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Giant cell arteritis (GCA) is an inflammatory chronic disease occurring exclusively in elderly individuals. Until re-
cently, the disease has been considered a unique disease resulting from the interaction in the walls of susceptible
arteries, between anunknown infectious agentswith local dendritic cells (DCs), activated CD4 T cells and effector
macrophages. Recent evidence has shown that this viewwas too simplistic and has clarified many of the patho-
genetic aspects of the disease. Many genetic studies recently published have identified different new genes, in-
cluding cytokines, adhesion molecules and regulators of innate immunity, as crucial players in the
development and progression of GCA. Recent evidence suggests that there is heterogeneity of histological lesions
in GCA, that are correlatedwith different immunological Th9 and Th17 signature. The recent demonstration that
Varicella-zoster virus (VZV) antigen is present in the 64% of GCA-negative TAs and in the 73% of GCA-positive TAs
could represent an important point of arrival in the search for a causative agent in the pathogenesis of ametamer-
ic disease such as GCA. In this context, cytokines such as IL-32 and IL-33 that act as a danger signal following tis-
sue damage and infection are over-expressed in GCA arteries. Artery tertiary lymphoid organs, present in up to
50% of GCA-positive arteries, could represent the sites were primary immune responses and T- and B-cell auto-
immune responses against viral antigens are organized. The recently demonstrated disturbed distribution of B
cells in GCA could be also relevant in the pathogenesis of the disease, possibly contributing to the enhanced IL-
6 response. Altogether, these evidences may clarify many pathogenetic aspect of the disease, also suggesting
complexity greater than first imagined.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Giant cell arteritis (GCA) is an inflammatory chronic disease occur-
ring exclusively in elderly individuals [1]. GCA is clinically characterized
by cranial symptoms such as headache and scalp tenderness [2]. In
many patients a systemic inflammatory response may also occur with
fever, weight loss and fatigue [2]. To date no specific circulating bio-
markers have been identified and the gold standard for the diagnosis
of GCA remains the biopsy of temporal artery (TAB) [3–5]. Histological-
ly, arteries show inflammation and necrosis of the arterial media wall,
infiltrating CD4+ T lymphocytes, macrophages multinucleated giant
cells and/or epithelioid macrophageswith the production of various cy-
tokines and arterial remodelling [6,7]. The aetiology and the mecha-
nisms underlying the pathogenesis of GCA are still now unknown. The
evidence that GCA occurs almost exclusively in individuals older than
50 years of age and that the incidence increase progressively after
50 years of age indicates that age-related immune alterations, in genet-
ically predisposed subjects, are essential in the development of the dis-
ease [1,8]. Historically, GCA has been considered a unique disease
resulting from the interaction, in the walls of susceptible arteries, be-
tween unknown antigens with local dendritic cells (DCs), activated
CD4+ T cells and effector macrophages [9–11]. Recent evidences have
shown that this view is too simplistic and have clarified some of the
pathogenetic aspects of the disease. In this review, we summarize the
recent findings regarding the pathogenesis of GCA.

1.1. Histologic heterogeneity in GCA arteries

The classic histologic picture of GCA is characterized by panarteritis
with a predominantly lymphomononuclear inflammatory cell infiltrate,
with or without giant cells [5]. Recently, however, it has been demon-
strated that together with transmural involvement, the inflammation
may be restricted to the vasa vasorum (vasa vasorum vasculitis, VVV),
to the periadventitial small vessels (small vessel vasculitis, SVV), or
both [12]. To clarify the clinical significance of SVV and/or VVV,
Restuccia et al. compared patients with these lesions with a group of
randomly selected patients with classic GCA [13]. Taken together, pa-
tients with SVV and/or VVV had less frequent cranial manifestations
and lower levels of markers of inflammation at diagnosis compared to
the control group with classic GCA, whereas the frequency of cranial
ischaemic events was similar between the 2 groups. The Authors
found that the clinical features of patients with isolated VVV were sim-
ilar to those of the patients with classic GCA. Unlike isolated VVV, SVV
seems to identify a GCA subset with distinct clinical features. In particu-
lar, patients with SVV were characterized by less frequent cranial man-
ifestations and systemic symptoms and signs, by lower levels of acute-
phase reactants at diagnosis, and bymore frequent peripheral synovitis
[13]. It is unclear whether the involvement of the peri-adventitial small
vessels or vasa vasorum could represent an early stage in the develop-
ment of classic transmural inflammatory infiltration. However, the evi-
dence that the time from the onset of symptoms to diagnosis was
similar in patients with SVV, isolated VVV, and classic transmural GCA
and that the type of inflammatory involvement was the same through-
out the excised temporal artery segments may suggest that SVV and
VVV are not earlier stages of an inflammatory process culminating in
transmural vessel inflammation.

1.2. Role of infectious agents

An infectious cause has been longer suspected for both GCA [9]. Cy-
clic fluctuation of GCA, with peak incidence rates every five to seven
years, and seasonal fluctuation in the incidence of biopsy-positive
GCA, with peaks in late winter and autumn have been demonstrated
suggesting that solar exposition [14] or seasonal infections may influ-
ence the GCA pathogenesis [15]. Different infectious agents such as
Chlamydia pneumoniae [16], Parvovirus B19 [11] and Epstein Barr
Virus [17] have been suggested to be involved in the pathogenesis of
GCA. Rigorous studies, however, failed in demonstrating a unique or
dominant role of these infectious agents. Recently, an association of
GCA with varicella zoster virus (VZV) has been documented [18]. VZV
is a human neurotropic alpha herpes virus that is able to replicate in ar-
teries causing disease [19]. A productive VZV infection in cerebral arter-
ies after either primary infection or reactivation of VZV has been
described. VZV vasculopathy causes ischaemic infarction of the brain
and spinal cord, as well as aneurysm, subarachnoid and cerebral haem-
orrhage, and carotid dissection [19]. In GCA patients VZV antigen has
been found in the 64% of GCA-negative temporal arteries (TAs) and in
the 73% of GCA-positive TAs, compared with 22% of normal TAs with a
relative risk [RR]of 2.86 [18]. VZV antigen wasmore likely to be present
in the adventitia of both GCA-negative TAs (RR = 2.43) and GCA-posi-
tive TAs (RR = 2.03). VZV antigen was frequently found in perineurial
cells expressing claudin-1 around nerve bundles. VZV has been recently
proved to downregulate programmed death ligand 1 (PD-L1) and MHC
(Major Histocompatibility Complex)-1 expression in infected human
brain vascular adventitialfibroblasts and perineurial cells, thus inducing
persistent inflammation leading to pathological vascular remodelling
[20]. A single group, however, has defended this hypothesis, and some
investigators have questioned the specificity of the antibodies used in
the initial studies [21]. Moreover, other investigators have not been
able to confirm this association and this hypothesis has not beenwidely
validated. More recently, the association between prior infections, in
particular herpes zoster, and incident GCAhas been studied in a popula-
tion-based cohort. In this study, the Authors found that antecedent in-
fections were only moderately associated with incident GCA, therefore
suggesting that infectious agents are probably a minor determinant of
overall risk of GCA [22].

1.3. Immunogenetics

Familial aggregation with sharing of HLA (histocompatibilty leuco-
cyte antigen) alleles has been described inGCApointing to an important
genetic component in the susceptibility for this vasculitis [23,24]. GCA
has been associated with MHC class II in many independent studies
and particularly with of HLA-DRB1*04 alleles even if not all studies
have demonstrated a significant association. In a study performed on
GCA patients from Rochester, Minnesota, USA, it has been proposed a
DRYF motif at positions 28–31 in the second hypervariable region
(HVR2) of MHC class II as a risk factor for GCA development [25]. How-
ever, this result has not been confirmed in a recent meta-analysis [26]
and in a multicenter immunochip study [27]. Further studies have also
demonstrated an association between HLA-DRB1*04 and visual loss
[28] and glucocorticoid resistance [29]. A recent meta-analysis of pub-
lished data on HLA-DRB1 associations of GCA, confirmed the strong as-
sociation of GCA with HLA-DRB1*04 allele carriage, also identifying a
possible protective effects of other alleles such as HLA-DRB1*01 and
HLA-DRB1*15 [30]. A large-scale genetic analysis reveals a strong con-
tribution of the HLA class II region to GCA susceptibility. In this study,
DRβ1 13 and HLA-DQα1 47, 56, and 76 were identified as relevant po-
sitions for GCA susceptibility [30]. Differently from MHC class II alleles,
only a weak association has been demonstrated withMHC class I alleles
such as HLA-A*31, HLA-B*8, HLA-B*15, HLA-Cw3, HLA-Cw6 and MHC
class I polypeptide-related sequence A (MICA) [24]. Outside the HLA re-
gion, themost significant loci included the protein tyrosine phosphatase
non-receptor type 22 (PTPN22) [31] and the leucine rich repeat con-
taining 32 (LRRC32) [31]. More recently, Carmona et al. published a
GWAS demonstrating that PLG and P4HA2 are risk genes at the ge-
nome-wide level of significance. PLG and P4HA2 are involved in vascu-
lar remodelling and angiogenesis, processes involved in the pathogenic
mechanisms underlying GCA [32]. Coit P et al. recently performed a
DNA-methylation study in temporal arteries from patients with GCA
and controls [33]. In this study, DNA methylation data suggest a role
for increased activity of the calcineurin/nuclear factor of activated T
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cells (NFAT) signalling pathway in GCA. Further, other genes such as
TNF, LTA, LTB, CCR7, RUNX3, CD6, CD40LG, IL2, IL6, NLRP1, IL1B, IL18,
IL21, IL23R and IFNG were hypomethylated in the cellular milieu of
GCA arteries [33]. Other susceptibility loci for GCA outside the HLA re-
gion have been identified by candidate gene studies including i) genes
encoding cytokines or their receptors (tumor necrosis factor (TNF) α,
interferon (IFN) γ, interleukin (IL) 10, IL-4, IL-6, IL-17, IL-18, IL-21, IL-
33, monocyte chemoattractant protein-1 (MCP-1), chemokine (C-C
motif) ligand 5 (CCL5), ii) genes involved in the Th (T helper) 1, Th2,
Th17 and T regulatory cells (Treg) functions, iii) genes encoding mole-
cules involved in the endothelial function (intercellular adhesion mole-
cule 1 (ICAM-1), vascular endothelial growth factor (VEGF), nitric oxide
synthases (NOSs), matrix metallopeptidase 9 (MMP9) and iv) genes of
the innate immune responses (Toll-like receptor (TLR) 4), FcγR (Fc frag-
ment of IgG receptor γ), myeloperoxidase (MPO), PTPN22, NLR family
pyrin domain containing 1 (NLRP1) [34–54]. Despite these evidences,
the reduced sample size and lack of replication in independent cohorts
made the identification of homogeneous genetic association signals in
GCA difficult.

1.4. Artery tertiary lymphoid organs in GCA arteries

Artery wall is an immune-privileged site characterized by the ineffi-
cient clearance of virus and the failure of T cells and macrophages to
enter the virus-infected elastic media layer. This immune-privilege is
lost with age as demonstrated by the presence, in elderly people and
in advanced atherosclerotic lesions, of adventitial lymphoid infiltrates
Fig. 1. The pathogenesis of GCA seems to be the result of an exaggerated immune response to
suggest that this unknown antigen should be Varicella zoster virus. Immunosenescence
immunosuppressive CD8+CCR7+ Treg cells. The artery immune-privilege is lost with age and
(Th1, Th9 and Th17 cells). Adventitial lymphoid infiltrates ranging from tight clusters of B ce
centres, the so called artery tertiary lymphoid organs, also participate in the disease pathogen
arterial wall-derived antigens is organized. T cells, vascular smooth muscle cells (VSMC) and
regulating VSMC differentiation and plasticity, mediating VSMC–endothelial cell communicatio
ranging from tight clusters of B cells and T cells to highly organized
structures sometimes comprising functional germinal centres, the so-
called artery tertiary lymphoid organs, ATLOs [55]. Tertiary lymphoid
organs (TLOs) develop at sites of inflammation where they influence
the course of infection and autoimmune diseases [56]. Recently, distinct
ATLOs structures, including placed B cell aggregates with a follicular
dendritic cell (FDC) network, loosely surrounded by T cells, and the ex-
tensive formation of high endothelial venules, have been demonstrated
in GCA patients [57] (Fig. 1). These GCA lymphoid aggregates, different-
ly from “classic” ATLOs, were mainly observed in the media layer of in-
flamed arteries, being not associated with the age of patients, and/or
with the occurrence of atherosclerotic lesions, and were independent
by the degree of arterial inflammation [57]. Chemokine (C-X-Cmotif) li-
gand 13 (CXCL13) and chemokine (C-C motif) ligand 21 (CCL21) have
been demonstrated to be instrumental in maintaining FDC networks
and IL-7/IL-17 axis has been also demonstrated to be required for the or-
ganization of ectopic lymphoid structures [58]. In particular, CXCL13-
attracted B cells, that home to the follicles, are the source of
lymphotoxin (LT)-α1β2 [59], which is critical for the generation and
maintenance of established follicles. Analysis of tissue expression of cy-
tokines, chemokines and their receptors in ATLOs positive GCA arteries,
demonstrated a clear increased expression of IL-17 and IL-7, correlated
with that of CXCL13, and of their receptor IL-7R and CXCR5 [57]. BAFF (B
cell activating factor), APRIL (a proliferation-inducing ligand) and LT-β
also involved in TLOs formation were significantly up-regulated in
GCA arteries [57]. Interestingly, primary cultures ofmyointimal cells ob-
tained from temporal arteries constitutively express large amount of
an unknown antigen in susceptible individuals, usually older patients. Recent evidences
seems to play an important role in the onset of illness possibly failing to generate
is driven by activated dendritic cells, M1 and M2 polarized macrophages and CD4 T cells
lls and T cells to highly organized structures sometimes comprising functional germinal
esis possibly representing the immune sites where immune responses toward unknown
endothelial cells may interact by the interaction between NOTCH receptors and ligands
n and promoting angiogenesis.
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CXCL13, BAFF, APRIL and CCL21. TLR agonists and cytokines differential-
ly regulated the expression of these chemokines in myointimal cells.
TLR3 and TLR4 stimulation in fact induced in such primary cultures a
strong and rapid up-regulation of both BAFF, CXCL13 but not of CCL21
and APRIL [57]. Conversely, stimulation with different pro-inflammato-
ry cytokines involved in the pathogenesis of GCA, such as IL-1β, IL-6, IL-
17 and IFN-γ, differentially resulted in the significant up-regulation of
BAFF, CXCL13, CCL21 and in a less manner of APRIL [57]. TLR3 and
TLR4 are members of the TLR family which plays a fundamental role
in the recognition of pathogen-associated molecular patterns (PAMPs)
expressed on infectious agents, andmediate the production of cytokines
necessary for the development of innate immunity [59]. Vascular
myointimal cells have been demonstrated to express TLR3 and TLR4
and their stimulation, potentially triggered by infectious agents, might
mediate the early release of CXCL13 and BAFF that seems to be essential
in the lymphoid structures initiation by attracting lymphoid tissue in-
ducer (LTi) cells and inducing their initial clustering [57]. The presence
of ATLOs formation in GCA arteries suggests a role of these structures in
disrupting the immune privilege of normal human arteries, possibly
representing the immune sites where immune responses toward un-
known arterial wall-derived antigens is organized (Fig. 1).

1.5. Dendritic cells activation in GCA

Experimental and clinical evidences highlighted in the recent past
the primary role of cell-mediated processes in the pathogenesis of
GCA and PMR.DCs, lymphocytes andmacrophages are the predominant
cellular components of the inflammatory infiltrate in affected vessels
and also frequently contain multinucleated giant cells [10]. It has been
historically proposed that the initiating immunological event is the acti-
vation of adventitial dendritic cells through the activation of TLRs [60].
Activation of diverse TLRs induces distinct cytokine/chemokine profiles
thatmight responsible for the loss of arterial immune-privilege [60]. Ex-
periments performed in a mice model in which temporal arteries were
subcutaneously engrafted into SCID mice have shown that allogeneic T
cells do not recognize engrafted human arteries unless the immune
privilege of the arterial wall has been broken by the activation of TLR4
with lipopolysaccharides [61]. Patients with GCA have altered TLR func-
tions as demonstrated by the decrease TLR7 response during the acute
phase of the disease [60] and the increased expression of TLR2 and
TLR4 on arterial DCs [62]. TLR4-mediated DCs stimulationmarkedly en-
hances production of the chemokine CCL20, inducing the recruitment of
CCL20-responsive CCR6+ T cells that dominate the vasculitic infiltrates
in patientswith panarteritic GCA (Fig. 1). Once activated, DC also release
cytokines such as IL-6, IL-18, IL-23, IL-32 and IL-33 that activate patho-
genic T lymphocytes in the wall of inflamed arteries [63]. The produc-
tion of pro-inflammatory cytokines such as IL-6, IL-32 and IL-33
appears to closely correlatewith the expression and severity of systemic
symptoms [63] (Fig. 1). IL-6 is a pleiotropic cytokine that is associated
with the production of acute phase proteins in hepatocytes, immuno-
globulin induction in B-lymphocytes, and Th17 differentiation in T
cells. IL-6 also is essential in orchestrating the pattern of immune reac-
tions by driving the differentiation of naive T cells into Th17 cells. IL-6 is
elevated in the serum of patients with GCA and over-expressed in the
GCA temporal arterywall especially in thosewith systemic inflammato-
ry response markers (such as weight loss, fever, haemoglobin
b11.0 g/dL and erythrocyte sedimentation rate (ESR) N 85 mm). Inter-
estingly, GCA patients with higher IL-6 levels experience more relapses
and require higher doses of GC during follow-up. It has been recently
demonstrated that the expression of IL-6 close depends on two different
cytokines of the innate immunity, IL-32 and IL-33 signalling [64,65]. IL-
32 is a recently described Th1-related pro-inflammatory cytokine with
important functions in both innate and immune responses [66]. IL-32
expression is induced by Th1 cytokines, such as IL-1β, TNFα, and IFNγ
[66]. Human endothelial cells also constitutively produce IL-32, indicat-
ing IL-32 as a critical regulator of endothelial function through
modulation of coagulation, endothelial cell activation, and atherosclero-
sis [67]. IL-32 expression is markedly up-regulated in the inflamed ar-
teries of patients with GCA [68] and it is accompanied by a strong
overexpression of IL-27p28. IL-27p28 is a potent and earlier inducer of
Th1 polarization [69] also inducing of IL-6 in rheumatoid arthritis (RA)
fibroblast-like synoviocytes [70]. IL-6 expression by human arterial en-
dothelial cells has been demonstrated to be also regulated by IL-33, a
member of the IL-1 family, that after binding to its receptor ST2 (sup-
pression of tumorigenicity 2), activates mast cells, Th2 lymphocytes
and M2 macrophages and endothelial cells promoting angiogenesis
and vascular permeability in vitro and in vivo [71]. An increased expres-
sion of IL-33 and its receptor ST2 has been found in GCA arteriesmainly
in endothelial cells of newly formed vessels [72]. The demonstration of
IL-33 and ST2 intense endothelial positivity together with the positive
correlation observed between IL-33 and the numbers of neovessels sug-
gests a role of IL-33 in the pathogenesis of angiogenesis-dependent in-
flammation in GCA [72]. Interestingly, IL-33 expression was also
correlated with the numbers of inflammatory parameters and reduced
in steroid-treated GCA arteries [72]. These findings might indicate that
IL-6-modulating cytokines could synergically participate in a positive-
feedback mechanism, leading to the induction and perpetuation of
IL-6 mediated arterial inflammatory immune responses.

1.6. Effector T cells in GCA

The evidence that identical CD4+T cell clones are present inmultiple
GCA vasculitic sites, suggest a T cell response to a specific antigen [73].
CD4+ T cells play central roles in the function of the immune system
by helping B cells, enhancing CD8+ T cells responses and regulating
macrophage function in order to prevent autoimmunity and to modu-
late the intensity and the persistence of immune responses against
pathogenic micro-organisms [74]. These pleiotropic functions are
achieved through the differentiation of naive CD4+ T cells in effector
and/or memory cells of specialized phenotypes such as TH1, Th2, Th9
and Th17 cells [74]. In particular, compared with control subjects, pa-
tients with GCA show a massive artery infiltration by IFN-γ–secreting
Th1 [75,76], IL-9-secreting Th9 [77] and IL-17-secreting Th17 lympho-
cytes [75–77]. IFN-γ levels in the GCA arteries are correlated with
neo-angiogenesis and the outgrowth of the hyperplastic intima [78].
IL-17 receptor is expressed on vascular smooth muscle cells (VSMC), fi-
broblasts, and endothelial cells that are affected by IL-17 stimulation
and actively participate in vessel wall remodelling. The receptor for IL-
9 activates endothelial cells, induces the expression of mast cell prote-
ases and activates neutrophils [77]. Recent data suggest that changes
in the composition of the T-cell infiltrate allow the distinction of the ar-
teritis into early and late GCA [75,76]. Th1 cells and Th17 cells seem in
fact to predominate in early phases of GCA [76]. Interestingly, a stronger
IL-17A expression in GCA patients has been demonstrated to be associ-
ated with less relapses, also requiring significantly shorter treatment
periods [79]. Differently from early GCA, chronic diseases seem to be
characterized by the presence of glucocorticoid-resistant Th1 cells. A re-
cent study evaluated the tissue distribution of Th1, Th9 and Th17 cells in
GCA patients with different histological subsets, demonstrating a differ-
ent representation of effector T cells [77] (Fig. 2). In particular, IL-17
overexpression seems to predominate in arteries with transmural in-
flammation and VVV. Differently from IL-17/Th17 cells, IL-9 over-ex-
pression and Th9 polarization predominate in arteries with transmural
inflammation and SVV and its expression, together with interferon-
gamma-producing Th1 responses, persist in treated patients [77] (Fig.
2). The role of T cells in GCA is confirmed by the recent study from
[80] demonstrating a breakdown of the tissue-protective Programmed
death1/Programmed death-ligand 1 (PD1/PD-L1) checkpoint. Engage-
ment of PD-L1 with its receptor PD-1 on T cells inhibits TCR-mediated
activation of IL-2 production and T cell proliferation [81]. Transcriptome
analysis of GCA-affected temporal arteries revealed low expression of
PD-L1 and concurrent enrichment of PD-1 receptor. DC cells from GCA



Fig. 2. Different subsets of CD4+ T effector cells are involved in the pathogenesis of different histologic subsets of GCA. Transmural inflammation seems to be essentially driven by a Th1
response. Small vessel vasculitis (SVV) is dominated by a Th1/Th17 response. Vasa vasorum vasculitis seems to be driven by a Th9 response.
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patients were PD-L1lo, whereas the majority of vasculitic T cells
expressed PD-1, suggesting the lack of the immunoprotective PD-1/
PD-L1 immune checkpoint. In human artery-SCID chimeras, PD-1 block-
ade exacerbated vascular inflammation, enriched for PD-1+ effector T
cells, and amplified tissue production of IFN-γ, IL-17, and IL-21. Arteries
infiltrated by PD-1+ effector T cells developed microvascular
neoangiogenesis as well as hyperplasia of the intimal layer. A dysfunc-
tional Tregs response has been also implicated in GCA pathogenesis
based on the demonstration of a reduced Treg cells frequency in the pe-
ripheral blood of GCA patients and the absence of any modulation of
Treg cell frequency by steroid treatment [79]. Interestingly, the expres-
sion of Foxp3, the master regulator of Tregs is increased in GCA arteries
[79,82]. Since that Treg cells display a remarkable functional plasticity, it
might be possible that artery Tregsmay not be suppressive actually pro-
ducing Th1 or Th17 cytokines. In addition to CD4+ Tregs, CD8+ suppres-
sor T cells are emerging as an important subset of regulatory T cells [83].
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Diverse populations of CD8+ T cells with suppressive activities have
been described [83]. Among them, a small population of CD8+CD25+-
FOXP3+ T cells is found both in mice and humans [83]. CD8 lympho-
cytes have been demonstrated observed in early immunopathology
studies performed in GCA arteries [84,85] and their expansion in pe-
ripheral blood was observed by Martínez-Taboada VM et al. [86]. A re-
cent study by Samson et al. [87] demonstrated the implication and the
prognostic value of CD8(+) T-cells in GCA. The Authors demonstrated
that the percentages of circulating cytotoxic CD8 T lymphocytes (CTL,
CD3(+)CD8(+)perforin(+)granzymeB(+)), Tc17
(CD3(+)CD8(+)IL-17(+)), CD63(+)CD8(+) T cells and levels of solu-
ble granzymes A and B were higher in patients than in controls and re-
duced by steroids treatment. The intensity of the CD8 T-cell infiltrate in
TAB was predictive of the severity of the disease. It has been recently
demonstrated that older individuals fail to generate immunosuppres-
sive CD8+CCR7+ Treg, a defect that is even more pronounced in the
age-related vasculitic syndromeGCA [88]. In young, healthy individuals,
CD8+CCR7+Treg are localized in T cell zones of secondary lymphoid or-
gans and act suppressing activation and expansion of CD4+ T cells. Wen
Z et al. recently identified deficiency of NADPH oxidase 2 (NOX2) as the
molecular underpinning of CD8+ Treg failure in the older individuals
and in patients with GCA [88]. CD8+ Treg suppress CD4+ T cells activity
by releasing exosomes that carry preassembled NOX2 membrane clus-
ters (Fig. 1). Overexpression of NOX2 in aged CD8+ Tregs promptly re-
stored suppressive function [88].

1.7. B cells responses

Beyond the role of T cells, B cells and humoral responses have been
also showed in patients with GCA and PMR [89]. The demonstration of
immune complexes in the serumof some patients with GCA and immu-
noglobulin deposits found along the internal elastic lamina of involved
vessels in a minority of cases support a role of B cells in GCA [90]. A de-
creased numbers of circulating B cells is present in the peripheral blood
of newly diagnosed patients with GCA or PMR [89]. B cell numbers re-
cover rapidly in treated patients with GCA and PMR in remission and
the B cell numbers are inversely correlated with ESR, C-reactive protein
levels, and serum BAFF levels [89]. Although the role of B cells has been
explicitly neglected by some investigators [10,86,91,92] their presence
in GCA arterial lesions has been previously and repeatedly recognized
by other investigators [84,85,93,94]. Further supporting the role of B
cells in the pathogenesis of GCA is the demonstration that the presence
of B cells, in a significant proportion of GCA arteries, is invariably associ-
ated with a defined T cell/B cell segregation surrounding a central area
consisting of CD21+ cells (FDC) and with the significant over-expres-
sion of chemokines enhancing B-cell survival and expansion such as
BAFF, APRIL and CXCL13 [57].

1.8. Neutrophils in GCA pathogenesis

Abundant neutrophils are present in the vasa vasorum and small
vessels around temporal arteries in GCA [12,95] suggesting their in-
volvement in GCA pathogenesis. Recently, the role of neutrophils in
GCA pathogenesis has been studied by Nadkarni S et al. [96]. The au-
thors hypothesized that persistent neutrophilia present at 24 weeks in
GCApatients treatedwith steroids,might suggest the existence of a sub-
clinical vascular inflammatory state thatmight explain disease re-emer-
gence [96]. To test this hypothesis, the Authors analysed neutrophil
phenotypes as early as 48 h after steroids and at 1, 4, and 24 weeks
after therapy. GCA neutrophils display a classically activated
CD16hiAnxA1hiCD62LloCD11bhi phenotype at 48 h. This phenotype
comes under rapid control within 1 week of treatment, despite stable
neutrophilia, with a CD16hiAnxA1hiCD62LloCD11blo signature [96].
These neutrophils were hyporeactive, as confirmed byminimal interac-
tion with an inflamed endothelial monolayer under flow conditions. In
stark contrast, neutrophils at 24 weeks after glucocorticoids exhibited
a CD16hiAnxA1hiCD62LhiCD11bhi phenotype correlating with marked
adhesion to endothelial monolayers. The Authors hypothesized that
week 24 GCA neutrophils are unable to suppress T-cell responses,
favouring loss of glucocorticoid control and, in time, re-emergence of
vascular inflammation [96].

1.9. Mast cells in GCA

Mast cells (MCs) regulate different immunological responses caus-
ing allergy and autoimmunity and participating in tissue neovasculari-
zation through the secretion of a broad array of bioactive compounds
[97]. In particular, it has been demonstrated thatmast cells direct inhibit
the functionality of Treg suppression thus actively participating in the
establishment of Th17-mediated inflammatory responses. The presence
of activatedMCs in the neointima of GCA temporal arteries, in close spa-
tial association with neovessels and T cells, has been recently demon-
strated. The evidence that MCs express the receptors for IL-9 and IL-
33, two cytokines over-expressed in GCA arteries may suggest a
proangiogenic and immunoregulatory role of MCs in GCA [72,77]. Acti-
vated MCs may also participate in the remodelling of the affected arter-
ies by regulating smooth muscle cells growth and death [98]. The exact
role of MCs in GCA pathogenesis remains however still to be elucidated.

1.10. Role of endothelial cells in GCA

Endothelial cells are active player of vessel inflammation. Endotheli-
al cells express molecules essential for cell-cell interactions, such as an-
tigens from the MHC and the intercellular adhesion molecules. In GCA,
endothelial cells are activates as demonstrated by the increased tissue
endothelin-1 and endothelin-B receptor expression in temporal arter-
ies. Endothelial cells of the inflammation-induced neovessels are the
main sites of leukocyte-endothelial cell interactions leading to the de-
velopment of inflammatory infiltrates [99]. Constitutive [platelet endo-
thelial cell adhesion molecule (PECAM-1), ICAM-1, ICAM-2 and P-
selectin] and inducibile [E-selectin and vascular cell adhesion molecule
1 (VCAM)] endothelial adhesion molecules for leukocytes are mainly
expressed by adventitial microvessels and neovessels within GCA in-
flammatory infiltrates [100]. Interestingly, the intensity of inducible en-
dothelial adhesionmolecule expression (E-selectin andVCAM-1) seems
to be correlated with the intensity of the systemic inflammatory re-
sponse [101]. Neo-vessels also over-express pro-inflammatory cyto-
kines such as IL-32 and IL-33 and may actively participate in shaping
the immune inflammatorymilieu in GCA arteries [68,72]. An active rec-
ognition of endothelial cells seems also to occur in GCA since the dem-
onstration that patients build anti-endothelial-cell antibodies reacting
against vinculin, lamin A/C, voltage-dependent anion-selective channel
protein 2, and annexin V [101]. A recent study suggested the presence of
possible communication pathways between T cells, vascular smooth
muscle cells (VSMC) and endothelial cells [10]. In this study, theAuthors
demonstrated that inflamed temporal arteries from patients with GCA
contain a strong gene expression signal for Notch homolog 1, transloca-
tion-associated (Drosophila) (NOTCH) receptors and ligands. In physio-
logic conditions, interactions between Notch receptors and Notch
ligands regulate VSMC differentiation and plasticity, mediate VSMC–en-
dothelial cell communication and promote angiogenesis [10]. T cells
from patients with GCA have been demonstrated to over-express
NOTCH1 receptor and to interact with ligand-expressing DCs and endo-
thelial cells. Interestingly, blockade of Notch–Notch ligand interactions
suppressed experimentally induced vasculitis and down-regulating
pro-inflammatory pathways in inflamed arteries [10].

1.11. miRNA overexpression in GCA

MicroRNA (miRNAs) are small, non-coding RNAswhich regulate the
expression of multiple genes by inhibitingmRNA translation and induc-
ing mRNA degradation through base pairing. Recently 6 miRNAs have
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been found overexpressed in inflamed TAs fromGCApatients compared
to non-inflamed, normal TAs:miR146b-5p, -146a, -21, -150, -155, -299-
5p [102]. Noteworthy, miR146b-5p, -146a, -21 and -155 have been
found overexpressed also in abdominal aortic aneurysms and athero-
sclerotic plaques indicating an overlap between pathogenetic mecha-
nisms in GCA and other inflammatory cardiovascular diseases. It is
actually unknown whether such miRNAs are biomarkers of specific in-
filtrating immune cell subsets and activated pathways in inflamed TAs
and/or have a functional role in GCA pathogenesis. MiR-146a, -21,
-155 and -150 can be expressed by specific immune cell subsets [102].
MiR-155 is mainly a pro-inflammatory miRNA, miR-21 can have both
pro- and anti-inflammatory activities whereas miR-146a and miR-150
mainly restrain inflammation by negative feedback circuits. Expression
of miR-146b-5p, 146a, -21 and -155 is at a downstream point of the ac-
tivation of Nuclear Factor-κB (NF-κB), TLRs and signal transducer and
activator of transcription 3 (STAT3) suggesting that these pathways
might be involved in GCA pathogenesis. Noteworthy such miRNAs can
be induced by cellular senescence and inflammation [102]. Moreover,
arterial wall cells such as VSMCs, endothelial cells and adventitial fibro-
blasts can also express them. MiR-21 is the only miRNA overexpressed
in GCA that has documented pathogenic effects on VSMCs, endothelial
cells and adventitial fibroblasts, thus emerging as a promising target
for the development of novel gene-therapy approaches for GCA. In
this regard, local delivery of anti-miR-21 oligonucleotides decreased
neointima formation in preclinical models of atherosclerosis [103].

2. Conclusions

The complexity of GCA pathogenesis is greater than first imagined.
The senescence of the immune system together with the appearance
of ATLOsmay drive a series of complex and coordinated interactions be-
tween stromal and endothelial cells and innate and adaptive immune
cells. The resulting outcome of these complex immune reactions is a
complex disease in which different histologic findings and clinical man-
ifestations may occur. The role of VZV, although fascinating, requires
further studies to be definitively accepted as a causative agent of the
disease.
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