Mersenne Numbers

Guy Haworth
PREFACE

These notes have been issued on a small scale in 1983 and 1987 and on request at other times.

This issue follows two items of news. First, Walter Colquitt and Luther Welsh found the 'missed' Mersenne prime M_{110503} and advanced the frontier of complete M_p-testing to 139,267. In so doing, they terminated Slowinski's significant string of four consecutive Mersenne primes. Secondly, a team of five established a non-Mersenne number as the largest known prime. This result terminated the 1952-89 reign of Mersenne primes.

All the original Mersenne numbers with $p < 258$ were factorised some time ago. The Sandia Laboratories team of Davis, Holdridge & Simmons with some little assistance from a CRAY machine cracked M_{211} in 1983 and M_{251} in 1984. They contributed their results to the 'Cunningham Project', care of Sam Wagstaff. That project is now moving apace thanks to developments in technology, factorisation and primality-testing.

New levels of computer power and new computer architectures motivated by the open-ended promise of parallelism are now available. Once again, the suppliers may be offering free buildings with the computer. However, the Sandia '84 CRAY-I implementation of the quadratic-sieve method is now outpowered by the number-field sieve technique. This is deployed on either purpose-built hardware or large syndicates, even distributed world-wide, of collaborating standard processors.

New factorisation techniques of both special and general applicability have been defined and deployed. The elliptic-curve method finds large factors with helpful properties while the number-field sieve approach is breaking down composites with over one hundred digits.

The material is updated on an occasional basis to follow the latest developments in primality-testing large M_p and factorising smaller M_p; all dates derive from the published literature or referenced private communications. Minor corrections, additions and changes merely advance the issue number after the decimal point.

The reader is invited to report to the address below any errors and omissions that have escaped the proof-reading, to answer the unresolved questions noted and to suggest additional material associated with this subject.

Guy Haworth
33, Alexandra Rd., Reading, Berkshire
England, RG1 5PG

Issue 10.2 of 22/01/90
ACKNOWLEDGMENTS

I must first recall with great pleasure that I was introduced to elementary number theory and the Mersenne numbers by an Oxford copy of Dan Shanks' "Solved and Unsolved Problems in Number Theory". His entertaining text remains most readable in its current third edition and achieves the difficult objective of presenting the key concepts in both a logical and a historical perspective.

In the same spirit, I should next like to thank my colleague Stewart Reddaway of ICL whose interest in parallel processors, multiplication techniques and the Mersenne problem re-awakened my earlier interest in this area. Stewart's DAP implementation team included Steve Holmes, David Hunt and Tom Lake; their thorough approach to the major coding task resulted in their second sourcing all M_p-LRs available and filing all necessary M_p-LRs for $p < 100,000$.

I thank now everyone who has directly or indirectly contributed to the content of these notes, not least those who developed algorithms and carried out computations on the Mersenne Numbers. The completeness and topicality of the material is due in large part to those who, in private correspondence, were able to restore the colour to the events of the past or even recreate old computations.

I thank Nelson, Shanks and Tuckerman for having the foresight to preserve unpublished M_p-LLT results in private files. I thank Brent, Brillhart, Davis & Holdridge, Keller, Naur, Pollard, Suyama & Wagstaff for factorisations associated with the M_p. They were willing to attack the major peaks which 70-digit numbers represented at the time and also patient and thorough enough to dismiss the small composites which I listed.

This compilation has been significantly assisted by the services provided to assist such research. I was fortunate to be able to call on the help of the British Library, Reading University's Library and Computer Service, the abstracting service of Mathematical Reviews and the production facilities provided by ICL.
<table>
<thead>
<tr>
<th>Ch</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preface</td>
</tr>
<tr>
<td>2</td>
<td>Acknowledgments</td>
</tr>
<tr>
<td>3</td>
<td>Contents</td>
</tr>
<tr>
<td>4</td>
<td>Introduction</td>
</tr>
<tr>
<td>5</td>
<td>Abbreviations</td>
</tr>
<tr>
<td>6</td>
<td>Mersenne Number Status Table</td>
</tr>
<tr>
<td>7</td>
<td>Prime Mersenne Numbers</td>
</tr>
<tr>
<td>8</td>
<td>Tables of Factors of Mersenne Numbers</td>
</tr>
<tr>
<td>9</td>
<td>Original Mersenne Numbers - Positive Results only: M_p Order</td>
</tr>
<tr>
<td>10</td>
<td>Original Mersenne Numbers - All Results and some errors: M_p Order</td>
</tr>
<tr>
<td>11</td>
<td>Further Mersenne Numbers - Lucas-Lehmer tests and errors: M_p Order</td>
</tr>
<tr>
<td>12</td>
<td>Published Work - Errors: Author Order</td>
</tr>
<tr>
<td>13</td>
<td>Conjectures Resolved</td>
</tr>
<tr>
<td>14</td>
<td>Conjectures Outstanding</td>
</tr>
<tr>
<td>15</td>
<td>Theoretical Results</td>
</tr>
<tr>
<td>16</td>
<td>Computational Details</td>
</tr>
<tr>
<td>17</td>
<td>Status-quo and Questions</td>
</tr>
<tr>
<td>18</td>
<td>Authors</td>
</tr>
<tr>
<td>19</td>
<td>References indexed in "Mathematical Reviews"</td>
</tr>
<tr>
<td>20</td>
<td>Bibliography</td>
</tr>
<tr>
<td>21</td>
<td>Keywords</td>
</tr>
</tbody>
</table>
INTRODUCTION

The number system has been studied since the earliest times and this history begins with Pythagoras and Euclid.

One of the earliest interests was the concept of the 'perfect' number - a number equal to the sum of its proper divisors. Here, '1' but not the number itself is regarded as a proper divisor.

Such numbers are rare and the earliest examples, 6 and 28, were invested with mystical significance by numerologists and philosophers.

The major moments in the history of the search for perfect numbers have been provided by Euclid (275BC), Mersenne (1644), Lucas (1876) and by the advent of the electronic computer in the 1950s.

Euclid showed that \(2^{n-1}(2^n-1)\) was perfect if \(2^n-1\) was a prime. Again the early \(2^n-1\) primes, 3 and 7, were specific objects of numerological interest. Supplementary results have shown that \(2^n-1\) is prime only if \(n\) is a prime 'p', that all even perfect numbers are of Euclid's form, and that the factors of \(2^P-1\) are of a specific form.

No odd perfect numbers are known. As successive papers add to the conditions which such numbers must satisfy, their existence looks increasingly unlikely. Had '1' not been regarded as a proper divisor, the story might well have been different.

Mersenne took a specific interest in numbers of the form \(2^P-1\) and incorrectly stated which \(p < 258\) led to perfect numbers. He provided no proofs and it might be generous to regard his statement as a conjecture. Unwittingly or not, he contributed no results but threw down a challenge in 1644 which has been taken up ever since. Rouse Ball dubbed the \(2^P-1\) 'Mersenne Numbers' in 1911, thereby creating the first nine Mersenne primes at a stroke. Some thousands of computational hours have been expended on the 'Mersenne Numbers' \(M_p = 2^P-1\) either to find their prime/composite status or to find their factors.

Lucas provided a convenient primality test for the \(M_p\). D H Lehmer gave a full proof of a refined version of the test in 1930. The Lucas-Lehmer test was manually applied to 19 of the "original" \(M_p\) (\(p < 258\)) though correct computations were not always the result.

The status of Mersenne's statement - five errors - is commonly thought to have been resolved by Uhler's work in 1946. However, this is not so because the contributions of Fauquembergues (\(M_{101}, M_{137}\)) and Barker (\(M_{167}\)) were found in 1952 to be incorrect by Robinson's SWAC program. The SWAC results put on file for the first time a sufficient set of correct Lucas computations, correcting those errors and filling in for previous unpublished results. Robinson also ratified a number of Lucas computations; all Lucas results have been independently checked for these notes.

Before turning to the electronic computer, we should note the 'pre-history' work done with a variety of computational aids. These included factor stencils, mechanical or electro-mechanical calculators and D H Lehmer's various sieves which were specifically produced to attack residue problems. DHL's first sieve in 1927 relied on bicycle chains and pins attached to the links signalled a result. The second sieve in 1932 substituted holed gear-wheels for bicycle-chains and pins; a sensitive amplifier magnified the minute signal from a photo-electric cell when a ray of light fleetingly shone through the aligned holes in the wheels. An electronic sieve in 1965 continued the line.
The late 1940s provided a quantum jump in computational capability. Lehmer's 700 hour calculation on M_{257} was confirmed in 48 seconds by the SWAC machine in 1952; the phrase "a month a minute" even then understated the ratio between manpower and computer power. Man was liberated from the drudgery of calculation. By the early 1970s, the computer could put away a lifetime's calculations in a second. Today, the latest supercomputers are equivalent to 10^7 SWACs on the M_p benchmark and we are only just beginning to exploit mass parallelism in our computer architectures.

Progress on primality-testing the M_p themselves has been governed by the increasing power of computers though the latest approaches to multiplication have contributed. The Schonnage-Strassen technique reduces the squaring of an n-bit number to $O(n \log n)$ as compared to the $O(n^2)$ of the schoolboy technique and makes a real contribution when n is of the order of 100000.

Considerable mathematical progress has been achieved on factorisation and general primality-testing since 1970. The complete factorisation of Mersenne's original numbers was achieved in February 1984 and the smallest unfactorised M_p is now M_{449}.

These notes tabulate the results in various ways and provides a full though inevitably incomplete reference to the relevant literature. The 'errors' section shows the difficulties of proof-reading and the desirability of automating the publication process.

The observations also tells a cautionary tale to those organising future computations for as noted above, occasional Lucas results connected with the M_p have later been revealed as incorrect. Computer programs are becoming increasingly important in our lives and their results, which cannot be checked manually, must as far as possible be self-checking or confirmed by independent program.

Mersenne requires no successor today but the 'Cunningham Project' [B17] provides the motivation and focus for current work aiming to advance the state of the art in factorisation and primality-testing. With Slowinski's code active on current and future CRAYs and with the advent of other supercomputers, we may anticipate further discoveries of Mersenne primes.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARPCL</td>
<td>Adleman-Rumely-Pomerance-Cohen-Lenstra primality test [A4; C31]</td>
</tr>
<tr>
<td>cf</td>
<td>Continued Fraction factorisation algorithm</td>
</tr>
<tr>
<td>cf-ea</td>
<td>Continued Fraction with early abort factorisation algorithm</td>
</tr>
<tr>
<td>cn</td>
<td>A composite number of 'n' decimal digits</td>
</tr>
<tr>
<td>DS</td>
<td>Difference-of-squares factorisation technique</td>
</tr>
<tr>
<td>ecm</td>
<td>Elliptic Curve (factorisation) method</td>
</tr>
<tr>
<td>E_p</td>
<td>the Perfect Number corresponding to prime M_p ($= 2^{p-1} * M_p$)</td>
</tr>
<tr>
<td>e_p</td>
<td>the number of digits in the decimal representation of E_p</td>
</tr>
<tr>
<td>FACT</td>
<td>Fast Fermat-Number Transform multiplication algorithm</td>
</tr>
<tr>
<td>f_i</td>
<td>the 'ith' prime factor of the M_p in context</td>
</tr>
<tr>
<td>GCD</td>
<td>greatest common divisor</td>
</tr>
<tr>
<td>$h'm's$</td>
<td>timing information: 'h' hours, 'm' minutes, 's' seconds</td>
</tr>
<tr>
<td>lprpn(p,q)</td>
<td>a 'Lucas probable prime' of 'n' decimal digits</td>
</tr>
<tr>
<td>lpspn(p,q)</td>
<td>a composite lprpn(p,q); a Lucas pseudoprime</td>
</tr>
<tr>
<td>LLT</td>
<td>Lucas-Lehmer test (M_p prime \iff LR = 0)</td>
</tr>
<tr>
<td>LR</td>
<td>Lucas Residue ($S_{P-1} \mod M_p$ where $S_n = S_{n-1} - 2$, $S_1 = 4$)</td>
</tr>
<tr>
<td>M_p</td>
<td>the Mersenne number 2^P-1, p being prime</td>
</tr>
<tr>
<td>M_p</td>
<td>the number of digits in the decimal representation of M_p</td>
</tr>
<tr>
<td>mp-qs</td>
<td>multiple-polynomial quadratic sieve factorisation method</td>
</tr>
<tr>
<td>NFF</td>
<td>'no further factor'</td>
</tr>
<tr>
<td>NZLR</td>
<td>non-zero Lucas Residue</td>
</tr>
<tr>
<td>pn</td>
<td>a prime number of 'n' decimal digits</td>
</tr>
<tr>
<td>Pp</td>
<td>Pollard's 'P-1' factorisation technique</td>
</tr>
<tr>
<td>PPL-pf</td>
<td>Proth-Pocklington-Lehmer prime-factorisation (certificate)</td>
</tr>
<tr>
<td>prpn(a)</td>
<td>a 'probable prime' N of 'n' decimal digits satisfying: $a^{N-1} = 1 \mod N$; $(a, N) = 1$</td>
</tr>
<tr>
<td>pspn(a)</td>
<td>a composite prpn(a), a pseudoprime to base 'a'</td>
</tr>
<tr>
<td>qs</td>
<td>Quadratic Sieve factorisation algorithm</td>
</tr>
<tr>
<td>rho</td>
<td>Monte-Carlo factorisation method</td>
</tr>
<tr>
<td>sprpn(a)</td>
<td>a 'strongly probable prime' N of 'n' decimal digits satisfying: $N-1 = d \cdot 2^s$; $a^d = 1 \mod N$ or $a^d \cdot 2 = -1 \mod N$ for some r, $0 \leq r < s$</td>
</tr>
<tr>
<td>spsnp(a)</td>
<td>a composite sprpn(a), a strong pseudoprime to base 'a'</td>
</tr>
<tr>
<td>TD</td>
<td>trial-division factorisation technique</td>
</tr>
<tr>
<td>ZLR</td>
<td>Zero Lucas residue (\iff 'M_p Prime')</td>
</tr>
</tbody>
</table>

References: an example

[M3; c 01 p13 n66] - see [M3], also cited [D1 page 13 note 66]
The original Mersenne numbers are the 55 $M_p = 2^p - 1$ with $p < 258$ and prime which were the subject of Mersenne's 1644 conjecture:

<table>
<thead>
<tr>
<th>p</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12 prime M_p</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>43 composite and completely factorised M_p</td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>521 607 1279 2203 19 prime M_p</td>
</tr>
<tr>
<td>269</td>
<td></td>
</tr>
<tr>
<td>271</td>
<td></td>
</tr>
<tr>
<td>277</td>
<td></td>
</tr>
<tr>
<td>281</td>
<td></td>
</tr>
<tr>
<td>283</td>
<td></td>
</tr>
<tr>
<td>289</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td></td>
</tr>
<tr>
<td>313</td>
<td></td>
</tr>
<tr>
<td>317</td>
<td></td>
</tr>
<tr>
<td>331</td>
<td></td>
</tr>
<tr>
<td>337</td>
<td></td>
</tr>
<tr>
<td>347</td>
<td></td>
</tr>
<tr>
<td>349</td>
<td></td>
</tr>
<tr>
<td>353</td>
<td></td>
</tr>
<tr>
<td>359</td>
<td></td>
</tr>
<tr>
<td>367</td>
<td></td>
</tr>
<tr>
<td>373</td>
<td></td>
</tr>
<tr>
<td>379</td>
<td></td>
</tr>
<tr>
<td>383</td>
<td></td>
</tr>
<tr>
<td>389</td>
<td></td>
</tr>
<tr>
<td>397</td>
<td></td>
</tr>
<tr>
<td>401</td>
<td></td>
</tr>
<tr>
<td>409</td>
<td></td>
</tr>
<tr>
<td>419</td>
<td></td>
</tr>
<tr>
<td>421</td>
<td></td>
</tr>
<tr>
<td>431</td>
<td></td>
</tr>
<tr>
<td>433</td>
<td></td>
</tr>
<tr>
<td>439</td>
<td></td>
</tr>
<tr>
<td>443</td>
<td></td>
</tr>
<tr>
<td>457</td>
<td></td>
</tr>
<tr>
<td>461</td>
<td></td>
</tr>
<tr>
<td>463</td>
<td></td>
</tr>
<tr>
<td>487</td>
<td></td>
</tr>
<tr>
<td>491</td>
<td></td>
</tr>
<tr>
<td>499</td>
<td></td>
</tr>
<tr>
<td>503</td>
<td></td>
</tr>
<tr>
<td>509</td>
<td></td>
</tr>
<tr>
<td>547</td>
<td></td>
</tr>
<tr>
<td>577</td>
<td></td>
</tr>
<tr>
<td>701</td>
<td></td>
</tr>
<tr>
<td>709</td>
<td></td>
</tr>
<tr>
<td>881</td>
<td></td>
</tr>
<tr>
<td>1049</td>
<td></td>
</tr>
<tr>
<td>1063</td>
<td></td>
</tr>
<tr>
<td>7673</td>
<td></td>
</tr>
<tr>
<td>1303</td>
<td>1127 1459 1637 3041 3359 4127 4243 9 composite and probably completely factorised M_p</td>
</tr>
<tr>
<td>1327</td>
<td></td>
</tr>
<tr>
<td>1459</td>
<td></td>
</tr>
<tr>
<td>1637</td>
<td></td>
</tr>
<tr>
<td>3041</td>
<td></td>
</tr>
<tr>
<td>3359</td>
<td></td>
</tr>
<tr>
<td>4127</td>
<td></td>
</tr>
<tr>
<td>4243</td>
<td></td>
</tr>
<tr>
<td>7673</td>
<td></td>
</tr>
<tr>
<td>394</td>
<td>449 467 479 541 557 563 569 571 First 39 partially factorised M_p</td>
</tr>
<tr>
<td>467</td>
<td></td>
</tr>
<tr>
<td>479</td>
<td></td>
</tr>
<tr>
<td>541</td>
<td></td>
</tr>
<tr>
<td>557</td>
<td></td>
</tr>
<tr>
<td>563</td>
<td></td>
</tr>
<tr>
<td>569</td>
<td></td>
</tr>
<tr>
<td>571</td>
<td></td>
</tr>
<tr>
<td>587</td>
<td></td>
</tr>
<tr>
<td>593</td>
<td></td>
</tr>
<tr>
<td>599</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td></td>
</tr>
<tr>
<td>613</td>
<td></td>
</tr>
<tr>
<td>617</td>
<td></td>
</tr>
<tr>
<td>619</td>
<td></td>
</tr>
<tr>
<td>631</td>
<td></td>
</tr>
<tr>
<td>641</td>
<td></td>
</tr>
<tr>
<td>643</td>
<td></td>
</tr>
<tr>
<td>647</td>
<td></td>
</tr>
<tr>
<td>653</td>
<td></td>
</tr>
<tr>
<td>659</td>
<td></td>
</tr>
<tr>
<td>661</td>
<td></td>
</tr>
<tr>
<td>673</td>
<td></td>
</tr>
<tr>
<td>677</td>
<td></td>
</tr>
<tr>
<td>683</td>
<td></td>
</tr>
<tr>
<td>691</td>
<td></td>
</tr>
<tr>
<td>719</td>
<td></td>
</tr>
<tr>
<td>733</td>
<td></td>
</tr>
<tr>
<td>739</td>
<td></td>
</tr>
<tr>
<td>743</td>
<td></td>
</tr>
<tr>
<td>757</td>
<td></td>
</tr>
<tr>
<td>761</td>
<td></td>
</tr>
<tr>
<td>769</td>
<td></td>
</tr>
<tr>
<td>773</td>
<td></td>
</tr>
<tr>
<td>787</td>
<td></td>
</tr>
<tr>
<td>797</td>
<td></td>
</tr>
<tr>
<td>811</td>
<td></td>
</tr>
<tr>
<td>821</td>
<td></td>
</tr>
<tr>
<td>827</td>
<td></td>
</tr>
<tr>
<td>831</td>
<td></td>
</tr>
<tr>
<td>929</td>
<td></td>
</tr>
<tr>
<td>983</td>
<td></td>
</tr>
<tr>
<td>997</td>
<td></td>
</tr>
<tr>
<td>1061</td>
<td>First 9 M_p with no known factor</td>
</tr>
</tbody>
</table>

See [B17 Edition 2 & update 2.2] and [K31] for the 'probably' factorised M_p.
The prime M_p in the 'original Mersenne number' range $p < 258$ were discovered without the aid of electronic computers. Prime M_p beyond that range were discovered with the aid of electronic computers.

An independent computation on the ICL 2900 DAP has confirmed the Lucas residues for all M_p in the range $p < 50024$ where no factor was known. A factor or LR has been calculated on the DAP for all M_p in the range $p < 100000$ [H18] and by Colquitt/Welsh on the NEC SX/2 [C32-C34] for all p in range $100000 < p < 139267$.

Assuming Pomerance's conjecture on the distribution of Mersenne Primes, a computer using FFNT (or 'schoolboy') multiplication will spend twice (or four times) as long discovering the next Mersenne Prime as confirming all previous results. FFNT algorithms been implemented on the ICL DAP, CRAY-XMP, CYBER-205 and NEC SX-2/400.

Slowinski has not filed all the required M_p-f1/LRs for $139267 < p < 216092$ and there may be further prime M_p in this range.
Incidence of Mersenne Primes

\[N = a \log_2 p + c \]

- **Best Gillies-fit:** \(a = 2.88539 \), \(c = -3.61278 \)
- **Best Pomerance-fit:** \(a = 2.56954 \), \(c = -1.46586 \)
- **Optimal fit:** \(a = 2.56560 \), \(c = -1.43906 \)
This section lists the major tabulations of M_p-factors.

1925 Cunningham & Woodall [C16]
1929 Kraitchik [K12]
1938 Kraitchik [K20]
1947 Lehmer [L6]: 32 factors of M_n, $n < 490$
1952 Ferrier [F4]: table of Factors of M_n, $n = 3 (2) 499$
1957 Robinson [R3]: some Factorizations of Numbers of the Form $2^n + 1$
1958 Riesel [R1]: first factors $f_1 < 10 * 2^{20}$ of M_p: $p < 10,000$
1960 Brillhart & Johnson [B2]: some factors q of M_p: $p < 1,194$
1961 Karst [K4]: 19 new factors of M_p: $3,036 < p < 3,434$
1961 Kravitz [K5]: first factors $f_1 < 10,485760$ of some M_p: $10,000 < p < 15,000$
1961 Karst [K2]: some factors q of M_p [NB especially $p = 10,009$]
1962 Karst [K24]: synopsis of factors and search ranges
1962 Riesel [R4]: factors $q < 10^6$ of M_p: $p < 10^4$
1963 Brillhart [B3]: some miscellaneous factorizations
1963 Gillies [G1]: $2^{34} < q < 2^{36}$ of M_p: $5,000 < p < 17,000$
1963 Karst [K27]: factors $q = 2kp+1$, $k < 10$, of M_p, $p < 15,000$
1964 Karst [K6]: miscellaneous
1964 Brillhart [B4]: remaining $q < 2^{34}$ of M_p: $258 < p < 20,000$
1965 Kravitz & Madachy [K8]: the factors $q < 2^{25}$ of M_p: $20,000 < p < 100,000$
1966 Ehrman [E9]: factors $q < 2^{31}$ of M_p: $100,000 < p < 300,000$
1975 Brillhart, Lehmer & Selfridge [B6]: some factorizations of $2^n + 1$
1976 Wagstaff's factor-table [W8]:
 factors $q < 2^{35}$ of M_p: $17,000 < p < 50,000$
 further $f_1 < 10^{11}$ of M_p: $21,000 < p < 50,000$
1977 Keller [K30]: factors $q < \max(2^{36}, 10^7 p)$ of M_p, $p < 10^5$
1978 Ehrman's factors of M_p: factors $q < 2^{31}$ for $p < 1,000,000$ [c N3, N10]
1981 Brent [B23]: factors q of M_p, $p < 1,000$
1981 Lake [L45]: first factors $f_1 < 2^{40}$ for $50,000 < p < 100,000$
1982 Wagstaff [W12]: factors $2^{31} < q < 2^{34}$, $20000 < p < 10^5 +$ others
1983 The 'Cunningham Project' [B17]: factors of M_p, $p < 1200$
Factorisation

This section lists M_p 'status' (prime or completely factorised), the number of known factors, discovering authorities and dates. References, confirmation results, negative results, errors and further details are included in the fuller Section 6.

<table>
<thead>
<tr>
<th>p</th>
<th>Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PR</td>
<td>? Pythagoras (500BC ?); ? Euclid (275BC ?); Euclid (275BC ?); Nicomachus (100AD)</td>
</tr>
<tr>
<td>3</td>
<td>PR</td>
<td>Euclid (275BC ?); Earliest tables (250BC ?); Nicomachus (100AD)</td>
</tr>
<tr>
<td>5</td>
<td>PR</td>
<td>Euclid (275BC ?); Earliest tables (250BC ?); Nicomachus (100AD)</td>
</tr>
<tr>
<td>7</td>
<td>PR</td>
<td>Euclid (275BC ?); Earliest tables (250BC ?); Nicomachus (100AD)</td>
</tr>
<tr>
<td>11</td>
<td>FACT</td>
<td>Manuscript Codex lat. Monac. 14908 (1456); f_1 & f_2 - Regius (1536)</td>
</tr>
<tr>
<td>13</td>
<td>PR</td>
<td>Manuscript Codex lat. Monac. 14908 (1456)</td>
</tr>
<tr>
<td>17</td>
<td>PR</td>
<td>Cataldi (1588)</td>
</tr>
<tr>
<td>19</td>
<td>PR</td>
<td>Cataldi (1588)</td>
</tr>
<tr>
<td>23</td>
<td>FACT</td>
<td>f_1 - Fermat (1640); f_2 - Euler (1733)</td>
</tr>
<tr>
<td>29</td>
<td>FACT</td>
<td>f_1 (?) & f_2 - Euler (1733); f_3 - Euler (1750)</td>
</tr>
<tr>
<td>31</td>
<td>PR</td>
<td>Euler (1772)</td>
</tr>
<tr>
<td>37</td>
<td>FACT</td>
<td>f_1 - Fermat (1640); f_2 - Landry (1867)</td>
</tr>
<tr>
<td>41</td>
<td>FACT</td>
<td>f_1 & f_2 - Plana (1859)</td>
</tr>
<tr>
<td>43</td>
<td>FACT</td>
<td>f_1 - Euler (1733); f_2 & f_3 - Landry (1869)</td>
</tr>
<tr>
<td>47</td>
<td>FACT</td>
<td>f_1 - Euler (1741); f_2 - Reuschle (1856); f_3 - Landry (1869)</td>
</tr>
<tr>
<td>53</td>
<td>FACT</td>
<td>f_1, f_2 & f_3 - Landry (1869)</td>
</tr>
<tr>
<td>59</td>
<td>FACT</td>
<td>f_1 & f_2 - Landry (1869)</td>
</tr>
<tr>
<td>61</td>
<td>PR</td>
<td>Pervouchine by ZLR (1883)</td>
</tr>
<tr>
<td>67</td>
<td>FACT</td>
<td>COMP (?) - Lucas by NZLR (1876); COMP (?) - Fauquembergue (1894); f_1 & f_2 - Cole (1903)</td>
</tr>
<tr>
<td>71</td>
<td>FACT</td>
<td>f_1 - Cunningham (1909); f_2 & f_3 - Ramesam (1912)</td>
</tr>
<tr>
<td>73</td>
<td>FACT</td>
<td>f_1 - Euler (1733); f_2 & f_3 - Poulet (1923)</td>
</tr>
<tr>
<td>79</td>
<td>FACT</td>
<td>f_1 - Reuschle (1856); f_2 & f_3 - Lehmer (1933)</td>
</tr>
<tr>
<td>83</td>
<td>FACT</td>
<td>f_1 - Euler (1733); f_2 - Ferrier (1950)</td>
</tr>
<tr>
<td>89</td>
<td>PR</td>
<td>Independently by ZLR - Powers (June 1911), Tarry (?) (November 1911) and Fauquembergue (1912)</td>
</tr>
<tr>
<td>97</td>
<td>FACT</td>
<td>f_1 - Le Lasseur (1881); f_2 - Ferrier (1952)</td>
</tr>
<tr>
<td>101</td>
<td>FACT</td>
<td>COMP - Robinson by NZLR (1952); f_1 & f_2 - Brillhart, Lehmer & Johnson (1967)</td>
</tr>
<tr>
<td>103</td>
<td>FACT</td>
<td>COMP (?) - Powers by NZLR (1914); COMP - Robinson by NZLR (1952); f_1 & f_2 - Brillhart (1963)</td>
</tr>
<tr>
<td>107</td>
<td>PR</td>
<td>Powers by ZLR (1914) and Independently Fauquembergue by ZLR (1914)</td>
</tr>
<tr>
<td>109</td>
<td>FACT</td>
<td>COMP (?) - Powers by NZLR (1914); COMP - Robinson by NZLR (1952); f_1 - Robinson (1957); f_2 - Gabard (1958)</td>
</tr>
<tr>
<td>113</td>
<td>FACT</td>
<td>f_1 - Reuschle (1856); f_2 & f_3 - Cunningham (1909); f_4 & f_5 - Lehmer (1946)</td>
</tr>
<tr>
<td>127</td>
<td>PR</td>
<td>Lucas by ZLR (1876)</td>
</tr>
<tr>
<td>131</td>
<td>FACT</td>
<td>f_1 - Euler (1733); f_2 - Brillhart (1966)</td>
</tr>
<tr>
<td>137</td>
<td>FACT</td>
<td>COMP - Robinson by NZLR (1952); f_1 & f_2 - Schroeppel (1971)</td>
</tr>
<tr>
<td>139</td>
<td>FACT</td>
<td>COMP - Lehmer by NZLR (1926); f_1 & f_2 - Brillhart (1974)</td>
</tr>
<tr>
<td>149</td>
<td>FACT</td>
<td>COMP - Lehmer by NZLR (1927); f_1 & f_2 - Schroeppel (1972)</td>
</tr>
<tr>
<td>151</td>
<td>FACT</td>
<td>f_1 - Le Lasseur (1881); f_2 - Cunningham (1909); f_3 - Kratichik (1921); f_4 - Lehmer (1946); f_5 - Gabard (1952)</td>
</tr>
<tr>
<td>p</td>
<td>Status</td>
<td>Notes</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>157</td>
<td>FACT COMP - Uhler by NZLR (1944); f_1 - Robinson (1957); f_2, f_3, & f_4 - Brillhart (1974)</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>FACT f_1 - Cunningham (1908); f_2 - Lehmer (1946); f_3 - Brillhart (1960); f_4 & f_5 - Brillhart (1963)</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>FACT COMP - Uhler by NZLR (1944); f_1 - Lehmer (1946); f_2 - Brillhart (1974)</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>FACT f_1 - Cunningham (1912); f_2 - Lehmer (1946); f_3 & f_4 - Naur (1979)</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>FACT f_1 - Euler (1733); f_2 - Reuschle (1856); f_3 - Brillhart (1963)</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>FACT f_1 - Woodall (1911); f_2 - Lehmer (1946); f_3 - Brillhart (1960); f_4 - Brillhart (1963)</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>FACT f_1 - Euler (1733); f_2 - Brillhart (1963); f_3, f_4 & f_5 - "Cunningham Project" (1974)</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>FACT COMP - Uhler by NZLR (1947); f_1 - Brillhart (1960); f_2 & f_3 - Naur (1981)</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>FACT f_1 - Cunningham (1895); f_2 - Brillhart (1974)</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>FACT COMP - Uhler by NZLR (1946); f_1 & f_2 - Schroepepel (1976)</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>FACT f_1 - Le Lasseur (1881); f_2 & f_3 - Davis & Holdridge (1983)</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>FACT f_1 - Le Lasseur (1881); f_2 - Kraitchik (1921); f_3 & f_4 - Lehmer (1946); f_5 & f_6 - "Cunningham Project" (1981)</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>FACT COMP - Uhler by NZLR (1947); f_1 & f_2 - Brent (1982)</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>FACT COMP - Uhler by NZLR (Feb. 1946); f_1 - Lehmer (Oct. 1946); f_2 - Brillhart (1960); f_3 & f_4 - Brent (Aug. 1981)</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>FACT f_1 - Reuschle (1856); f_2 - Kraitchik (1921); f_3 - Lehmer (1946); f_4 - Brillhart (1974)</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>FACT f_1 - Euler (1733); f_2 - Reuschle (1856); f_3 - Bickmore (1896); f_4 - Kraitchik (1921); f_5 - Brillhart (1960); f_6 - Brillhart (1974)</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>FACT COMP - Powers by NZLR (1934); f_1 - Brillhart (1960); f_2 - Brillhart (1974)</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>FACT f_1 (?) - Euler (1733); f_1 - Lucas (1878); f_2 - Cunningham (1909); f_3, f_4 & f_5 - Davis, Holdridge & Simmons (1984)</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>FACT COMP (?) - Kraitchik by NZLR (1922); COMP - Lehmer (1927); f_1 - Penk (1979?) [c B16, B17, B19]; f_2 & f_3 - Baillie (1980?) [c B16, B17, B19]</td>
<td></td>
</tr>
</tbody>
</table>
5.2 Lucas-Lehmer Test Calculations

The last octal digits of the LR are listed for the original LLT primality tests on the 'original' M_p; 't' denotes tests with $S_1 = 3$. This collection compensates for the fact that many of the LRs [G7; H8; N2; RIO; T11; T12] have not been published.

Gillies' and Nelson's 1979 results confirmed that Robinson's 1952 results completed a correct set of LRs. Residual calculations in the 1980's second-sourced and sometimes corrected the other original LLT results:

1947 Uhler contributed last of 6 LRs ($p = 157, 167, 193, 199, 227, 229$)
1952 Robinson corrected 5 LRs ($p = 101, 103t, 109, 137, 167t$)
 contributed 2 further LRs ($p = 103, 199$)
 filled in for 2 unpublished LRs ($p = 109, 139t$)
 confirmed 10 LRs ($p = 139t, 149, 157, 167, 193, 199t, 227, 229, 241, 257$)
1963 Gillies contributed 1 LR ($p = 139$)
 confirmed 5 LRs ($p = 101, 103, 137, 199, 227$)
1979 Nelson confirmed 3 LRs ($p = 109, 139, 229$)
1981 Thomason ratified 2 LRs ($p = 167t, 199t$) in decimal & octal
1984 Haworth [H17] confirmed 2 Thomason LRs ($p = 67t, 103t$)

<table>
<thead>
<tr>
<th>p</th>
<th>S_1</th>
<th>Date</th>
<th>Residue (oct, mod 2^60)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>4</td>
<td>1883</td>
<td>ZERO</td>
<td>Pervouchine [P13; P14; P16]; [H5; L38]</td>
</tr>
<tr>
<td>67</td>
<td>3</td>
<td>1876</td>
<td>UNKNOWN</td>
<td>Lucas [c D1 p22 n15]</td>
</tr>
<tr>
<td>89</td>
<td>4</td>
<td>1911</td>
<td>UNKNOWN</td>
<td>Fauquembergue [F8; F9; c D1 p27]</td>
</tr>
<tr>
<td>101</td>
<td>4</td>
<td>1914</td>
<td>UNKNOWN</td>
<td>Powers [C12; P9; P15; c D1 p30]; [F11]</td>
</tr>
<tr>
<td>103</td>
<td>3</td>
<td>1914</td>
<td>ZERO</td>
<td>Fauquembergue [F12; D1 p32; R2]</td>
</tr>
<tr>
<td>109</td>
<td>4</td>
<td>1914</td>
<td>UNKNOWN</td>
<td>Powers [P1]</td>
</tr>
<tr>
<td>127</td>
<td>3</td>
<td>1876</td>
<td>UNKNOWN</td>
<td>Lehmer (unpub.) [L1; c A1]; [R2; R10]; [T12]</td>
</tr>
<tr>
<td>137</td>
<td>3</td>
<td>1920</td>
<td>UNKNOWN</td>
<td>Fauquembergue [F10; R2]</td>
</tr>
<tr>
<td>139</td>
<td>3</td>
<td>1926</td>
<td>26402 01452 65351 23053</td>
<td>Lehmer [L2]; [R2; R10]; [T12]</td>
</tr>
<tr>
<td>149</td>
<td>4</td>
<td>1927</td>
<td>16542 63652 25676 04577</td>
<td>Lehmer [L2]; [R2; R10]; [G7; H8; N2; T11]</td>
</tr>
<tr>
<td>157</td>
<td>4</td>
<td>1944</td>
<td>06164 72124 57400 52105</td>
<td>Uhler [U1; U2; U4]; [R2; R10]; [H8; N2; T11]</td>
</tr>
<tr>
<td>167</td>
<td>3</td>
<td>1945</td>
<td>UNKNOWN</td>
<td>Fauquembergue [F10; R2]</td>
</tr>
<tr>
<td>193</td>
<td>3</td>
<td>1947</td>
<td>03252 67125 66366 06362</td>
<td>Uhler [U5]; [R2; R10]; [G7; H8; N2; T11]</td>
</tr>
<tr>
<td>199</td>
<td>3</td>
<td>1946</td>
<td>76417 74230 46161 34351</td>
<td>Uhler [U5; U6]; [R2]; [T11]</td>
</tr>
<tr>
<td>227</td>
<td>4</td>
<td>1947</td>
<td>76675 34333 53115 63716</td>
<td>Uhler [U5; U7]; [R2]; [G7; H8; N2; T11]</td>
</tr>
<tr>
<td>229</td>
<td>4</td>
<td>1946</td>
<td>43244 27335 00106 53763</td>
<td>Uhler [U5; U8]; [R2]; [H8; T11]</td>
</tr>
<tr>
<td>241</td>
<td>4</td>
<td>1934</td>
<td>21746 40770 36712 62747</td>
<td>Powers [P3]; [R2; R10]; [G7; H8; N2; T11]</td>
</tr>
<tr>
<td>257</td>
<td>4</td>
<td>1922</td>
<td>UNKNOWN</td>
<td>Kraitchik [L2]</td>
</tr>
<tr>
<td>257</td>
<td>4</td>
<td>1927</td>
<td>53356 13134 20206 35250</td>
<td>Lehmer [L2; L26]; [R2; R10]; [G7; N2; T11]</td>
</tr>
</tbody>
</table>
6 ORIGINAL MERSENNE NUMBERS - ALL RESULTS AND SOME ERRORS: \(M_p \) ORDER

\(p = 2 \): 1st MERSENNE PRIME

1) \(m_2 = 1; \ e_2 = 1; \ M_2 = 3; \ E_2 = 6 \)
2) PRIME (?): Pythagoras [c D1 p4 n4] regarded \(E_2 \) as 'marriage, health, beauty'
3) PRIME (?): Euclid [H3] presumably knew of \(E_2 \)
4) PRIME: Included in the earliest known tables of primes [D1 p347]: Eratosthenes may have recorded such a table
5) Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
6) Lucas-Lehmer test not applicable as '2' is an even number

\(p = 3 \): 2nd MERSENNE PRIME

1) \(m_3 = 1; \ e_3 = 2; \ M_3 = 7; \ E_3 = 28 \)
2) PRIME (?): Euclid [H3] presumably knew of \(E_3 \)
3) PRIME: Included in the earliest known tables of primes [D1 p347]: Eratosthenes may have recorded such a table
4) Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
5) Confirmed (!) prime by ZLR [R1; H1; G1; T1; N1]

\(p = 5 \): 3rd MERSENNE PRIME

1) \(m_5 = 2; \ e_5 = 3; \ M_5 = 31; \ E_5 = 496 \)
2) PRIME (?): Euclid [H3] presumably knew of \(E_5 \)
3) PRIME: Included in the earliest known tables of primes [D1 p347]: Eratosthenes may have recorded such a table
4) Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
5) Confirmed (!) prime by ZLR [R1; H1; G1; T1; N1]

\(p = 7 \): 4th MERSENNE PRIME

1) \(m_7 = 3; \ e_7 = 4; \ M_7 = 127; \ E_7 = 8128 \)
2) May have been in earliest known prime-tables [D1 p347]
3) PRIME: Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
4) Confirmed (!) prime by ZLR [R1; H1; G1; T1; N1]

\(p = 11 \)

1456 1) COMPOSITE: The authors of Codex lat. Monac. 14908 are thought by Curtze to have known that \(M_{11} \) had the factor 23 [C26; c D1 p6 n14]
1509 2) ERROR: Carolus Bovillus [c D1 p7 n20] thought \(M_n \) prime for all odd \(n \); an error repeated by others. Not true (e.g. 11, any composite 'n')
1536 3) COMPOSITE: Regius [c D1 p7 n26] found complete factorisation: \(M_{11} = 23 \times 89 \)
1588 4) Cataldi [C2; c D1 p10 n44] found full factorisation (published 1603)
1638 5) Stanislaus Pudowski is credited with full factorisation by Broscius [c A1]
1640 6) Fermat [c D1 p12 n59] found full factorisation
1935 7) Archibald [A1] did not note Regius' or Cataldi's work
p = 13: 5th MERSENNE PRIME
1) $m_{13} = 4; e_{13} = 8; M_{13} = 8191; E_{13} = 33,550336$
1456 2) PRIME: Manuscript Codex lat. Monac. 14908 [C26; c D1 p6 n14] correctly gave E_{13} as 5th Perfect Number, implying that M_{13} is prime.
1536 3) Regius [c D1 p7 n26] also declared E_{13} Perfect
4) Confirmed prime by Cataldi (1588), Pauli (1678), Euler (1733) [c D1 Ch1 ns44, 70 & 83 respectively]
5) Confirmed prime by ZLR [R1; H1; G1; T1; N1]

p = 17: 6th MERSENNE PRIME
1) $m_{17} = 6; e_{17} = 10; M_{17} = 131071; E_{17} = 8589,869056$
1588 2) PRIME: Cataldi [C2; c D1 p10 n44] tested with all 72 primes to 359
1750 3) Confirmed prime by Euler [E3 p27; E2 p104; c D1 p18 n89]
4) Confirmed prime by ZLR [R1; H1; G1; T1; N1]

p = 19: 7th MERSENNE PRIME
1) $m_{19} = 6; e_{19} = 12; M_{19} = 524287; E_{19} = 137438,691328$
1588 2) PRIME: Cataldi [C2; c D1 p10 n44] tested with all 128 primes to 719
1752 3) Confirmed prime by Euler [E3 p27; E2 p104; c D1 p18 n89 & 92]
4) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

p = 23
1588 1) ERROR: regarded by Cataldi [C2; c D1 p10 n44] as prime
1640 2) COMPOSITE: Fermat [F5 p210; c D1 p12 n56] found $f_1 = 47$
1733 3) Euler [E3 p27; E2 p104; c D1 p18 n89] completed factorisation: $M_{23} = 47 \times 178481$

p = 29
1588 1) ERROR: regarded by Cataldi [C2; c D1 p10 n44] as prime
1644 2) Stated by Mersenne [M3; c D1 p13] to be composite
1733 3) COMPOSITE: Euler [E1 p106; E2 p2; c D1 p17 n83]: 1103 is a factor
1750 4) Euler [E3 p27; E2 p104; c D1 p18 n89] completed the full factorisation: $M_{29} = 233 \times 1103 \times 2089$
1935 5) Archibald [A1] credited Euler with 233, Dickson [D1] did not

p = 31: 8th MERSENNE PRIME
1) $m_{31} = 10; e_{31} = 19; M_{31} = 2147,483647; E_{31} = 2,305843,008139,952128$
1644 2) Stated by Mersenne [M3; c D1 p13] to be prime
1733 3) Conjectured by Euler [E1 p103; E2 p2; c D1 p17 n83] as prime
1751 4) Regarded by de Wrinseim [W5; c D1 p18 n90] as prime
1752 5) Euler [E6; c D1 p18 n92]: no factor < 2000
1772 6) PRIME: Euler [E6 p35; E2 p584; c D1 p18 n95] tried the 84 eligible primes
7) Confirmed prime by Landry (1859), Seelhoff (?) [c D1 p25 n142] (1887), Lucas (1876), Moret-Blanc (1881)
8) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]
p = 37

1588 1) ERROR: regarded by Cataldi [C2; c D1 p10 n44] as prime
1640 2) COMPOSITE: Fermat [F5 p199; c D1 p12 n59] found \(f_1 = 223 \)
1867 3) Landry [c D1 p21 n112] claimed full factorisation
1869 4) Landry [L19; c D1 p22 n113] published full factorisation:
 \(M_{37} = 223 \times 616,318177 \)

p = 41

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1678 2) ERROR: Pauli [P11; c D1 p15 n70] gave 83 as a factor
1733 3) Euler [E1 p106; E2 p2; c D1 p17 n83] wrongly conjectured prime
1859 4) COMPOSITE: Plana [P12; c D1 p21 n110] gave full factorisation:
 \(M_{41} = 13367 \times 164,511353 \)
1888 5) ERROR: Christie [C27; C28; c D1 p27 n155] thought \(M_{41} \) prime

p = 43

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1733 2) COMPOSITE: Euler [E1 p106; E2 p2; c D1 p17 n83]: \(f_1 = 431 \)
1867 3) Landry [L20; c D1 p21 n112] claimed full factorisation
1869 4) Landry [L19; c D1 p22 n113] published full factorisation:
 \(M_{43} = 431 \times 9719 \times 2,099863 \)

p = 47

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1733 2) Euler [E1 p106; E2 p2; c D1 p17 n83] wrongly conjectured prime
1741 3) COMPOSITE: Euler [K18; c D1 p19 n93] found \(f_1 = 2351 \)
1751 4) De Winsheim [W5; c D1 p18 n90] independently (?) found \(f_1 = 2351 \)
1856 5) Reusch [R8; c D1 p21 n108] found \(f_2 = 4513 \) (note \(f_3 < f_2 \times f_2 \))
1867 6) Landry [L20; c D1 p21 n112] claimed full factorisation
1869 7) Landry [L19; c D1 p22 n113] published full factorisation:
 \(M_{47} = 2351 \times 4513 \times 13,264529 \)
1888 8) ERROR: Christie [C27; C28; c D1 p27 n155] thought \(M_{47} \) prime

p = 53

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1859 2) ERROR: Plana [P12; c D1 p21 n110] found no factor < 50033
1867 3) Landry [L20; c D1 p21 n112] claimed full factorisation
1869 4) COMPOSITE: Landry [L19; c D1 p22 n113] published full factorisation:
 \(M_{53} = 6361 \times 69431 \times 20,394401 \)

p = 59

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1867 2) Landry [L20; c D1 p21 n112] claimed full factorisation
1869 3) COMPOSITE: Landry [L19; c D1 p22 n113] published full factorisation:
 \(M_{59} = 179951 \times 3,203431,780337 \)
p = 61: 9th Mersenne Prime

1) $m_{61} = 19; \quad e_{61} = 37; \quad M_{61} = 2,305843,009213,693951; \quad E_{61} = 2,658455,991569,831744,654692,615953,842176 \quad [H3; T3; T11; U11]$

1644 2) ERROR: stated by Mersenne [M3; c D1 p13] to be composite

1869 3) Landry [L14; c D1 p22 n113] conjectured prime

1881 4) Le Lasseur [c D1 p24 n131] found no factor < 30,000

1883 5) PRIME: Pervouchine [P13; P14; P16; c D1 p25 n140] computed a ZLR

1886 6) ERROR: Seelhoff [S12; c D1 p25 n141] wrongly stated M_{61} prime having only found it pseudoprime (base 3)

1887 7) Hudelot [H5; L38; c D1 p25 n144] confirmed prime by ZLR (54 hours work)

1903 8) Cole [C17; c D1 p29 n173] criticised Seelhoff's 'proof' of primality

1927 9) Lehmer [L11] indicated error in Seelhoff's 'proof' of primality

10) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

p = 67

1644 1) ERROR: stated by Mersenne [M3; c D1 p13] to be prime

1876 2) COMPOSITE (?): Lucas [c D1 p22 n115] computed NZLR (correctly?)

1881 3) Le Lasseur [c D1 p24 n131] found no factor < 30,000

1894 4) COMPOSITE (?): Fauquembergue [F8; F9; c D1 p27 n160] - NZLR (?)

1895 5) Cunningham [C7; c D1 p28 n165] found no factor < 50,000

1903 6) COMPOSITE: Cole [C17; c D1 p29 n173] found the full factorisation: $M_{67} = 193,707721 \times 761838,257287$

1935 7) Archibald [A1] did not cite Lucas or Fauquembergue (2 and 4 above)

1981 8) Thomason [T12] computed NZLR as 67 54316 42002 04344 62606 ($S_1 = 3$) [H17]

p = 71

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite

1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000

1894 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000

1908 4) Cunningham [C8] found no factor < 200,000

1909 5) COMPOSITE: Cunningham [C10; c D1 p30 n181] found $f_1 = 228479$

1912 6) Ramesan [R9; R8; c D1 p31 n191] completed the full factorisation: $M_{71} = 228479 \times 48,544121 \times 212,885833$

p = 73

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite

1733 2) COMPOSITE: Euler [E1 p106; E2 p2; c D1 p17 n83] found $f_1 = 439$

1923 3) Poulet [P7; c A1 n12] completed the factorisation: $M_{73} = 439 \times 2,298041 \times 9,361973,132609$

p = 79

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite

1856 2) COMPOSITE: Reuschle [R8; c D1 p21 n108] found $f_1 = 2687$

1933 3) D.H. Lehmer [L7; c A1 n13] found f_2 & f_3 to complete the factorisation: $M_{79} = 2687 \times 202,029703 \times 1,113491,139767$

17
\[p = 83 \]

1644 1) Stated by Mersenne \([M3; c O1 p13]\) to be composite
1733 2) COMPOSITE: Euler \([E1 p105; E2 p2; c D1 p17 n83]\) found \(f_1 = 167 \) (theorem)
1946 3) D H Lehmer \([L6]\) found no further factor < 4,538000
1950 4) Ferrier \([F3]\) used method \([F2]\) to complete the full factorisation:
 \[M_{83} = 167 \times 57912,614113,275649,087721 \]

\[p = 89 \] 10th MERSENNE PRIME

1) \(M_{89} = 27; e_{89} = 54; M_{89} = 618,970019,642690,137449,562111; \)
 \[E_{89} = 191561,942608,236107,294793,378084,303638,103997,312548,169216 \]
 \([T1; U1]\) - \([T3]\) is incorrect
1644 2) ERROR: stated by Mersenne \([M3; c D1 p13]\) to be composite
1876 3) ERROR: Lucas \([L13 p376; c D1 p22 n15]\) computed a NZLR
1881 4) Le Lasseur \([c D1 p24 n131]\) found no factor < 30,000
1895 5) Cunningham \([c C7; c D1 p28 n165]\) found no factor < 50,000
1908 6) Cunningham \([c C8]\) found no factor < 200,000
1911 7) PRIME: Powers \([c C12; P9; P15; c D1 p30 n185]\) computed ZLR (June)
1911 8) PRIME (?): Tarry \([T4; c C12 & D1 p30 n186]\) completed (?) calculation
1912 9) PRIME: Fauquembergue \([F1; c D1 p30 n187]\) found ZLR independently (base 2)
10) Confirmed prime by ZLR \([R1; H1; G1; T1; N1; H6]\)

\[p = 97 \]

1644 1) Stated by Mersenne \([M3; c D1 p13]\) to be composite
1881 2) COMPOSITE: Le Lasseur \([c D1 p24 n131]\) found \(f_1 = 11447 \)
1935 3) Archibald \([A1]\) recorded that only \(f_1 \) had been found
1946 4) D H Lehmer \([L6]\) found no factor < 4,538000
1952 5) Ferrier \([F4; K7 p13; K17 p48]\) found \(f_2 \) to complete the factorisation:
 \[M_{97} = 11447 \times 13,842607,235828,485645,766393 \]

\[p = 101 \]

1644 1) Stated by Mersenne \([M3; c D1 p13]\) to be composite
1881 2) Le Lasseur \([c D1 p24 n131]\) found no factor < 30,000
1895 3) Cunningham \([c C7; c D1 p28 n165]\) found no factor < 50,000
1908 4) Cunningham \([c C8]\) found no factor < 200,000
1911 5) Cunningham \([c C4; W1]\) found no factor < 500,000
1912 6) Cunningham \([c C1]\) found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin \([G6; c D1 p31 n192b]\) found no factor < 1,000,000
1913 8) ERROR: Fauquembergue \([F12; c D1 p32 n192c]\) computed incorrect NZLR
1946 9) D H Lehmer \([L6]\) found no factor < 4,538000
1952 10) COMPOSITE: Robinson \([R2; R10; U9]\) computed NZLR - not Fauquembergue's
1957 11) Robinson \([R3]\) on IBM701 found no factor < 2^{30}
1960 12) Brillhart \([B2]\) on IBM701 found no factor < 2^{31}
1963 13) Brillhart \([B4]\) found no factor < 2^{35}
1963 14) Gillies \([G1; G7]\) confirmed (last 5 octal digits of) Robinson's NZLR
1967 15) Brillhart, Lehmer & Johnson \([B5; c K26 p354, B19]\) found full factorisation:
 \[M_{101} = 7,432339,208719 \times 341117,531003,194129 \]
p = 103

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [c7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [c8] found no factor < 200,000
1911 5) Cunningham [c4; W1] found no factor < 500,000
1912 6) Cunningham [c1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [c6; c D1 p31 n192b] found no factor < 1,000,000
1914 8) ERROR: Fauquembergue [F1] computed incorrect NZLR [R2] (S1 = 3)
1914 9) COMPOSITE (?): Powers [P1] computed unpublished NZLR (correctly?) (S1 = 3)
1946 10) D H Lehmer [L6] found no factor < 4,538800
1952 11) COMPOSITE: Robinson [R2; R10; U9] computed NZLRs (S1 = 3 & 4)
1957 12) Robinson [R3] on IBM701 found no factor < 2^{30}
1960 13) Brillhart [B2] found no factor < 2^{31}
1963 14) Brillhart [B3] found complete factorisation:
 M103 = 2550,183799 * 3976,656429,941438,590393
1963 15) Gillies [G1, G7] confirmed (last 5 octal digits of) Robinson's NZLR (S1 = 4)
1981 16) Thomason [T12] computed NZLR . . . 74422 12107 12525 17576 (S1 = 3) [M17]

p = 107: 11th MERSENNE PRIME

1) m_{107} = 33; e_{107} = 65;
 M_{107} = 162,259276,829213,363391,5780010,288127 [R6]
 e_{107} = 13164,036458,569648,337239,753460,458722,910223,472318, ---
 --> 386943,117783,728128 [T11] - [T3; U11] are incorrect
1644 2) ERROR: stated by Mersenne [M3; c D1 p13] to be composite
1881 3) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 4) Cunningham [c7; c D1 p28 n165] found no factor < 50,000
1908 5) Cunningham [c8] found no factor < 200,000
1911 6) Cunningham [c4; W1] found no factor < 500,000
1912 7) Cunningham [c1] found no factor < 800,000 (working with Gerardin)
1912 8) Gerardin [c6; c D1 p31 n192b] found no factor < 1,000,000
1914 9) PRIME: Powers [P2; P6; P10] computed ZLR (S1 = 3) (11th June)
1914 10) PRIME: Fauquembergue [F1; c D1 p32 n200] independently computed ZLR (June)
1914 11) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

p = 109

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [c7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [c8] found no factor < 200,000
1911 5) Cunningham [c4; W1] found no factor < 500,000
1912 6) Cunningham [c1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [c6; c D1 p31 n192b] found no factor < 1,000,000
1914 8) ERROR: Fauquembergue [F1] computed incorrect NZLR (cf notes 11, 17)
1914 9) COMPOSITE (?): Powers [P1] computed (unpublished) NZLR (correctly?)
1946 10) D H Lehmer [L6] found no factor < 4,538800
1952 11) COMPOSITE: Robinson [R2; R10; U9] computed NZLR - not Fauquembergue's
1957 12) Robinson [R3] found one factor < 2^{30}: f_1 = 745,988807
1958 13) Gabard [G2; c B5] found the unresolved part prime:
 M_{109} = 745,988807 * 870035,986098,720987,332873
1960 14) Brillhart [B2] not knowing of [G2] found no f_2 < 2^{31}
1963 15) Brillhart [B4] not knowing of [G2] found no f_2 < 2^{35}
1966 16) Brillhart [B5] confirmed Gabard's factorisation
1979 17) Nelson [N1; N2] confirmed (last 24 octal digits of) Robinson's NZLR
\[p = 113 \]

1644 1) Stated by Mersenne [M3; c D1] to be composite
1856 2) COMPOSITE: Reuschle [R8; c D1 p21 n108] found \(f_1 = 3391 \)
1909 3) Cunningham [W1; c D1 p31 n192a] noted \(f_2 = 23,279 \) and \(f_3 = 65,593 \)
1935 4) Archibald [A1 ns 7, 10] cited Reuschle and Cunningham for \(f_1, f_2 \) and \(f_3 \)
1946 5) D H Lehmer [L6] completed the full factorisation:
\[M_{113} = 3391 \times 23,279 \times 65,593 \times 1,868,569 \times 8,668,207 \]

\[p = 127: \] 12th MERSSENNE PRIME

1) \(m_{127} = 39; \ e_{127} = 77; \)
\[M_{127} = 170,141,183,460,469,231,731,687,303,715,884,105,727 \] [01 p73; B11]
\[E_{127} = 144,747,011,154,664,524,427,946,373,126,085,988,481,573,677,491, \ldots \]
\[\ldots 474,035,890,666,354,349,133,119,152,128 \] [T3; T11] - [U11] is incorrect

1644 2) Stated by Mersenne [M3; c D1 p13] to be prime
1876 3) PRIME: Lucas [L16; L17; c D1 p22 n116, A1 n17] computed ZLR (\(S_1 = 3 \))
1881 4) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 5) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1914 6) Fauquembergue [F1; c D1 p32 n200] confirmed prime by ZLR (\(S_1 = 3 \))
7) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

\[p = 131 \]

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1733 2) COMPOSITE: Euler [E1 p105; E2 p2; c D1 p17 n83] found \(f_1 = 263 \) by theorem
1946 3) D H Lehmer [L6] found no further factor < 4,538,800
1957 4) Robinson [R3] found no further factor < 230
1960 5) Brillhart [B2] found no further factor < 231
1963 6) Brillhart [B4] found no further factor < 235
1966 7) Brillhart [B5] found \(f_2 \) prime to complete the factorisation:
\[M_{131} = 263 \times 10,350,794,431,055,162,386,718,619,237,468,234,569 \]

\[p = 137 \]

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1920 8) ERROR: Fauquembergue [F10] computed incorrect NZLR (cf ns 10, 14)
1946 9) D H Lehmer [L6] found no factor < 4,538,800
1952 10) COMPOSITE: Robinson [R2; R10; U9] computed NZLR - not Fauquembergue's
1957 11) Robinson [R3] found no factor < 230
1960 12) Brillhart [B2] found no factor < 231
1963 13) Brillhart [B4] found no factor < 235
1963 14) Gillies [G1; G7] confirmed (last 5 octal digits of) Robinson's NZLR
1971 15) Schroepepel [B7 p13; c B6 p645; B19] found full factorisation (cf):
\[M_{137} = 32,032,215,596,496,435,559 \times 5439,042,183,600,204,290,159 \]
\[p = 139 \]

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1926 8) COMPOSITE: D H Lehmer [L1; c A1 n13] computed (unpublished) NZLR \(S_1 = 3 \)
1946 9) D H Lehmer [L6] found no factor < 4,538800
1953 10) Robinson [R2; R10] on SWAC confirmed Lehmer's NZLR \(S_1 = 3 \)
1957 11) Robinson [R3] found no factor < 230\(^3\)
1960 12) Brillhart [B2] found no factor < 231\(^2\)
1963 13) Brillhart [B4] found no factor < 235\(^2\)
1963 14) Gillies [G1; G7] computed NZLR \(S_1 = 4 \)
1972 15) Brillhart [B6; S28] found full factorisation (cf):
\[M_{139} = 5,625767,246867 * 123876,132205,208335,762278,423601 \]
1979 16) Nelson [N2] confirmed Gillies' NZLR
1981 17) Thomason [T12] confirmed Robinson's NZLR \(S_1 = 3 \)

\[p = 149 \]

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1927 8) COMPOSITE: D H Lehmer [L2; L27; c A1 n13] computed correct NZLR [R2; T11]
1946 9) D H Lehmer [L6] found no factor < 4,538800
1952 10) Robinson [R2; R10] confirmed Lehmer's NZLR on SWAC
1957 11) Robinson [R3] found no factor < 230\(^3\)
1960 12) Brillhart [B2] found no factor < 231\(^2\)
1963 13) Brillhart [B4] found no factor < 235\(^2\)
1972 14) Schroepepel [c B6 p645, B16, B17, B19] found full factorisation (cf):
\[M_{149} = 86,656268,566282,183151 * 8,235109,336690,846723,986161 \]

\[p = 151 \]

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found \(f_1 = 18121 \)
1909 3) Cunningham [W1; c D1 p31 n192a] found \(f_2 = 55871 \)
1921 4) Kraitchik [K3; K16, c A1 n18] found \(f_3 = 165799 \)
1946 5) D H Lehmer [L6] found \(f_4 = 2,332951 \) and no other factor < 4,538800
1952 6) Gabard [G12] found the unresolved part prime:
\[M_{151} = 18121 * 55871 * 165799 * 2,332951 * 7,289088,383388,253664,437433 \]
\[p = 157 \]

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8; c D1 p30 n180] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C11] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1944 8) COMPOSITE: Uhler [U1; U2; c A3] computed correct NZLR [R2; R10; T11]
1945 9) Barker [U4] confirmed Uhler's NZLR
1946 10) D H Lehmer [L6] found no factor < 4,538800
1952 11) Robinson [R2; R10] confirmed Uhler's NZLR on SWAC
1957 12) Robinson [R3] found \(f_1 = 852,133201 \) below search-limit 230
1960 13) Brillhart [B2] found no further factor < 231
1963 14) Brillhart [B4] found no further factor < 235
1974 15) Brillhart [B6] found \(f_2, f_3 \) and \(f_4 \) to complete the full factorisation:
 \[M_{157} = 852,133201 \times 60726,44167 \times 1,654058,017289 \times 2134,387368,610417 \]

\[p = 163 \]

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) COMPOSITE: Cunningham [C8; c D1 p30 n180] found \(f_1 = 150287 \)
1946 5) D H Lehmer [L6] found \(f_2 = 704161 \) and no other factor < 4,538800
1960 6) Brillhart [B2] found \(f_3 = 110,211473 \) below search-limit 231
1963 7) Brillhart [B3] found \(f_4 \) and \(f_5 \) to complete the factorisation:
 \[M_{163} = 150287 \times 704161 \times 110,211473 \times 27669,118297 \times 36,230454,570129,675721 \]

\[p = 167 \]

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8; c D1 p30 n180] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C11] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1944 8) COMPOSITE: Uhler [U3; U4; c A3] computed correct NZLR [R2; T11] \(S_1 = 4 \)
1945 9) ERROR: Barker [B1] computed incorrect NZLR [R2; T11] \(S_1 = 3 \)
1946 10) D H Lehmer [L6] found \(f_1 = 2,349023 \) and no further factor < 4,538800
1952 11) Robinson [R2; R10] computed NZLRS \(S_1 = 3 \) & 4 confirming Uhler's NZLR
1980 12) Brillhart [B2] confirmed \(f_1 \) and found no further factor < 231
1963 13) Brillhart [B4] found no further factor < 235
1974 14) Brillhart [B6 p645] found \(f_2 \) prime to complete the factorisation:
 \[M_{167} = 2,349023 \times 79,638304,766856,507377,778616,296087,448490,695649 \]
1981 15) Thomason [T11] confirmed Robinson's NZLR \(S_1 = 3 \)
\begin{verbatim}

\textbf{p = 173}

1644 1) Stated by Mersenne \([M3; c\ D1\ p13]\) to be composite
1881 2) Le Lasseur \([c\ D1\ p24\ n131]\) found no factor < 30,000
1895 3) Cunningham \([C7; c\ D1\ p28\ n165]\) found no factor < 50,000
1908 4) Cunningham \([C8]\) found no factor < 200,000
1911 5) Cunningham \([C4; W1]\) found no factor < 500,000
1912 6) COMPOSITE: Cunningham \([C1; c\ D1\ p31\ n190]\): \(f_1 = 730753\) (with Gerardin)
1946 7) D H Lehmer \([L6]\) found \(f_2 = 1,505447\) and no further factor < 4,538800
1960 8) Brillhart \([B2]\) confirmed \(f_1\) & \(f_2\) and found no further factor < 231
1963 9) Brillhart \([B4]\) found no further factor < 235
1974 10) Brillhart \([B6]\) found the unresolved part composite
1979 11) Naur \([N20]\) found \(f_3\) (Pp) & \(f_4\) prime to complete the factorisation:
\[M_{173} = 730753 \times 1,505447 \times 70084,436712,553223 \times 155285,743288,572277,679887\]

\textbf{p = 179}

1644 1) Stated by Mersenne \([M3; c\ D1\ p13]\) to be composite
1733 2) COMPOSITE: Euler \([E1\ p105; E2\ p2; c\ D1\ p17\ n83]\) found \(f_1 = 359\) (theorem)
1856 3) Reuschle \([R8; c\ D1\ p21\ n108]\) found \(f_2 = 1433\)
1946 4) D H Lehmer \([L6]\) found no further factor < 4,538800
1960 5) Brillhart \([B2]\) confirmed \(f_1\) & \(f_2\) and found no further factor < 231
1963 6) Brillhart \([B3]\) found \(f_3\) prime to complete the factorisation:
\[M_{179} = 359 \times 1433 \times 1,489459,109360,039866,456940,197095,433721,664951,999121\]

\textbf{p = 181}

1644 1) Stated by Mersenne \([M3; c\ D1\ p13]\) to be composite
1881 2) Le Lasseur \([c\ D1\ p24\ n131]\) found no factor < 30,000
1895 3) ERROR: Cunningham \([C7; c\ D1\ p28\ n165]\) found no factor < 50,000
1908 4) ERROR: Cunningham \([C8]\) found no factor < 200,000
1911 5) COMPOSITE: Woodall \([C11; W1; c\ D1\ p30\ n184]\) found \(f_1 = 43441\)
1946 6) D H Lehmer \([L6]\) found \(f_2 = 1,164193\) and no further factor < 4,538800
1960 7) Brillhart \([B2]\) found \(f_3 = 7,648337\) and no further factor < 231
1963 8) Brillhart \([B3]\) found \(f_4\) prime to complete the factorisation:
\[M_{181} = 43441 \times 1,164193 \times 7,648337 \times 7,923871,097285,295625,344647,665764,672671\]

\textbf{p = 191}

1644 1) Stated by Mersenne \([M3; c\ D1\ p13]\) to be composite
1733 2) COMPOSITE: Euler \([E1\ p105; E2\ p2; c\ D1\ p17\ n83]\) found \(f_1 = 383\) (theorem)
1946 3) D H Lehmer \([L6]\) found no further factor < 4,538800
1960 4) Brillhart \([B2]\) confirmed \(f_1\) and found no further factor < 231
1963 5) Brillhart \([B3]\) found \(f_2 = 7068,569257\) (TD)
1963 6) Brillhart \([B4]\) found no further factor < 235
1974 7) Brillhart \([B6]\) found the unresolved part composite
1974 8) "Cunningham Project" \([c\ B16; B17; B19; R12]\) found \(f_4 = 332,584516,519201\) (Pp)
1974 9) "Cunningham Project" \([c\ B16; B17; B19; R12]\) completed the factorisation (cf); note the four different factorisation methods used on \(M_{191}\):
\[M_{191} = 383 \times 7068,569257 \times 39940,132241 \times 332,584516,519201 \times 87,274497,124602,996457\]
\end{verbatim}
\[p = 193 \]

1644 1) Stated by Mersenne \([M3; c D1 p13]\) to be composite
1881 2) Le Lasseur \([c D1 p24 n131]\) found no factor \(< 30,000\)
1895 3) Cunningham \([C7; c D1 p28 n165]\) found no factor \(< 50,000\)
1908 4) Cunningham \([C8]\) found no factor \(< 200,000\)
1911 5) Cunningham \([C4; W1]\) found no factor \(< 500,000\)
1912 6) Cunningham \([C1]\) found no factor \(< 800,000\) (working with Gerardin)
1912 7) Gerardin \([G6; c D1 p31 n192b]\) found no factor \(< 1,000,000\)
1946 8) D H Lehmer \([L6]\) found no factor \(< 4,538800\)
1947 9) COMPOSITE: Uhler \([U5; c A3]\) computed a NZLR
1952 10) Robinson \([R2; R10; T11]\) on SWAC confirmed Uhler's NZLR
1960 11) Brillhart \([B2]\) found \(f_1 = 13,821503\) only below search-limit \(2^{31}\)
1963 12) Brillhart \([B4]\) found no further factor \(< 2^{35}\)
1963 13) Gillies \([G1; G7]\) confirmed (last 5 octal digits of) Robinson's NZLR
1974 14) Brillhart \([B6]\) found the the unresolved part composite
1981 15) Naur \([N18; N19]\) found primes \(f_2 (cf) \) & \(f_3\) to complete the factorisation:
\[M_{193} = 13,821503 \times 61654,440233,248340,616559 \times 14732,265321,145317,331353,282383 \]

\[p = 197 \]

1644 1) Stated by Mersenne \([M3; c D1 p13]\) to be composite
1881 2) ERROR: Le Lasseur \([c D1 p24 n131]\) found no factor \(< 30,000\)
1895 3) COMPOSITE: Cunningham \([C3; C6; c D1 p28 n164]\) found \(f_1 = 7487\)
1946 4) D H Lehmer \([L6]\) found no further factor \(< 4,538800\)
1960 5) Brillhart \([B2]\) confirmed \(f_1\) and found no further factor \(< 2^{31}\)
1963 6) Brillhart \([B4]\) found no further factor \(< 2^{35}\)
1974 7) Brillhart \([B6]\) found \(f_2\) prime to complete the factorisation:
\[M_{197} = 7487 \times 26,828803,997912,886929,710867,041891,989490,486893,845712,448833 \]

\[p = 199 \]

1644 1) Stated by Mersenne \([M3; c D1 p13]\) to be composite
1881 2) Le Lasseur \([c D1 p24 n131]\) found no factor \(< 30,000\)
1895 3) Cunningham \([C7; c D1 p28 n165]\) found no factor \(< 50,000\)
1908 4) Cunningham \([C8]\) found no factor \(< 200,000\)
1911 5) Cunningham \([C4; W1]\) found no factor \(< 500,000\)
1912 6) Cunningham \([C1]\) found no factor \(< 800,000\) (working with Gerardin)
1912 7) Gerardin \([G6; c D1 p31 n192b]\) found no factor \(< 1,000,000\)
1946 8) COMPOSITE: Uhler \([U5; U6]\) computed correct NZLR \([R2; T11]\) \((S_1 = 3)\)
1946 9) D H Lehmer \([L6]\) found no factor \(< 4,538800\)
1952 10) Robinson \([R2; R10]\) computed NZLRs \((S_1 = 3 \text{ & } 4)\) confirming Uhler's NZLR
1960 11) Brillhart \([B2]\) found no factor \(< 2^{31}\)
1963 12) Brillhart \([B4]\) found no factor \(< 2^{35}\)
1963 13) Gillies \([G7]\) confirmed Robinson's NZLR \((S_1 = 4)\)
1976 14) Schroepepeel \([c B16; B17; B19; c R12]\) found the factorisation (rho):
\[M_{199} = 164504,919713 \times 4,884164,038883,941177,660049,098586,324302,--- \]
\[\rightarrow 977543,600799 \] \([S18; T10]\)
1981 15) Thomason \([T11]\) confirmed Uhler's NZLR \((S_1 = 3)\)
\[p = 211 \]

1644 1) Stated by Mersenne \([M3; c \text{ D1 p13}]\) to be composite
1881 2) COMPOSITE: Le Lasseur \([L18; c \text{ D1 p24 n131}]\) found \(f_1 = 15193 \)
1946 3) D H Lehmer \([L6] \) found no further factor < 4,538800
1960 4) Brillhart \([B2]\) confirmed \(f_1 \) and found no further factor < 2\text{^{31}}
1963 5) Brillhart \([B4]\) found no further factor < 2\text{^{35}}
1974 6) Brillhart \([B6]\) found the unresolved part composite, c60
1983 7) Davis & Holdridge found \(f_2 \) (qs) & \(f_3 \) to complete the factorisation:
\[
M_{211} = 15193 \times 60,272956,433838,849161 \times \\
3593,875704,495823,757388,199894,268773,153439
\]

\[p = 223 \]

1644 1) Stated by Mersenne \([M3; c \text{ D1 p13}]\) to be composite
1881 2) COMPOSITE: Le Lasseur \([L18; c \text{ D1 p24 n131}]\) found \(f_1 = 18287 \)
1921 3) Kraitchik \([K3 p24; K16; c A1 n18] \) found \(f_2 = 196687 \)
1946 4) D H Lehmer \([L6] \) added just \(f_3 = 1,466449 \) and \(f_4 = 2,916841 \) below 4,538800
1960 5) Brillhart \([B2]\) confirmed \(f_1 \) to \(f_4 \) and found no further factor < 2\text{^{31}}
1963 6) Brillhart \([B4]\) found no further factor < 2\text{^{35}}
1974 7) Brillhart \([B6]\) found the unresolved part composite
1981 8) "Cunningham Project" \([B22]\) completed the factorisation (cf):
\[
M_{223} = 18287 \times 196687 \times 1,466449 \times 2,916841 \times \\
1469,495262,398780,123809 \times 596242,599987,116128,415063
\]

\[p = 227 \]

1644 1) Stated by Mersenne \([M3; c \text{ D1 p13}]\) to be composite
1881 2) Le Lasseur \([c \text{ D1 p24 n131}]\) found no factor < 30,000
1895 3) Cunningham \([C7; c \text{ D1 p28 n165}]\) found no factor < 50,000
1908 4) Cunningham \([C8]\) found no factor < 200,000
1911 5) Cunningham \([C4; W1]\) found no factor < 500,000
1912 6) Cunningham \([C1]\) found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin \([G6; c \text{ D1 p31 n192b}]\) found no factor < 1,000,000
1946 8) D H Lehmer \([L6] \) found no factor < 4,538800
1947 9) COMPOSITE: Uhler \([U5; U7; c A3]\) computed correct NZLR \([R2; T11]\)
1952 10) Robinson \([R2]\) on SWAC confirmed Uhler’s NZLR
1960 11) Brillhart \([B2]\) found no factor < 2\text{^{31}}
1963 12) Brillhart \([B4]\) found no factor < 2\text{^{35}}
1982 13) Brent \([B30]\) found primes \(f_1 \) (rho) & \(f_2 \) to complete factorisation:
\[
M_{227} = 26986,333437,777017 \times \\
7992,177738,205979,626491,506950,867720,953545,660121,688631
\]
\[p = 229 \]

1644 1) Stated by Mersenne \([M3; c \ D1 \ p13]\) to be composite

1881 2) Le Lasseur \([c \ D1 \ p24 \ n131]\) found no factor \(< 30,000\)

1895 3) Cunningham \([C7; c \ D1 \ p28 \ n165]\) found no factor \(< 50,000\)

1908 4) Cunningham \([C8]\) found no factor \(< 200,000\)

1911 5) Cunningham \([C4; \ M1]\) found no factor \(< 500,000\)

1912 6) Cunningham \([C1]\) found no factor \(< 800,000\) (working with Gerardin)

1912 7) Gerardin \([G6; c \ D1 \ p31 \ n192b]\) found no factor \(< 1,000,000\)

1946 8) \textbf{COMPOSITE:} Uhler \([U5; U8; c \ A3]\) computed correct NZLR \([R2; T11]\) (February)

1946 9) D H Lehmer \([L6]\) found \(f_1 = 1,504073\) and no other factor \(< 4,538800\) (Oct.)

1952 10) Robinson \([R2]\) on SWAC confirmed Uhler's NZLR

1960 11) Brillhart \([B2]\) confirmed \(f_1\), added \(f_2 = 20,492753\) and found NFF \(< 2^{31}\)

1963 12) Brillhart \([B4]\) found no further factor \(< 2^{35}\)

1974 13) Brillhart \([B6]\) found the unresolved part composite

1981 14) Brent \([B24; B27; B28]\) found \(f_3\) (rho) & \(f_4\) to complete the factorisation:

\[
M_{229} = 1,504073 \times 20,492753 \times 59833,457464,970183 \times 467,795120,187583,723534,280000,348743,236593
\]

\[p = 233 \]

1644 1) Stated by Mersenne \([c \ D1 \ p13]\) to be composite

1856 2) \textbf{COMPOSITE:} Reuschle \([R8; c \ D1 \ p21 \ n108]\) found \(f_1 = 1399\)

1921 3) Kraitchik \([K3 \ p24; K16; c \ A1 \ n18]\) found \(f_2 = 135607\)

1946 4) D H Lehmer \([L6]\) found \(f_3 = 622577\) and no further factor \(< 4,538800\)

1960 5) Brillhart \([B2]\) confirmed \(f_1\), \(f_2\) and \(f_3\) above and found NFF \(< 2^{31}\)

1963 6) Brillhart \([B4]\) found no further factor \(< 2^{35}\)

1974 7) Brillhart \([B6; B16]\) found \(f_4\) prime by Corollary 11 \([B6]\):

\[
M_{233} = 1399 \times 135607 \times 622577 \times 116,868129,879077,600270,344856,324768,260085,066532,853492,178431
\]

\[p = 239 \]

1644 1) Stated by Mersenne \([M3; c \ D1 \ p13]\) to be composite

1733 2) \textbf{COMPOSITE:} Euler \([E1; E2 \ p2\); c \ D1 \ p17 \ n83]\) found \(f_1 = 479\) by observation

1856 3) Reuschle \([R8; c \ D1 \ p21 \ n108]\) found \(f_2 = 1913\)

1896 4) Bickmore \([B12; c \ D1 \ p28 \ n166]\) confirmed \(f_2\) and added \(f_3 = 5737\)

1921 5) Kraitchik \([K3 \ p24; K16; c \ A1 \ n18]\) found \(f_4 = 176383\)

1946 6) D H Lehmer \([L6]\) found no further factor \(< 4,538800\)

1960 7) Brillhart \([B2]\) confirmed \(f_1 - f_4\); added \(f_5 = 134,000609\); found NFF \(< 2^{31}\)

1963 8) Brillhart \([B4]\) found no further factor \(< 2^{35}\)

1974 9) Brillhart \([B6]\) found \(f_6\) prime to complete the factorisation:

\[
M_{239} = 479 \times 1913 \times 5737 \times 176383 \times 134,000609 \times 7,110008,717824,458123,105014,279253,754096,663768,062879
\]

\([S18; T10]\)
\[p = 241 \]

1644 1) Stated by Mersenne \([M3; c D1 p13]\) to be composite
1881 2) Le Lasserre \([c D1 p24 n131]\) found no factor \(< 30,000\)
1895 3) Cunningham \([C7; c D1 p28 n165]\) found no factor \(< 50,000\)
1908 4) Cunningham \([C8]\) found no factor \(< 200,000\)
1911 5) Cunningham \([C4; W1]\) found no factor \(< 500,000\)
1912 6) Cunningham \([C1]\) found no factor \(< 800,000\) (working with Gerardin)
1912 7) Gerardin \([G6; c D1 p31 n192b]\) found no factor \(< 1,000,000\)
1934 8) **COMPOSITE**: Powers \([P3]\) computed correct NZLR \([R2; T11]\)
1946 9) D.H. Lehmer \([L6]\) found no factor \(< 4,538800\)
1952 10) Robinson \([R2; R10]\) on SWAC confirmed Powers' NZLR
1960 11) Brillhart \([B2]\) found \(f_1 = 22,000409\) and no further factor \(< 2^{31}\)
1963 12) Brillhart \([B4]\) found no further factor \(< 2^{35}\)
1974 13) Brillhart \([B6]\) found \(f_2\) prime to complete the factorisation:
\[M_{241} = 22,000409 \times 160619,474372,352289,412737,508720,216839, \ldots \]

\[p = 251 \]

1644 1) Stated by Mersenne \([M3; c D1 p13]\) to be composite
1733 2) An observation of Euler gives \(f_1 = 503\); did Euler state this explicitly?
1878 3) **COMPOSITE**: Lucas \([L14 p236; c D1 p23 n123]\) found \(f_1 = 503\)
1909 4) Cunningham \([W1; c D1 p31 n192a, A1 n10]\) found \(f_2 = 54217\)
1946 5) D.H. Lehmer \([L6]\) found no further factor \(< 4,538800\)
1960 6) Brillhart \([B2]\) confirmed \(f_1\) & \(f_2\) and found no further factor \(< 2^{31}\)
1963 7) Brillhart \([B4]\) found no further factor \(< 2^{35}\)
1974 8) Brillhart \([B6]\) found the unresolved part composite, c69
1984 9) Davis et al found \(f_3, f_4 (qs)\) & \(f_5\) prime \([T14]\), completing the factorisation:
\[M_{251} = 503 \times 54217 \times 178,230287,214063,289511 \times \]
\[61676,882198,695257,501367 \times 12,070396,178249,893039,969681 \]

\[p = 257 \]

1644 1) **ERROR**: Stated by Mersenne \([M3; c D1 p13]\) to be prime
1881 2) Le Lasserre \([c D1 p24 n131]\) found no factor \(< 30,000\)
1895 3) Cunningham \([C7; c D1 p28 n165]\) found no factor \(< 50,000\)
1911 4) Powers \([C15; P8]\) found no factor \(< 10,017000\)
1922 5) **COMPOSITE** (?): Kraitchik \([L2]\) computed a NZLR - lost in Gerardin's files
1927 6) **COMPOSITE**: D.H. Lehmer \([L2; L26]\) computed correct NZLR \([R2; R10; T11]\)
1936 7) **ERROR**: Krieger \([K19]\) thought \(M_{257}\) prime
1952 8) Robinson \([R2; R10]\) confirmed Lehmer's NZLR
1960 9) Brillhart \([B2]\) found no factor \(< 2^{31}\)
1963 10) Brillhart \([B4]\) found no factor \(< 2^{35}\)
1979 11) Penk \([c B16; B17; B19]\) found \(f_1 = 535,006138,814359 (\rho)\) to be prime
1980 12) Baillie \([c B16; B17; B19]\) found \(f_2 (Pp)\) & \(f_3\) to complete the factorisation:
\[M_{257} = 535,006138,814359 \times 1,155658,395246,619182,673033 \times \]
\[374,550598,501810,936581,776630,096313,181393 \ [S18; T10] \]

A trivial computation will satisfy the reader that the above statements \(M_p = \prod f_i\) are correct. The confirmation, if required, that the \(f_i\) are prime is a much more significant computation which could be simplified by the provision of supporting evidence in the form of a primality-certificate; Vaughan Pratt \([P5]\) proved that succinct certificates exist in all cases. The author \([H20]\) has compiled certificates using factorisations by Brent, Davis & Holdridge, Naur, Pollard and Wagstaff. These certificates minimise the verifier's work and 'go down' the 'p-1 route'.

A trivial computation will satisfy the reader that the above statements \(M_p = \prod f_i\) are correct. The confirmation, if required, that the \(f_i\) are prime is a much more significant computation which could be simplified by the provision of supporting evidence in the form of a primality-certificate; Vaughan Pratt \([P5]\) proved that succinct certificates exist in all cases. The author \([H20]\) has compiled certificates using factorisations by Brent, Davis & Holdridge, Naur, Pollard and Wagstaff. These certificates minimise the verifier's work and 'go down' the 'p-1 route'.

27
Results are grouped in line with the ranges of prime indexes of "original" computations. All prime-indexes 'p' have been accounted for by Lucas Residue (LR) or prime factor for p < 100,000.

258 < p < 2304

1949 NEWMAN, KILBURN & TOOTILL [H21; N16; T13]
1) Computed LRs for all (?) p < 354
2) Confirmed prime/composite pattern for p < 258
3) Did not publish p or LRs

1952 LEHMER & ROBINSON [L3; L4; L5; R2; R3]
1) Lehmer eliminated Mp where a factor was known
2) Robinson computed LR for all (sic) remaining Mp in this range
3) PRIME: 13th Mersenne Prime M521 discovered on 30/1/1952 [L3]
4) PRIME: 14th Mersenne Prime M607 discovered on 30/1/1952 [L3]
5) PRIME: 15th Mersenne Prime M1279 discovered on 25/6/1952 [L4]
6) PRIME: 16th Mersenne Prime M2203 discovered on 7/10/1952 [L5]
7) PRIME: 17th Mersenne Prime M2281 discovered on 9/10/1952 [L5]
8) Checked with identical runs on different days until two results agreed
9) Used an alternative starting value, S1 = 10, for the Lucas test
10) Made residues available to subsequent workers (Sel’dridge & Hurwitz)
11) ERROR: incorrect NZLR for M1889. Found by Hurwitz' IBM7090 [S3]
12) Did not use modulus check on the computation [R10]
13) Did not publish p, LRs, Mp-factors and factor-table sources
14) Did not remark on the frequency of residue disagreements (8 above)

1961 SELFREDGE & HURWITZ [H1; H2; S3]
1) Computed LR for all (sic) Mp where no Mp-factor was known
2) Found SWAC LR for M1889 incorrect; SWAC confirmed error [S3]
3) Did not publish p, LRs, Mp-factors and factor-table references

1963 GILLIES [G1; G7]
1) Computed LR for all Mp where no Mp-factor was known [G7]
2) Tabled last 5 octal digits of LRs [G7]

1971 TUCKERMAN [T1]
1) Computed LR for all (sic) Mp where no Mp-factor was known
2) Did not publish p, LRs, Mp-factors and factor-table references

1979 NELSON & SLOWINSKI [N1; N12; S1]
1) Computed LR for all p < 16310, 16400 - 17188, 18020 - 24000 et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite-Mp pattern for p < 21000
4) Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]

1982 ICL 2900 DAP [H8 - H15]
1) Computed 2828 LRs for p < 50024
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for p < 62982 in MC UMT file [H15]
2304 < p < 3300

1957 RIESEL [R5; R1]
1) Examined all M_p, $p < 10000$, for a factor $q < 10.220$
2) Computed LR for all (sic) remaining M_p in this range
3) PRIME: 18th Mersenne Prime M_{3217} discovered on 8/9/1957
4) Checked with second run that M_{3217} is prime
5) Checked all previously known prime M_p for zero residue
6) Checked factor values against other sources: Lehmer, Kraitchik, ...
7) Double-checked that (all?) factors are of form $2kp + 1$
8) Published first factor of M_p where known
9) Cautioned that 'factors' tabled may not be true divisors of M_p
10) Cautioned that BESK only did one run on 'composite' M_p
11) Made the LRs available (in hexadecimal) to Selfridge & Hurwitz [S3]
12) ERRORS: Two proof-preparation errors in factor table; corrected [S5]
13) ERRORS (?): 4 (?) NZLRs ($p = 2957, 2969, 3049, 3109$) incorrect [S3]
14) Did not use modulus check on the calculation [R12]
15) Did not use alternative starting value $S_1 = 10$ for Lucas test
16) Did not residue test for $p < 2304$ and check against SWAC LRs
17) Did not publish the computed LRs

1961 SELFridge & Hurwitz [H1; H2; S3]
1) Computed LR for all (sic) M_p where no M_p-factor was known
2) Disagreed with Riesel's LRs for 4 indexes 'p', see note 13 above [S3]
3) ERRORS: 4 incorrect NZLRs originally computed; later corrected [S3]
4) Did not publish p, LRs, M_p-factors and factor-table references

1963 GILLIES [G1; G7]
1) Computed LR for all M_p where no factor was known for $p < 12124$
2) Tabled last 5 octal digits of LRs [G7]

1971 TUCKERMAN [T1]
1) Computed LR for all (sic) M_p where no factor was known for $p < 21000$
2) Did not publish p, LRs, M_p-factors and factor-table references

1979 NELSON & SLOWINSKI [N1; N12; S1]
1) Computed LR for all $p < 16310, 16400 - 17188, 18020 - 24000 et al$ [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite-M_p pattern for $p < 21000$
4) Deposited LRs in Maths. Comp. UMT file for $p < 50024$ [N12]

1982 ICL 2900 DAP [H8 - H15]
1) Computed 2828 LRs for $p < 50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p < 62982$ in MC UMT file [H15]
3300 < p < 5000

1961 SELFRIDGE & HURWITZ [H1; H2; S3]
1) Computed LR for all M_p in this range where no factor was known
2) PRIME: 19th Mersenne Prime M_{4253} discovered on or before 3/11/1961
3) PRIME: 20th Mersenne Prime M_{4423} discovered on or before 3/11/1961
4) Used Lucas test with both $S_1 = 4$ and $S_1 = 10$ on prime M_p
5) Published last 5 octal digits of LRs
6) Published sign of S_{p-2} for prime M_p
7) ERRORS: 4 incorrect NZLRs ($p = 3637, 3847, 4397, 4421$) [S3]
8) Did not check Brillhart's factors
9) Did not modulus-check the computation

1963 GILLIES [G1; G7]
1) Computed LR for all M_p where no factor was known [G7]
2) Corrected Hurwitz' four errors [G7; G1], see note 7 above
3) Confirmed (last 5 octal digits of) all Hurwitz' remaining LRs in this range
4) Tabled last 5 octal digits of LRs [G7]

1971 TUCKERMAN [T1]
1) Computed LR for all (sic) M_p where no M_p-factor was known
2) Did not publish p, LRs, M_p-factors and factor-table references

1979 NELSON & SLOWINSKI [N1; N12; S1]
1) Computed LR for all M_p, $p < 16310$, 16400 - 17188, 18020 - 24000 et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite-M_p pattern for $p < 21000$
4) Deposited LRs in Maths. Comp. UMT file for $p < 50024$ [N12]

1982 ICL 2900 DAP [H8 - H15]
1) Computed 2828 LRs for $p < 50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p < 62382$ in NC UMT file [H15]
5000 < p < 6000

1963 SELFRIDGE & HURWITZ [S3]
1) Computed LR for all \(M_p \) where no \(M_p \)-factor was known
2) Published last 5 octal digits of LRs
3) Checked both \(S_1 \) squaring and mod \(M_p \) reduction modulo 235-1

1963 GILLIES [G1; G7]
1) Computed LR for all \(M_p \) where no \(M_p \)-factor was known [G7]
2) Tabled last 5 octal digits of LR [G7]
3) Found factor and did not compute NZLR for \(p = 5387, 5591, 5641, 5987 \)
4) Confirmed (last 5 octal digits of) Selfridge/Hurwitz's remaining NZLRs

1971 TUCKERMAN [T1]
1) Computed LR for all (sic) \(M_p \) where no \(M_p \)-factor was known
2) Did not publish \(p \), LRs, \(M_p \)-factors and factor-table references

1979 NELSON & SLOWINSKI [N1; N12; S1]
1) Computed LR for all \(M_p \), \(p < 16310, 16400 - 17188, 18020 - 24000 \) et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite-\(M_p \) pattern for \(p < 21000 \)
4) Deposited LRs in Maths. Comp. UMT file for \(p < 50024 \) [N12]

1982 ICL 2900 DAP [H8 - H15]
1) Computed 2828 LRs for \(p < 50024 \)
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for \(p < 62982 \) in MC UMT file [H15]
1963 KRAVITZ & BERG \([K1]\)
1) Computed LR for all \(M_p\) in this range where no factors was known
2) Published last 5 octal digits of LR: last 12 octal digits tabled \([B14]\)
3) ERROR: originally computed incorrect NZLR for 10 \(M_p\) (asterisked \([K1]\))
4) Corrected these errors after Gillies' letter and before publication
5) Did not modulus-check the computation \([B14; K21; K22]\)

1963 GILLIES \([G1; G7]\)
1) Computed LR for all \(M_p\) where no factor was known, \(p < 12124\)
2) Computed extended factor-table after LR computations
3) Tabled last 5 octal digits of LR
4) Did not table computed LR for \(p = 6089, 6661, 6779, 6907\)

1971 TUCKERMAN \([T1]\)
1) Computed LR for all (sic) \(M_p\) where no \(M_p\)-factor was known
2) Did not publish \(p, LRs, M_p\)-factors and factor-table references

1979 NELSON & SLOWINSKI \([N1; N12; S1]\)
1) Computed LR for all \(M_p\), \(p < 16310, 16400 - 17188, 18020 - 24000\) et al \([N12]\)
2) Second-sourced all LR in the above three ranges \([N12]\)
3) Confirmed prime/composite-Mp pattern for \(p < 21000\)
4) Deposited LR in Maths. Comp. UMT file for \(p < 50024\) \([N12]\)

1982 ICL 2900 DAP \([H8 - H15]\)
1) Computed 2828 LR for \(p < 50024\)
2) Confirmed all LR or corrected LR in \([G1; G7; H2; K1; N7; R10; S3; T6]\)
3) Confirmed all LR in \([N12]\) where no factor was known with 16 corrections
4) Deposited LR for \(p < 62982\) in MC UMT file \([H15]\)
1963 GILLIES [G1; G7]
1) Computed M_p-factors $< 2^{36}$ to eliminate some composite M_p [B16]
2) Computed LR for all remaining M_p in this range
3) PRIME: 21st Mersenne Prime M_{9689} discovered on or before 11/5/1963 [G5]
4) PRIME: 22nd Mersenne Prime M_{9941} discovered around 16/5/1963 [G5; M9]
5) PRIME: 23rd Mersenne Prime M_{1213} discovered on 2/6/1963 [M9]
6) Checked calculation modulo $2^{44} - 1$
7) Published p, LRs and M_p-factors discovered and/or used to eliminate M_p
8) ERROR: NZLR for $p = 12143$ corrected by Tuckerman [T2]
9) Did not use Lucas test with $S_1 = 10$ or do a confirmation run
10) Did not check available residues of composite M_p, $p < 3300$

1971 TUCKERMAN [T1; T6]
1) Computed LR for all (sic) M_p where no factor was known, $p < 21000$
2) Corrected Gillies' NZLR for $p = 12143$ [T2]
3) Did not publish p, LRs, M_p-factors and factor-table references

1979 NELSON & SLOWINSKI [N1; N12; S1]
1) Computed LR for all M_p, $p < 16310, 16400 - 17188, 18020 - 24000$ et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite-M_p pattern for $p < 21000$
4) Deposited LRs in Maths. Comp. UMT file for $p < 50024$ [N12]

1982 ICL 2900 DAP [H8 - H15]
1) Computed 2828 LRs for $p < 50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p < 62982$ in MC UMT file [H15]

12144 < $p < 21000$

1971 TUCKERMAN [T1; T6]
1) Eliminated some composite M_p using factor-tables
2) Computed LR for remaining M_p in this range
3) PRIME: 24th Mersenne Prime M_{19937} discovered on 4/3/1971
4) Checked calculation-steps modulo $2^{24} - 1$ and $2^{24} - 3$
5) Confirmed known factors of these M_p before eliminating them
6) Checked zero residue for M_{19937} with altered program
7) Communicated result to MIT; it was confirmed by Speciner & Schroepepel
8) Tabled last 5 octal digits of LRs [T3]
9) Did not use Lucas test with $S_1 = 10$

1979 NELSON & SLOWINSKI [N1; N12; S1]
1) Computed LR for all M_p, $p < 16310, 16400 - 17188, 18020 - 24000$ et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite-M_p pattern for $p < 21000$
4) Deposited LRs in Maths. Comp. UMT file for $p < 50024$ [N12]

1982 ICL 2900 DAP [H8 - H15]
1) Computed 2828 LRs for $p < 50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p < 62982$ in MC UMT file [H15]
1979 NICKEL & NOLL [N5; N6; N7; S4; S13]
1) Eliminated some composite M_p using Wagstaff's factor-table
2) Computed LR for remaining M_p in this range
3) PRIME: 25th Mersenne Prime M_{21701} discovered on 30/10/1978
4) PRIME: 26th Mersenne Prime M_{23209} discovered on 9/2/1979
5) Checked results with second computation
6) Submitted the prime M_{21701} to Lehmer & Tuckerman for checking [N5]
7) Published p, LRs, M_p-factors and factor-table references [N7]
8) ERROR: omitted "22501 67260" from first table [N7]: $f_1 = 3026,834521$
9) No modulus check included in the code [N4]

1979 NELSON & SLOWINSKI [N1; N2; N12; S1]
1) Computed LR for all M_p, $p < 16310$, $16400 - 17188$, $18020 - 24000$ et al [N2]
2) PRIME: independently discovered M_{23209} on 23/2/1979
3) Confirmed prime/composite-M_p pattern for $p < 21000$
4) Deposited LRs in Maths. Comp. UMT file [N12]
5) Did not compare NZLR values for all computed tests [N2]

1981 ICL 2900 DAP [H8 - H15]
1) Computed 2828 LRs for $p < 50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p < 62982$ in MC UMT file [H15]

1979 NELSON & SLOWINSKI [N1; N12; N14; N15; S1; S13]
1) Computed LR for all $p < 16310$ [N2]
2) Eliminated some composite M_p using Wagstaff's factor-table [W8]
3) Computed LR for remaining p, $30000 < p < 50024$
4) PRIME: 27th Mersenne Prime M_{44497} discovered on 8/4/1979
5) Noll confirmed M_{44497} prime [N9]
6) Checked the squaring modulo $2^{24} - 1$ [N1]
7) Deposited LRs in Maths. Comp. UMT file [N12]
8) Did not confirm the M_p-eliminating factors used
9) Did not check against many known Lucas residues
10) Did not use Lucas test with $S_1 = 10$
11) ERROR: omitted indexes 24733, 40639 and 44623
12) ERROR: wrong residue on 32831 due to 'p = 23 mod 24' error [N12; N14; N15]
13) ERROR: wrong residue on 43793 due to transient fault during (?) mod-reduction
14) ERROR: wrong residues on 14 indexes due to possible code-experimentation:
 46399, 47137, 48079, 48119, 48157, 48164, 48193, 48409, 48413, 48437, 48449, 48473, 48481, 50021
15) Corrected errors above given ICL DAP results below [N14; N15]

1981 ICL 2900 DAP [H8 - H15]
1) Computed 2828 LRs for $p < 50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p < 62982$ in MC UMT file [H15]
1982 ICL 2900 DAP [H8 - H15; L45]
1) Computed 2828 LRs for \(p < 50024 \)
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] after 16 corrections and 3 additions
4) Checked the squaring modulo \(2^{31}-1 \) and computed on 32 numbers in parallel
5) Computed factor-table and checked against others [K30; L45; W8; W12]
6) Deposited last 15 octal digits of LRs and factor-table in MC UMT file [H15]

62982 < \(p < 216092 \)

At this point, the previous strict chronology breaks down. Isolated Mₚ have been tested, a number of computer codes are simultaneously active and Slowinski's testing is both non-sequential and unfiled.

1978 NOLL [N10]
1) Computed NZLR (25/12/1978) for \(M_{65537} \) in 168° on CDC CYBER-174
2) NZLR for \(M_{65537} \) is 56172 70454 77750 45726

1979 NELSON [N17]
1) Confirmed NZLR (13/3/1979) for \(M_{65537} \) in 1°1'51"
2) Computed NZLR (29/4/1979) for \(M_{131071} \) as 21673 53757 40460 in 7°28'

1981 NELSON [N17]
1) Computed NZLR for \(M_{65539} \) as 21616 05464 50663
2) Computed NZLR for \(M_{65543} \) as 02405 16722 60672

1982 SLOWINSKI [N21; N23]
1) Computed factor or LR for 'most' \(M_p \) in \(75000 < p < 90000 \) [N21]
2) PRIME: 28th known Mersenne prime \(M_{86243} \) discovered on 25/9/1982 in 1°36'22"
3) Nelson confirmed \(M_{86243} \) prime using the CRAY/1 '1979' code
4) McGrogan & Noll confirmed \(M_{86243} \) prime using a CYBER-205 in 1° [N23]
5) Holmes et al confirmed \(M_{86243} \) prime using an ICL-DAP on 22/12/1982 in 38'38"

1983 ICL 2900 DAP [B32; B33; B34; H15]
1) Tabulated the 1913 \(M_{q-1} < 2^{40} \) for 62982 < \(p < 100000 \)
2) Confirmed factor-table against those of Keller and Wagstaff [K30; W14]
3) Code C confirmed 520 known LRs
4) Computed NZLR for the 397 remaining \(p, \) 62982 < \(p < 73180 \)
5) Computed NZLR for the 339 remaining \(p, \) 90534 < \(p < 100000 \)
6) Checked the squaring modulo \(2^{16}-1 \) and computed 16 \(M_p \) in parallel

1983 SLOWINSKI
1) PRIME: 29th known Mersenne prime \(M_{132049} \) discovered on 20/9/83 in 32'30"
2) Reportedly computed LR for all \(p < 103,000 \) [04]

1984 ICL 2900 DAP [H18; H19]
1) Computed LR for the 626 \(M_p, \) 73180 < \(p < 90534 \)
2) Confirmed \(M_{86243} \) as the 28th Mersenne Prime in order of size
3) Deposited LRs for the complete range, 50024 < \(p < 100000 \) [H19] in MC UMT

1985 SLOWINSKI [O6]
1) PRIME: 30th known Mersenne prime \(M_{216091} \) discovered on 6/9/86 in 3°
2) McGrogan confirmed prime prior to publication
1988 COLQUITT & WELSH [C32; C33]
1) PRIME: 31st known Mersenne prime M_{110503} discovered on 29/1/88
2) NEC SX-2 program included a modulus-check on the squaring
3) M_{110503} confirmed prime by McGrogan (ELXSI), SLowinski (CRAY XMP), Young
 (CRAY XMP) and Colquitt (NEC SX-2, 'schoolboy multiplication' code) [C33]
4) Computed an M_p-f_1 or M_p-LR for all p, $10^5 < p \leq 132049$ [C33]

1989 COLQUITT & WELSH [C34; H22]
1) Computed an M_p-f_1 or M_p-LR for all p, $10^5 < p \leq 139267$ [C34; H22]
2) Confirmed 1134 of 2828 LRs with $p < 50000$ [H19] with no disagreements [H22]
This section does not claim to be complete as the errors have been noticed "en passant" rather than as a result of deliberate proof-reading. Published errata and corrigenda have been included here.

R. C. ARCHIBALD
A1 1) Attributions in doubt or incomplete: M₁₁, M₁₃, M₂₃, M₃₇
2) Note 6: Lucas authored Amer. J. Math. v1 p240 - table is "apres Landry"
3) Note 10: On M₁₆₃, for "30th April 1908" read "7th May 1908"
 The date was incorrectly printed on that page of 'Nature'.
4) Note 11: For "p80" read "p86" - unclear 'Nature' typeface.
5) Note 13: end of 2nd paragraph: "p118" may be incorrect
6) Note 14: for "p383" read "p883"
7) Euler's "Opuscula": On p113, "2 ---> 36"; on p116, " ---> 27"

C. B. BARKER
B1 1) NZLR incorrect even though he used modulus checks [R2; T11]

A. H. BEILER
B21 1) p18, ending paragraph 1: Uhler found that none of the numbers corresponding to the six indices (157, 167, 193, 199, 227, 229) were perfect.
2) p247: references 5 & 6 are by D. H. Lehmer, not D. N. Lehmer

C. E. BICKMORE
B12 1) p17, line 10: for "₃₃₁⁻¹" read "₃₇⁻¹"

R. P. BRENT
B26 1) Against k = 337, for "prp67" read "prp68", later proved "p68" [B28]

J. BRILLHART
B2 1) p366, 3A: for "55" read "47"
2) p368: remove the '*' against all fᵢ < 10⁶ except for p = 1049.
 *e for p = 571, 641, 719, 761, 883, 967, 1019, 1093. See MR23#A832.
 Source of factors for p = 719, 967, 1019, 1093 unknown to this author.
B4 1) Tenth reference needed - should be to [K2]
 [K2] on p85 has a reference to 3 factors, namely:
 f₂ of M₁₀,007; f₁ of M₁₀,009; f₂ of M₁₀,091
B6 1) p544: For "The eight new" read "The nine new" and insert "233" in the list. f₃ of M₂₃₃ was found prime by Corollary 11 [B16]
2) p645: Schroeppe1 did not publish M₁₄₉'s factorisation in AIM 239
 (ref [1]), but communicated it privately to the author [B16]
3) see MC v39 (1982) p747

P. A. CATALDI
C2 1) Regarded M₂₃, M₂₉ and M₃₇ as primes
R. W. D. CHRISTIE
C27 1) Regarded M_{41} and M_{47} as primes

A. J. C. CUNNINGHAM
C7 1) Found no factor < 50,000 for M_{181}; in fact f_1 = 43441 [C11; W1]
 2) 14831|M_{1483} but 14591|M_{1459} [B29; K30]
C8 1) For "Only 18 Mersenne's numbers remain unverified" read
 "Only 18 Mersenne's numbers stated to be composite by Mersenne remain
 unverified. M_{257}, stated by Mersenne to be prime, also remains
 unverified."
 Evidence of Cunningham's concentration on 'composite M_p' comes from
 [C11; C4; C29]
 2) Found no factor < 200,000 for M_{181}; in fact f_1 = 43441 [C11; W1]

C16 1) Various errors; see original copy & Thorkil Naur's letter

L. E. DICKSON
D1 1) p18 n89: for "p25" read "pp26-7". Euler did not claim all factors prime.
 2) p30 n184: for "BAMS v16" read "BAMS v17"
 3) p31 n191: for "p87" read "p86"
 4) p31 n192b: "d = 1 mod 24" is incorrect for p = 31, 61 (Gerardin's error?)
 5) p31 n192c: Fauquembergue's NZLR for M_{101} was found incorrect in 1952 [R2]
 6) p32 n199: for "31" read "131" in the reference to Lucas' test
 7) p32 n200: Fauquembergue's NZLRS for M_{103} & M_{109} were also found to
 be incorrect in 1952 [R2]
L. EULER

E3 1) p27, against 221: for "3.23.89" read "3.23.89"
 2) p27, against 32: for "22" read "22"
 3) p27, against 33: for "22" read "23"
 4) p27, against 55: for "33" read "32"
 5) p27, against 710: for "329554457" read "1123.293459" [B29]
 6) p28, against 7: for "22" read "22"
 7) p28, against 13: for "22" read "23"
 8) p28, entries for 79, 792 and 793 have been omitted. They should read [E4]:
 79: 24.5, 792: 3.72.43, 793: 25.5.3121
 9) p28, against 137: for "22" read "22"
 10) p28, against 149: for "11.101" read "17.653"
 11) p28, against 157: for "29.79" read "29.79"
 12) p28, against 167: for "3.5.7.2789" read "3.5.7.2789"
 13) p28, against 173: for "67.449" read "30103"
 14) p28, against 193: for "3.7" read "3.7"
 15) p29, against 257: for "43.1321" read "43.1321"
 16) p29, against 283: for "22" read "22"
 17) p29, against 311: for "24.3" read "24.3"
 18) p29, against 347: for "23.3" read "23.3"
 19) p29, against 353: for "5.17" read "5.17"
 20) p30, against 461: for "11106261" read "11.106261"
 21) p30, against 523: for "7" read "7"
 22) p30, against 563: for "3.5.29" read "3.5.29"
 23) p30, against 571: for "163041" read "163021"
 24) p30, against 613: for "125461" read "7.17923"
 25) p31, against 769: for "71" read "71"
 26) p31, against 811: for "22" read "22"
 27) p31, against 827: for "32" read "32"
 28) p31, against 863: for "25" read "25"
 29) p31, against 907: for "23" read "23"
 30) p31, against 929: for "31.431521" read "31.431521"

E2 1) The errors in [E3] listed above as 4-6, 8, 10, 13, 16, 20, 21, 23-27 are
 reproduced here.
 2) p104, against 17: for "32" read "32"
 3) p105, against 41: for "29" read "29"
 4) p106, against 359: for "33" read "33"
 5) p109, below "929", for "9192" read "9292" and for "9193" read "9293"

E4 1) p90, against 710: for "329554457" read "1123.293459" [B29]

E. FAUQUEMBERGUE

F12 1) Incorrect NZLR for M101: discovered by Robinson on SWAC in 1952 [R2]

F1 1) Incorrect NZLR for M103: discovered by Robinson on SWAC in 1952 [R2]
 2) Incorrect NZLR for M109: discovered by Robinson on SWAC in 1952 [R2]

F10 1) Incorrect NZLR for M137: discovered by Robinson on SWAC in 1952 [R2]

A. FERRIER

F4 1) p5, against p = 359: for "855851" read "855857" [K30]
D. B. GILLIES

G7 1) NZLR for M12143 incorrect [H8; T2]. For "27361" read "71510".
2) (Author's copy) M12641, f4: for "4124,947915" read "41249,479151" [G1]
3) (Author's copy) M14593, f5: for "6336,911017" read "63369,110177" [G1]

G1 1) NZLR for M12143 incorrect [H8; T2]. For "27361" read "71510".

V. A. GOLUBEV

G11 1) p258: add two columns to the table of Seredinskij:
 (130 .. 23 .. 5197 .. 31183) and (50 .. 47 .. 10357 .. 62143) [K28]
2) p259: In Theoreme II, for "2^{12n+1} - 12n+1 + 2n+1" read "2^{12n+1} - 22n+1 + 2n+1"
3) p259: In Theoreme II, for "2^{12n+1} - 12n+1 + 2n+1" read "2^{12n+1} - 22n+1 + 2n+1"
4) p259: In the 5th row of the table, x, for "36" read "86"
5) p259: In the 7th row of the table, p1, for "1692" read "1693"
6) p260: Theoreme IV. For "2^n - 1" read "2^{p-1}"
7) p260: In the 3rd row of the first table, p, for "1365" read "1367"
8) p260: Delete the 14th column of the first table because 19337 = 61 * 317
9) p260: Exchange the "x" and "y" in the labellings of the second table
10) p260: In the 1st row of the second table, for "15" read "25"
11) p261: Add to the first table the column (13 .. 31 .. 4447 .. 71153)

G. H. HARDY & E. M. WRIGHT

H6 1) (3rd Edition: 1954), on p11, M2281 is said to have 686 decimal digits.
 For "686" read "687".
2) (4th Edition: 1960, reprinted 1965), on p16, M11213 is said to have
 3375 decimal digits. For "3375" read "3376". Noted by M. Lal [L12]

A. HURWITZ

H2 1) NZLRs found incorrect [G1] for 4 Mp with p < 3300
2) NZLRs found incorrect [G1; G7; N2; N3] for 4 Mp:
 for M3637's "67413" read "53313", for M3847's "57652" read "14000",
 for M4397's "40174" read "44327", for M4421's "25131" read "03013"

E. KARST

K2 1) p80: proof that \(\exists \) prime q s.t. \(q^2 \mid M_p \) is fallacious [K8]

D. E. KNUTH

K26 1) p391: credited Lucas with showing M67 composite. NZLR unconfirmed
2) p391: credited Kraitchik with showing M257 composite. NZLR unconfirmed
3) p391: for "CRAY-I" read "CRAY-I"
4) p394: "The world's largest explicitly known prime numbers have always been
 Mersenne primes, at least from 1772 until 1980" is incorrect.
 In 1867 [L20; c 01] and 1869 [L19 p4; c 01], Landry preceded Lucas' prime
 M127 of 1876 by listing 14 primes > M31. Landry's work may be regarded
 as reliable although he pronounced one composite number prime in those
 tables. The two 1867 primes of the 14 are asterisked below:
 2931,542417 | 2^{44,1} | 77158,673929 | 2^{63,1} | 4,363953,127297 | 2^{49,1}
 4278,255361 | 2^{20,1} | 165768,537521 | 2^{47,1} | 4,432676,798593 | 2^{49,1}
 4562,284561 | 2^{60,1} | 168749,965921 | 2^{69,1}* | 3,203431,780337 | 2^{59,1}
 8831,418697 | 2^{41,1} | 1,133836,730401 | 2^{75,1}* | 28,059810,762433 | 2^{53,1}
 54410,972897 | 2^{56,1} | 2,932031,007403 | 2^{43,1}

 In 1951-2, the primes of Miller & Wheeler and of Ferrier [M2; M5]
 superseded M127 and preceded M521.
M. KRAITCHIK
K3 1) Chapter 3, p24, Section 65 table: against n=163, for "160287" read "150287"
K13 1) p756, table 1, against n = 67: for "19,370721" read "193,707721"
2) p756, table 2, against n = 163: for "160287" read "150287"
K32 1) p756, against n = 67: for "19,370721" read "193,707721"
2) p756, against n = 67: for "7,618388,257287" read "7618388,257287"
3) p756, against n = 87: for "1107" read "1103" [B29; F4]
4) p756, against n = 127: for "...864..." read "...884..."

S. KRAVITZ
K5 1) After p = 13049, for "12063" read "13063"
K1 1) For ten asterisked M_p, incorrect NZLRs were corrected before publication. These were caused by an inadmissible value of S_1 being introduced by a card-punch error while making up three 'identical' program-decks.

Le LASSEUR de SANZy
L25 1) Found no factor < 30,000 for M_{197} [C D1 p24 n131]; $f_1 = 7487$ [C3; C6]

D. H. LEHMER
L2 1) M_{133} is listed as "only one factor known". W G W H Beeger noted [L7] that f_2 was known at that time.
L3 1) For "k = 744" read "k = 774": corrected by T Wilcox [W4]

E. LUCAS
L14 1) Incomplete proofs of his residue-tests
L32 1) p283: for "177951" read "179951"
L13 1) p376: the prime M_{89} was pronounced composite following NZLR computation

Several historical misattributions; unsubstantiated claims about machines [A1]

M. MERSENNE
M3 1) Stated M_{67} to be prime; it is composite [F8; F9; C17]
2) Stated M_{857} to be prime; it is composite [L2]
3) Stated M_{83} to be composite; it is prime [P13; P14; P16]
4) Stated M_{89} to be composite; it is prime [C12; P9; P15]
5) Stated M_{107} to be composite; it is prime [P2; P6; P10]
6) Stated in effect that M_{p} was composite for 17000 < p < 32000: M_{p} is prime for p = 19937 [T1; N1], 21701 [S4; N5; N1; T6] and 23209, [W6; N1; S13; S1] and only for those p [N1]

M6 1) "p = 2^{2n} + k; k = 1, 2 or 3 ===> M_{p} prime" Correct for p = 2, 3, 5, 7, 17, 19 (known to Mersenne) Incorrect for p = 67, 257 & 4099
H. L. Nelson
N1 1) Credited Mersenne with a knowledge of M_{29}'s f_2
2) Did not credit Mersenne with the knowledge of M_{37}'s f_1
3) p266: for "2100 by 1971" read "21000 by 1971"
4) p266: for "2, 3, 4, 5" read "2, 3, 5, 7"

C. L. Noll
N5 1) Cited Seelhoff as a discoverer of the prime M_{61}

N7 1) Credited Gillies with search-range $p < 11400$ and not $p < 12144$
2) Omitted "22501 67260" from first table: M_{22501}-$f_1 = 3026,834521$
3) Reference 2 - Knuth: for "1963" read "1973"

J. W. Pauli
P11 1) Gave 83 as a factor of M_{41}

J. Planck
P12 1) Found no factor < 50,033 for M_{53}: in fact $f_1 = 6361$ [L19]

H. Riesel
R1 1) Disputed NZLRs [N2; S3; R13] for M_{2957}, M_{2969}, M_{3049} and M_{3109}
2) In reference [3] to M. Kraitchik, for "1952" read "1924"
3) Archibald (p208) did not misprint f_1 of M_{163} [A1] as did Kraitchik [K3]
4) p210: against $p = 2689$, for "7158199" read "7158199". See Selfridge [S5]
5) p211: against $p = 5743$, for "543217" read "643217". See Selfridge [S5]

R4 1) In the editor's footnote, for "330" read "3300"
2) 4 errors/omissions in factor table [B20]

R. M. Robinson
R2 1) Incorrect NZLR detected [S3] for M_{1889}
2) 2nd para, 4th line: for '2n-1' read '2n-1'

P. Seelhoff
S12 1) Declared M_{61} to be prime, having only found it probably-prime and made the obvious mistake of assuming $a | b$ & $a | c$ ==> $b | c$ or $c | b$' [C17; L11]

W. Sierpinski
S17 1) p341, 2nd para: for "r_{101}" read "r_{100}"
2) p341, 4th para: for "376 digits" read "386 digits"
3) p341, 6th para: for "M 941" read "M941"
4) p341, 6th para: for "3381 digits" read "3376 digits"; see Lal [L12]
5) p341, 6th para: for "Gillies" read "Gillies"

D. Slowinski
S1 1) p259: for "19737" read "19937"

The "TIMES"
T8 1) p9: for "21701" read "21701 - 1": corrected [T9]
J. TRAVERS
T3 1) Against E89, for ".378082." read ".378084." [T11; U11]
2) Against E107, for ".975360." read ".9753460." [T11; U11]

H. S. UHLER
U2 1) For "page iii" read "page xxxvi"
U11 1) V5: for "3335" read "3355"
2) V11: for "14 13164" read "13164" (there are 65 digits not 67) [T3; T11]
3) V12: for "47401" read "14 47401" (there are 77 digits not 75) [T3; T11]
In these notes, 'conjecture' is interpreted in the widest sense to include explicit conjectures, observations and statements not backed by proof whose status is lost in the mists of time.

1) \(2^{n-1} \times M_n\) is perfect for all odd \(n\) \([c \text{ D1 ChI ns 20, 24, 38, 42, 43}\]
 FALSE: \(n\) composite \(\implies M_n = (2^a-1)(2^b-1)c \implies 2^{n-1} \times (2^n-1)\) not perfect.
 \(M_p\) composite \(\implies 2^{p-1} \times M_p\) is not perfect, the case also for most prime \(p\).

2) \(E_p\) ends alternately in 6 and 8
 \([c \text{ D1 ChI ns 4, 6, 15-20, 25, 26, 28, 38, 42, 43, 45}\]
 FALSE: \(E_p\) ends in 6, 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8, 6, 8
 Thus, "6 & 8 alternate" is so far (31 \(E_p\)) true 15 times, false 15 times,
 assuming \(M_{216091}\) is 31st in order of size.
 It’s likely that this conjecture arises from observation and the mistaken belief that \(E_n\) is perfect for all odd \(n\).

3) \(E_p\) exists with any number of decimal digits
 \([D1 \text{ ChI ns 4, 27, 29, 33, 45, 53}\]
 FALSE: The \(E_p\) sequence begins 6; 28; 496; 8128; 33,550336
 The 28th \(E_p\) has 51,924 decimal digits
 Would not be true even if \(2^{n-1} \times M_n\) were perfect for all odd \(n\).

4) MERSENNE: \([M3; c \text{ D1 p12 n60}\]
 Effectively, "For \(28 < p < 258\), \(M_p\) is prime only for \(p = 31, 67, 127, 257\)"
 FALSE: Incorrect on \(p = 61, 89 & 107\) (later found prime) and on \(p = 67 & 257\)
 (later found composite)
 Mersenne knew the status of \(M_p\) for \(p < 24\) and \(p = 37\) (10 of 55 \(M_p\))
 His statement was correct on the remaining 40 \(M_p\)

5) MERSENNE: \([c \text{ D1 p13 n60}\]
 "There is no perfect number from the power 17000 to 32000"
 FALSE: Let us assume this means "\(M_p\) is composite for 17000 < \(p < 32000\)"
 There are 3 prime \(M_p\) (\(p = 19937, 21701 & 23209\)) in this range.
 This conjecture is perhaps based on the belief that \(M_p\) prime \(\implies p\) near \(2^k\), the relevant \(2^k\) here being 16,384 and 32,768.

6) MERSENNE: \("p = 2^{2n} + k; k < 4 \implies M_p\) prime" \([M5; c \text{ D1 p13 n61}\]
 FALSE: Correct for \(p = 2, 3, 5, 7, 17, 19\) all known to Mersenne.
 Incorrect for \(p = 67, 257, 4099, 65537 & 65539\)
 Suggests that '67' was not a misprint of '61' - Conjecture 4 above
 \([810 \text{ p316}; 811]\)

7) MERSENNE (according to Lucas & Tannery) \([c \text{ D1 p28 n162}\]:
 "\(M_p\) prime \(\implies p\) prime and \(p = 2^{2n} + 1, 2^{2n} + 3\) or \(2^{2n+1} - 1\)"
 FALSE: Correct only for (known) \(p = 2, 5, 7, 13, 17, 19\) and \(p = 31, 61, 127\)
 \(\implies\) incorrect for \(p = 3, 89, 107\) and the next 16 prime \(M_p\), \(p > 257\)
 \(\implies\) incorrect for \(p = 67, 257, 1021, 4093, 4099, 8191, 16381, 65537, 65539\)
 \(\&\ 131071\)
 These are the counterexamples for \(p < 262140\).
 This attribution explains four out of five of Mersenne' errors BUT
 1) Clearly, Mersenne knew \(M_3 = 7\) to be prime
 2) Mersenne regarded \(M_{61}\) as composite (prime by this conjecture)
8) MERSENNE (according to Drake) [D2]:
"p prime, p = 2^n + k, k < 4 <=> M_p prime"
FALSE: Correct for p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 127
=> incorrect for p = 67, 257, 1021, 4093, 4099, 8191, 16381, 65537, 65539 & 131071.
<= incorrect for p = 89, 107 and the 13th-31st prime M_p.
These are the counterexamples for p < 262140.

9) CATALAN: "q = M_p prime => M_q prime" [c 01 p24 n135]:
Catalan knew only of the cases p = 2 and 3. Let M represent M_p.
NZLR for M_13 = M_8191 computed by Wheeler et al [G1; H2; H14; N12; T1]
2 * 20,644,229 * M_13 + 1 = 338193,759479 | M_13 [K31]
2 * 884 * M_17 + 1 = 231,733529 | M_17 [R3]
2 * 245273 * M_17 + 1 = 64296,354767 | M_17 [K31]
2 * 60 * M_19 + 1 = 62,914441 | M_19 [R3]
2 * 68745 * M_31 + 1 = 295,257562,62031 | M_31 [K31]

10) CUNNINGHAM: "M_p prime => p = 2^n + 1 or 2^n - 1" [C5; C7]
FALSE: Correct for p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 127, all known to Cunningham
Incorrect for p = 89, 107 and the known 19 prime M_p after M_127
Retracted by Cunningham [C12] when Powers announced the primality of M_89

11) GERARDIN [G6]:
a) If p = 43 mod 60, the first factor of M_p, f_1 = 47 mod 96
b) If p = 33 mod 40, the first factor of M_p, f_1 = 7 mod 24
c) If p = 1 mod 30, the first factor of M_p, f_1 = 1 mod 24
 - with the exception of (Euler) cases where p = 4n+3 and 2p+1 is prime"
FALSE: a) Correct for p = 43, 163, 223 [B3], three cases known to Gerardin
 Incorrect for 291 of 319 known cases with p < 10^5, for example
 p = 103 (f_1 = 2550,183799 [B3]) and p = 283 (f_1 = 9623 [B2])
b) Correct for p = 73, 113, 233 [B3], three cases known to Gerardin
 Incorrect for 230 of 348 known cases with p < 10^5, for example
 p = 193 (f_1 = 13,821503 [B2]), p = 313 (f_1 = 10,960009 [B2])
c) Correct for p = 151, 181, 211 [B3], three cases known to Gerardin
 Incorrect for 573 of 672 known cases with p < 10^5, for example
 p = 31 & 61 for which M_p is prime,
 p = 241 (f_1 = 22,000409 [B2]) and p = 571 (f_1 = 5711 [B2])
 Analysis [H22] based on merge of results [C34; H19]

12) GERARDIN: "q divides M_p and q \neq 2^r - 1 ==> M_q is composite"
 [c 01 p30 n188b]
FALSE: M_11 = 23 \times 89: M_89 is prime [C12; P3; c 01 p30 n185]
M_97 = 23209 \times 549257 \times c_281 [B2; B17]: M_23209 is prime [S13; S1]
 Presumably this was posed just before Powers found M_89 prime
 'q \neq 2^r - 1' excludes the (Catalan) cases q = 3, 7, 31, 127

13) TARRY: "If q is the least factor of a composite M_p, then q = M_q is composite"
 [c 01 p30 n188b]
FALSE: M_967 = 23209 \times 549257 \times cofactor [B2]: M_23209 is prime [S13, S1]

14) KNUTH: [K26 p394]
 "One day, the largest explicitly-known prime will not be a Mersenne prime"
TRUE: p65050 = M_216091 < 391581.216193.1 = p65087, found 6/8/89 [D7]

15) NAUR: Meta-conjecture on reading previous version of this section:
 "All Mersenne-number conjectures are false".
FALSE: See resolution of conjecture 14 above.
1) MERSENNE: "Mₚ is composite for 1,050,000 < p < 2,090,000" [M3; c D1 p13 n60]
This statement is apparently based on the belief that Mₚ is prime only when p is near 2ᵏ⁺, the relevant 2ᵏ here being 1,048,576 & 2,097,152. Based on Pomerance’s conjecture on the distribution of prime Mₚ and current knowledge, the 'likelihood' of this conjecture being true is 0.15649.

2) MERSENNE: "No interval of powers can be assigned so great but that it can be given without perfect numbers" [M3; c D1 p13 n60]
This is interpreted as "∀N, ∃n(N) s.t. p^n(n + N) → Mₚ composite". This statement is perhaps based on a belief that 'Mp prime' → p near 2ᵏ. This conjecture is wrongly motivated but probably correct - see 8 below.

3) CATALAN: "p₁ = 3 and pₙ₊₁ = 2²ᵖ-1 → pₙ₊₁ is prime for all n"
True for p₁, p₂, p₃, Mₚ = 3, 7, 127 & M₁₂₇ are prime.
The generalisation, replacing 'p₁ = M₂' by 'p₁ = M₉' is false:
For p₁ = M₉ = 31, p₁ and p₂ are prime but M₉ is composite for q = M₃₁
For p₁ = M₉ = r = M₁₃, M₁₇ or M₁₉, rₙ is composite
See Section 9, Conjecture 9 for the first Mₚ-factors.
For p₁ = M₉ = r = M₆₁, M₉₉ or M₁₂₇, the status of Mₚ is unknown.

4) SCHINZEL: "There are an infinite number of Mersenne composites" [S2 p29]
This is likely to be correct; for stronger versions - see 6, 8-10 below.

5) "There are an infinite number of Mersenne primes" [S2 p29]
For a stronger version of this conjecture, see 8 and 9 below.
Golubev [G11] alone says "There are serious reasons for believing that the number of prime Mₚ is finite."

6) "There are an infinite number of prime p=4k+3 such that 2p+1 is prime" [S2 p29]
For such primes p, Mₚ has the factor 2p+1 by a theorem of Euler. This conjecture therefore implies Conjecture 4 above.

7) JAKOBEZYK: "There is no prime q such that q² is a factor of some Mₚ" [S10 p92]
Kraft’s alleged proof [K2 p80] is incorrect [K8].
Brillhart [B4; B16] has checked this conjecture for q < 2³⁵, 102 < p < 258 & q < 2³⁶, 258 < p < 20,000
q² | Mₚ → q²⁻¹ = 1 (mod q²) [W11]
There are no such Mₚ-factors q ≤ 6·10⁹ [L46]
More generally, this is incorrect for Mₙ = 2ⁿ⁻¹ with n composite [B17; R6]:
first examples: 3² | M₆, 5² | M₁₀, 7² | M₁₂, 11² | M₁₆, 13² | M₁₇, 17² | M₁₉
later examples: 3⁵ | M₁₆₂, 5³ | M₁₀₀, 7³ | M₁₄₇

8) GILLIES: [G7; G1]
a) The probability that Mₚ is prime ~ (2 log₂p)/(p log₂e),
b) The expected number of prime Mₚ s.t. x < Mₚ < 2x is
 2 + 2 log₂(log₂x/log₂e),
c) The number of prime Mₚ < x ~ 2 x (log₂log₂x/log₂e)
 ie the number of prime Mₚ, p < y ~ 2 log₂y/log₂e ~ 2.8653901 log₂Y

9) POMERANCE & LENSTRA: [P24]
"The number of prime Mₚ with p < y ~ e^Y log₂y / log₂e ~ 2.5695442 log₂Y" as seen in the Section 3 graph, this is a much better fit to the data than Gillies’ conjecture above.
Euler’s constant, γ = 0.577215665
10) SHANKS & KRAVITZ: \([S6]\)

Let \(f_k(x)\) be the number of \(M_p\) \((p < x)\) such that \(d = 2kp+1\) is a prime divisor of \(M_p\).

Let \(Z'(x)\) be the conjectured estimate for the number of twin-prime pairs < x then:

\[
f_k(x) = Z'(x) \left[\cos^2 \left(\frac{k \pi}{4} \right) \right] \prod_{q|k} \left(1 - \frac{\log(q)}{\log(x)} \right) + o(\log(x))
\]

This conjecture accords with the known result "\(k = 4m+2 \implies f_k(x) = 0\)"

This conjecture implies \(f_1(x) = Z'(x)/2\) and \(f_3(x) = Z'(x)/3\) - see Conjectures 4 and 6 above.

11) SELFIDGE: \([N10]\)

"If two of the following statements are true, the third is also true"

a) \(p = 2^m + 1\) or \(p = 2^m + 3\)

b) \(M_p\) is prime

c) \((2P + 1)/3\) is prime

If 'p' is not prime, then statements b and c are false \([B35]\)

Each statement defines a set of primes 'p' to test the conjecture.

Bateman et al \([B35]\) find the conjecture true for 56 'p' in these ranges:

'a' primes \(p < 1,000,000\)

'b' primes \(p < 1,320,50\)

'c' primes \(p < 4,000\)

Prior to \([N10]\), it was known that \(a.bc\) was true 9 times; what was the probability of this being true 'at random'. It is unlikely to be true \([B35]\) again on a random basis.

Statements a, b & c are separately true 12, 21 & 14 times respectively.

This condition is proposed \([B35]\) as a neat way to discriminate between the Mersenne conjecture 'hits' \((31, 61, 127)\) and 'misses' \((67, 89, 107, 257)\).

There is no evidence that Mersenne considered numbers of form \((2^p+1)/3\).

Knowing that \(M_{11}\) is composite, he may have chosen not to speculate that \(M_{29}\)

and \(M_{131}\) were prime.

\[
\begin{array}{cccccccccc}
 k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 2^{k+1} & 2 & 3 & 5 & 9 & 17 & 33 & 65 & 129 & 257 \\
 2^{k-3} & -2 & -1 & 1 & (5) & 13 & 29 & 61 & 125 & 253 \\
 2^{k+3} & 4 & (5) & 7 & 11 & 19 & 35 & 67 & 131 & 259 \\
\end{array}
\]

Key:

- \(p = \text{composite } M_p\)
- \(p = \text{prime } M_p\)
- \(= M \text{ conjecture}\)
- \(= \text{boundary}\)
- \(= M \text{ersenne wrong}\)

12) SLOWINSKI - Meta-conjecture: \([S1]\)

"There will always be more conjectures concerning Mersenne primes than there are known Mersenne primes".

This is trivially true if we allow the class of untested statements '\(M_p\) is prime'. Therefore, Slowinski must be assuming some process for admitting statements as 'worthy' conjectures. Shanks \([S2, 3rd Edition]\) proposes such a process but it has not been used here.

A formal definition of 'conjecture' must precede formal decidability.

Let us delete 'always' and substitute:

'Mersenne numbers' for the first 'Mersenne primes',

'unresolved conjecture' for 'conjecture'.

Slowinski has done more than most to make this meta-conjecture false.

Interpreting 'conjecture' in its widest reasonable sense above, the resulting list of unresolved conjectures makes the score 31:12 in favour of the primes. Further submissions are invited.

If the word 'always' is heeded, this meta-conjecture is false.

47
These are classified below and some sections are expanded.

11.1 Early Results on Perfect and Mersenne Numbers
11.1.1 Euclid's Proposition 36: \(2^n-1 \) prime \(\implies \) \(2^{n-1}(2^n-1) \) perfect
11.1.2 Even Perfect numbers are of Euclid's form

11.2 Factorisation Techniques
11.2.1 Pre-1970 factorisation methods
11.2.1.1 \(q \mid M_p \implies q = 2kp + 1 \)
11.2.1.2 \(q \mid M_p \implies q = 8r + 1 \)
11.2.1.3 \(p = 4k+3 \) & \(q = 2p+1 \): \(q \) prime \(\implies q \mid M_p \) \([K27]\)
11.2.1.4 \(p = 4k+1 \) & \(q = 6p+1 = u^2 + 27v^2 \) prime, \(u = 12m+2 \), \(v \) odd \(\implies q \mid M_p \) \([K27]\)
11.2.1.5 \(q = 8p+1 = u^2 + 64v^2 \) prime, \(v \) odd, \(3 \nmid u, 3 \nmid v \) \(\implies q \mid M_p \) \([K27]\)
11.2.1.6 \(p = 30k+11 \), \(q = 8p+1 = u^4 + 8v^4 \), \(v \) odd \(\implies q \mid M_p \) \([S21]\)
11.2.1.7 \(p = 4k+3 \) & \(q = 10p+1 \) prime \(\implies q \mid M_p \) or \(q \mid 2^{5p}-1 \) \([K27]\)
11.2.1.8 \(p = 4k+1 \) & \(q = 14p+1 \) prime \(\implies q \mid M_p \) or \(q \mid 2^{7p}-1 \) \([K27]\)
11.2.1.9 \(q = 16p+1 = u^2 + 256v^2 = w^2 + 32x^2 \) prime, \(v+x \) even, \(3 \mid w \) \(\implies q \mid M_p \) \([K27]\)
11.2.1.10 \(p = 4k+3 \) & \(q = 18p+1 \) prime \(\implies q \mid M_p \) or \(q \mid 2^{3p}-1 \) or \(q \mid 2^{9p}-1 \) \([K27]\)
11.2.1.11 \(q = 24p+1 = u^2 + 64v^2 \) prime, \(x \) odd \(\implies q \mid M_p \) \([G11]\)
11.2.1.12 \(q = 48p+1 = u^2 + 27v^2 = w^2 + 256x^2 = y^2 + 32z^2 \), \(x+z \) even \(\implies q \mid M_p \) \([G11]\)
11.2.2 Pollard's Monte-Carlo method \([B18; P22]\)
11.2.3 Pollard's P-1 method \([P21]\)
11.2.4 The Continued Fraction method \([B15; W10]\)

11.3 PrIMALITY TESTING
11.3.1 The Lucas-Lehmer test on \(M_p \) \([L8; L24]\)
11.3.2 On the Converse of Fermat's theorem \([B6; L11; L33; L36; L43; P17; R11]\)
11.3.3 The general 'N+1' Lucas test \([B6]\)
11.3.4 Combined 'N-1, N+1' methods \([B6]\)
11.3.5 Adleman-Pomerance-Rumely's 'ARPCL' method \([A4; C31]\)

11.4 MISCELLANEOUS RESULTS
11.4.1 The sum of the reciprocals of the divisors of a perfect number is 2
11.4.2 Composite \(M_p \)-factors are pseudoprime base 2
11.4.3 \(q^2 \mid M_p \implies 2^{n-1} = 1 \mod q^2 \) \([L46; W11]\)
11.4.4 \(q \) pseudoprime base 2 \(\implies M_q \) pseudoprime base 2
11.4.5 All \(E_n \) are both triangular and hexagonal numbers
11.4.6 For \(n \) odd, \(E_n = 1 \mod 9 \)
11.4.7 For \(n \geq 3 \) and odd, \(E_n = 8/6 \mod 10 \) alternately
11.4.8 For \(n \) odd, \(E_n \) is a partial sum of \((2i-1)^3 \)
11.4.9 Mersenne numbers \(M_p \) are coprime
11.4.10 \((2^n+1)/3 \) prime, \(n \) odd \(\implies n \) prime
11.1.1 Euclid's Proposition 36: 2^{n-1} prime $\implies 2^{n-1}(2^{n-1})$ perfect

Let $q = 2^{n-1}$ be prime and let $E_n = 2^{n-1}(2^{n-1}) = 2^{n-1}q$.
The set of factors of E_n is precisely $\{2^i q^j | i = 0, \ldots, n-1 \text{ and } j = 0 \text{ or } 1\}$
Let $s(N)$ be the sum of the factors of N.
$s(E_n) = (1 + 2 + \ldots + 2^{n-1})(1 + q) = (2^{n-1} - 1)2^n = 2^s E_n$ ##

Euclid did not prove the converse, E_n perfect $\implies 2^{n-1}$ prime:
Let $E_n = 2^{n-1}ab = 2^{n-1}(2^{n-1})$.
Then $s(E_n) = (2^{n-1} - 1)(1 + a + ab) = (2^{n-1} - 1)(1 + a + 2^{n-1}) = (2^{n-1} - 1)(2^n a) > 2 * E_n$
Therefore, 2^{n-1} composite $\implies E_n$ not perfect
Therefore E_n perfect $\implies 2^{n-1}$ prime ##

11.1.2 2^{n-1} prime $\implies n$ prime

We will prove by induction on a that $2^{a-1}|2^{ab-1}$. This is clearly true for $a = 1$.
$2^{ab-1} = 2^b * (2^{a-1}b) + (2^{ab-1})$
Therefore $2^{ab-1}|2^{a-1}b$ $\implies 2^{ab-1}|2^{b-1}$.
Therefore, $n = ab$ composite, a & $b > 1$ $\implies 2^{a-1}|2^{n-1}$ and $2^{b-1}|2^{n-1}$.
Therefore 2^{n-1} prime $\implies n$ prime ##

11.1.3 Even Perfect Numbers are of Euclid's form

Let $E = 2^n - 1$ (q odd) be a perfect number.
Let $s(x)$ be the sum of the divisors of x.
Then $s(E) = s(2^n - 1)s(q) = (2^n - 1)s(q)$ and $s(E) = 2E = 2^nq$.
$(2^n - 1)s(q) = 2^nq$. Letting $M_p = 2^n - 1$, we have $M_p q = (2^n - 1)Q = 2^n Q$.
$s(q) = 2^n Q > q + Q = 2^n Q$.
$Q = 1$ and $q = 2^n - 1$ is prime ##

2.1.1 $q | M_p \implies q = 2kp + 1$

First, let q be a prime.
$q | M_p \implies 2^p - 1 \equiv 0 \mod q \implies 2^p \equiv 1 \mod q$.
Let s be the smallest integer i such that $2^i \equiv 1 \mod q$.
$2^l \equiv 1 \mod q \implies l = rs$.
Therefore $2^p \equiv 1 \mod q$ with p prime $\implies p$ is that smallest integer 's'.
But by Fermat's 'little' theorem, q prime $\implies 2^{q-1} = 1 \mod q$.
Therefore $(q-1) = rQ = 2kp$ and $q = 2kp + 1$.
If $Q | M_p$, then $Q = q_1^{r_1} * \ldots * q_n^{r_n}$ = $\prod q_i^{r_i}$ = $\prod (2k_i p + 1)^{r_i}$ = $2kp + 1$ ##

11.4.1 The sum of the reciprocals of the divisors of a perfect number is 2

Let $D = \{d | d | M_p\}$
E_p perfect $\implies 2E_p = \sum d$ $\implies 2 = \sum d/E_p$ $\implies 2 = \sum 1/d$ ##

11.4.2 Composite M_p-factors are psp(2)

The term 'pseudoprime' is reserved here for composite numbers N satisfying Fermat's equation $a^{N-1} \equiv 1 \mod N$ for some base a. Therefore, let q be a composite factor.
$q | M_p \implies 2^p - 1 \equiv 0 \mod q$ and $q = 2kp + 1 \implies 2^p \equiv 1 \mod q$
$\implies 2kp = 12k = 1 \mod q \implies 2^{q-1} = 1 \mod q$
$\implies q$ pseudoprime base 2 ##
L1.4.3 \[q^2 \mid M_p \implies 2^{q-1} = 1 \mod q^2 \]

\[q \mid M_p \implies q = 2kp + 1, \text{ see 11.2.1.1.} \]

Therefore \[2^{(q-1)/2} = 2^{kp} = (2^k-1) \times a, \text{ see 11.1.2.} \]

Therefore \[q^2 \mid M_p \implies q^2 \mid 2^{q-1} \implies q^2 \mid 2^{(q-1)/2-1} \implies q^2 \mid 2^{q-1} - 1 \]

Therefore \[q^2 \mid M_p \implies q^2 - 1 = 1 \mod q \]

This provides a test that \(q^2 \mid M_p \) independent of \(p \) and of any factorisation. This test also relates to Fermat's last theorem [WII]. However, for small \(q \) it is quicker to factorise \((q-1)/2 \) and test-divide candidate \(M_p \).

L1.4.4 \(q \) pseudoprime base 2 \(\implies \) \(M_q \) is psp(2)

\[q \text{ pseudoprime} \implies q \text{ composite} \implies M_q \text{ composite} \]

\[q \text{ pseudoprime base 2} \implies 2^{q-1} = 1 \mod q \implies 2q = 2 \mod q \]

\[\implies 2q - 2 = 0 \mod q \implies 2^{q-2} = kq \]

\[M_q = 2^{q-2} = 1 \mod M_q \implies 2^{q-2} = 1 \mod M_q \]

\[\implies M_q \text{ pseudoprime base 2} \]

L1.4.5 \(\) All \(E_n \) are both triangular and hexagonal numbers

The \(m \)th triangular number is \(T_{1,m} = \sum_{i=1}^{m} = m(m+1)/2 \)

The sequence starts 1, 3, 6, 10,

If \(m = 2^n - 1 \), \(T_{1,m} = 2^{n-1}(2^n - 1) = E_n \) \#

The \(m \)th hexagonal number is \(H_m = m(2m-1) \)

The sequence starts 1, 6, 15, 28, 45, ... [K29 p67]

If \(m = 2^n - 1 \), \(H_m = 2^{n-1}(2^n - 1) = E_n \) \#

L1.4.6 For \(n \) odd, \(E_n = 1 \mod 9 \)

\[E_n = 2^{n-1}(2^n - 1): E_1 = 1, E_3 = 28 \text{ and } E_5 = 496. \text{ Therefore } E_1, E_3 \text{ & } E_5 = 1 \mod 9. \]

Compare \(E_n \) and \(E_{n+6}: 2^6 = 64 \implies 2^6 = 1 \mod 9 \)

Therefore \(2^{n-1} = 2^n \mod 9, 2^n = 2^{n+5} \mod 9 \text{ and } 2^n - 1 = 2^{n+6} - 1 \mod 9 \).

Therefore \(E_n = E_{n+6} \mod 9 \text{ and } E_n = 1 \mod 9 \text{ for all odd } n. \)

L1.4.7 For \(n \geq 3 \) odd, \(E_n = 8/6 \mod 10 \) alternately

\[E_n = 2^{n-1}(2^n - 1): E_3 = 28 = 8 \mod 10 \text{ and } E_5 = 496 = 6 \mod 10. \]

By induction, we show that \(E_n = E_{n+4} \mod 10. \)

\(2^{n+4} = 2^n \mod 10 \implies 2^{n+3} = 2^{n+1} \mod 10 \text{ and } 2^{n+4} - 1 = 2^{n-1} \mod 10. \)

Therefore \(E_{n+4} = 2^{n+3}(2^{n+4} - 1) = 2^{n-1}(2^n - 1) = E_n \mod 10 \)

Therefore \(E_{4k+3} = E_3 = 8 \mod 10 \text{ and } E_{4k+5} = E_5 = 6 \mod 10 \) \#
11.4.8 For \(n\) odd, \(E_n\) is a partial sum of \((2i-1)^3\)

\[
S_{2,m} = \sum_{i=1}^{m} i^2 = \frac{m(m+1)(2m+1)}{6} \text{ may be proved by induction}
\]

\[
S_{3,m} = \sum_{i=1}^{m} i^3 = \frac{m^2(m+1)^2}{4} = S_{1,m}^2 \text{ may be proved by induction}
\]

\[
S_m = \sum_{i=1}^{m} (2i-1)^3 = \frac{(8i^3-12i^2+6i-1)}{6} = m^2(2m^2-1)
\]

If \(n = 2k+1\) and \(m = 2^k\) then \(S_m = 2^{2k}(2^{2k+1}-1) = 2^{n-1}(2^n-1) = E_n\)

First proved by Heath [c K29 p72]

11.4.9 Mersenne numbers \(M_p\) are coprime

Let \(b = k_0a + r_1\) with \(0 \leq r_1 < a\). We first prove that \(q \mid M_a, q \mid M_b \implies q \mid M_r\).

\[
M_b = M_r + M_a 2^{a_1} r_i \implies q \mid M_r \#
\]

Let \((a, b) = c\) be the GCD of \(a\) & \(b\). We prove that \(q \mid M_a, q \mid M_b \implies q \mid M_c\).

\[
b = k_0a + r_1 \text{ and } 0 < r_1 < a
\]

\[
a = k_1r_1 + r_2 \text{ and } 0 < r_2 < r_1
\]

\[
r_i = k_i r_{i+1} \text{ and } (a, b) = c \implies r_{i+1} = c
\]

But from the first proof: \(q \mid M_a, q \mid M_b \implies q \mid M_r\) for \(j = 1, \ldots, i+1\)

\[
\implies q \mid M_c \#
\]

Now we prove that \(M_{p_1}\) and \(M_{p_2}\) are coprime if \(p_1\) and \(p_2\) are distinct prime indexes.

\((p_1, p_2) = 1\). Thus: \(q \mid M_{p_1}, q \mid M_{p_2} \implies q \mid M_1 \implies q = 1 \#
\]

11.4.10 \((2^n+1)/3\) prime, \(n\) odd \implies \(n\) prime

This is relevant in the context of unresolved conjecture 11 [B35, N10].

We will prove by induction on \(a\) that \(2^{a+1} \mid 2^{ab+1}\). This is clearly true for \(a = 1\).

\(2^{ab+1} = (2^{a+1}) \times (2^{(a-1)b} - 2(a-2)b) + (2^{a-2}b+1)\)

Therefore \(2^{a+1} \mid 2^{(a-2)b+1} \implies 2^{a+1} \mid 2^{ab+1}\).

Therefore, odd \(n = ab\) composite, \(a \& b > 1 \implies 2^{a+1} \mid 2^{n+1}\) and \(2^{b+1} \mid 2^{n+1}\).

Note that this proof applies for \(b = 1\). Therefore, \(2^{a+1} = 3 \mid 2^{n+1}\) for all odd \(n\).

Therefore \((2^n+1)/3\) prime \implies \(n\) prime \#
12 COMPUTATIONAL DETAILS

12.1 LLT Modulus-checks

This section concerns modulus checks in Lucas-Lehmer-Test computations. These show the efforts made to ensure the correctness of NZLRs which are not self-evidently correct and the extent to which these efforts succeeded.

12.1.1 Modulus-check(s) included: residues confirmed correct

- 1926 Lehmer M_{139} Mod $10^3 + 1$ [L1; R2; R10; T12]
- 1927 Lehmer M_{149} Mod $10^8 + 1$, $10^{20} + 1$ [L2; R2; R10]
- 1927 Lehmer M_{237} Mod $10^8 + 1$, $10^{20} + 1$ [L2; R2; R10]
- 1934 Powers M_{241} Mod 9, $10^3 + 1$, $10^4 + 1$, $10^7 + 1$ [P3]
- 1944 Uhler M_{157} Mod $10^3 + 1$, $10^4 + 1$, $10^7 + 1$ [U1; R2]
- 1946 Uhler M_{199} Mod $10^5 + 1$, $10^8 + 1$ [U6; R2; T11]
- 1947 Uhler M_{227} Mod $10^5 + 1$, $10^8 + 1$ [U7; R2]
- 1947 Uhler M_{193} Mod $10^7 + 1$ [U5; R2; R10; G7; T11]
- 1953 Wheeler M_{8191} Mod $239 - 1$ [H2; W7]
- 1961 Selfridge/Hurwitz $5000 < p < 6000$ Mod $235 - 1$ [G7; H8; S3]
- 1963 Gillies $2 < p < 4734$ Mod $244 - 1$ [G7; H2; N2; N3; N11]
- 1971 Tuckerman $4734 < p < 7000$ " " [G7; H2; H8; K1; N11; S3]
- 1979 Tuckerman $7000 < p < 12142$ " " [G7; G1; H2; H8; T1]
- 1982 ICL DAP $12142 < p < 21000$ " 224-1, 224-3 [H8; T1]
- 1979 Nelson/Slowinski $4 < p < 32830$ Mod $224 - 1$ [N1; N2; N12]
- 1982 ICL DAP $18 < p < 50024$ Mod $23 - 1$ [H14]

12.1.2 Modulus-check included: residues presumed correct

- 1982 ICL DAP $50024 < p < 62982$ Mod $23 - 1$ [H14]
- 1984 ICL DAP $62982 < p < 100000$ Mod $216 - 1$ [H18]

12.1.3 Modulus-check(s) included: residue found incorrect

- 1945 Barker $p = 167$ Mod $10^5 + 1$, $10^7 + 1$ [B1; U4]
- 1963 Gillies $p = 12143$ Mod $244 - 1$ [G1; G7; T2]
- 1979 Nelson/Slowinski 16 values of p Mod $224 - 1$ [H10; N11; N12; N14]
 Corrected, 1982 [N14]

12.1.4 Modulus-check not included: residues found correct

- 1979 Nickel & Noll $21000 < p < 24500$ [H8; N7]

12.1.5 Modulus-check not included: residues found incorrect

- 1876 Lucas M_{99} [L13 p376; c D1 p22 n115]
- 1914 Fauquembergue M_{101}, M_{103}, M_{109}, M_{137} [F1; F10; F12]
- 1952 Robinson M_{1889} [S3]
- 1957 Riesel 4 (?) values of p [R13; S3]
- 1961 Hurwitz 8 values of p 4 published [G1; G7; H2; S3]
- 1963 Kravitz/Berg 10 values of p Corrected before publication [K1]
 Wrong value of S_1; card-punch error
12.2 Computer Performance

A comparison of one computer code with another cannot necessarily be made given the timings for primality-testing just one M_p. For example, the practice of comparing codes on the number M_{8191} is now out of date. Different codes for the same algorithm have different break-points at which new efficiencies or inefficiencies are introduced. Different algorithms have very different computational characteristics.

All Lucas-Lehmer primality-testing was carried out until 1981 using 'schoolboy' multiplication which gives an $O(p^3)$ algorithm for the LLT. The parallel lines on the following graph have a slope of about 3 and suggest this. Since 1981, new codes have been run using more efficient multiplication algorithms. Slowinski on the CRAY/1 used the 'divide-and-conquer' idea. Holmes et al on the ICL DAP used the Fast-Fermat transform idea which made the LLT linear over finite ranges and asymptotically $O(p^2 \log p)$.

Some miscellaneous details on computation times:

1) Lehmer: 60° on M_{139} [L1], 70° on M_{149} [L2] and 700° on M_{257} [R7]
2) ILLIAC-1: 100° on M_{191} [W7]
3) SWAC: 13°25' on M_{1279} [L4], 59° on M_{2203} and 66° on M_{2281} [L5; U10]
 The profile of $0.25p^3 + 125p^2$ [R2] μsecs for M_p underestimates the actual times but with a least-squares-fit multiplier of 1.0882 gives model times of 1°15" on M_{221}, 1°51" on M_{607}, 13°12" on M_{1279}, 59°29" on M_{2203} and 65°36" on M_{2281}
 Store-limited SWAC was actually faster than BESK or ILLIAC I.
4) BESK: 5°30' on M_{3217} [R1]
5) IBM7090: 5° on M_{4423} [H2] and 5.2° on M_{8191} [G1]
6) ILLIAC II: 49° on M_{191}, 1°23' on M_{6689}, 1°30' on M_{9941} and 2°15' on M_{11213} [G1]
7) IBM 360/91: 3°06" on M_{8191}, 7°04" on M_{11213} and 35°01" on M_{19937} [T1]
8) CYBER-174: 7°40'20" on M_{21701} and 8°39'37" on M_{23209} [N7]
9) CRAY-1 '79: 0.179° on M_{1279}, 1.054° on M_{3217}, 23° on M_{11213}, 1°53" on M_{19937}, 2°52.766" on M_{23209}, 18°39.579" on M_{44497}, 2°9.36" on M_{6689} and by extrapolation 7°37'43" on M_{132049}.
 A model of this computation which fits closely on large p is:
 $$ T = a_1cw^2 + a_2cwv + a_4cw + a_6c + a_7 \text{ seconds} $$
 M_p is stored in v vectors of 128 words or w words holding 24 bits each. $c = p-2$ cycles.
 Possible a_2cwv and a_4cw terms were set to zero by the model:
 \[a_1 = 0.661889 \times 10^{-8}, a_2 = 0.113741 \times 10^{-7}, \]
 \[a_4 = 0.101383 \times 10^{-5}, a_6 = 0.168363 \times 10^{-3}, a_7 = 0.210205 \]
 Code A - 2°22" on M_{31487}; Code B - 9°22" on M_{62929};
 Code C - 38°38" on M_{86243} [H14; H15]
 10) ICL DAP: Code A - 2°22" on M_{31487}; Code B - 9°22" on M_{62929};
 Code C - 38°38" on M_{86243} [H14; H15]
 11) CRAY-1 '82: 1°36'22" on M_{86243} [N23] and 2°32'18" on M_{99137} [N21]
 12) CYBER-205: 1° on M_{86243} [N24]
 13) CRAY-XMP '83: 32°30" on M_{132049} [D4; N25]
 (M132049 confirmed prime in 5°10" by CRAY-XMP '79 code [N26])
 14) CRAY-XMP '85: 3° on M_{216091} [D6]
 15) NEC SX-2 '88: 7°50'11" on M_{11213}, 3°13.61" on M_{73709}, 9°7' on M_{100069} and 11°26' on M_{110503} [C32; C33]

Times for ICL DAP and CRAY-XMP are not elapsed times but represent the effective throughput on those processors. The ICL DAP was testing 16 or 32 M_p in parallel and therefore elapsed times were 16 or 32 times longer. The CRAY-XMP '83 code was testing 2 M_p in parallel.
Computer Timings
13 STATUS-QUO AND QUESTIONS

This section defines the current state of the art in primality-testing and factorising the M_p. It also lists some questions raised but not answered by this collection of notes.

13.1 The Status-Quo

1) $M_{449} = p_7.p_{13}.p_{22}.c_{95}$ = smallest unfactorised M_p [B17 Edition 2]
2) $M_{523} = c_{158}$ = smallest M_p with no known factor [B17]
3) M_{1063} = largest fully-factorised composite M_p [B17]
4) M_{7673} = largest 'probably' fully-factorised M_p [Keller?]
5) M_{50069} = smallest M_p without twin-sourced LR [H15]
6) M_{139273} = first M_p of unknown prime/composite status [C34]
7) M_{216091} = largest known Mersenne prime [D6]
8) $M_{391581}.2^{216193} - 1 = p_{65087}$ = the largest known non-Mersenne prime [D7]
9) $M_{391581}.2^{216193} - 1$ = largest known prime [D7]
10) M_p with $p = 4k+3 = 39051.2^{6001} - 1$ is the largest known composite M_p [V1]

$q = 2p+1 = 39051.2^{6002} - 1$ prime $\implies q \mid M_p$ by Euler's theorem (Germain, 1987)

11) $M_{277}.f_2 = p_{38}$ = largest non-algebraic/cofactor M_p-factor found [B17]
12) $M_{1063}.f_2 = p_{311}$ = largest proper M_p-factor proved prime [B17, Ed 2, Morain]
13) $p = \text{prp}2298 \mid M_{6763}$: p = largest known 'prp' M_p-factor, found by Keller
14) $p = p_{26} \mid M_{241}.f_2 - 1$: p = largest prime, other than algebraic factors and cofactors, used to create an M_p PPL-pf certificate [Brent, ecm, 1986]
15) M_{349} = smallest M_p lacking a PPL-pf certificate
16) M_{607} = largest prime featuring in an M_p PPL-pf certificate [B23]

13.2 General Primality-testing Progress

A 'probably-prime' test demonstrates that a number is probably prime and is ideally one which no composite number is known to have passed. The "Cunningham Project" [B17, II1B3a.1.] uses one such, the Baillie-PSW test, suggested by Baillie [P27] and published by Pomerance [P26, p1024]. It follows a 'Fermat' sprp(a) test with a 'Lucas' lprp(p, q) test.

A primality test proves that a number is prime; the latest tests are more efficient, rely less on factorisation results and are almost polynomial in complexity. None the less, new algorithms have been needed to test the largest [B17] numbers.

In 1981, some proofs on 70-digit numbers took several hours [B17, Update 1]. In 1984, the advent of codes based on the radically better 'ARPLCL' test [A4; B17 Ed 2] enabled 100-digit numbers to be tested in less than a minute and 200-digit numbers to be tested in a reasonable time. In 1988, Morain's implementation of Atkin's elliptic curve primality-test [B17, YA3c] cleared the last "Cunningham" prp, a prp343.

The "Cunningham Project" [B17] illustrates the impact of new algorithms in converting its Appendix A residue of prpn into pn. Against the dates below and B17 updates, in brackets, are tabulated the smallest prpn and the number of prpn remaining.

<table>
<thead>
<tr>
<th>Date</th>
<th>prp73</th>
<th>322 (1.0)</th>
<th>8/84</th>
<th>prp228</th>
<th>24 (1.2)</th>
<th>6/87</th>
<th>prp222</th>
<th>35 (1.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/81</td>
<td>prp73</td>
<td>322 (1.0)</td>
<td>8/84</td>
<td>prp228</td>
<td>24 (1.2)</td>
<td>6/87</td>
<td>prp222</td>
<td>35 (1.5)</td>
</tr>
<tr>
<td>10/82</td>
<td>prp54</td>
<td>355 (1.0)</td>
<td>6/85</td>
<td>prp213</td>
<td>31 (1.3)</td>
<td>1/88</td>
<td>prp228</td>
<td>36 (2.1)</td>
</tr>
<tr>
<td>7/83</td>
<td>prp51</td>
<td>405 (1.1)</td>
<td>7/86</td>
<td>prp213</td>
<td>36 (1.4)</td>
<td>6/88</td>
<td>------</td>
<td>0 (2.2)</td>
</tr>
</tbody>
</table>
13.3 General Factorisation Progress

Brillhart et al [B6J saw c50s as the largest composite it was feasible to approach in 1975. No computation longer than twenty hours was thought worthwhile.

Around the dates below, the smallest 'cn' relevant to the Cunningham Project [B17J in Wagstaff's files increased to the size shown. This is a measure of progress in general factorisation methods (eg cf-ea & mp-qs) but is to some extent influenced by the priority given to factorising record-breaking rather than 'smallest' cn.

If computers double in speed every three years, then the length of numbers which it is feasible to factorise would increase by one decimal digit each year. The 43 digit advance in 8 years indicates greater progress in algorithms and technology.

13.4 Outstanding Questions

Pre-history:

a) Where does the 'prime number' concept surface in Greece, Egypt, China, Pythagoras and Euclid?

b) Can we infer that Euclid knew \(M_p \) not prime \(\implies \) \(Ep \) not perfect?

c) \(M_{11} \): did the authors of Codex lat. Monac 14908 record the factors of \(M_{11} \)? Curtze [C26J reasonably infers that they knew \(M_{11} \) to be composite.

d) Did Euler enumerate \(M_{251} \) or check it as a factor?

e) Are there sources for the '*' entries, especially for Sphinx-Oedipe?

Pre-computer:

a) \(M_3 \): what did Seelhoff actually achieve; cf his incomplete effort on \(M_{61} \)? [S14; S15; D1 p25 n142]

b) \(M_61 \): what did Seelhoff prove and where did he go wrong? [S12]

c) \(M_{71} \): How did Ramesam factorise this number?

d) \(M_{73} \): How did Poulet factorise this number?

e) \(M_{113} \): how did D H Lehmer check primality of \(f_5 \)? [L6]

f) How did Gillies [G6] get his interpretation of Shanks' argument [S2 p192]?

Are the, currently presumed lost, print-outs available for the following NZLRS:

a) \(M_67 \): Lucas' [L13; L15] and Fauquembergue's [F8; F9]

b) \(M_{89} \): Tarry's result [T4; T5]

c) \(M_{103} \) and \(M_{109} \): Powers' NZLRS

d) \(M_{257} \): Kraitchik's NZLR

e) The Lehmer/Robinson SWAC NZLRS

f) The Riesel BESK NZLRS

When were the following results achieved?

a) Wunderlich's \(M_{73} \) factorisation

b) Penk's discovery of \(M_{257} \) and Baillie's discovery of \(M_{257} \) and \(M_{257} \)

Other:

a) Do the incorrect residues of Hurwitz, Gillies, Noll correspond to interim (or subsequent) residues or to the wrong starting value for \(S_1 \)?
Adleman, L M
Archibald, R C
Ball, W W R
Barker, C B
Bateman, P T
Beeler, M
Beiler, A H
Berg, M
Bickmore, C E
Bray, H G
Brent, R P
Brillhart, J D
Carmichael, R D
Catland, P A
Christie, R W D
Cohen, E L
Cohen, H
Cole, F N
Colquitt, W N
Cunningham, A J C
Curtze, M.
Davis, J
Devlin, K
Dickson, L E
Drake, S
Ehrman, J R
Euler, L
Ewing, J
Fauquembergue, E
Fermat, P de
Ferrier, A
Gabard, E
Gardiner, M
Gerardin, R A P
Gillies, D B
Golubev, V A
Good, J J
Hall, J A
Hardy, G H
Haworth, G M C
Heath, T L
Holdridge, D
Holmes, S M
Holte, R
Hudelot, J
Hurwitz, A
Isemonger, K R
Johnson, G D
Jones, J P
Judd, J S
Karst, E
Keller, W
Knuth, D E
Kraft, G W
Kraftik, M B
Kravitz, S
Kronko, L I
Lake, T W
Lal, M
Landry, F
Le Lasseur
Legendre, A M
Lehmer, D H
Lehmer, D N
Lenstra H W, Jr.
Lucas, F E A
Macdadditt, A R G
Mason, T E
McDonnell, J
McGrogan, S K
McWhirter, N D
Mersenne, M
Metropolis, N
Miller, G L
Miller, J C P
Morrison, M A
Naur, T
Nelson, H L
Newman, M H A
Nickel, L A
Nietladomski, R
Noll, C L
Ondrejka, R
Ore, O
Pauli, J W
Pepin, P
Pervouchine, I M
Plana, J
Pocklington, H C
Pollard, J M
Pomerance, C
Poulet, P
Powers, R E
Pratt, V R
Proth, M E
Ramesam, V
Reid, C
Reuschle, K G
Riesel, H
Robinson, R M
Rumely, R S
Scheffler, D
Schinzel, A
Schonfelder, J L
Schroepepe, R C
Seelhoff, P
Seifridge, J L
Servais, C
Shanks, D C
Sierpinski, W
Simmons, G J
Slowinski, D A
Smith, H V
Solovay, R M
Storchi, E
Strassen, V
Suyama, H
Tarry, H
Thomason, J T
Touchard, J
Travers, J
Tuckerman, B
Turing, A M
Uhler, H S
Valentin, G
Wagstaff, S S, Jr.
Warren, Le Roy J
Western, A E
Wheeler, D J
Wilcox, T
Williams, H C
Winsheim, de
Woodall, H J
Wright, E M
Wunderlich, M C
Yates, S
REFERENCES INDEXED IN "MATHEMATICAL REVIEWS"

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REF</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 p</td>
<td>57</td>
<td>Uhler's NZLR for M_{157}</td>
</tr>
<tr>
<td>6 p</td>
<td>255</td>
<td>Barker's incorrect NZLR for M_{167}</td>
</tr>
<tr>
<td>7 p</td>
<td>273</td>
<td>Uhler's note on M_{157} and M_{167}</td>
</tr>
<tr>
<td>7 p</td>
<td>413</td>
<td>Uhler's NZLR for M_{229}</td>
</tr>
<tr>
<td>8 p</td>
<td>368</td>
<td>Uhler's NZLR for M_{199}</td>
</tr>
<tr>
<td>8 p</td>
<td>441</td>
<td>Lehmer's factors of 2^n + 1</td>
</tr>
<tr>
<td>9 p</td>
<td>410</td>
<td>Review of Uhler's work on six M_p with p < 258 including M_{193}</td>
</tr>
<tr>
<td>9 p</td>
<td>410</td>
<td>Uhler's NZLR for M_{227}</td>
</tr>
<tr>
<td>10 p</td>
<td>100</td>
<td>Ore's book on "Number Theory and Its History"</td>
</tr>
<tr>
<td>10 p</td>
<td>681</td>
<td>Lehmer on the converse of Fermat's 'little' theorem, II</td>
</tr>
<tr>
<td>11 p</td>
<td>11</td>
<td>Ferrier's note on factors of 2^n+1 and the prime (2^{92}-1)/17</td>
</tr>
<tr>
<td>13 p</td>
<td>436</td>
<td>Miller & Wheeler's large-primes including 180(2^{127}-1)^{2-1}</td>
</tr>
<tr>
<td>14 p</td>
<td>121</td>
<td>Kraitchik's review of factorizations of 2^n + 1</td>
</tr>
<tr>
<td>14 p</td>
<td>343</td>
<td>Uhler's history on the M_p and latest primes</td>
</tr>
<tr>
<td>14 p</td>
<td>535</td>
<td>Kraitchik's "Introduction a la Theorie des Nombres"</td>
</tr>
<tr>
<td>14 p</td>
<td>1063</td>
<td>Touchard on prime and perfect numbers</td>
</tr>
<tr>
<td>15 p</td>
<td>1063</td>
<td>Wright's theorem on the primality of kp^3+1</td>
</tr>
<tr>
<td>15 p</td>
<td>199</td>
<td>Uhler on the values of the 16th and 17th perfect numbers</td>
</tr>
<tr>
<td>15 p</td>
<td>933</td>
<td>Gabard's two factorizations including M_{109}</td>
</tr>
<tr>
<td>16 p</td>
<td>335</td>
<td>Robinson's SWAC computations on M_p and F_n</td>
</tr>
<tr>
<td>16 p</td>
<td>447</td>
<td>Uhler on the values of the first 17 perfect numbers</td>
</tr>
<tr>
<td>16 p</td>
<td>673</td>
<td>Hardy & Wright's "Introduction to the Theory of Numbers"</td>
</tr>
<tr>
<td>17 p</td>
<td>127</td>
<td>Good's conjectures on M_p</td>
</tr>
<tr>
<td>17 p</td>
<td>127</td>
<td>Storchi's theorems and criteria for M_p factorization</td>
</tr>
</tbody>
</table>

20 # | 832 | Robinson: some factorizations of 2^n + 1 |
20 # | 4520 | Robinson: the converse of Fermat's theorem |
21 # | 28 | Golubev's review of factorization theorems with enumeration |
21 # | 657 | Riesel's M_p-factors and the prime M_{3217} |
22 # | 22 | Isemonger's complete factorisation of 2^{132}+1 |
22 # | 3093 | Scheffler & Ondrejka's evaluation of E_{3217} |
22 # | 7268 | Karst's M_p-factors for 3000 < p < 3500 |
22 # | 10949 | Karst's review of M_p-factors including the range 10^5 < p < 10^8 |
23 # | A 832 | Brillhart and Johnson's M_p-factors: p < 1200 |
23 # | A 833 | Kravitz' M_p-factors for 10,000 < p < 15,000 |
23 # | A1577 | Isemonger's complete factorisation of 2^{199}-1 |
26 # | 3684 | Hurwitz' LRs for 3000 < p < 5000 and two prime M_p |
26 # | 6139 | Bateman and Horn's heuristic formula for prime distribution |
27 # | 2462 | Riesel's M_p-factors: p < 10^4, q < 10^8 |
27 # | 3609 | Schinzel's remark on the paper of Bateman and Horn |
28 # | 1152 | Kravitz' LRs for 6000 < p < 7000 |
28 # | 2990 | Gillies' LRs for 7000 < p < 12124, three prime M_p and factors |
28 # | 2991 | Selfridge and Hurwitz' LRs for 5000 < p < 6000 and F_n-factors |
28 # | 2992 | Brillhart's M_p-factors: p < 20,000 and q < 2^{34} |
28 # | 3952 | Shanks' "Solved and Unsolved Problems in Number Theory" |
29 # | 1169 | Karst's M_p-factors |
29 # | 3422 | Karst's review of search-limits on M_p-divisors |
30 # | 1106 | Karst's list of M_p-factors q = 2Kp+1 (K < 10) for p < 15,000 |
<table>
<thead>
<tr>
<th>V</th>
<th>ITEM</th>
<th>REF</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td># 3717</td>
<td>[S6]</td>
<td>Shanks' analysis of M_n-factor distribution</td>
</tr>
<tr>
<td>36</td>
<td># 6368</td>
<td>[E5]</td>
<td>Ehrman's analysis of M_p-factor distribution</td>
</tr>
<tr>
<td>37</td>
<td># 131</td>
<td>[B5]</td>
<td>Brillart and Selfridge's factors of some M_n</td>
</tr>
<tr>
<td>40</td>
<td># 84</td>
<td>[L9]</td>
<td>Lehmer's review of computers as applied to number theory</td>
</tr>
<tr>
<td>41</td>
<td># 1675</td>
<td>[K28]</td>
<td>Kravitz's study of Lucas-Lehmer-test cycles</td>
</tr>
<tr>
<td>42</td>
<td># 4507</td>
<td>[R6]</td>
<td>Riesel's "En Bok om Primtal"</td>
</tr>
<tr>
<td>45</td>
<td># 166</td>
<td>[T1]</td>
<td>Tuckerman's announcement of the prime M_{9937}</td>
</tr>
<tr>
<td>45</td>
<td># 3314</td>
<td>[P20]</td>
<td>Pollard's algorithm for primality-testing any integer</td>
</tr>
<tr>
<td>47</td>
<td># 3285</td>
<td>[L33]</td>
<td>"Computers in Number Theory " including D H Lehmer article</td>
</tr>
<tr>
<td>47</td>
<td># 4932</td>
<td>[S19]</td>
<td>Shanks' "Class Number, Theory of Factorisation and Genera"</td>
</tr>
<tr>
<td>47</td>
<td># 8407</td>
<td>[S7]</td>
<td>Selfridge & Guy's "Primality testing on small machines"</td>
</tr>
<tr>
<td>50</td>
<td># 6992</td>
<td>[P22]</td>
<td>Pollard's Monte-Carlo factorisation technique</td>
</tr>
<tr>
<td>51</td>
<td># 8017</td>
<td>[B15]</td>
<td>Brillhart and Morrison's factorisation technique and F_7</td>
</tr>
<tr>
<td>52</td>
<td># 5546</td>
<td>[B6]</td>
<td>Brillhart etc's primality criteria and factorisations of $2^n + 1$</td>
</tr>
<tr>
<td>53</td>
<td># 4461</td>
<td>[L44]</td>
<td>Lehmer's corrigenda to MR10#681 [L36; L43]</td>
</tr>
<tr>
<td>55</td>
<td># 2732</td>
<td>[S20]</td>
<td>Solovay and Strassen's fast Monte-Carlo Primality test</td>
</tr>
<tr>
<td>56</td>
<td># 233</td>
<td>[T2]</td>
<td>Tuckerman's corrigendum to MR28#2990 [61]</td>
</tr>
<tr>
<td>57</td>
<td># 5885</td>
<td>[S22]</td>
<td>Solovay & Strassen's correction to MR55#2732 [S20]</td>
</tr>
<tr>
<td>58</td>
<td># 470a</td>
<td>[M15]</td>
<td>Miller's primality test assuming the Riemann Hypothesis</td>
</tr>
<tr>
<td>58</td>
<td># 10861</td>
<td>[R12]</td>
<td>Riesel's supplement to "En Bok Om Primtal"</td>
</tr>
<tr>
<td>58</td>
<td># 26870</td>
<td>[D2]</td>
<td>Drake's analysis of Mersenne's "rule"</td>
</tr>
<tr>
<td>58</td>
<td># 27706</td>
<td>[L31]</td>
<td>Lehmer on the exploitation of parallelism in number theory</td>
</tr>
<tr>
<td>80g: 10013</td>
<td>[S1]</td>
<td>Sowinski's announcement of the prime M_{44497}</td>
<td></td>
</tr>
<tr>
<td>80m: 68004</td>
<td>[K15]</td>
<td>Kronskjo's "Algorithms - their complexity and efficiency"</td>
<td></td>
</tr>
<tr>
<td>81a: 10020</td>
<td>[J1]</td>
<td>Jones' Diophantine representation of M_p and E_p</td>
<td></td>
</tr>
<tr>
<td>81i: 10002</td>
<td>[H6]</td>
<td>Hardy & Wright's "Introduction to the Theory of Numbers" 5th Ed.</td>
<td></td>
</tr>
<tr>
<td>81k: 10010</td>
<td>[N7]</td>
<td>Nickel & Noll on the 25th and 25th Mersenne primes</td>
<td></td>
</tr>
<tr>
<td>82a: 10007</td>
<td>[B18]</td>
<td>Brent's improved Monte-Carlo factorisation algorithm</td>
<td></td>
</tr>
<tr>
<td>82e: 10004</td>
<td>[L46]</td>
<td>Lehmer on Fermat's quotient, base two</td>
<td></td>
</tr>
<tr>
<td>83h: 10015</td>
<td>[P24]</td>
<td>Pomerance's review of recent developments in primality-testing</td>
<td></td>
</tr>
<tr>
<td>84e: 10006</td>
<td>[A4]</td>
<td>Adleman et al's almost-polynomial primality test</td>
<td></td>
</tr>
<tr>
<td>85b: 11117</td>
<td>[K33]</td>
<td>Keller's table of Fermat factors and large $k.2^n+1$ primes</td>
<td></td>
</tr>
<tr>
<td>86g: 11078</td>
<td>[C31]</td>
<td>Cohen and Lenstra's practical primality test</td>
<td></td>
</tr>
</tbody>
</table>
The author has not seen those references marked with a '*'.
'Pr Comm' denotes a private communication.

L. M. ADLEMAN
MR84e:10006.

R. C. ARCHIBALD
A2 RMT 434[F] - Review of [L6]: MTAC v2 (1946-7) p341
A3 Review Note 98 - "Mersenne's Numbers", MTAC v3 (1948-9) p398

W. W. R. BALL
B10 "A Short Account of the History of Mathematics" 3rd Ed. (1901) Macmillan
(18th Ed. MR50#4229.)
B8 "Mersenne's Numbers", Nature v89 (1912) p86

C. B. BARKER
B1 "Proof that the Mersenne Number M167 is Composite", BAMS v51 (1945) p389.
MR6p255. In error, see [R2; T11].

P. T. BATEMAN & R. A. HORN

M. BEELER, R. W. GOSPER & R. SCHROEPPEL
B7 "HAKMEM", MIT Artificial Intelligence Lab. Memo. 239 (1972), p13

A. H. BEILER
B21 "Recreations in the Theory of Numbers - the Queen of Mathematics Entertains", Dover (1964)

M. BERG
B14 Pr Comm: (20/10/1980)

C. E. BICKMORE
B12 "On the Numerical Factors of a^n-1", Messenger of Mathematics v25 (1895-6) ppl-44. esp. p19
B13 "On the Numerical Factors of a^n-1", Messenger of Mathematics v26 (1896-7) ppl-38

G. BOWGEN
B32 Pr Comm (21/7/83): 352 M_p-NZLRs for 90534 < p < 100184
B33 Pr Comm (20/10/83): 397 M_p-NZLRs for 63376 < p < 73180
B34 Pr Comm (16/11/83): 13 M_p-NZLRs for 62982 < p < 63376
R. P. BRENT

B23 Pr Comm (9/7/1981): M_p-factors for $p < 1000$ (updated 1986)

B24 Pr Comm (26/8/1981): M_p-factors including those of M_{229}

B27 Pr Comm (22/9/1981): M_{229}'s factorisation

B29 Pr Comm (11/5/1982): various factorisations

B30 Pr Comm (23/8/1982): full M_{227} factorisation

J. D. BRILLHART

B3 "Some Miscellaneous Factorizations", MC v17 (1963) pp447-50

B20 Table Errata for [R4], MC v17 (1963) p486

B25 Corrigenda to [B5], MC v21 (1967) p751

B16 Pr Comm (16/12/1980): factorisations

B19 Pr Comm (29/1/1981): factorisations

B22 Pr Comm (17/2/1981): M_{223}'s factorisation

R. D. CARMICHAEL

C30 "Multiply Perfect Numbers of Four Different Primes", Annals of Mathematics, s2 v8 (1906-7) pp149-

P. A. CATALDI

C2 "Trattato de Numeri Perfetti", Bologna (1603) esp pp12-22

R. W. D. CHRISTIE

C28* Maths. Questions Educational Times v49 (1889) p85

E. L. COHEN & D. W. DOWD

C25 Corrigendum to [K8], MC v27 (1973) p453

H. COHEN

F. N. Cole

"On the Factoring of Large Numbers", BAMS v10 (1903) pp134-7

W. N. Colquitt

Pr Comm (12/10/88): complete NEC SX-2/400 results for $p < 112000$

Pr Comm (16/11/88): complete NEC SX-2/400 results for $10^5 < p \leq 132049$

Pr Comm (21/08/89): complete NEC SX-2/400 results for $10^5 < p \leq 139267$

A. J. C. Cunningham

"On Mersenne's Numbers", Report of the BAAS (1894) pp563-4

"On Mersenne's Numbers", Nature v51 (1895) p533

"On Mersenne's Numbers", Report of the BAAS (1895) p614

Nature v78 (1908) p23

L'Intermediaire d. Math. v16 (1909) p252

"Notes", Nature v81 (1909) p194

Sphinx-Oedipe v4 (1909) pp36-7

"On Mersenne's Numbers", Report of the BAAS (1911) p321

Nature v87 (1911) p499

Sphinx-Oedipe v7 (1912) p38

Nature v90 (1912) p425

Proc. 5th International Congress of Mathematicians, Cambridge (1913), Edited by E W Hobson & A E H Love, v1 pp384-6

"Factorisation of (ya^n-1). $y = 2, 3, 5, 6, 7, 10, 11, 12$ up to high powers (n)", Hodgson, London (1925) 24pp.

Authors' copy with addenda & corrigenda in Mathematical Association Library, Leicester University, UK

M. Curtze

"Mathematisch-historische Miscellen", Bibliotheca Mathematica s2 v9 (1895) pp33-42, esp pp39-42

L. Dembart

K. Devlin

"Playing it by numbers", The (UK) Guardian (12/10/89)

L. E. Dickson

"History of the Theory of Numbers" (1919) v1, especially ch1
DISCOVER

S. DRAKE

J. R. EHRMAN
E9 "Prime divisors of Mersenne numbers", TN-66-40 (1966), Stanford Linear Accelerator Center, Stanford, California

L. EULER
E2 "Sur l'expression de la fonction logarithmique", Opuscula Varia Argumenti v2 Berlin (1750) esp pp25-32
E4 Commentationes Arithmeticae Collectae, I, Petropoli (1849) esp pp1-3, 102-9, 584
E5 Opera Omnia s1 v1 (1865) pp1-9
E6 Opera Omnia s1 v2 (1915) pp1-5, 86-95
E7 Opera Omnia s1 v3 (1917) pp336-7

J. EWING
E10 "2^{86243} - 1 is prime", Mathematical Intelligencer v5 nol (1983) p60

E. FAUQUEMBERGUE
F8 "Note sur une conjecture de M. P. de Fermat", L'Intermédiaire des Math. v1 (1894) p148
F9 "Note sur un nombre de Mersenne", Sphinx-Oedipe v7 (1912) pp20-2
F10 "Note sur un nombre de Mersenne", Sphinx-Oedipe v8 (1913) pp176. In error, see [R2]
F11 "Note sur un nombre de Mersenne", Sphinx-Oedipe v9 (1914) pp85 & 103-5. In error, see [R2]
F12 "Note sur un nombre de Mersenne", Sphinx-Oedipe v15 (1920) pp17-8. In error, see [R2]

P. de FERMAT
F5 Oeuvres de Fermat v2 (1894) pp176, 185, 194, 198-9, 210-1
F7 Oeuvres de Fermat v4 (1912) pp67, 250

A. FERRIER
F2 "Note on the Factors of 2^{n+1}", MTAC v3 (1948-9) pp496-7. MR11p111, 870.
F3 "New Factorizations of 2^{n+1}", MTAC v4 (1950) pp55-6 note 110
F4 "Table of Factors of 2^{n+1}" reviewed as UMT 137[F], MTAC v6 (1952) p39

E. GABARD
G2 "Factorization d'un nouveau nombre de Mersenne", Mathesis v68 (1959) p61

M. GARDNER
G16 "A Short Treatise on the Useless Elegance of Perfect Numbers and Amicable Pairs", Scientific American v218 No3 (March 1968) pp121-4 and v218 No4 (April 1968) p120
GENAILLE

G10* Comptes Rendus (1891)? part 1 p159

R. A. P. GERARDIN

G15 "Erreurs de Mathematiciens", L'Intermediaire des Math. v15 (1908) pp230-1
G6 * Sphinx-Oedipe v7 (1912) pp15-6
G8 Sphinx-Oedipe v17 (1922) p64
G9 Sphinx-Oedipe v18 (1923) pp17-8

D. B. GILLIES

V. A. GOLUBEV

I. J. GOOD

J. A. HALL

H22 Pr Comm (12/12/89): computer analysis ofMp-f1/LR data from [C34; H19]

G. H. HARDY & E. M. Wright

H6 "Introduction to the Theory of Numbers". 3rd Edition, MR16p673:

G. MCC. HAWORTH

H4 Pr Comm to R M Robinson (15/9/1980)
H7 Pr Comm to C L Noll (21/10/1980)
H11 Pr Comm to D Shanks (26/1/1982): ICL DAP "Code B" provisional results including some for 50024 < p < 62982
H15 Pr Comm to D Shanks (31/1/1983): deposition in MC UMT file of ICL DAP results. Twin-sourced for 18 < p < 50024 and original for 50024 < p < 62982
H17 Confirmation of Thomason's S1=3 Mp-NZLRs for p = 67 & 103 (20/10/1984)
H19 "Mersenne Numbers; Consolidated Results": all LR etc ex DAP (1986)
H20 "Mp prime-factorisation certificates": PPL-pf certificates (1986)

T. L. HEATH

H3 "The Thirteen Books of Euclid's Elements" 2nd Ed. (1926) v2 pp421-6

A. HODGES

S. M. HOLMES

H8 Pr Comm (27/7/1981): ICL DAP "Code A" provisional results
H13 Pr Comm (20/10/1982): ICL DAP "Code B" production results for
31488 < p < 62982
H14 (D J Hunt, T W Lake, P J Marron, S F Reddaway, N Westbury
& G M'C Haworth): "Primality-testing Mersenne Numbers", Abstracts of
the AMS, v4 n02 (Feb 1983) p196, B3T-10-82
H16 "Variable Precision Arithmetic on DAP", Section 3.6 of "DAP in Action"
edited by J Howlett, D Parkinson & J Sylwestrowicz, ICL Technical
Journal v3 n03 (1983) pp330-44

J. HUDELOT

H5 Sphinx-Oedipe v4 (1909) p16

A. HURWITZ

H1 "Fermat Numbers and Perfect Numbers", Notices of the American Math. Soc.
v8 (1961) p601

K. R. ISEMONGER

J. P. JONES

J1 "Diophantine representation of Mersenne and Fermat Primes", Acta

E. KARST

K14* BYU - Applied Number Theory Newsletter (1960) pp3-6
K2 "Faktorenzerlegung Mersennnescher Zahlen mittels programmgesteueter
K23 "Some New Divisors of Mersenne Numbers", BIT v2 (1962) p90
MR29#3422.
K27 "List of all prime divisors \(q = 2KP+1\) of \(2^P-1\), \(K < 10\), \(p < 15000\)",

W. KELLER

K30 "Primteiler von Mersenne-Zahlen" (1977). Factors \(q < \max(2^{2^6}, 10^7)\)
of \(M_p\), \(p < 10^5\).
Primes", intended for publication but not published
K33 "Factors of Fermat Numbers and Large Primes of the form \(k.2^n+1\)",

D. E. KNUTH

G. W. KRAFT

K18* Novi Comm. Ac. Petrop., v3 (1753), ad annos 1750-1
M. B. KRAITCHIK

K16* "Table de la plus grande solution de la Congruence \(2(p-1)/x = 1\)
mod \(p\) pour tous les nombres premiers \(p\) inférieurs à 300,000 excepte les cas de \(x = 1\) ou 2", Nancy (1921)

K10 "Théorie des Nombres", Paris (1922) v1, esp pp34-44, 146, 218
K3 "Recherches sur la Théorie des Nombres", Paris (1924) v1, esp pp 20-1, 24, 165, 170, 175
K11 "Théorie des Nombres", Paris (1926) v2, esp p135 & p142
K13 "Nombres Parfaits", L'Echiquier v3 (1927) pp755-6
K32 "Decomposition de \(2^n + 1\)", L'Echiquier v3 (1927) pp756-7
K12 "Recherches sur la Théorie des Nombres", Paris (1929) Tome 2
K25 "Les Grands Nombres Premiers", Mathematica v7 (1933) pp92-4
K20 "Factorizations de \(2^n + 1\)", Sphinx v8 (1938) pp148-150

S. KRAVITZ

K8 (& J S Madachy): Review of UMT-113[F] "Divisors of Mersenne Numbers,
20,000 < \(p\) < 100,000", MC v19 (1965) p686 (Corr. MC v27 (1973) p453)
K9 "Distribution of Mersenne Divisors", MC v20 (1966) pp448-9
K22 Pr Comm (7/10/1980): the Kravitz/Berg Code

L. I. KRONSJO

T. W. LAKE

L45 (& S M Holmes) Pr Comm (25/8/81): first factors < \(2^{60}\); \(5\times10^4 < \(p\) < \(10^5\)

M. LAL

F. LANDRY

L20 "Aux Mathematiciens de toutes les parties du monde; communications sur la decomposition des nombres en leurs facteurs simples", Paris (1867) p8
L19 "Decomposition des Nombres \(2^n + 1\) en leurs Facteurs Premiers", Paris (1869) pp6-7

Le LASSEUR De SANZY

L25 Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche (Boncompagni) v11 (1878) pp788-9

A. M. LEGENDRE

L21 "Essai sur la Théorie des Nombres" 3rd Ed. Paris (1830) v1 pp228-9
D. H. Lehmer

"Note on the Mersenne Number $2^{139}-1$, BAMS v32 (1926) p522

"Tests for primality by the converse of Fermat's theorem", BAMS v33 (1927) pp327-40

"A Further Note on the Converse of Fermat's Theorem", BAMS v34 (1928) pp54-6

"The Mechanical Combination of Linear Forms", Amer. Math. Monthly v35 (1928) pp114-121

"On the Factorization of Lucas' Functions", Tohoku Mathematical Journal v34 (1931) pp1-7

"Sur Le Nombre $2^{257}-1$, Sphinx v1 (1931) pp31-2

"Sur Le Nombre $2^{149}-1$, Sphinx v1 (1931) pp163-5

"Note on Mersenne Numbers", BAMS v33 (1932) pp383-4

"A number theoretic machine", BAMS v38 (1932) pp635

"Some New Factorizations of 2^n+1, BAMS v39 (1933) pp105-8

"A photo-electric number sieve", Amer. Math. Monthly v40 (1933) pp401-6

"A machine for combining sets of linear congruences", Mathematische Annalen v109 (1934) pp661-7

"Recent Discoveries of Large Primes", MTAC v6 (1952) p61 N131

"A New Mersenne Prime", MTAC v6 (1952) p205

"Two New Mersenne Primes", MTAC v7 (1953) p72

D. N. Lehmer

"On the Multiplication of Large Numbers", American Mathematical Monthly v30 (1923) pp67-70

"Hunting big-game in the theory of numbers", Scripta Mathematica v1 (1933) pp229-235

67
F. E. A. LUCAS

L29* Comptes Rendus v82 (1875) p1305
L30* Comptes Rendus v83 (1876) p68
L16 "Note sur l'application des series recurrentes a la recherche de la loi de distribution des nombres premiers", Comptes Rendus v82 (1876) pp165-7
L15* "Sur la theorie des nombres premiers", Turin (1876) esp pl1
L35 Comptes Rendus de l'Association de Francaise pour l'avancement des sciences, v6 (1877) pp159-67
L17* Bulletinino d. Bibliografia e d. Storia (Boncompagni) v10 (1877) pp129-193
L18 Recreations Mathematices v2 (1883) pp230-5
L38 "Sur Le Neuvieme Nombre Parfait", Mathesis v7 (1887) pp45-6
L40 "Sur Les Nombres Parfaits", Mathesis v10 (1890) pp74-6
L13 "Theorie des Nombres" Paris (1891) v1 p376 & pp424-5

A. R. G. MACDIVITT

M4 "The most recently discovered prime number", Maths. Gaz. v63 (1979) pp268-70

T. E. MASON

M7 BAMS v21 (1914) p68

J. McDONNELL

S. K. McGROGAN

N. D. McWHIRTER

M. MERSENNE

M3 "Cogitata Physico Mathematica", Parisiis (1644) Praefatio Generalis No.19
M6 "Novarum Observationum Physico-Mathematicarum", Tomus III, Parisiis (1647) Cap.21 p182

N. METROPOLIS

G. L. MILLER

J. C. P. MILLER

"Integer Factorization", DAUN PB-144, ISSN 0105-8517 (May 1982)

H. L. NELSON

Pr Comm to D C Shanks (7/6/1979): the deposition in the MC UMT file of CRAY I results for p < 50024

"Multi-Precise Arithmetic on a Vector Processor, or how we found the 27th Mersenne Prime", IEEE COMPCON Proceedings (San Francisco) (1980) pp265-9

Pr Comm (18/9/1980): 10 residues, 4450 < p < 6908

Pr Comm (10/1/1981): Noll's confirmation of M44497

Pr Comm (24/6/1981): residues for 42018 < p < 42350

Pr Comm (24/12/1981): some residues, 24048 < p < 30678

Pr Comm (28/10/1982): Slowinski finds M86243 prime

Pr Comm (2/12/1982): CRAY I M86243 computation details

Pr Comm (21/12/1982): Noll's CYBER-205 confirms M86243

Pr Comm (7/12/1983): Slowinski's M132049 computation

M. H. A. NEWMAN

"Some routines involving large integers", Proc. of Cambridge conference on automatic calculating machines (June 22-25, 1949), pp69-70

R. NIEWIADOWSKI

Note 4202, L'Intermediaire des Math. v20 (1913) p78

C. L. NOLL

"Discovering the 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5

(& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6

Pr Comm (10/4/1981): details of his computation

Pr Comm (9/2/1983): details of new FFNT CYBER-205 code

R. ONDREJKA

O. ORE

J. W. PAULI

"De numero perfecto", Magister-disputation, Leipzig (1678)

P. PEPIN

"Sur la formule 2^n-1", Comptes Rendus v86 (1878) pp307-10
I. M. PEROVCHINE
P16* "Memoires Russes de l'Academie" (Zapiski Imperatorskoi Akademii) v48

J. PLANNA
P12* Memoria della Reale Accadem. della Scienze, Torino s2 v20 (1863) p130

H. C. POCKLINGTON
P17 "The Determination of the Prime or Composite Nature of Large Numbers by Fermat's Theorem", Proc. Cambridge Phil. Soc. v18 (1914-6) pp29-30

J. M. POLLARD

C. POMERANCE
P26 (Selfridge & Wagstaff) "The Pseudoprimes to 25.10^9" MC v35 (1980) pp1003-1026
P27 "Are there any counterexamples to the Baillie-PSW primality test?", 'Dopo Le Parole' (16/5/1984), edited and available from J K Lenstra, Amsterdam

P. POULET
P7 Sphinx-Oedipe v18 (1923) p64

R. E. POWERS
P15 Note 6, BAMS v18 (1911-2) p162
P8* Sphinx-Oedipe v8 (1913) pp49-50
P10 "A Mersenne Prime", BAMS v20 (1914) p531
P6* Sphinx-Oedipe v9 (1914) pp105-8
P3 "Note on a Mersenne Number", BAMS v40 (1934) p883
P23 "Sur les Nombres de Mersenne", Sphinx (Bruxelles) v5 (1935) pp57-8

V. R. PRATT
P5 "Every Prime has a succinct certificate": SIAM J. of Computing v4 (1975) pp214-220

M. E. PROTH
V. RAMESAM

C. REID
R7 "Perfect Numbers", Scientific American v188 No3 (March 1953) pp84-6

K. G. REUSCHEL

H. RIESEL
R5 "A New Mersenne Prime", MTAC v12 (1958) p60
R12 "En Bok om Primtal, Uppdateringar och Korrektioner" (Oct. 1979). MR58#10681.
R13 Pr Comm (30/10/1980): details of his computation
R14 Pr Comm (6/12/1980): largest-known composite M_p

R. M. ROBINSON
R10 Pr Comm (26/8/1980)

D. SCHEFFLER & R. ONDREJKA

A. SCHINZEL

R. C. SCHROEPEPEL
S28 Pr Comm (6/01/90): earlier date for Brillhart’s M_139 factorisation

J. L. SCHONFELDER & J. T. THOMASON
S18 "Arbitrary Precision Arithmetic in Algol 68", Software - Practice and Experience v9 (1979) pp173-82

SCIENTIFIC AMERICAN
S24 "2^{19},937 is Prime", Science & the Citizen Column, v224 no6 (June 1971) p56
S4 "Onward and Upward", Science & the Citizen Column, v240 no1 (January 1979) p67
S13 Announcement of Primes M_{23209} & M_{44497}. Martin Gardner, v241 no2 (Sept. 1979) p26
P. SEELHOFF

S14 "Ueber die vollkommenen Zahlen, insbesondere über die bis jetzt zweifelhaften Fälle \(2^{241}-1\), \(2^{247}-1\) und \(2^{251}-1\).", Archiv für Math. und Phys. s2 v2 (1885) pp327-9

S15 "Untersuchung der Zahl \(2^{37}-1\).", Archiv für Math. und Phys. s2 v5 (1887) pp221-3

J. L. SELFridge

S5 Errata to [R1] MC v13 (1959) p142

C. SERVAIS

S16 "Sur les Nombres Parfaits", Mathesis v7 (1887) pp228-30

D. C. SHANKS

S23 Pr Comm (28/10/1981): Nelson’s results 24000 < p < 31000

W. SIERPINSKI

S10 "A Selection of Problems in the Theory of Numbers", Pergamon (1964)
S17 "Elementary Theory of Numbers", Hafner (1964)

D. A. SLOWINSKI

H. V. SMITH

S11 "The 25th (known) perfect number", Mathematical Gazette v63 (1979) p271

R. M. SOLOVAY & V. STRASSEN

E. STORCHI

S21 "Alcuni criteri di divisibilità per i numeri di Mersenne e il carattere \(6^0, 12^0, 24^0, 48^0\) dell'intero 2", Bollettino della Unione Matematica Italiana, v10 (1955) pp363-75. MR17p127

H. SUYAMA

S25 "Some new factors for numbers of the form \(2^n+1\)", Abstracts of the AMS v3 no3 (1982) p257, 82T-10-230
S26 "Some new factors for numbers of the form \(2^n+1, I\)", Abstracts of the AMS v4 no2 (1983) p195, 83T-10-57
S27 "Some new factors for numbers of the form \(2^n+1, II\)", Abstracts of the AMS v4 no3 (1983) p294, 83T-10-207

72
H. TARRY
T4 * Sphinx-Oedipe v6 (1911) p192
T5 * Sphinx-Oedipe v7 (1912) p15 (or 17?)

J. T. THOMASON
T10 Pr Comm (1/2/1981): S original-M_p factorisations confirmed
T12 Pr Comm (22/6/1981): M_{239}'s factors and Lucas-residues

TIME Magazine
T14 "Cracking a Record Number" v123 no7 (13/2/1984) p54

The TIMES (London)
T8 "Prime Number Record Broken", The TIMES (17/11/78) p9 column 4
T9 "Prime Number", The TIMES (23/11/78) p19 column 4

J. TOUCHARD

J. TRAVERS
T3 "Perfect Numbers", Mathematical Gazette v23 (1939) p302

B. TUCKERMAN
T2 Corrigendum to [G1], MC v31 (1977) p1051. MR56#233.

A. M. TURING
T13 "Checking a large routine", Proc. of Cambridge conference on automatic calculating machines (June 22-25, 1949), pp67-8

H. S. UHLER
U2 "A New Result Concerning a Mersenne Number", MTAC v1 (1943-5) p333
U3 "A New Result Concerning a Mersenne Number", MTAC v1 (1943-5) p404
U4 "Note on the Mersenne Numbers M_{157} and M_{167}", BAMS v52 (1946) p178. MR7p273.
U8 "A New Result Concerning a Mersenne Number", MTAC v2 (1946-7) p94. MR7p413.
G. VALENTIN

S. S. WAGSTAFF, Jr.
W8 Pr Comm (21/1/1981): table of M_p-factors < 2^{35} for $17,000 < p < 50,000$
W12 Pr Comm (2/2/1982): "Divisors of Mersenne Numbers"; $2^{31} < M_p-f_1 < 2^{35}$ for $20,000 < p < 10^5$
W13 Pr Comm (27/7/1982): M_{193} factorised by two prps

Le Roy J. WARREN

A. E. WESTERN
W2 "Some criteria for the residues of 8th & other powers" - Proc. London Math. Soc. s2 (1911) pp244-272

D. J. WHEELER
W7 Pr Comm (5/10/1980): ILLIAC I and M_{8191} Lucas-test

T. WILCOX
W4 Corrigendum to [L3], MC v19 (1965) p175

De WINSHEIM

H. J. WOODALL
W6 "Note on a Mersenne Number", BAMS v17 (1910-1) p540
W1 "Mersenne's Numbers", Memoirs & Proceedings of the Manchester Literary and Philosophical Society, v56 (1911-12) No 1 pp5-8

E. M. WRIGHT

M. C. WUNDERLICH

S. YATES
Y1 Pr Comm (19/12/88): 876 titanic primes > 10^{999}.

74
KEYWORDS

Adleman, Leonard M
AMS, American Mathematical Society
Archibald, Raymond Clare
Atkin, Oliver L

BAAS, British Association for the
Advancement of Science
Baillie, Robert: M\textsubscript{257-}f\textsubscript{2}
Ball, Walter William Rouse
BAMS, "Bulletin of the American
Mathematical Society"
Barker, Charles B
Bateman, Paul Trevier
Beeler, M
Beiler, Albert H
Berg, Murray
Bickmore, C E
BIT, "Nordisk tidskrift for
Informationsbehandling"
Bowgen, Grant: ICL DAP
Bray, H G
Brent, Richard Peirce
Brillhart, John David

Carmichael, Robert Daniel
Cataldi, Pietro Antonio
(1550?-1626)
Christie, R W D
Cohen, Edward L
Cohen, H
Cole, Frank Nelson
(1861-1927)
Colquitt, Walter N

Computer
AMDAHL 470/V7: qv Williams
BESK: M\textsubscript{3217} [R5]
CDC 6500:
CDC 7600: M\textsubscript{257-}f\textsubscript{1}
CDC CYBER-174: M\textsubscript{21701} & M\textsubscript{23209}
CDC CYBER-205: M\textsubscript{86243} confirmation
CRAY/1: M\textsubscript{44497}, M\textsubscript{86243}
CRAY/1S: M\textsubscript{251}
CRAY-XMP: M\textsubscript{132049}, M\textsubscript{216091}
DEC
EDSAC:
EPOC: Extended-Precision Operand Computer
IBM 360/91: M\textsubscript{19937} [TL]
IBM 650
IBM 701: M\textsubscript{109-}f\textsubscript{1} & M\textsubscript{157-}f\textsubscript{1} [R3], [B2]
IBM 704: M\textsubscript{101}
IBM 709
IBM 7090
IBM 7094: M\textsubscript{103} & M\textsubscript{163}
ICL 2900 DAP: LR confirmations
ILLIAC-I: M\textsubscript{2191}
ILLIAC-II: M\textsubscript{9689}, M\textsubscript{9941} & M\textsubscript{11213}
Computer (continued):

MATHILDA
MUL: [N16]
MZ-80C: 8-bit micro (Suyama) [B17]
NEC SX-2/400: M110503
power: #12
SWAC: 5 prime M_p

Continued Fraction factorisation method (cf):
early-abort technique (cf-ea)
results: M137, M139, M149, M191, M193, M223

Cunningham, Allan Joseph Champneys
(1842-1928)
Cunningham Project [B17]
Curtze, Maximilian

Davis, James A: M211, M251
Dickson, Leonard Eugene
(1874-1954)
Drake, Stillman

ecm: elliptic curve (factorisation) method
EDSAC:
Ehrman, John R
Elliptic Curve factorisation method (ecm)
ENIAC: Electronic Numerical Integrator and Computer
qv Computer
EPOC: Extended-Precision Operand Computer
Euclid
Euler, Leonhard
(1707-1783)
f1 = 2^n + 1 observation
M131, M179, M191, M239, M251

Factorisation techniques
cf: continued fractions
ecm: elliptic curve
mp-qs: multiple-polynomial qs
qs: quadratic sieve
rho: monte-carlo
td: trial division

Fast Fermat-Number Transform
Fauquembergue, E
Fermat, Pierre de
(1601?-1665)
fermatian
little theorem
method of infinite descent
number theory
Ferrier, A
FFNT, see Fast Fermat-Number Transform
Frenicle de Bessy, Bernhard
(ca 1602-1675)

Gabard, Emilien
Gardner, Martin
Georgia Cracker, qv EPOC
Gerardin, Robert André Patrice
(1879-19...)
Gerardin, Robert André Patrice
(1879-19)
Gillies, Donald B
Golubev, V A
Good, Irving John
Hall, Jeremy A
Hardy, Godfrey Harold
(1877-1947)
Haworth, Guy MCrossan
Heath, Thomas Little
(1861-1940)
Holdridge, Diane: M211, M251
Holmes, Stephen W
Holte, R
Hudelot, Jules
Hurwitz, Alexander
Isemonger, K R
Johnson, Gerald D
Jones, J P
Judd, J S
Karst, Edgar
Keller, W
Knuth, Donald Ervin
Kraft, George Wolfgang
Kraitchik, Maurice Borisovich
Kreis, Sidney
Krieger, S I
Kronsjo, Lydia I
Lake, Tom W
Lal, Mohan
Landry, Fortune
Le Lasseur
Legendre, Adrien Marie
(1752-1833)
Lehmer, Derrick Henry
Lehmer, Derrick Norman
(1867-1938)
Lenstra, Hendrik W, Jr.
Lucas, François Edouard Anatole
(1842-1891)
Macdivitt, A R G
Machines
see computers
sieves
Mason, Thomas E
MATHILDA, qv Computers
MC, "Mathematics of Computation"
MC UMT, MC Unpublished maths. table
McDonnell, J
McGrogan, Stephen K
McWhirter, Norris D
Metropolis, N
Miller, Gary Lee
Miller, Jeffrey Charles Percy
(1906-1981)
Monte-Carlo methods
factorisation
primality-testing
Morrison, Michael Allan
MR, "Mathematical Reviews"
MTAC, "Mathematical Tables and
Aids to Computation", now
"Mathematics of Computation"

Naur, Thorkil
Nelson, Harry L
Newman, M H A
Nickel, Laura Ann
Niewiadomski, R
Noll, Curt Landon
Numerology

Ondrejka, Rudolf
Ore, Oystein

PAMS, Proceedings of the
American Mathematical Society
Pauli, J W
Penk, Michael: M257-f1
Pepin, P
Pervouchine, Ivan Mikheevich
Plana, J
Pocklington, H C
Pollard, John M
p-1 factorisation algorithm
M173-f3, M191-f4, M257-f2
rho (Monte-Carlo) factorisation algorithm
M199-f1, M227-f1, M229-f3, M257-f1
Pomerance, Carl
Poulet, P
Powers, Ralph Ernest
(1875-1952)
biography
Pp: see Pollard's p-1 method
Pratt, Vaughan Ronald
Primality testing
Fermat's theorem converse
Monte-Carlo
Proth, M E

Quadratic Sieve method
multiple-polynomial technique
results: M211, M251

Ramesam, V
Reid, Constance
Reuschle, K G
rho: Pollard's Monte-Carlo method
results: M199-f1, M227-f1, M229-f3, M257-f1
Rickert, Neil W
Ramesam, V
Reid, Constance
Reuschle, K G

rho: Pollard's Monte-Carlo method
results: M_{199}-f, M_{227}-f, M_{229}-f, M_{257}-f

Rickert, Neil W
Riesel, Hans
Robinson, Raphael Mitchell
Rumely, Robert S

Scheffler, D
Schinzel, Andrzej
Schonfelder, J L
Schroepepel, Richard C: see Tuckerman & M19937
Seelhoff, P
Selfridge, John Lewis
Servais, C
Shanks, Daniel Charles
Sierpinski, Waclaw
Sieves
Bicycle-Chain (1927):
DLS127 (1965)
DLS157
Photoelectric (1932): M_{79}
'ROM'-based:
Williams' Shift-register:
Simmons, Gustavus J
Slowinski, David Allen
Smith, H V
Solovay, Robert Martin
Speciner, Michael: see Tuckerman & M19937
Storchi, Edoardo
Strassen, Volker
Suyama, Hiromi
SWAC: Standards Western Automatic Computer
M_{521}, M_{607}, M_{1279}, M_{2203} & M_{2281} primes

Tarry, H
Thomason, John T
Touchard, Jacques
Travers, J
Tuckerman, Bryant

Uhler, Horace Scudder
UMT, Unpublished Mathematical Table,
see MC

Valentin, G