic acid in onion juice correlates with flavor compound 

pungency (Schwimmer and Weston, 61). The formation of pungent compounds and 

sugars (Randle, 92b; Randle and Bussard, 93; McCallum et al., 05) and especially 

health related organosulfur compounds (Keiss et al., 03), may be increased in Allium 

plants by an increased S supply. Many investigations have been conducted already with 

Allium species, particularly involving garlic and onion, but not Chinese chive. Chinese 

chive is an important ingredient in Asian cooking (Mau et al., 01) belongs to the four 

Allium species most extensively grown in China (Peiwen et al., 94).  

 

The objective of our study was to determine the effect of (a) an increasing S supply, 

(b) different ammonium:nitrate ratios, (c) AM colonization on the shoot dry matter, 

shoot nutrient concentrations (NO3
-
, total N, P, and S), shoot composition (soluble solid 

compounds, and separately glucose, fructose, and sucrose) and pyruvic acid as indica-

tor for organosulfur compounds of Chinese chive Allium tuberosum, and (d) explora-

tion for growth conditions that increase yield of organosulfur compounds. 

6.3 Material and Methods 

6.3.1 Germination 

Seeds of Chinese chive, Allium tuberosum Rottler ex Sprengel (Schnittknoblauch, 

Hild, Marbach, Germany), were suspended in water with 10% H2O2 (10 min) for surface 

sterilization. Afterwards they were washed with distilled water three times. Further-

more the seeds were germinated in the greenhouse or climate chamber on filter paper 

moistened with saturated CaSO4 solution. 

6.3.2 Substrate preparation 

The substrate Perlite (Knauf Perlite GmbH, Dortmund, Germany) was rinsed with 

distilled water on a 1 mm sieve to obtain a uniform substrate of 1-3 mm and to prevent 

cation accumulation on the fraction <1 mm. The substrate was autoclaved at 121 °C for 

20 min. A top layer of gravel on each pot reduced evaporation and algae growth. 
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6.3.3 Experimental procedure and statistical analysis 

6.3.3.1 Experiment 1 

Eight days after sowing four seedlings with similar root length were transferred to a 1 

L pot filled with Perlite and moistened with distilled water. Each treatment comprised 

five replicates. When the first true leave emerged, the seedlings were supplied twice a 

day with a fifth-strength modified Hoagland solution at pH 5.6 (Hoagland and Arnon, 

38). From the seventh leaf stage onwards the plants were watered twice a day with a 

third-strength modified Hoagland solution. Enough solution was applied so that at 

least one-third drained. The ammonium:nitrate ratio was kept at 5:95. The sulfur (S) 

concentrations were adjusted to low (0.02 mM), medium (0.2 mM) and high (2 mM) 

levels. The 0.02 mM nutrient solution was lowered to 0 nine weeks after transplanta-

tion. The nutrient solutions consisted of the following macronutrients (mM): SO4
2- 0.0, 

0.2, 2.0 depending on the S treatment; NO3
- 7.1; NH4

+ 0.4; K+ 3.0; PO4
3- 0.4; Mg2+ 1.7; 

Ca2+ 3.8; and micronutrients (µM): Fe2+ 5.6; Mn3+ 2.6; Zn2+ 0.4; BO3
3- 18.8; Cu2+ 0.3; 

MoO4
2+ 0.2; Cl- 3340, 3012, 5.27. A pH of 5.6 was maintained by adding NaOH. 

The compounds used for preparation of the nutrient solution were Ca(NO3)2, KNO3, 

KH2PO4, MgSO4, MgCl2, CaSO4, CaCl2, Fe DTPA, MnCl2, ZnSO4, H3BO3, CuSO4, 

H2MoO4. The pots were rinsed with distilled water once a week, to prevent an accumu-

lation of solutes on the substrate. 

The experiment was carried out in summer in a greenhouse facility at Großbeeren, 

Germany (long. 13°20´E; lat. 51°22´N). Average air temperatures in the greenhouse 

during this period were 23 °C (max. 36 °C) during the day and 19 °C (min. 14 °C) at 

night. The relative humidity was on average 60% during the day and 70% at night. The 

daily (14h) mean light intensity (PAR) was at 6.6 mol·m-2 (max. 660 µmol·m-2·s-1) dur-

ing the day. The pots were arranged in a completely randomized design. 

Data were subjected to a one-way analysis of variance (n = 5), with S supply as ex-

perimental factor, followed by a Tukey test. Data were analyzed using Statistica 6.1 

(StatSoft, Tulsa, OK, USA) software. 

6.3.3.2 Experiment 2 

Ten days after sowing eight seedlings with similar root length were transferred to a 

1.3 L pot filled with Perlite and moistened with distilled water. This time each treat-

ment comprised four replicates. 

The pots were filled with 2-cm layer of perlite. Then a 3-cm layer of 10% v/v arbuscu-

lar mycorrhizal inoculum (AM) with perlite was introduced and covered with 5.5-cm 
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layer of perlite. As mycorrhiza inoculum Plantworks inoculum was used (TerraVital 

Hortimix comprising G. mosseae, G. intraradices, G. claroideum and G. microaggre-

gatum, >50 infective units per ml inoculum. Plantworks Ltd., Heeley Close, Sitting-

bourne, Kent, UK). 

In non-mycorrhizal (NAM) treatments sterilized Plantworks inoculum was applied 

(autoclaved at 121°C for 20 min). In addition, the drain of non-sterilized Plantworks 

inoculum was filtered (589/3 blue ribbon paper filter, Schleicher & Schuell Bioscience 

GmbH, Dassel, Germany) and added to the NAM pots. This supplied similar amounts 

of nutrients and micro-organisms except AM to all treatments. 

When the first true leave emerged, the seedlings were supplied twice a day with a 

tenth-strength modified Hoagland solution at pH 5.6 (Hoagland and Arnon, 38) with a 

MES buffer added. 

From the second leave stage onwards, 14 days after planting, the plants were watered 

twice a day with a third-strength modified Hoagland solution. Enough solution was 

applied so that at least one-third drained. Nitrogen was provided at an ammo-

nium:nitrate ratio of 95:5, 50:50, and 5:95. The nutrient solution consisted of the follow-

ing macronutrients (mM) NO3
- 0.4, 3.7, 7.0 and NH4

+ 7.0, 3.7, 0.4 depending on the N 

speciation treatment; K+ 2.9; PO4
3- 0.4; Mg2+ 1.6; SO4

2- 0.2; Ca2+ 3.6; and micronutrients 

(µM) Fe2+ 5.5; Mn3+ 2.5; Zn2+ 0.4; BO3
3- 18; Cu2+ 0.3; MoO4

2+ 0.2; Cl- 16666, 11434, 4276. 

A pH of 5.6 was maintained by adding MES-buffer at 0.7mM and NaOH. The com-

pounds used for preparation of the nutrient solution were Ca(NO3)2, KNO3, NH4NO3, 

(NH4)2SO4, NH4Cl, KH2PO4, MgSO4, MgCl2, KCL, CaSO4, CaCl2, MES-buffer, Fe DTPA, 

MnSO4, ZnSO4, H3BO3, CuSO4, H2MoO4. The pots were rinsed with distilled water once 

a week, to prevent an accumulation of supplied solutes on the substrate.  

The experiment was carried out in a climate chamber. The average air temperatures 

in the climate chamber during the day (14 h) were 17 °C and 15 °C during the night (10 

h). The relative humidity was 70% during the day and 80% at night. The daily (14h) 

mean light intensity (PAR) was at 28.2 mol·m-2. Light was provided by lamps (Agro Son 

T 400, Phillips, Hamburg, Germany). The pots were arranged in a completely random-

ized design. 

The data were subjected to a two-way variance analysis (n = 4), utilizing inoculation 

and ammonium:nitrate ratios in the supply as experimental factors. This was followed 

by a Tukey test comparing means wthin each factor. Data were analyzed using Statistica 

6.1 (StatSoft, Tulsa, OK, USA) software. 
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6.3.4 Harvest  

Plants were harvested in the morning after 2h light in the first experiment and after 

4h darkness in the second experiment. Leaves were counted during the second experi-

ment only. The shoots were cut 1 cm above ground at 6, 14 (Expt. 1) and 13 (Expt. 2) 

weeks after the initial planting. They were cut into pieces for direct analysis of total 

pyruvic acid (PA) and soluble solid compounds (SSC). 10 g of the plant material were 

frozen at -20 °C for sugar analysis (sucrose, glucose, and fructose). The remainder was 

dried at 60 °C for two days, and its dry weight (DW) recorded. Shoots were ground in a 

centrifugal grinder with a 0.25 mm sieve and analyzed for total S, N, P (Exp. 1) and ad-

ditionally Mg and NO3
- (Exp. 2). 

For root dry weight determination substrate samples of defined volume were taken 

with a cylinder. Additionally root samples (Exp. 2) were separated from the substrate 

by rinsing with running cold water and a set of sieves (smallest sieve size 1 mm). These 

randomly taken roots were cut in 1-cm pieces and stored in 10% isopropanol for deter-

mination of mycorrhizal colonization. 

6.3.5 Analysis 

Shoot samples were dry ashed and dissolved in 18.5 % HCl. Phosphorus and Mg were 

analysed photometrically with an EPOS-analyzer 5060 (Eppendorf, Hamburg, Ger-

many). Nitrogen was determined after dry oxidation by the DUMAS method (Elemen-

tar Vario EL, Hanau, Germany). Nitrate concentration was measured potentiometricly 

with a nitrate ionplus Sure-Flow® electrode (Orion-Research, Beverly; USA). Total S 

was analyzed in an elementary analyzer (high temperature oxidation) and detected with 

non-dispersive infrared technique (NDIR) (multi EA 2000, Analytik Jena AG, Ger-

many).  

For sugar analysis 10 g of frozen shoot material was homogenised with water and 

boiled to denature the sugar enzymes. In the filtrate, sucrose, glucose and fructose were 

determined by an enzymatic reaction (test kit of r-biopharm, Roche, Darmstadt, Ger-

many) and measured with a spectrophotometer at 340 nm (SPEKOL 221, Carl Zeiss, 

Jena, Germany). 

Soluble solids compounds (SSC) were determined by extracting the juice from at 

least 15 g fresh sample in a household centrifuge juicer and measured with a hand-held 

refractometer (digital- refractometer PR-1, Atago, Tokyo, Japan). The measurement is 

based on the capacity of sugar in a juice to deviate light and gives the proximate sugar 

content in °Brix (Ahlers, 01; OECD, 02). 
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Total pyruvic acid (PA) was analyzed in 20 g ruptured shoot tissue using the method 

described by Schwimmer and Weston (61), Randle and Bussard (93), and Ketter and 

Randle (98). The fresh shoot tissue was homogenized with 30 ml distilled water, after 

20 min mixed with 5% trichloroacetic acid solution (1:1) and left standing for 1h. The 

filtrate was mixed with the indicator 0.0125% 2,4-dinitrophenylhydrazine in 2N HCl, 

then alkalined with 0.6 N NaOH, and the measured transmission at 420 nm. Back-

ground levels of PA of intact onion tissues were assumed to be negligible and constant 

(Yoo and Pike, 01), so that background pyruvic acid was not measured. 

Mycorrhizal colonization of roots was determined following the method of Koske and 

Gemma (89). Roots were cleared with 10% KOH, acidified with 2 N HCl, and stained 

with 0.05% trypan blue in lactic acid. Percentage root length colonization was deter-

mined in the stained samples using a microscope (Zeiss, Stemi2000, Göttingen, Ger-

many) at 50x (grid line intersection method) (Giovannetti and Mosse, 80). 

6.4 Results 

6.4.1 Experiment 1 

During the second harvest, (7 Sep. 04) the phenotype of the young leaves on no S in 

the solution was pale-green, whereas the older leaves were slightly darker green. At 0.2 

mM S the leaves were dark green and at 2.0 mM S with a lightly brighter shade. 

The dry weight of no sulfate supply was significantly lower and analogously the shoot 

N concentration significantly higher compared with the higher S supplies (Tab. 1). The 

shoot P concentration increased with decreasing S supply. Shoot S concentrations 

showed significant differences between the three S supplies. Because of the opposite 

uptake of N and S, the N/S ratio rose significantly with decreasing S supply. 

The consideration of the nutrient content of each pot (data not shown) showed that 

shoot N and S contents were lowest at 0.0 mM S supply. At the two higher S supplies the 

shoots did not differ in their N content, but had the highest S content at the highest S 

supply. The shoot P content was similar in all cases. 

Pyruvic acid concentration increased significantly with increasing S supply and shoot 

S concentration. The SSC in the 0, 0.2, and 2.0 mM S treatment was at 5.0, 5.7, and 5.6 

°Brix, respectively, but not significantly different. The pH of the drain was not meas-

ured. 
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Tab. 13: Effect of S supply (mM S) on shoot dry weight (DW), shoot N, P, S concentration, 
N/S ratio and pyruvic acid (PA) concentration 14 weeks after planting of Allium tuberosum. 
Plants were supplied with three different S concentrations (0.0, 0.2 and 2.0 mM) at ammo-
nium:nitrate ratio 5:95. Effects of the treatments were tested with a one-way ANOVA. Different 
letters denote significant differences between means of all treatments as determined by the 
Tukey test (P<0.05). Values are means of 5 observations and standard error of the mean (SE) 
(±). 

 DW Element concentration  PA 

 . g pot-1   g [kg DW] -1   µmol [g FW]-1 

mM S  N P S N/S ratio . 

0.0    9.6 ± 0.5a 47.3 ± 0.8b 4.1 ± 0.1c 1.8 ± 0.1a 26.2 ± 0.6c 2.1 ± 0.1a 

0.2  12.0 ± 0.4b 42.9 ± 0.3a 3.5 ± 0.1b 3.3 ± 0.2b 13.2 ± 0.5b 2.9 ± 0.2b 

2.0  13.0 ± 0.5b 41.6 ± 0.5a 3.2 ± 0.1a 6.2 ± 0.1c   6.7 ± 0.1a 5.0 ± 0.3c 

 

P (S) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
 

6.4.2 Experiment 2 

6.4.2.1 The pH in the drain 

The pH in the nutrient solution with the highest ammonium:nitrate ratio was low-

ered from 5.6 to nearly 4 while running through the pot, whereas at the lowest ammo-

nium:nitrate ratio the pH was increased up to 8. The an equal ammonium:nitrate ratio 

the pH remained at 5.6 (Fig. 9).  
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Fig. 9: Effect of N speciation and AM colonization on pH in the drain of the nutrient solution 
during the experiment with A. tuberosum. 
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6.4.2.2 Root length colonization by arbuscular mycorrhiza 

Roots were colonized by AM if treated with live mycorrhizal inoculum only. The 

highest root length colonization rate 43 ± 14 % was found at an ammonium:nitrate ratio 

of 5:95, decreasing rapidly with increasing ammonium:nitrate ratio. At the ammo-

nium:nitrate ratio of 50:50 root length colonization was 8 ± 4.2 % and at 95:5 the roots 

showed no colonization at all. 

6.4.2.3 Number and length of leaves, fresh and dry weight of shoots and 
roots 

The number and length of the leaves (shoots) (data not shown), the fresh and dry 

weight of leaves and dry weight of roots (Tab. 14) were not influenced by AM treatment. 

The leaves at the ammonium:nitrate ratio 95:5 were light green whereas the older 

leaves showed wilted tips. 

Tab. 14: Effect of N speciation (N) and AM treatments (m) on shoot fresh weight, shoot and 
root dry weight, S concentration, and S content 13 weeks after planting of Allium tuberosum. 
Plants were supplied with three different ammonium:nitrate ratios and either inoculated with AM 
(AM) or non-inoculated (NAM). Effects of the treatments were tested with a two-way ANOVA. 
Differences within the factor inoculum are denoted as significant (*) or non-significant (ns), differ-
ences between the factor NH4

+:NO3
- are denoted with capitalized letters either italicized (NAM) 

or non-italicized (AM) as determined by the T-test or Tukey test (P<0.05), respectively.  Values 
are means of 4 observations and SE (±). 

  FW   DW  Concentration Content 

 . g pot-1 . . g pot-1 . . g kg-1 . . g pot-1 . 

. shoot shoot root S S . 

NH4:NO3 Inoc 

95:5 NAM   7.3  ± 0.2A 1.4  ± 0.0A   2.4  ± 0.1A 4.59 ± 0.1C  6.6  ± 0.1A 

 AM   6.0ns± 0.6A 1.3ns± 0.1A   1.8ns± 0.1A 5.48*± 0.1B  7.2ns± 0.4A 

      

50:50 NAM 39.6  ± 2.4C 4.8  ± 0.2B 13.1  ± 0.9C 1.99 ± 0.0A  9.6  ± 0.4B 

 AM 38.1ns± 2.4B 4.5ns± 0.3B 18.2ns± 5.2B 2.15*± 0.0A  9.7ns± 0.5B 

 

5:95 NAM 38.2  ± 1.3B 4.3  ± 0.5B 10.2 ± 0.9B 2.18   ± 0.0B   9.4 ± 1.2AB 

 AM 39.1ns± 0.7B 5.0ns± 0.2B 9.8ns± 1.2AB 2.18ns± 0.0A 10.9ns± 0.4B 

 

P (N) <0.001 <0.001 <0.001 <0.001 <0.001 

P (m)   0.615   0.343   0.463 <0.001   0.147 

P (N x m)   0.678   0.464   0.372 <0.001   0.514 
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6.4.2.4 Nutrient concentration 

The shoot S concentration (Tab. 14) was measured in all replicates and therefore a 

statistically analysis could be done for all three ammonium:nitrate ratios. Mycorrhizal 

colonization increased the shoot S concentration at the ammonium:nitrate ratios of 

95:5 and 50:50. The shoot S concentration of the NAM plants was highest at the am-

monium:nitrate ratio 95:5, followed by the ammonium:nitrate ratio 5:95. 

At the ammonium:nitrate ratio 95:5 very little shoot material had been produced. 

Therefore only the total N, P, K, Mg, and NO3
- concentrations were determined in a 

combined shoot sample of all four replicates (means of AM and NAM values are men-

tioned in the text). 

Taken all values the AM treatment significantly decreased N, K, and NO3
- concentra-

tions in both ammonium:nitrate ratios 50:50 and 5:95. But a singular comparison re-

vealed only a decrease of the NO3
- concentration at the ammonium:nitrate ratio 95:5 

and for the K concentration at the ammonium:nitrate ratio 50:50 (Tab. 15). The P and 

Mg concentrations were not significantly affected, but showed interactions between AM 

treatment and N speciation. Other singular comparisons revealed no differences, other 

than the increased P concentrations at a ammonium:nitrate ratio 5:95 in the AM plant 

shoots. 

The N speciation treatment influenced the N concentration, but the differences in the 

comparison of singular treatments were not significant. The NO3
- concentration in-

creased significantly at the ammonium:nitrate ratio of 5:95. The part of NO3
- in the N 

concentration was 1 % at the ammonium:nitrate ratio of 95:5, and 0.7 % at the ratio of 

50:50, but increased to 6 % at the ratio of 5:95. 

The N, P, and K concentrations of the combined samples at the ammonium:nitrate 

ratio of 95:5 were higher than at the other two ratios (Titel Tab. 15). The NO3
- concen-

tration did not differ much from those at the ammonium:nitrate ratio of 50:50. Mg 

concentrations were slightly lower at 95:5 than at the other two ratios.  

 

The N, P, and Mg contents of were not significantly different (data not shown). AM 

treatment had no influence on the K, NO3
- and S content of the shoots (Tab. 14 and Tab. 

15). The S content decreased at the ammonium:nitrate ratio of 95:5 (Tab. 14).The K and 

NO3
- content was increased significantly at the ratio of 5:95. In case of K and NO3

- the 

values of the combined samples were much lower at the ammonium:nitrate ratio 95:5 

than at the other two ratios (Titel Tab. 15). 



Chapter 6 

 

91 

E
le

m
en

tc
on

ce
nt

ra
tio

n
E

le
m

en
tc

on
te

nt

.
g

[ k
g

D
W

]-1
.

.
m

g 
po

t-1

N
H

4 
:N

O
3

In
oc

ul
um

N
P

M
g

N
O

3-
K

N
O

3-
K

50
:5

0
N

A
M

43
.0

±
1.

1A
3.

7 
 ±

0.
1A

4.
6 

±
0.

5A
0.

4 
 ±

0.
0A

22
.9

  ±
2.

8A
3.

6 
 ±

0.
2A

22
0 

 ±
14

A

AM
41

.3
ns

±
0.

7A
3.

6ns
±

0.
1A

6.
0ns

±
0.

5A
0.

3ns
±

0.
0A

14
.9

*
±

1.
7A

2.
9ns

±
0.

2A
14

4ns
±

9A

5:
95

N
A

M
41

.2
  ±

1.
0A

3.
6 

±
0.

1A
5.

8 
 ±

0.
6A

2.
6 

±
0.

1B
42

.7
  ±

2.
8B

24
.1

  ±
2.

6B
39

7 
 ±

43
B

AM
38

.5
ns

±
1.

0A
4.

0*
±

0.
1B

4.
7ns

±
0.

1A
2.

1*
±

0.
2B

41
.8

ns
±

2.
6B

22
.9

ns
±

2.
6B

45
5ns

±
18

B

P 
(N

)
0.

03
47

0.
05

61
0.

97
88

<0
.0

00
1

<0
.0

00
1

<0
.0

00
1

<0
.0

00
1

P 
(m

)
0.

04
05

0.
14

70
0.

81
09

0.
02

52
0.

00
40

0.
60

62
0.

73
94

P 
(N

 x
 m

)
0.

61
23

0.
01

19
0.

01
97

0.
08

33
0.

01
62

0.
89

09
0.

02
02

E
le

m
en

tc
on

ce
nt

ra
tio

n
E

le
m

en
tc

on
te

nt

.
g

[ k
g

D
W

]-1
.

.
m

g 
po

t-1

N
H

4 
:N

O
3

In
oc

ul
um

N
P

M
g

N
O

3-
K

N
O

3-
K

50
:5

0
N

A
M

43
.0

±
1.

1A
3.

7 
 ±

0.
1A

4.
6 

±
0.

5A
0.

4 
 ±

0.
0A

22
.9

  ±
2.

8A
3.

6 
 ±

0.
2A

22
0 

 ±
14

A

AM
41

.3
ns

±
0.

7A
3.

6ns
±

0.
1A

6.
0ns

±
0.

5A
0.

3ns
±

0.
0A

14
.9

*
±

1.
7A

2.
9ns

±
0.

2A
14

4ns
±

9A

5:
95

N
A

M
41

.2
  ±

1.
0A

3.
6 

±
0.

1A
5.

8 
 ±

0.
6A

2.
6 

±
0.

1B
42

.7
  ±

2.
8B

24
.1

  ±
2.

6B
39

7 
 ±

43
B

AM
38

E
le

m
en

tc
on

ce
nt

ra
tio

n
E

le
m

en
tc

on
te

nt

.
g

[ k
g

D
W

]-1
.

.
m

g 
po

t-1

N
H

4 
:N

O
3

In
oc

ul
um

N
P

M
g

N
O

3-
K

N
O

3-
K

50
:5

0
N

A
M

43
.0

±
1.

1A
3.

7 
 ±

0.
1A

4.
6 

±
0.

5A
0.

4 
 ±

0.
0A

22
.9

  ±
2.

8A
3.

6 
 ±

0.
2A

22
0 

 ±
14

A

AM
41

.3
ns

±
0.

7A
3.

6ns
±

0.
1A

6.
0ns

±
0.

5A
0.

3ns
±

0.
0A

14
.9

*
±

1.
7A

2.
9ns

±
0.

2A
14

4ns
±

9A

5:
95

N
A

M
41

.2
  ±

1.
0A

3.
6 

±
0.

1A
5.

8 
 ±

0.
6A

2.
6 

±
0.

1B
42

.7
  ±

2.
8B

24
.1

  ±
2.

6B
39

7 
 ±

43
B

AM
38

.5
ns

±
1.

0A
4.

0*
±

0.
1B

4.
7ns

±
0.

1A
2.

1*
±

0.
2B

41
.8

ns
±

2.
6B

22
.9

ns
±

2.
6B

45
5ns

±
18

B

P 
(N

)
0.

03
47

0.
05

61
0.

97
88

<0
.0

00
1

<0
.0

00
1

<0
.0

00
1

<0
.0

00
1

P 
(m

)
0.

04
05

0.
14

70
0.

81
09

0.
02

52
0.

00
40

0.
60

62
0.

73
94

P 
(N

 x
 m

)
0.

61
23

0.
01

19
0.

01
97

0.
08

33
0.

01
62

0.
89

09
0.

02
02

 

Ta
b.

 1
5:

 E
ffe

ct
 o

f N
 s

pe
ci

at
io

n 
(N

) a
nd

 A
M

 tr
ea

tm
en

t (
m

) o
n 

sh
oo

t N
, P

, M
g,

 N
O

3- , K
 c

on
ce

nt
ra

tio
ns

 a
nd

 to
ta

l s
ho

ot
 K

, N
O

3-  c
on

te
nt

 
13

 w
ee

ks
 a

fte
r p

la
nt

in
g 

of
 A

lli
um

 tu
be

ro
su

m
. P

la
nt

s 
w

er
e 

su
pp

lie
d 

w
ith

 tw
o 

di
ffe

re
nt

 a
m

m
on

iu
m

:n
itr

at
e 

ra
tio

s 
an

d 
ei

th
er

 in
oc

ul
at

ed
 (A

M
) 

or
 n

on
-in

oc
ul

at
ed

 (N
A

M
). 

E
ffe

ct
s 

of
 th

e 
tre

at
m

en
ts

 w
er

e 
te

st
ed

 w
ith

 a
 tw

o-
w

ay
 A

N
O

V
A

. D
iff

er
en

ce
s 

w
ith

in
 th

e 
fa

ct
or

 ‘m
’ a

re
 d

en
ot

ed
 a

s 
si

gn
ifi

ca
nt

 (
*)

 o
r 

no
n-

si
gn

ifi
ca

nt
 (

ns
) 

an
d 

di
ffe

re
nc

es
 b

et
w

ee
n 

th
e 

fa
ct

or
 ‘N

’ ar
e 

de
no

te
d 

w
ith

 c
ap

ita
liz

ed
 le

tte
rs

 e
ith

er
 it

al
ic

iz
ed

 (
N

A
M

) 
or

 
no

n-
ita

lic
iz

ed
 (A

M
) a

s 
de

te
rm

in
ed

 b
y 

th
e 

T-
te

st
 (P

<0
.0

5)
. V

al
ue

s 
ar

e 
m

ea
ns

 o
f 4

 o
bs

er
va

tio
ns

 a
nd

 S
E 

(±
). 

A
t t

he
 a

m
m

on
iu

m
:n

itr
at

e 
ra

tio
 

95
:5

 th
e 

co
nc

en
tra

tio
ns

 w
er

e 
fo

r N
 4

8.
8 

m
g 

kg
-1

, P
 8

.5
 m

g 
kg

-1
, N

O
3-  0

.4
0 

m
g 

kg
-1

 , M
g 

4.
3 

m
g 

kg
-1

 , a
nd

 K
 4

6.
3 

m
g 

kg
-1

, a
nd

 to
ta

l c
on

-
te

nt
s 

fo
r K

 6
4 

g 
po

t-1
 a

nd
 fo

r N
O

3-  0
.5

 g
 p

ot
 1
). 



Chapter 6 

 

92 

6.4.2.5 Pyruvic acid and sugar 

The AM treatment decreased the pyruvic acid concentration slightly (Tab. 16), but 

the differences remained unnoticeable in a singular comparison of the treatments. At 

the ammonium:nitrate ratio of 50:50, the pyruvic acid concentration was higher com-

pared with the 5:95 ratio. The combined sample at the ammonium:nitrate ratio 95:5 

showed even higher pyruvic acid concentrations (Titel Tab. 16). 

Tab. 16: Effect of N speciation (N) and AM treatment (myc) on shoot pyruvic acid (PA), su-
crose, fructose and glucose concentrations and total PA content 13 weeks after planting of Al-
lium tuberosum. Plants were supplied with two different ammonium:nitrate ratios and either 
inoculated with AM (AM) or non-inoculated (NAM). Effects of the treatments were tested with a 
two-way ANOVA. Differences within the factor ‘myc’ are denoted as significant (*) or non-
significant (ns) and differences between the factor ‘N’ are denoted with capitalized letters either 
italicized (NAM) or non-italicized (AM) as determined by the T-test (P<0.05). Values are means 
of 4 observations and SE (±). At the ammonium:nitrate ratio 95:5 the concentrations were for PA 
at 4.54 µmol g FW-1, sucrose at 6.2 g kg FW-1, glucose at 2.3 g kg FW-1, fructose at 3.2 g kg 
FW-1. 

Concentration Content

. µM [g FW] -1. . g [kg FW] -1 . µmol [pot FW] -1

NH4:NO3 Inoc PA Sucrose Glucose Fructose PA .

50:50 NAM 3.93  ± 0.13B 6.6  ± 1.4 A 4.7  ± 0.5B 7.85  ± 0.5 B 155 ± 8B

AM 3.63  ns± 0.09B 7.0ns± 0.2A 5.4ns± 0.1B 8.19ns± 0.2B 137*± 6B

5:95 NAM 3.11  ± 0.09A 8.5  ± 0.5 A 3.5  ± 0.2 A 4.47  ± 0.2 A 119  ± 3A

AM 2.91ns± 0.09A 9.5ns± 0.8B 4.0ns± 0.3A 4.87ns± 0.3A 114ns± 2A

P (N) <0.001 0.023 0.001 <0.001 <0.001

P (m) 0.030 0.421 0.112 0.275 0.052

P (N x m) 0.654 0.702 0.801 0.924 0.257

Concentration Content

. µM [g FW] -1. . g [kg FW] -1 . µmol [pot FW] -1

NH4:NO3 Inoc PA Sucrose Glucose Fructose PA .

50:50 NAM 3.93  ± 0.13B 6.6  ± 1.4 A 4.7  ± 0.5B 7.85  ± 0.5 B 155 ± 8B

AM 3.63  ns± 0.09B 7.0ns± 0.2A 5.4ns± 0.1B 8.19ns± 0.2B 137*± 6B

5:95 NAM 3.11  ± 0.09A 8.5  ± 0.5 A 3.5  ± 0.2 A 4.47  ± 0.2 A 119  ± 3A

AM 2.91ns± 0.09A 9.5ns± 0.8B 4.0ns± 0.3A 4.87ns± 0.3A 114ns± 2A

P (N) <0.001 0.023 0.001 <0.001 <0.001

P (m) 0.030 0.421 0.112 0.275 0.052

Concentration Content

. µM [g FW] -1. . g [kg FW] -1 . µmol [pot FW] -1

NH4:NO3 Inoc PA Sucrose Glucose Fructose PA .

50:50 NAM 3.93  ± 0.13B 6.6  ± 1.4 A 4.7  ± 0.5B 7.85  ± 0.5 B 155 ± 8B

AM 3.63  ns± 0.09B 7.0ns± 0.2A 5.4ns± 0.1B 8.19ns± 0.2B 137*± 6B

5:95 NAM 3.11  ± 0.09A 8.5  ± 0.5 A 3.5  ± 0.2 A 4.47  ± 0.2 A 119  ± 3A

AM 2.91ns± 0.09A 9.5ns± 0.8B 4.0ns± 0.3A 4.87ns± 0.3A 114ns± 2A

P (N) <0.001 0.023 0.001 <0.001 <0.001

P (m) 0.030 0.421 0.112 0.275 0.052

P (N x m) 0.654 0.702 0.801 0.924 0.257

 

The pyruvic acid content was not influenced by AM treatment, but the singular com-

parison revealed a decrease at the ammonium:nitrate ratio of 50:50. Like the pyruvic 

acid concentrations the pyruvic acid content also reached maximum at the ammo-

nium:nitrate ratio of 50:50. 

 

The sugar concentrations were not influenced by the AM treatment (Tab. 16). The 

sucrose concentration increased significantly at the ammonium:nitrate ratio of 5:95 

compared to the ratio of 50:50. Whereas the concentrations of fructose and glucose 

were significantly increased at a ratio of 50:50 compared to the ratio of 5:95. The sum 
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of sucrose, fructose and glucose concentrations were significantly higher on the ammo-

nium:nitrate ratio of 50:50 compared to the ratio of 5:95 (data not shown). 

The combined samples at the ammonium:nitrate ratio of 95:5 showed on average 

slightly lower sugar concentrations than those at the other two ratios (Titel Tab. 16) 
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Fig. 10: Comparison of the shoot N, NO3
-, S and pyruvic acid (PA) concentration and content 

at three different ammonium:nitrate ratios 13 weeks after planting of Allium tuberosum. Each dot 
combines the values of mycorrhizal and non-mycorrhizal plants. 

6.5 Discussion 

6.5.1 Experiment 1 

The pale green young leaves and slightly darker colored older leaves at no S are a 

symptom of S-deficiency (Hell, 97). They grew slowly and therefore gained a very low 

dry weight. Plants grown at 0.2 mM S and 2 mM S supplies were only slightly different 
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in color and equal in their dry weight. Consequently, plants supplied with 0.2 mM S are 

sufficiently provided with S. A comparison with shoot element concentrations of com-

mercially grown Chinese chive (Wills et al., 84; Rubatzky and Yamaguchi, 97; FAO, 72) 

reveals that shoot N and P concentrations have been satisfactory. 

The shoot N and P concentrations of the 0 mM S supply are higher than at the other 

two S supplies, due to the slow growth. Therefore it may be assumed that also S has 

been accumulated. A significant decrease in P concentration was observed and also a 

descending tendency of N concentration at 2 mM S. Normally there is no direct compe-

tition between PO4
2- and SO4

2-, but high concentrations of one specific anion can some-

times suppress the uptake of other anions (Marschner, 95). The shoot S concentration 

at 2 mM S supply showed that even when plants grow satisfactory at a medium S sup-

ply, they are still able to accumulate higher S concentration in their tissue. 

For analytical purposes the plants were left growing for almost a year with regular 

harvests. On 12 May 05 the plants at the 0.0 mM S  supply were still growing and con-

tained shoot S concentrations in a similar range (2.2 g kg-1). This leads to the hypothesis 

that S2- has been effectively taken up from the atmosphere through the stomata, as 

Durenkamp and De Kok (02; 04) found in their study: A contribution of S from atmos-

pheric H2S of app. 1.28 g kg-1 or atmospheric SO2 was measured in the shoot after seven 

days of growth. 

 

As expected the pyruvic acid concentration increases with increasing S supply. This 

confirms the findings of Randle and his group for garlic and onions (Randle, 92a; 

Randle and Bussard, 93). The soluble solid compounds are usually used to control the 

degree of maturation and quality in fruits and vegetables (Ahlers, 01; OECD, 02). It is 

an approximate value of the sugar concentration of the juice. The carbohydrate concen-

tration of Allium schoenophrasum, a plant that has a similar growing pattern, is ap-

proximately 4% (FAO, 72). In comparison to Allium schoenophrasum the content of 

soluble solid compounds of Allium tuberosum was higher. A change of the plant com-

position could not be found under the influence of increasing S supply. 

6.5.2 Experiment 2 

6.5.2.1 Colonization 

The roots of the plants grown at the ammonium:nitrate ratios of 50:50 and 5:95 were 

sufficiently colonized, but the root length colonization lowered with rising NH4
+ supply 

in the nutrient solution. One reason could be the correspondingly decreasing pH of the 
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nutrient solution. The NH4
+ entry into cells is in counter transport with protons (Britto 

and Kronzucker, 05), which acidifies the rhizosphere. The buffer used in this experi-

ment was not strong enough. We chose the concentration of the MES buffer in accor-

dance to the literature. But most experiments were either done in pure nutrient solu-

tion systems or in steady dripping irrigation systems (Bugbee and Salisbury, 85; 

Miyasaka et al., 88; Hawkins et al., 00). In our experiment the nutrient solution proba-

bly formed only a thin layer around the roots during the watering process, which vol-

ume was too small to buffer the H+ ions efficiently. 

Other studies found that the colonization of roots was reduced by lower pH. The op-

timal pH conditions for spore germination for Glomus spp. is between 6 and 9 (Green 

et al., 76), root colonization and growth of AM fungi (Ortas and Rowell, 04). 

6.5.2.2 Fresh and dry weight of shoots and roots 

AM fungi had no significant influence on the growth of the plants (Tab. 14). The ef-

fect of AM fungi base on the ability of its hyphae to explore soil aggregates for some 

nutrients, particularly P, which are not available to the roots on deficient soils. In our 

nutrient solution all plant relevant macro- and micronutrients for a sufficient growth 

were provided. Bago and Azcón-Aguilar (97) found that in case of NH4
+ supplemented 

plants, a strong stimulation in growth was induced by the establishment of the symbio-

sis. The expected support by AM treatment for growth in the presence of high NH4
+ 

supply was not reproduced in this experiment. Hawkins and George (01) also found no 

difference in growth between AM and NAM plants, but their NO3
-
 fed plants were larger 

than their NH4
+ fed plants. In this experiment the Chinese chive shoot habitus and 

weight did not differ significantly between the ammonium:nitrate ratios of 50:50 and 

5:95. Although the roots at the ratio of 50:50 showed the highest dry weight for AM 

plants, the variation was too large to draw firm conclusion.  

At the highest NH4
+

 treatment the growth of the plants was retarded and the older 

leaves wilted from the tip. The cause could be an increase of chloride (Cl) uptake in 

presence of high NH4
+

 concentrations in the substrate, resulting in salinity stress 

(Britto et al., 04).  

High concentrations of NH4
+ can be toxic to some species and can therefore be re-

sponsible for the changes (Miller and Cramer, 05). Whereas NO3
- is stored in vacuoles 

without detrimental effect, NH4
+ and in particular its equilibrium partner ammonia 

(NH3) are toxic at quite low concentrations. The NH4
+ concentrations are usually lower 

than 15µM in the cytoplasm. The main pathway of detoxification within the plant is the 

formation of amino acids, amides and related compounds. To compensate the change 
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in charge, protons are released into the rhizosphere decreasing the pH. This may affect 

the roots growth and eventually cause leaves to wilt (Marschner, 95; Claussen and 

Lenz, 95). Date et al. (05) found that addition of Cl at 8.5 x 10-3 mM with 0.67 mM NH4
+ 

to a nutrient solution caused wilting of lettuce leaf tips, because of the formation of 

chloramines in the solution. NH4
+ without Cl did not show any wilting or browning of 

roots. Long experience showed that a nutrient solutions containing Cl up to 5 mM had 

no toxic chlorine effect on most plants (V. Römheld, personal communication). The 

present experiment had Cl  concentrations of 4, 11 and 16 mM, found decreasing pH 

with rising NH4
+ supply, and found as well wilting of leaves only within the highest 

ammonium:nitrate ratio, matching the findings of Marschner, Date and Römheld. 

Another reason for the decreased growth with increased NH4
+

 supply could be a NO3
- 

deficiency (2mM sole NH4
+ supply) (Walch-Liu et al., 00). Ammonium in the external 

solution strongly suppresses net uptake of NO3
-. Rapid NH4 influx into cytoplasma and 

a decrease in transmembrane potential are supposed to be possibly involved in the 

rapid suppression of net NO3
- influx (H+-NO3

- symport) (Marschner, 95). These as-

sumptions are supported by our observations during alteration of the NO3
- concentra-

tions.  

 

Other growth depressions by application of NH4
+ as a sole nitrogen source, such as 

uncoupling of photophosphorylation, lack of carbohydrates or nutrients, and impair-

ment of water status (Walch-Liu et al., 00) are unlikely, because the results showed that 

our plants had normal sugar and element concentrations and had no drought stress. 

6.5.2.3 Element concentration and content 

The element concentrations in the plant leaves of this experiment were compared 

with those of commercially grown Chinese chive (Wills et al., 84; Rubatzky and Yama-

guchi, 97; FAO, 72). Shoot N and P concentrations were in the same range, whereas the 

shoot Mg concentrations were even higher in our experiments. The shoot K concentra-

tion at an ammonium:nitrate ratio of 5:95 was equally high, but at the ratio of 50:50 

only half in our case. A comparison with our first experiment showed, that the shoot S 

concentration was in a lower range (Tab. 13). The medium S supply was chosen in ex-

periment 2 to bring out the effects from the treatments more clearly. 

 

The high shoot S concentration and low shoot S content at the ammonium:nitrate ra-

tio of 95:5 were a result of S accumulation due to slow growth (Tab. 14). In relationship 

to the shoot N concentration (Fig. 10) these shoot S concentration was increased 
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strongly from the ratio of 50:50 to 95:5. These findings reveal that it is possible that the 

high ammonium:nitrate ratio supported the SO4
2- uptake, whereas the medium ratio of 

50:50 shows not increase in shoot S concentration or contents compared to the low 

ratio of 5:95 (Tab. 14). 

The increased K concentration and total K content at the ammonium:nitrate ratio of 

5:95 compared to 50:50 may be explained by an increased uptake via channels and 

transporters induced by NO3
- (Van Beusichem et al., 88; Wang et al., 01). 

The NO3
- concentrations at the ammonium:nitrate ratios of 95:5 and 50:50 are al-

most similarly low. In contrary the NO3
- concentration and content at the ammo-

nium:nitrate ratio of 5:95 are high. The reason might the translocation of NO3
- from the 

roots to the leaves for storage and to accelerate the NO3
- reduction. This has been ob-

served at high NO3
- supply and high light intensity (Britto and Kronzucker, 05; Köhler 

et al., 02). The other nutrients N, P, and K concentrations were only increased at an 

ammonium:nitrate ratio of 95:5 due to slow growth, whereas Mg was decreased in 

competition with NH4
+. 

 

Mycorrhizal colonization did not contribute to the uptake of N (George, 00). Inter-

estingly the proportion of NO3
- from total nitrogen is lower in AM colonized plants (3%) 

than in NAM plants (3.5%). This is probably due to the findings of Hawkins (Hawkins 

et al., 00; Hawkins and George, 01) that AM hyphae favorably use NH4
+

 as N source. 

This acceptation is assisted by the significantly increased K concentration in NAM 

plants, the counterion of NO3
- in uptake. 

As expected, the shoot P concentration was not enhanced by the AM. Probably the P 

contribution through the hyphae became redundant, because of the high offer of P in 

the nutrient solution and uptake through the roots. 

The shoot S concentration was increased by AM at the ammonium:nitrate ratios 95:5 

and 50:50, whereas the N and NO3
- concentrations were decreased (Tab. 14 and Tab. 

15). The S and N metabolisms are closely coupled. Sulfur uptake and assimilation has 

been shown to be dependent upon N availability. The data of Wang et al. (00; 03) sug-

gests that NO3
- can induce genes of SO4

2- uptake and assimilation and, thereby, may 

increase SO4
2- assimilation rates or capacity. This may be true for the highest NO3

- sup-

ply where S concentration was increased in the NAM plant. But in the treatments of the 

present experiment an influence of NO3
- on the uptake of S was poor when NH4

+ supply 

was increased in association with AM fungi. This corresponds with observations that 

NH4
+ supply increases the uptake of SO4

2- and incorporation into proteins (Brunold 

and Suter, 84; Koprivova et al., 00). It was assumed (see above) that the mycorrhizal 
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plants took up preferentially NH4
+. As a result the plants might have taken up more 

SO4
2- to balance the ions. 

6.5.2.4 Pyruvic acid 

The pyruvic acid concentration did not correlate with the shoot S concentrations as 

expected. In contrary to sulfur AM decreased pyruvic acid concentration and content. A 

comparison of the shoot pyruvic acid, N, S, and NO3
- concentrations (Fig. 10) shows 

that the higher pyruvic acid concentrations were induced by the higher N concentra-

tions at the ammonium:nitrate ratios of 95:5 and 50:50, but that with higher rates of 

NO3
- supply the formation of pyruvic acid decreased. The comparison of the N, S, NO3

- , 

and pyruvic acid content (Fig. 10) reveals similar results. Shoot S content did not corre-

late with the shoot pyruvic acid content. In contrary the shoot pyruvic acid content rose 

with the shoot N content at the ammonium:nitrate ratio of 95:5 to 50:50, but decreased 

with an increased NO3
- content in the shoot. The highest formation of pyruvic acid was 

reached at ammonium:nitrate ratio 50:50. It can therefore be added to the results of 

Coolong and Randle (03), that at low sulfur supply is pyruvic acid not only influenced 

by the rate of nitrogen supply, but also by the nitrogen speciation. 

6.5.2.5 Sugar 

A increased NH4
+ supply at a ammonium:nitrate ratio of 50:50 compared to the am-

monium:nitrate ratio of 5:95 lowered the sucrose concentrations and increased the 

fructose and glucose concentrations in the leaves (Tab. 16). In tomato (Bialczyk et al., 

05) or tobacco (Matt et al., 01) plants a comparable variation of sucrose concentration 

as well as of glucose and fructose on the N supply at an ammonium:nitrate ratio of 

50:50 has not been observed. Therefore the results may be better explained by the ob-

servations of Curatti et al. (06). They observed an increased expression of genes for 

sucrose synthase activity with higher NH4
+ supply compared to NO3

- supply in cyano-

bacteria. Cyanobacteria and higher plants have a similar set of enzymes to cleave su-

crose by sucrose synthase or invertases, when there is a high demand of hexoses 

(Winter and Huber, 00; Salerno and Curatti, 03). Hexoses, such as glucose and fruc-

tose, are precursors of α-ketoglutarate (Heß, 99). The α-ketoglutarate serves as C skele-

ton for the assimilation of NH4
+ into amino acids, such as glutamine and glutamate 

(Ferrario-Méry et al., 05). It is therefore suggested that the decrease of sucrose and 

increase of fructose and glucose at an ammonium:nitrate ratio of 50:50 results from an 

increased cleavage of sucrose to glucose and fructose due to activity of sucrose syn-

thase. Additionally the glutamine synthetase activity has been observed in tobacco 

plants to increase during the day and remain high most of the night at an ammo-
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nium:nitrate ratio of 50:50 compared to a dominant NO3
- supply (Matt et al., 01). In 

this time the plant accumulates much higher levels of NH4
+ (Matt et al., 01). These re-

sults support the idea, that sucrose is increasingly cleavaged for the assimilation of 

NH4
+. 

The significantly higher sum concentrations of all three sugars at an ammo-

nium:nitrate ratio of 50:50 than of 5:95 may have also been effected by the higher re-

quirement of readily available C skeletons, whereas NO3
- could have been stored in 

vacuoles for delayed assimilation. 

 

In conclusion these experiments indicated that (a) 0.2 mM S in the nutrient solution 

was sufficient for growth of Allium tuberosum, (b) increasing S concentration in the 

substrate and in the shoot corresponded with pyruvic acid concentration, (c) AM fungi 

increased shoot S concentrations at high NH4+ supply, but not the shoot dry weight or 

pyruvic acid concentrations, and (d) the supply of an ammonium:nitrate ratio of 50:50 

seemed to be the preferential N form for A. tuberosum to produce plants with high 

yield of health related organosulfur compounds. This was due to a similar dry weight as 

with the dominant NO3- supply and to higher total content of pyruvic acid. A. tubero-

sum is a well suited experimental plant, because of its uniform growth and possibility 

for multiple harvests. 
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7 General Discussion 

The previous chapters of this thesis describe results obtained in several separate ex-

periments. In this last chapter, the main results of these experiments are discussed in 

view of the hypotheses given in the General Introduction. Finally, some perspectives for 

further research are presented. 

7.1 Effect of substrate and nitrogen speciation on the ex-
tent of arbuscular mycorrhizal colonization 

Peat, peat-compost and perlite substrates were used in some experiments as exam-

ples of substrates commonly used in horticulture. These substrates were tested for their 

suitability for colonization by AM fungi of roots of a variety of plant species. 

In general, plants were colonized successfully on inoculated commercial peat sub-

strates, commercial peat-compost substrates and specifically prepared peat-compost 

substrates. The non-inoculated peat and peat-compost substrates were apparently free 

of any infectious AM propagules. 

Root length colonization was decreased on peat substrates with increasing compost 

amendment rates in several experiments. This decrease in root length colonization on 

peat substrates with 40% compost amendment compared to a 20% amendment was 

found in leek (Chapter 1), in pelargonium, and poinsettia plants (data not shown). This 

decrease in colonization is probably linked to a higher availability with higher addition 

of compost. When nutrient supply is abundant, AM colonized plants are less dependent 

on the fungus (Koide and Mosse, 04; Lerat et al., 03). Higher nutrient supply to a sub-

strate can suppress fungal growth (Vierheilig, 04; Pinior et al., 99). On metabolic rea-

son for the suppressive effect of high nutrient supply on AM colonization may be a par-

tial  C immobilization in the plant, because high P and N availability to the plant may 

reduce C flow to AM fungal structures (Olsson et al., 05b). Another explanation for this 

result is that the higher water holding capacity of the 40% compost substrate compared 

to the 20% compost substrate. Substrate water supply can affect mycorrhizal coloniza-

tion. Some AM fungal species show a decreased hyphal growth in moist soils (Smith 

and Read, 97). 

An exception to the results described above was observed for pelargonium plants in 

chapter 3, experiment 1, where root length colonization on peat-compost substrate was 

not significantly affected by the rate of compost additions. Probably, the nutrient de-
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mand of the pelargonium plants was probably not completely met by either compost 

level. 

For plants grown on perlite, colonization was observed, just as for the other sub-

strates, only in the inoculated treatment. As expected, the non-inoculated perlite re-

mained free of living mycorrhizal fungi. This result can be explained by the perlite pro-

duction process, in which the temperature exceeds 1000°C (information from the 

supplier: Knauf Perlite GmbH, Dortmund, Germany). Moreover, before the experi-

ments started the substrate was autoclaved. 

Experiments with different ammonium:nitrate ratios on perlite showed a decrease in 

root length colonization with increasing ammonium:nitrate ratio. Roots of different 

Allium species, such as A. tuberosum (Chapter 5, Expt. 2), A. fistulosum, A. sativum, 

and A. cepa (data not shown), had root length colonization rates of up to 80% at a low 

ammonium:nitrate ratio. Colonization rates decreased strongly with increasing ammo-

nium:nitrate ratio. This effect may be explained by the decreasing pH in the root envi-

ronment. The pH in the rhizosphere drops due to dominant NH4
+ uptake. As a result, 

AM spore germination, hyphal growth, and root colonization are suppressed (Green et 

al., 76; Ortas and Rowell, 04). Moreover, high NH4
+ supply can also directly reduce root 

and/or extraradical hyphal biomass (Hawkins and George, 01; Olsson et al., 05a).  

The exceptional low root length colonization of A. fistulosum on all ammo-

nium:nitrate ratios described in chapter 4 may be explained by the sufficient nutrient 

supply in this experiment. In conditions of nutrient sufficiency plants down-regulate 

AM colonization and hyphal growth (Vierheilig, 04; Pinior et al., 99). 

7.2 Effect of arbuscular mycorrhizal colonization on shoot 
dry weight and nitrogen, phosphorus, potassium, sul-
fur and zinc and uptake 

The often observed positive effect of AM colonization on plant growth is based on the 

fungal nutrient contribution to the plant metabolism. This fungal contribution relies on 

its ability to explore a larger soil volume and penetrate into smaller pore diameters 

than is possible by roots (Drew et al., 03). In this way, hyphae enlarge the depletion 

zone around roots. Moreover, the transport of nutrients via hyphae is much faster than 

by diffusion in soil. Also, hyphae are better at competing against free-living soil micro-

organisms for recently mineralized nutrients than are roots (Smith and Read, 97). 

These beneficial effects may become apparent on agricultural soils that are deficient in 

a certain nutrient. Since the fertilization management techniques used in organic agri-
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culture sometimes result in low nutrient availability for plants, AM are particularly im-

portant in organic production systems. 

Mycorrhizal fungi have also been reported to protect plants from other forms of 

stress. Stress in plants induced by high NH4
+ fertilization is called NH4

+ toxicity (Van 

den Berg et al., 05; Britto and Kronzucker, 02; Lucassen et al., 03). For microorgan-

isms, however, NH4
+ is the most important source of mineral N (Stitt et al., 02). Conse-

quently, it is likely that NH4
+ is less toxic to AM-colonized plants than to non-colonized 

plants. Therefore, it was hypothesized that AM would increase shoot nutrient concen-

trations and shoot dry weight on peat substrates with low P availability even at higher 

compost amendment rates, and on perlite with a higher ammonium:nitrate ratio. 

For peat and peat-compost substrates, however, a beneficial AM effect on shoot dry 

weight was not generally apparent (Chapters 1-3). Moreover, shoot P concentration 

often was not increased (Chapters 1 & 2). Most evidence of increased P uptake in my-

corrhizal plants comes from experiments and observations on mineral soils. Also, 

freshly applied organic P sources can be utilized by AM fungi (Feng et al., 03). How-

ever, the present experiments gave evidence that plant P uptake from organic sub-

strates such as peat or compost is less dependent on AM fungus colonization than is P 

uptake from soils with mineral P sources. Compost may contain P sources that are ei-

ther readily accessible to plants or inaccessible to plants and AM fungi alike. In the lat-

ter case, the P inaccessibility might be due to physico-chemical fixation of P in form of 

condensed calcium phosphates such as apatites or octacalcium phosphates (Frossard et 

al., 02; Grey and Henry, 99). 

In contrast to the above mentioned observations, P uptake in pelargonium plants was 

increased by AM inoculation in experiment 1 of chapter 3. It can be assumed that the 

shoot P concentration in young plants was low enough to induce an uptake of P by AM. 

The present data show for the first time that on peat-compost substrates Zn and K 

uptake was actively supported by AM colonization (Chapters 1 & 3). For Zn, this was 

the case when the Zn status (Chapter 1, Expt. 2) of non-mycorrhizal plants was rela-

tively low. When the nutrient status of non-mycorrhizal plants was higher, the effect of 

AM fungal colonization on Zn uptake was less (Chapter 1, Expt. 1). In contrast, K up-

take was also increased in mycorrhizal plants on substrates that contained sufficient K 

(Chapter 1, Expt. 1). Thus, mycorrhizal Zn uptake was apparently regulated by the plant 

Zn demand, while mycorrhizal K uptake was probably a by-process of the general 

metabolic activity of the fungus irrespective of plant K demand. Hyphae of AM fungi 

can transport not only P (George et al., 92), but also Zn and K (George, 00). This can 

lead to increased K and Zn concentrations in mycorrhizal plants. The contribution of K 
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to plants by AM fungi has previously been described only for acidic soils (Clark and 

Zeto, 00; Alloush and Clark, 01) and in one report for a peat substrate at pH 5.8 

(Nowak, 04). It can be speculated that the decomposition of the organic compost mate-

rial released pH reducing humic acids which increase K availability in the substrate. It 

may even be possible that small aggregates of compost and peat remained acidic in the 

limed environment, and that hyphae were able to enter and exploit those acidic aggre-

gates. 

On perlite, an AM induced increase in shoot dry weight in plants fertilized with a 

high ammonium:nitrate ratio could be realized for A. fistulosum (Chapter 4), A. sati-

vum (data not shown), and A. tuberosum (data not shown). This effect did not occure 

with higher rates of nitrate supply. No supporting effect of AM was found on uptake of 

N, P, K, Zn, Mg or Cu in A. tuberosum and A. fistulosum grown on perlite (Chapters 4 & 

5). These results indicate that the plants on perlite had been sufficiently supplied with 

those nutrients. In addition, bare roots systems may be ideally suited to use percolating 

nutrient solution, so that hyphal element uptake may be neglible under conditions of 

perlite-nutrient solution experiments. The uptake of S is separately discussed below. 

For a test of the support for plants P acquisition from rock phosphate by AM fungi, 

the fast-growing lettuce plant was used (Chapter 2). It was hypothesized that AM colo-

nization would increase P mineralization from rock phosphate on peat substrates. Ar-

buscular mycorrhizal fungi, however, did not increase P uptake from peat substrates 

amended with rock phosphate. Moreover, AM also did not increase shoot dry weight. 

Apparently, the P mobilization mechanism of AM did not increase the availability to 

lettuce of P from rock phosphate. These results can be interpreted in two ways: Firstly, 

the finely branched root architecture of lettuce plants and an increase in the root hair 

density of non-mycorrhizal plants induced by low P availability (Gahoonia and Nielsen, 

98; Ma et al., 01) may have fulfilled similar functions to those provided by the hyphae 

of the mycorrhizal plants (Jakobsen et al., 05; Chen et al., 05). Alternativiely, calcium 

phosphate (apatite), the main component of rock phosphate, may have been inaccessi-

ble to plants and AM fungi alike. The latter scenario is consistent with the results that 

were obtained on peat compost substrates (Chapters 1 & 3), where the plant-available P 

fraction was probably fixed in the form of slowly soluble calcium phosphates (Frossard 

et al., 02). An exception to this observation of limited P mobilization by AM fungi was 

found only once, in pelargonium plants (Chapter 3, Expt. 1). 

Organic management has been reported to increase the biodiversity of AM compared 

to conventionally-managed soils (Mäder et al., 02; Oehl et al., 04; 05). It was hypothe-

sized that AM strains originating from organically managed or natural habitats would 
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be superior at mobilizing P from rock phosphate compared to a commercial inoculum. 

Overall, the AM strains did not increase the acquisition of P by lettuce plants, compared 

to non-inoculated plants (Chapter 2). Nevertheless, there was a tendency that the 

commercial AM inoculum and the isolate from an organic-dynamically managed soil 

were superior in mobilizing P from rock phosphate compared to the isolate from a na-

ture conservation area. 

7.3 Effect of arbuscular mycorrhiza colonization on flower 
development  

Mycorrhizal ornamental plants have often been observed to develop and flower ear-

lier compared to non-mycorrhizal plants, although the mechanism responsible for this 

phenomenon is not clear. It was hypothesized that AM would increase flower and bud 

development in pelargonium and poinsettia. The number of buds and flowers were in 

fact in the present study significantly increased by AM fungi, and shoot K concentration 

corresponded directly and positively with the number of buds and flowers (Chapter 3). 

In these experiments, shoot P and K concentrations reached levels generally regarded 

as sufficient for these species only in the inoculated treatments. However, the flowering 

effect of AM colonization can probably not be credited solely to the higher plant nutri-

ent uptake, because the differences in shoot nutrient concentrations between mycorrhi-

zal and non-mycorrhizal plants were not always statistically significant. 

The positive effect of increased shoot K concentration on flowering was evident. Po-

tassium performs in a wide range of functions in plants (Marschner, 95). For example, 

K acts as a carrier ion in xylem and phloem, transporting solutes, assimilates, and hor-

monal stress signals such as abscisic acid (Peuke et al., 02). Higher levels of K in a plant 

could be responsible for quicker transport of phytohormones, such as gibberellins, in-

ducing bud production. The production of such hormones may also be increased by 

mycorrhizal colonization. 

7.4 Effect of arbuscular mycorrhizal colonization and of a 
high ammonium:nitrate ratio on organosulfur com-
pounds in plants 

Arbuscular mycorrhizal fungi may influence secondary plant metabolism, as was 

shown above in the case of flower development. Allium species are easily colonized by 

AM (Fusconi et al., 05), and they contain secondary metabolites that support human 
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health in several ways, such as organosulfur compounds investigated in this study 

(Kodera et al., 03). 

Previous studies have shown that the concentration of organosulfur compounds in-

creases in Allium species with increasing S concentration in plant tissue and external 

solution (Randle, 92b; Randle and Bussard, 93), and they can be influenced by S and N 

fertilization (Coolong and Randle, 03). In general, ammonium (NH4
+) absorption into 

roots supports the uptake of anions like sulfate (SO4
2-). Nitrate (NO3

-) uptake can sup-

press the uptake of other anions, a consequence of the plant's maintenance of ionic bal-

ance (Marschner, 95).  

It was therefore hypothesized that increasing the ammonium:nitrate ratio in the ex-

ternal solution would increase the uptake of SO4
2- and therefore increase the concentra-

tion and/or content of organosulfur compounds in the plant. Although high concentra-

tion of NH4
+ in the substrate solution can be toxic to plants, NH4

+ is the most important 

source of mineral N for microorganisms, such as AM (Stitt et al., 02). Thus AM fungi 

should support growth of mycorrhizal plants. Therefore, it was also hypothesized that, 

in onion plants fertilized with a high ammonium:nitrate ratio, AM colonization would 

increase plant growth, stimulate secondary plant metabolism, and consequently in-

crease plant tissue content of organosulfur compounds. 

In the present experiments, organosulfur compounds responded to two fertilization 

treatments: First, their concentration in the shoot tissue was increased by increasing S 

concentration in the substrate solution and in the shoot (Chapter 5, Expt. 1). Secondly, 

their concentration and content in the A. tuberosum plant was higher when N was sup-

plied with a intermediate ammonium:nitrate ratio compared to a low one (Chapter 5, 

Expt. 2). These results indicate that organosulfur compounds in the plants are influ-

enced not only by S and N supply, but also by N speciation. 

The results of the present study show that increased yield of organosulfur com-

pounds can be achieved at intermediate ammonium:nitrate ratio that also supports 

high shoot biomass. The increase in biomass may have been the result of either plant 

genuine NH4
+ tolerance (Chapter 5, Expt. 2) or by effects AM colonization against plant 

NH4
+ toxicity (Chapter 4). However, an influence of AM on shoot concentration of or-

ganosulfur compounds could not be detected (Chapters 4 & 5, Expt. 2). 

Shoot S concentration in A. tuberosum was increased in association with AM fungi at 

high NH4
+ supply (Chapter 5, Expt. 2). Perhaps, mycorrhizal plants took up NH4

+ in 

preference to NO3
-, and the lower NO3

- uptake facilitated SO4
2- uptake by those plant. 

Interestingly, the concentration of organosulfur compounds in the shoot did not corre-

spond to changes in shoot S concentration when the external S concentration remained 
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the same (Chapter 4 & 5, Expt. 2). Presumably, the increases in shoot S concentration 

induced either by increasing ammonium:nitrate ratio (Chapter 5, Expt. 2) or by AM 

(Chapter 4) were not sufficiently distinct to increase the production of organosulfur 

compounds. 

The most NH4
+-tolerant Allium species was A. tuberosum (Chapter 5, Expt. 2). It 

produced similar dry weight at low and intermediate ammonium:nitrate ratios. How-

ever, in this species the high shoot NO3
--concentrations that were seen in the low am-

monium:nitrate treatment were associated with decreased concentration of organosul-

fur compounds in the plant. 

Allium fistulosum (Chapter 4) and A. cepa (data not shown) plants preferred a low 

ammonium:nitrate ratio. In this situation, they had highest dry weights and organosul-

fur contents. In the case of mycorrhizal A. fistulosum plants, however, dry weight and 

organosulfur content were similarly high on the low and intermediate ammo-

nium:nitrate ratios (Chapter 4). High NH4
+ fertilization was accompanied by low pH in 

the medium. Recent experiments have shown that NO3
- and NH4

+ are assimilated into 

arginine at the tip of the mycorrhizal hyphae, transported to the plant, and transferred 

probably as NH3 through the fungus-plant interface (Govindarajulu et al., 05). In this 

case, the acidification related to ammonium uptake may not take place directly in the 

rhizosphere, and root damage could be reduced. 

At the high ammonium:nitrate ratio, plants showed reduced growth and wilting 

symptoms (Chapters 4 & 5). The main pathway of NH4
+ detoxification of ammonium 

within the plant is the formation of amino acids, amides and related compounds. The 

uptake of NH4
+ into the plant is accompanied by a release of protons into the 

rhizosphere, resulting in a decline in rhizosphere pH. Low pH can affect root growth 

and, as a consequence, cause leaf wilting (Marschner, 95; Claussen and Lenz, 95). It is 

documented (Date et al., 05) that addition of chlorid (Cl) at 8.5 x 10-3 mM with 0.67 mM 

NH4
+ to a nutrient solution caused wilting of lettuce leaf tips, because of the formation 

of chloramines in the solution. Leaf wilting in the present study occurred only on nutri-

ent solutions with the highest NH4
+ concentration (16 – 26 mM Cl). 

7.5 Perspectives for further research 

This thesis covered several aspects of the influence of AM on plant growth and com-

position. New questions arose during the study that should be investigated in more 

detail in further experiments. Some of these points are summarized in the following: 
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From results presented in chapters 1 to 3, it may be assumed that peat and peat com-

post substrates lack beneficial microorganisms like AM or bacteria. In contrast, in soils 

many AM symbioses live in tripartite associations with bacteria (Bonfante, 03; Rillig et 

al., 05; Barea et al., 05; Toljander et al., 06). It is therefore likely that the availability of 

P from rock phosphate or N from horn meal can be increased by incorporating AM to-

gether with P-solubilizing and N-solubilizing bacteria into the substrate. An efficient 

combination of mycorrhizal fungi and P-solubilizing bacteria has been reported to help 

in plants rock phosphate utilization (Barea et al., 75; 02). 

Also interesting is the further investigation of flower development of mycorrhized 

plants. Here, the measurement of phytohormones like auxin and gibberellin in combi-

nation with PO4
3-, K, and Zn fertilization should improve the understanding of flower 

development. This topic may contain economic potential for ornamental plants in hor-

ticulture. 

To maximize the content of health related compounds of the different Allium species, 

it is important to test each Allium species separately for its optimal ammonium:nitrate 

ratio. Moreover, metabolic mechanisms other than nutrient uptake should be consid-

ered when attempting to increase the content of organosulfur compounds. The key ac-

tivities of these compounds include reproduction, defence, pathogenicity, stress resis-

tance and resource storage in plants (Jones et al., 04). Further investigation concerning 

the mechanisms of these key activities might lead to increased production of organosul-

fur compounds in commercial production of Allium species.  

Moreover, Allium species also contain health-related compounds other than organo-

sulfur compounds. Phenols are antioxidants that could also be tested for their response 

to different fertilization regimes. 

Another important factor for the consumer besides the nutrient value of edible plants 

is their taste. Changes in N speciation supply may also alter the pungency, sweetness, 

and juiciness of Allium species, and these changes would need to be evaluated as well. 
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8 Summary 

Arbuscular mycorrhizal (AM) fungi can be beneficial for horticultural crops due to 

their nutrient acquisition properties and stimulation of the plant metabolism. These 

characteristics of AM fungi may be of relevance for two topics that recently became a 

focus of both producers and consumers: organic agriculture and plant quality (secon-

dary metabolite production) in crops. These topics with high practical relevance have 

until now only been sparsely investigated.  

The present work investigates the prospects of AM fungi in horticultural production 

and thus engages in the rarely investigated interface of practice and research. It focuses 

on the prospects of AM fungi a) to solve plant nutritional problems, b) to induce the 

flower development of ornamental plants, and c) to improve the health potential of 

crop plants for humans.  

Plant nutritional problems and the contribution of AM fungi were investigated with 

leek, pelargonium and poinsettia plants on peat-based substrates with 20% and 40% 

compost additions (chapter 1 & 3), lettuce plants on peat-based substrates grown with 

substrate own P, and with additions of rock phosphate, or highly soluble P (chapter 2), 

and bunching onion and chinese chive fertilized with a nutrient solution with low, me-

dium and high ammonium:nitrate ratios in perlite (chapter 4 & 5). Mycorrhizal coloni-

zation, dry weight, and N, P, K, S, NO3
-, Mg and Zn concentrations in plants were 

measured. 

On peat based substrates, inoculation with AM fungi resulted in colonization rates of 

up to 70% of total root length in leek (chapter 1), 36% in pelargonium and 2% in poin-

settia (chapter 3). Mycorrhizal fungus colonization increased shoot Zn and K concen-

trations in leek, shoot P and K concentrations in pelargonium, but did not significantly 

affect shoot dry matter or shoot N concentrations. Similarly AM colonization (up to 

65%) of lettuce plants (chapter 2) did not promote dry matter production on substrate 

own P and rock phosphate (low P availability), or highly soluble P (high P availability) 

compared to the non mycorrhizal plants. Although AM colonization increased shoot N, 

Mg, and Zn concentrations in lettuce plants, shoot P concentration was not increased 

(chapter 2). Compost addition to peat-based substrates (chapter 1 & 3) increased plant 

growth, shoot P concentration and in leek also shoot K concentration, but addition of 

compost did not always completely meet plant nutrient demand. Phosphorus seemed to 

be fixed on peat based substrates and therefore less available to AM fungi compared to 

soils, whereas K was especially available on peat based compost substrates.  

On perlite, AM colonization rates of Allium fistulosum (chapter 4) were low, but AM 

colonization drastically increased dry matter production of plants at high and medium 

ammonium:nitrate ratios (low pH). The AM colonization had no impact on the growth 
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of A. tuberosum (chapter 5). Here, highest colonization rates (43%) were observed at a 

low ammonium:nitrate ratio, decreasing with increasing rate of ammonium supply. 

Generally mycorrhizal colonization did not significantly increase shoot N, S, and P con-

centrations of A. fistulosum or shoot N, P, K, Mg and NO3
- concentrations in A. tubero-

sum. Only shoot NO3
- concentrations in A. fistulosum and shoot S concentrations in A. 

tuberosum were increased by AM colonization. The highest rate of ammonium supply 

increased shoot N and P concentrations in A. fistulosum. Dry matter production of A. 

fistulosum increased with the supply of N at a low ammonium:nitrate ratio compared 

to the other two ratios of N supply. In contrast, A. tuberosum had similar dry matter 

production on low and medium ammonium:nitrate ratio. An effect of AM colonization 

on nutrient uptake was rare due to the high nutrient supply. The benefit of AM fungi 

against ammonium toxicity could be sparsely observed. 

Mycorrhizal effects on bud and flower development were investigated by inoculating 

pelargonium and poinsettia plants with three commercial AM inocula in combination 

with 20% and 40% compost additions on peat-based substrates (chapter 3). Mycorrhi-

zal colonization increased the number of buds and flowers in both plant species. 

Treatment effects on secondary metabolites in A. fistulosum and A. tuberosum were 

determined by exposing mycorrhizal and non mycorrhizal plants to three ammo-

nium:nitrate supply ratios. The compounds measured were singular sugars (glucose, 

fructose, and sucrose), total soluble solids, and organosulfur compounds (measured as 

pyruvic acid). In A. fistulosum (chapter 4) the ammonium:nitrate ratio and AM coloni-

zation, and in A. tuberosum (chapter 5) AM colonization had little effect on singular 

sugar, soluble solid compounds, or pyruvic acid concentration. However, A. tuberosum 

grown at a medium ammonium:nitrate ratio had increased pyruvic acid concentrations 

compared to plants grown at a low ammonium:nitrate ratio. Non-mycorrhizal A. fistu-

losum plants performed best in terms of shoot growth and quality when supplied with 

N at a low ammonium:nitrate ratio. However, when A. fistulosum was protected by AM 

colonization against inhibiting effects of high ammonium supply, the plants produced 

similar amounts of organosulfur compounds at a low and medium ammonium:nitrate 

ratios. In contrast, for A. tuberosum a medium ammonium:nitrate ratio was preferen-

tial for the production of high amounts of health related organosulfur compounds irre-

spectively of AM colonization. 

 

All non-mycorrhizal treatments remained free of AM colonization in all used sub-

strates, although the peat-based substrates and compost were not sterilized before use. 

On the other hand high rates of AM colonization could be obtained after AM inocula-

tion. This observation that all substrates used in this study did not support spontaneous 

mycorrhizal colonization is of high practical significance. Horticultural producers must 



Summary 

111 

use inoculation and relatively low nutrient addition rates if they intend to grow my-

corrhizal plants on these substrates. 

Colonization improved plant nutrient status and flower development. Under the de-

scribed experimental conditions, however, plants did not consistently benefit in growth 

or plant composition from the mycorrhizal symbiosis. Additions of compost were a 

means of improving the substrate quality for an increased plant nutrient acquisition 

and plant growth in organic horticulture. The plant quality of Allium species in respect 

to organosulfur compounds was increased by taking the individual Allium species into 

consideration, their specific requirements for an optimal ammonium:nitrate supply 

ratio, and a possible AM effect on plant growth. 
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9 Zusammenfassung 

Aufgrund seines Nährstoffaneignungsvermögens und seiner Stimulierung des Pflan-

zenmetabolismus kann der Arbuskuläre Mykorrhiza (AM) Pilz im Gartenbau nutzbrin-

gend eingesetzt werden. Diese Eigenschaften des AM Pilzes könnte für zwei Themen an 

Bedeutung gewinnen, die in den letzten Jahren in den Blick von Produzenten und Kon-

sumenten rückten: den ökologische Landbau und die Pflanzenqualität (Primäre und 

Sekundäre Pflanzenstoffe). Diese Themen haben eine hohe praktische Relevanz, wur-

den aber bisher in dieser Hinsicht nur wenig wissenschaftlich untersucht. 

Die vorliegende Arbeit beschäftigt sich mit den Möglichkeiten von AM Pilzen im Gar-

tenbau und betrachtet damit die nur selten untersuchte Schnittstelle zwischen Praxis 

und Forschung. Die Schwerpunkte der Arbeit liegen auf der Möglichkeit von AM Pilzen 

a) pflanzenernährerische Probleme zu lösen, b) die Bildung von Blüten bei Zierpflanzen 

zu induzieren und c) das Gesundheitspotential von Gemüsepflanzen für den Menschen 

zu erhöhen. 

Der Beitrag von AM Pilzen zu der Lösung von pflanzenernährerischen Problemen 

wurde anhand von Porree, Pelargonie und Poinsettie auf einem Torf-basiertem Sub-

strat mit 20% und 40% Kompostzusatz (Kapitel 1 & 3) untersucht. Des Weiteren wurde 

Salat auf Torf basierten Substraten mit unterschiedlichen Phosphorbehandlungen ge-

tested: substrateigenem P und Zugabe von Rohphosphat und gut löslichem P (Kapitel 

2). Zuletzt wurden Chinesische Frühlingszwiebeln und chinesischer Schnittknoblauch 

mit Nährlösungen auf Perlit ernährt, die jeweils ein niedriges, mittleres und hohes 

Ammonium/Nitrat Verhältnis aufwiesen (Kapitel 4 & 5). Gemessen wurde die Mykor-

rhiza-Kolonisation, die Trockenmasse und die N, P, K, S, NO3
-, Mg und Zn Konzentra-

tionen im Pflanzenspross. 

Auf den Torf basierten Substraten ergab die Inokulation mit AM Pilzen eine Koloni-

sationsrate von bis zu 70% der Wurzellänge von Porree (Kapitel 1), 36% von Pelargonie 

und 2% von Poinsettien (Kapitel 3). Die AM Kolonisation erhöhte die Spross Zn und K 

Konzentrationen in Porree, die Spross P und K Konzentrationen in Pelargonie, aber die 

AM Kolonisation beeinflusste bei keiner der drei Spezies signifikant die Sprosstrok-

kenmasse oder N Konzentration im Spross. Ebenso unterstützte die AM Kolonisation 

(bis zu 65%) der Salatpflanzen (Kapitel 2) die Trockenmassebildung weder auf Substra-

ten mit substrateigenem P, Rohphosphate (niedrige P Verfügbarkeit), oder gut lösli-

chem P (gute P Verfügbarkeit) im Vergleich zu nicht mykorrhizierten Pflanzen. Wäh-

rend AM Kolonisation die Spross N, Mg und Zn Konzentrationen in Salatpflanzen 

erhöhte, wurde die Spross P Konzentration nicht erhöht (Kapitel 2). Kompostgaben zu 
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den Torf basierten Substraten (Kapitel 1 & 3) hingegen erhöhte das Pflanzenwachstum, 

die Spross P Konzentration und in Porree auch die Spross K Konzentration. Allerdings 

deckte die Zugabe von Kompost nicht immer den Nährstoffbedarf der Pflanzen. Even-

tuell wird P auf Torf basierten Substraten fixiert und ist dadurch weniger verfügbar für 

den AM Pilz als auf Böden. Dahingegen scheint K vorzugsweise auf Torf basierten Sub-

straten mit Kompostgaben verfügbar zu sein. Auf Perlit war die AM Kolonisationsrate 

von Allium fistulosum (Kapitel 4) niedrig, aber die AM Kolonisation erhöhte die Trok-

kenmasse der Pflanzen drastisch bei hohen und mittleren Ammonium/Nitrat Verhält-

nissen (niedriger pH). Die AM Kolonisation hatte keinen Einfluß auf das Wachstum 

von A. tuberosum (Kapitel 5). Hier wurde die höchste Kolonisationsrate (43%) bei nied-

rigem Ammonium/Nitrat Verhältnis beobachtet, die mit steigendem Ammoni-

um/Nitrat Verhältnis abnahm. Allgemein erhöhte die AM Kolonisation die Spross N, S 

und P Konzentrationen von A. fistulosum und die Spross N, P, K, Mg und NO3
- Kon-

zentrationen von A. tuberosum nicht signifikant. Nur die Spross NO3
- Konzentrationen 

von A. fistulosum und die Spross S Konzentrationen von A. tuberosum wurden durch 

AM Kolonisation erhöht. Stickstoffgaben in Form eines hohen Ammonium/Nitrat Ver-

hältnisses erhöhte die Spross N und P Konzentrationen von A. fistulosum. Die Tro-

ckenmasse bei A. fistulosum erhöhte sich bei einem niedrigen Ammonium/Nitrat Ver-

hältnis im Vergleich zu den anderen beiden Ammonium/Nitrat Verhältnissen. Im 

Gegensatz dazu erreichte A. tuberosum gleiche Trockenmassen bei niedrigen und mitt-

leren Ammonium/Nitrat Verhältnissen. Insgesamt war der Einfluss der AM Kolonisati-

on auf die Nährstoffaufnahme aufgrund der hohen Nährstoffzufuhr variabel. Gegen 

Ammonium Toxizität konnte ein Schutz durch den AM Pilz nachgewisen werden, aber 

diese Ergebnisse waren nicht immer wiederholbar. 

Der Effekt vom AM Pilz auf die Entwicklung von Knospen und Blüten wurde bei ino-

kulierten Pelargonien und Poinsettien untersucht. Die Pflanzen wurden mit drei kom-

merziellen AM Inokula in Kombination mit 20% und 40% Kompostgaben auf Torf ba-

sierten Substraten untersucht (Kapitel 3). Die AM Kolonisation erhöhte die Anzahl der 

Knospen und Blüten bei beiden Pflanzenspezies.  

Behandlungseffekte von AM Kolonisation auf die sekundären Pflanzestoffe von A. 

fistulosum und A. tuberosum wurden in Kombination mit drei verschiedenen Verhält-

nissen von Ammonium zu Nitrat in der Nährlösung auf Perlit untersucht. Die unter-

suchten Inhaltsstoffe waren Einzelzucker (Glukose, Fruktose, und Saccharose), lösliche 

Feststoffe und organische Schwefelverbindungen (gemessen als Pyruvat). In A. fistulo-

sum (Kapitel 4) hatten das Ammonium/Nitrat Verhältnis und die AM Kolonisation, 

sowie in A. tuberosum (Kapitel 5) die AM Kolonisation kaum einen Einfluss auf die 
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Konzentrationen der Einzelzucker, der löslichen Feststoffe, oder des Pyruvats. Aller-

dings hatten A. tuberosum Pflanzen bei einem mittleren Verhältnis von Ammonium zu 

Nitrat erhöhte Pyruvat Konzentrationen im Vergleich zu Pflanzen, die auf einem nied-

rigen Ammonium/Nitrat Verhältnis wuchsen. Im Bezug auf Sprosswachstum und In-

haltsstoffe zeigten die nicht mykorrhizierten A. fistulosum Pflanzen erhöhte Trocken-

massen und Gesamtgehalte bei einem niedrigen Ammonium/Nitrat Verhältnis im 

Vergleich zu den anderen Ammonium/Nitrat Verhältnissen. Jedoch produzierten A. 

fistulosum Pflanzen gleich hohe Gesamtgehalte von organischen Schwefelverbindungen 

bei niedrigen und mittleren Ammonium/Nitrat Verhältnissen, wenn sie von AM Kolo-

nisation gegen den einschränkenden Effekt einer hohen Ammonium Düngung ge-

schützt waren. Im Gegensatz dazu war das mittlere Ammonium/Nitrate Verhältnis für 

A. tuberosum die bevorzugte Mischung für die Produktion eines hohen Gesamtgehalts 

an gesundheitsfördernden organischen Schwefelverbindungen unabhängig von der AM 

Kolonisation.  

 

Eine spontane Entwicklung von AM Kolonisation in den nicht mykorrhizierten Be-

handlungen aller verwendeter Substrate konnte nicht beobachtet werden, obwohl  die 

Torf basierten Substrate und der Kompost vor Gebrauch nicht sterilisiert wurden. Nach 

einer Inokulation war jedoch eine hohe Kolonisationsrate erreichbar. Diese Beobach-

tung hat einen hohen praktischen Wert für den Gartenbauer. Für den Anbau von my-

korrhizierten Pflanzen auf diesen Substraten ist eine AM Inokulation unumgänglich. 

Dies sollte mit einem niedrigen Nährstoffangebot gekoppelt sein. 

Eine AM Kolonisation konnte die Nährstoffversorgung der Pflanze verbessern und 

die Blütenbildung erhöhen. Jedoch profitierten die Pflanzen unter den beschriebenen 

experimentellen Bedingungen nicht durchgängig in ihrem Wachstum und ihren Inhalt-

stoffen von dem AM Pilz. Die Zugabe von Kompost ermöglichte die Verbesserung der 

Substratqualität für die Nährstoffversorgung und das Pflanzenwachstum unter biologi-

schen Gartenbaubedingungen. Der Ertrag von gesundheitsförderlichen organischen 

Schwefelverbindungen und die damit verbundene Pflanzenqualität konnten, in Abhän-

gigkeit von der jeweiligen Allium Spezies, durch eine Variation des Ammonium/Nitrat 

Verhältnisses oder einen AM Effekt auf das Wachstum, gesteigert werden. 
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