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Abstract: An airborne broadband jammer present in the mainbeam of a synthetic aperture radar
(SAR) can potentially destroy a large region of the SAR image. In addition to this, multipath
reflections from the ground, known as hot-clutter or terrain scattered interference will add a
non-stationary interference component to the image. The goal of interference suppression for
SAR is to successfully suppress these interferences while not significantly effecting the image
quality by blurring, reducing the resolution or raising the sidelobe level. The paper provides an
analysis of the degradation from hot-clutter, the limited restoration that multichannel imaging
and slow-time space time adaptive processing (STAP) can provide and how fast-time STAP can
improve the final image quality.

1 Introduction

Coherent SAR imaging is very sensitive to additive noise
and an airborne broadband jammer has the potential to
render it useless. Interference from the jammer can be
modelled with two components; a direct-path signal and
multipath reflections from the ground. The direct-path of
the jammer signal is defined by a narrow azimuth region
and while long integration times can be used to ‘burn-
through’ the interference [1], spatial degrees of freedom
are required for effective cancellation. It has been shown
that by combining the multichannel data from multiple
pulses (slow-time) and performing slow-time STAP, much
greater suppression is possible [2]. On the other hand, due
to the diffuse reflection from the ground, the hot-clutter
component is spread in azimuth and its properties can
change rapidly with time, even over several adjacent
pulses. This leads to a non-stationarity over slow-time and
degrades the performance of slow-time adaptive filtering.
Slow-time STAP works well for suppressing signals
which are narrow in azimuth, though as the hot-clutter
becomes more dominant, interference contributions spread
in azimuth and become non-stationary over the coherent
processing interval, resulting in images that are blurry and
of poor quality. A secondary cause of non-stationarity
comes from the changing motion between the SAR and
jammer platforms which induces a bistatic Doppler shift
for each scatterer. This effect is considered minimal in
SAR as the jammer platform is typically a long distance
away and the Doppler shift is relatively constant.

To effectively account for the effect of non-stationarity
between pulses, cancellation of the interference should
occur before azimuthal processing. Also the finite band-
width of SAR means that multipath reflections are
partially coherent with the direct-path jamming signal.
This implies that temporal adaptive filtering is required
within each pulse or over fast-time. Hot-clutter mitigation
can therefore be undertaken by employing adaptive proces-
sing in both space and fast-time, forming a space/fast-time
adaptive processor for each pulse [3, 4]. Ender [2] provides
the most comprehensive study on SAR jamming, where a
number of anti-jamming techniques were analysed and
tested with simulation parameters mirroring the AER-II
SAR. A number of spatial only methods were tested, such
as the optimum anti-jamming filter using a known inter-
ference covariance, adaptive anti-jamming filters using esti-
mates of the interference covariance and techniques using
constraints. Ender then formulated a space/slow-time
anti-jamming filter with image reconstruction using con-
ditional expectation. Results indicated that slow-time
STAP provides superior interference cancellation than
spatial only filtering. It should be noted that hot-clutter
was not included in any of this analysis.

Klemm [5] has also looked at anti-jamming for SAR by
considering fast-time STAP suppression for the direct-
path only signal. A jammer and noise model specified by
Compton [6] was applied to space/fast-time filtering to
range compressed simulated data. Results showed that,
firstly, fast-time filtering will degrade SAR resolution by
broadening the point spread function (PSF) mainlobe in
range and increasing its sidelobes and, secondly, as range
resolution increased so did the sensitivity to filtering. Due
to the filter weights changing over azimuth, these effects
were worse when focussing near to the STAP filter notch.
It was found that a larger number of elements in the array
can keep the notches narrower and hence reduce the influ-
ence of jammer suppression.

It is unclear when hot-clutter was first identified as a
problem in airborne radar, but mainstream publications on
hot-clutter suppression techniques have been available
since the mid-nineties, specifically at the Adaptive Sensor
Array Processing (ASAP) conferences, 1995–1997. There
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are currently many different methods for suppressing
hot-clutter (see [7, 8]), but only those involving fast-time
sampling are relevant to this paper. Also, these publications
are focussed primarily on airborne radar and the application
of hot-clutter suppression for SAR is a problem that has not
yet been addressed.
In this paper, the effect of hot-clutter on SAR imaging is

demonstrated in Section 2 using models based on the work
of Fante and Torres [4]. Section 3.1 describes a multi-
channel imaging algorithm to determine the effect of long
integration times. Both optimal slow-time and fast-time
STAP algorithms for SAR imaging are then described in
Sections 3.2 and 3.3. Simulations results are presented in
Section 4 and quantified in Section 5 to measure the effec-
tiveness of interference rejection for these three algorithms.
To simplify the analysis, it is assumed that the interference
waveform is known, resulting in an idealised scenario
where the training data waveform is identical to that of
the jamming component of the received data vector. This
approach is used to determine the potential of the proposed
algorithms. However, a preliminary look at the effect of
non-ideal training data is included to demonstrate the
performance likely to be achieved in a real system.

2 System models

2.1 SAR signal model

Consider a SAR travelling along the y-axis, imaging a point
in the slant-plane x [ [Xc2 X0, Xcþ X0], y [ [2Y0, Y0].
An N channel linear antenna array with equi-spaced
receivers is used in the azimuth direction to provide
spatial degrees of freedom. For a real SAR system, the
total ground return for the nth antenna is the integral over
all scatterers with radar cross-section (RCS), f (x, y)

gnðt; uÞ ¼

ð
y

ð
x

f ðx; yÞsnðt; u; x; yÞdx dy ð1Þ

Ignoring amplitudes, the form of the received signal model
after range processing is given by

snðt; u; x; yÞ ¼ exp½�jvctnðu; x; yÞ� sinc½Bpðt � tnðu; x; yÞÞ�

ð2Þ

where the carrier frequency is vc (rad/s) with bandwidth B
(Hz) and the variables (t, u) represent fast-time within a
pulse and the SAR platform position respectively. If a
signal is transmitted from the centre of the linear array
when the SAR platform is at (0, u), then the relative delay
for the nth channel is independent of fast-time and is
given by

tnðu; x; yÞ ¼
1

c
½Rðx; y� uÞ þ Rðx; y� u� dnÞ� ð3Þ

where Rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and the antenna spacing dn ¼ nd

with n [ [2(N2 1)/2, (N2 1)/2] for N (odd) antenna
elements. In the fast-time frequency domain,
v [ [vc2 Bp, vcþ Bp] and the received signal model is
given by

snðv; u; x; yÞ ¼ exp½�jvtnðu; x; yÞ� ð4Þ

If the SAR is being jammed by an airborne platform, there
will be two extra components required in the data model,
the direct-path jammer zn

dp(.) and the ground reflected path
(hot-clutter) zn

hc(.). These signals with the addition of
receiver system noise n(.), form the components of the
received SAR data waveform (if there were moving

targets in the scene, these would be additional components)

xnðt; uÞ ¼ gnðt; uÞ þ zdpn ðt; uÞ þ zhcn ðt; uÞ þ nnðt; uÞ ð5Þ

2.2 Jammer signal model

Consider the geometry of Fig. 1 where the ground is
discretely sampled and the three points of interest
have a given range, azimuth and velocity. Defining
xJ,k ¼ jxJ2 xkj, yJ,k ¼ jyJ2 ykj and yp,k ¼ ju2 ykj, the
radial distances Rp,k ¼ R(xk, yp,k) and RJ,k ¼ R(xJ,k, yJ,k)
can be calculated using Pythagoras. The direct-path length
can be calculated similarly by defining yp, J ¼ ju2 yJj and
using Rd,0 ¼ R(xJ, yp,J). Unit vectors in each direction are
indicated by R̃d,0, R̃J,k and R̃p,k.

The bistatic jammer model is adapted from [4] and
assumes there are K hot-clutter scatterers within the area
on the ground that is being irradiated by the jammer. It is
assumed that the jammer platform is directing its transmit
beams to achieve maximum interference power on the
SAR platform for both the direct-path and terrain scattered
components. These components and the receiver noise are
combined into a single variable, zn(.) ¼ zn

dp(.)þ zn
hc(.) þ

nn(.), for this formulation. If the time index used in the
jammer waveform is written as the sum of fast- and slow-
time, then the output of the nth receiver owing to the
jammer zn(.), is the superposition of the delayed reflections
from each scatterer, i.e.

znðt; uÞ ¼
XK
k¼0

bkJ ðt þ u=vp � ~tnðt; u; xk; ykÞÞ þ nnðt; uÞ

ð6Þ

where the SAR platform speed is vp and J(.) is the signal at
the jammer platform modelled as broadband Gaussian noise
with zero mean and variance sJ

2. The bistatic delay t̃n(.) is
simplified below and bk is defined as the relative magnitude
between the direct jammer signal and the jammer signal
reflected by the kth scatterer. The zero index refers to the
direct-path where b0 ; 1, while the K hot-clutter scatterers
have a magnitude relative to the direct-path given by

bk ¼
Gr;k

Gr;0

skAk

4p

� �1=2
Rd;0

Rp;kRJ ;k
; k . 0 ð7Þ

where Ak is the effective area, sk the bistatic RCS, Gr,0 is the
receive gain in the direction of the direct-path signal and
Gr,k the corresponding gain in the direction of the kth
scatterer. The noise signal nn(.) represents the receiver
noise for each channel. It is also modelled as white
Gaussian noise with zero mean and variance sv

2. Equation

Fig. 1 Jammer geometry
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(6) can be simplified using the standard narrow-band
assumption which implies that the jammer signal can be
written as a separable function

znðt; uÞ ¼
XK
k¼0

bkJ ðt þ u=vpÞ exp½�jvc ~tnðt; u; xk; ykÞ�

þ nnðt; uÞ ð8Þ

For further processing, it is useful to separate the slow- and
fast-time components of the bistatic delay [4]. Consider the
single channel radial distance due to a scatterer at (x, y),
when the SAR platform is sampled at fast-time tl corre-
sponding to position, ul ¼ vptl

Rðx; y� u� ulÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ð y� u� ulÞ

2

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ð y� uÞ2 � 2ð y� uÞul þ u2l

q

’ Rðx; y� uÞ �
2ð y� uÞul � u2l
2Rðx; y� uÞ

ð9Þ

where only a first order binomial expansion has been con-
sidered. This expression can then be separated in terms of
slow and fast-time components

Rðx; y� u� ulÞ ¼ Rðx; y� uÞ �
ð y� uÞul

Rðx; y� uÞ
þ

u2l
2Rðx; y� uÞ

ð10Þ

where the third term is negligible when julj � jy2 uj. If the
offset angle for the scatterer (x, y) is defined as

uðx; yÞ ¼ arctan
y

x

� �
ð11Þ

then the phase of the exponential can be written as

�vc ~tnðt; u; x; yÞ ¼ �
vc

c
½Rðx; y� uÞ � sin uðx; y� uÞvptl�

¼ �vc ~tnðu; x; yÞ � vdtl ð12Þ

where

vd ¼ �
vc

c
sin uðx; y� uÞvp ð13Þ

is the fast-time Doppler shift. For a bistatic geometry, the
delays and Doppler shifts are more complicated. Using
the geometry in Fig. 1, the bistatic delays for the kth

scatterer are

~tnðu; xk; ykÞ ¼

1

c
RðxJ ; yp;J � dnÞ; k ¼ 0

1

c
½RðxJ ;k; yJ ;kÞ þ Rðxk; yp;k � dnÞ�; k . 0

8><
>:

ð14Þ

with fast-time Doppler frequencies given by the inner
product of the following vectors (in bold)

vd;k ¼

vc

c
ðvp � vJ Þ

T ~Rd;0; k ¼ 0

vc

c
ðvTp

~Rp;k � vTJ
~RJ ;kÞ; k . 0

8><
>: ð15Þ

The jammer signal can then be written as

znðt; uÞ ¼
XK
k¼0

bkJ ðtÞ exp½�jvc ~tnðu; xk; ykÞ� exp½�jvd;ktl�

þ nnðt; uÞ ð16Þ

The hot-clutter area irradiated by the jammer contains K
scatterers and is modelled with a specular component at
the centre of the hot-clutter area surrounded by diffuse com-
ponents. Its RCS is modelled with a two-dimensional
Gaussian function with independent x and y variables.
Since the location of both platforms vary from pulse to
pulse, the ground area irradiated by the jammer will also
vary.

2.3 Simulation models

If these models are combined in a simulation, the effect of
hot-clutter on a SAR image can be seen. Figure 2 shows a
number of point scatterers and the synthetic SAR image
which has been formed. For azimuth focussing, a multi-
channel imaging algorithm is used as described in Section
3.1. Details of the simulation and a summary of the
parameters used are given in Section 4.

Figure 2c, with added hot-clutter, shows so much blurring
that the original image is almost indecipherable. To
quantify this degradation, a number of image metrics are
presented in Section 5 and applied to the SAR images
with varying hot-clutter power levels.

3 Jammer suppression for SAR

Three alternative algorithms are now presented which
have the ability to both reject interferences and perform
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Fig. 2 Image comparison

a Point scatterers
b SAR image
c SAR image with hot-clutter
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SAR imaging. The first is a space/slow-time multichannel
imaging algorithm which relies on a large number of
pulses to ‘burn-through’ the interference [1]. The second
algorithm is optimal slow-time STAP which has been
shown to produce good jammer suppression for signals
that are stationary over the coherent processing interval
and are narrow in azimuth [9]. The third algorithm is
optimal fast-time STAP and is required for non-stationary
interference [4], which changes between pulses and is inci-
dent in the SAR mainbeam. This algorithm is also able to
account for any non-stationarity owing to changing geo-
metry between pulses. Table 1 summarises these points.

3.1 Multichannel SAR imaging

High resolution SAR imaging requires a much longer inte-
gration time than conventional airborne radar. This is a
desirable property for rejecting noise jammers as it
enables the ground return to ‘burn-through’ the interference
[1]. One suitable method for coherent integration/imaging
of a multichannel SAR is spatial matched filter (MF) inter-
polation in the (v, ku) domain [10]. This algorithm uses a
single frequency domain MF at a fixed range and performs
range migration compensation by a Stolt interpolation to
map from the measured to the image domain.
Multichannel imaging requires compensating for the

phase difference of each antenna in the linear array (this
is also known as beamforming). The reference signal sn(.)
is designed to match the data signal xn(.) at the specified
point (x, y) and is given by (4). Both signals are stacked
to give the signal vectors

sðv; u; x; yÞ ¼ ½s�ðN�1Þ=2ð�Þ; . . . ; sðN�1Þ=2ð�Þ�
T

xðv; uÞ ¼ ½x�ðN�1Þ=2ð�Þ; . . . ; xðN�1Þ=2ð�Þ�
T

ð17Þ

The imaging model in the (v, u) domain, (1) can be gener-
alised to

xðv; uÞ ¼

ð
y

ð
x

f ðx; yÞsðv; u; x; yÞdx dy ð18Þ

where f (x, y) is the reflectivity of the point being imaged. It
was originally shown by Ender [11] and later extended for
multiple range bins [10], that, with a slight extension to
include multiple channels, the inverse of this equation is
given by

f ðx; yÞ ¼

ð
ku

ð
v

sH ðv; ku; x; yÞxðv; kuÞdv dku ð19Þ

In this equation, the beamforming has been accomplished
by an inner product between the measured data and the
reference signal. Implementing this algorithm requires
a reference signal defined at the point (Xc, 0) giving
sref,n(v, ku) ¼ sn(v, ku, Xc, 0) and hence the inner product

in the (v, ku) domain is given by

Fðv; kuÞ ¼ sHrefðv; kuÞxðv; kuÞ ð20Þ

To extend this algorithm to include slow-time vectors, (20)
can be rewritten to explicitly perform a discrete convolution
over M pulses in the u domain

Fðv; uÞ ¼ sHrefðv; uÞ � xðv; uÞ

¼
XM
m¼1

sHrefðv; u� umÞxðv; umÞ ð21Þ

This equation can be rewritten by forming an inner product
over space/slow-time vectors stacked over the entire range
of u. To maintain the phase centre at the centre of the syn-
thetic array, the centre of the imaging patch occurs at uM/2

and hence both the slow-time steering and data vectors
can be stacked over pulse delays where u varies over the
set u1, u2, . . . , uM,

Srefðv; uÞ ¼ ½srefðv; u� u1Þ; . . . ; srefðv; u� uM Þ�
T [ C

MN�1

XðvÞ ¼ ½xðv; u1Þ; . . . ; xðv; uM Þ�
T [ C

MN�1
ð22Þ

so that (21) can be written as

Fðv; uÞ ¼ SHrefðv; uÞXðvÞ ð23Þ

To form the final image, the result must be Fourier trans-
formed into the (v, ku) domain and then mapped from the
measured to the image domain. While the sampled data is
evenly spaced, once transformed into the (kx, ky) spatial fre-
quency domain, it becomes non-evenly spaced. To form an
estimate of the reflectivity function f (.), range migration
compensation is implemented using Stolt Interpolation
with a sinc function smoothed with a Hamming window
in the (kx, ky) domain. A two-dimensional inverse Fourier
transform then maps the spatial frequencies into (x, y)
image coordinates. A block diagram of this algorithm is
presented in Fig. 3 where the wavenumber k ¼ v/c. Note
that the coherent averaging over pulses in the Fourier
transform u ! ku can be interpreted as ‘burn-through’.

3.2 Slow-time STAP for stationary jammer
suppression

Principal causes of non-stationarity are due to the relative
motion between the two platforms and the changing
super-position of the direct-path and terrain scattered com-
ponents of the interference. The degree of non-stationarity
will depend on the relative power between these com-
ponents in addition to the geometrical and physical features
of the ground which vary from pulse to pulse. If the relative
power of the direct-path signal is much greater then the
terrain scattered component, the total interference can be
classed as ‘approximately stationary’ and less intensive fil-
tering using slow-time STAP algorithms may be sufficient
to remove the predominant interference.

Table 1: Jammer suppression techniques

Algorithm Properties

No adaptation Can suppress only with large number of pulses (burn-through)

Slow-time STAP Shown to produce good jammer suppression for stationary interferences which are narrow in azimuth

Fast-time STAP Accounts for changing geometry between pulses

Necessary for non-stationary interference incident in the SAR mainbeam

IEE Proc.-Radar Sonar Navig., Vol. 153, No. 3, June 2006 237



Optimal slow-time STAP involves replacing the slow-
time reference or steering vector with the optimal weight
for each frequency to maximise the signal to interference
plus noise ratio (SINR) for each (v, u)

~Fðv; uÞ ¼ WH ðv; uÞXðvÞ ð24Þ

where

Wðv; uÞ ¼ gR̂
�1

I Srefðv; uÞ [ C
MN�1

ð25Þ

The chosen optimisation criteria implies that an arbitrary
scaling be used with this weight (e.g. g ; 1) and therefore
no constraints are imposed [5]. (The use of constraints to
prevent signal suppression will be reported in future
publications). The interference plus noise space-time
covariance is estimated by averaging over L frequency
bins with m dB of diagonal loading

R̂I ¼
1

L

XL
l¼1

ZðvlÞZ
H ðvlÞ þ mIMN [ C

MN�MN
ð26Þ

where Z(.) is the interference plus noise space/slow-time
vector defined similarly to (22). It is assumed that tech-
niques as described in [2 and 9] can be used to determine
an appropriate Z(.). The diagonal loading acts to minimise
the norm of the weight vector, thereby reducing adaptive
sidelobes, regularising the estimated covariance inverse
when L , NM and improving the overall performance of
the adaption [13–15].
Since this paper is focussed on formulating a comparison

between different anti-jamming techniques, an ideal train-
ing situation is considered where the actual interference
plus noise waveform is used to form R̂I. Future work will
address more realistic training situations.
The final step in forming a SAR image is to perform

range migration compensation by using Stolt interpolation
and inverse Fourier transforming as described in the pre-
vious section. This process is described by the block
diagram in Fig. 4.

3.3 Fast-time STAP for hot-clutter suppression
in SAR

Interferences which are non-stationary require fast-time
processing for effective cancellation. This formulation com-
bines both spatial and fast-time samples to create a space/
fast-time processor which forms new weights for each
pulse u1, u2, . . . , uM. Filtering SAR data in fast-time is
equivalent to beamforming the spatial channels for each
pulse. The form of the fast-time steering vector therefore
contains the spatial delay multiplied by the time-varying

component of (2)

�sref;nðt; uÞ ¼ exp½�jvc �tnðuÞ� sinc½Bp t� ð27Þ

where

�tnðuÞ ¼
1

c
½RðXc; uþ dnÞ � RðXc; uÞ�

’ �
dn

c
sinðarctanðu=XcÞÞ ð28Þ

This approximation can be made as the centre range is much
greater than the imaging swath range, Xc � X0. Fast-time
filtering is accomplished by a convolution over range
bins. If the fast-time steering vector and the data vector
are first spatially stacked and then stacked over range bins
t1, t2, . . . , tL

s̄refðt � tl; uÞ ¼ ½�sref;�ðN�1Þ=2ðt � tl; uÞ; . . . ;

�sref;ðN�1Þ=2ðt � tl; uÞ�
T [ C

N�1

S̄refðt; uÞ ¼ ½s̄refðt � t1; uÞ; . . . ; s̄refðt � tL; uÞ�
T [ C

LN�1

ð29Þ

and

xðtl; uÞ ¼ ½x�ðN�1Þ=2ðtl; uÞ; . . . ; xðN�1Þ=2ðtl; uÞ�
T [ C

N�1

XðuÞ ¼ ½xðt1; uÞ; . . . ; xðtL; uÞ�
T [ C

LN�1

ð30Þ

then the following equation can be written

�xðt; uÞ ¼
XL
l¼1

s̄Hrefðt � tl; uÞxðtl; uÞ

¼ S̄
H

refðt; uÞXðuÞ ð31Þ

Optimal fast-time STAP involves replacing the fast-time
steering vector with the optimal weight for each pulse

�xðt; uÞ ¼ W̄
H
ðt; uÞXðuÞ ð32Þ

where

W̄ðt; uÞ ¼ gR̂
�1

I S̄refðt; uÞ [ C
LN�1

ð33Þ

Once again, the maximum SINR criteria with g ¼ 1 has
been chosen to provide a comparison between the slow-
time STAP formulation. The interference plus noise covari-
ance is now determined by a sample matrix estimate over
the previous M0 pulses using the interference plus noise
vector Z(u), defined similarly to (30). For example, on the

Fig. 3 Multichannel spatial/MF imaging
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mth pulse, Vm ; [m2M0 þ 1: m]. The covariance estimate
is again diagonally loaded by m dB to avoid a non-singular
inverse

R̂I ¼
1

M 0

X
Vm

ZðumÞZ
H ðumÞ þ mILN [ C

LN�LN
ð34Þ

The modified single channel data x̄(.) must then be focussed
in azimuth. This is done using the imaging algorithm from
Section 3.1. Figure 5 represents an overview of this
algorithm.

4 Simulated results

An X-band simulation with 300 MHz bandwidth and five
spatial channels (N ¼ 5) is used to compare these three
algorithms with a varying ratio of hot-clutter power to
direct-path interference power. The spatial channels are
arranged in a linear array with half-wavelength spacing
and are modelled as dipoles. The scenarios were chosen
with the hot-clutter scatterers tightly constrained in angle
with similar bistatic time delays. This implies that when
the interference power is much greater than both the
thermal noise and loading factor, the dominant component
of the interference plus noise covariance will be of low
rank. To demonstrate good suppression for fast-time
STAP, the estimated interference covariance does not
need averaging (M 0 ¼ 1) and a single realisation of the
interference plus noise waveform can be used to form the
covariance estimate. A derivation to justify this is included
in the Appendix.
Both a PSF and sample image with target power s2

t , are
simulated to test the different comparison metrics described
in the following Section. Due to the different parameters
given in Table 2, the clutter (or target) to interference
plus noise ratios (CINR) are different for each scenario. If
each of the hot-clutter scatterers are set to the same relative
power, bk ¼ b for k ¼ 1 . . . K, then a range of hot-clutter
powers relative to the direct-path interference power, can
used to measure the effectiveness of the three different

algorithms. The CINR can be defined as

CINR ¼
s2
t

s2
n þ s2

J ð1þ K2bÞ
ð35Þ

where it is assumed that all hot-clutter scatterers are
correlated. Examples of the algorithm results are shown
by the sample images in Fig. 6 and the PSFs in Fig. 7.
From a visual inspection of both Figures, it appears that
conventional multichannel imaging is completely degraded
by the interference. The slow-time STAP algorithm has
rejected the interference quite well when the hot-clutter
power is weak, but the results indicate an increasing level
of blurriness as the power increases. The fast-time STAP
images manage to both suppress the interference and main-
tain image quality for all hot-clutter power levels. This is
confirmed by the point spread functions, where the fast-
time STAP has much lower sidelobes than both the other
algorithms. Using the parameters from Table 1, the
corresponding CINRs for the sample image are 282 and
2132 dB.

With regard to the loading factor m, it has been shown
that choosing approximately three times the sensor noise
yields optimum results for most cases [14]. In this work
however, the chosen loading factor is much less due to

Fig. 4 Slow-time STAP with imaging

Fig. 5 Fast-time STAP

Table 2: Simulation parameters

Parameters Value

Carrier frequency ( fc)/bandwidth (B) 10/0.3 GHz

Number of elements (N )/spacing (d) 5/(l/2) m

Platform speed (vp)/jammer speed (vJ) 200/100 ms21

Range resolution (Dx)/range centre (Xc) 1 m/2000 m

Number of hot-clutter scatterers (K) 400

Diagonal loading factor (m) 0 dB

Clutter (target) power (s2
t )/noise power (s2

v) 20 dB/0 dB

SAR imaging area – point target:

Direct-path power (s2
J) 40 dB

PRF ( fPRF)/azimuth resolution (Dy) 1.3 kHz/4 m

Azimuth swath size (2Y0)/range swath size (2X0) 12 m/4 m

Number of pulses (M)/range bins (L) 100/58

SAR imaging area – sample image:

Direct-path power (s2
J) 80 dB

PRF ( fPRF)/azimuth resolution (Dy) 1.44 kHz/2.4 m

Azimuth swath size (2Y0)/range swath size (2X0) 24 m/10 m

Number of pulses (M)/range bins (L) 180/102
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the sample matrix estimate using a known interference
waveform and the loading factor is used primarily to regu-
larise the matrix for inversion. Other recent techniques for
determining the loading factor are given in [15, 16].

5 Image comparisons

To obtain a quantitative measure of image degradation, the
SINR and mean square error (MSE) can be calculated. Let
Y(xp, yq) denote either the conventional, slow-time or fast-
time STAP images described above in the presence of
signal, jammer and noise for image pixels p ¼ 1 . . . P,
q ¼ 1 . . . Q. Correspondingly, D(xp, yq) denotes the image
in the presence of just the signal. The SINR is then defined
as the ratio of the desired signal power to interference power:

SINR ¼

P
p;q jDðxp; yqÞj

2P
p;q jY ðxp; yqÞ � Dðxp; yqÞj

2
ð36Þ

while the MSE is determined by the difference between the
total desired signals:

MSE ¼
1

PQ

X
p;q

jY ðxp; yqÞ � Dðxp; yqÞj
2 ð37Þ

To provide a greater degree of accuracy, each of these
metrics will be averaged over five independent realisations.
Figure 8 presents the averaged values of SINR and MSE
when the relative power of the hot-clutter interference is
varied.
As the relative hot-clutter power level is increased for the

three cases in Fig. 8, the SINR decreases and the MSE
increases accordingly. While the slow-time STAP offers
an improvement, the best suppression is achieved by fast-
time STAP, which maintains good performance indepen-
dent of the strength of the hot-clutter. Note that due to the
sample matrix estimate being used for the slow-time
STAP algorithm, its results will not converge to those of
the fast-time STAP for small hot-clutter powers.

To further quantify the effect of the interference, the
PSF is formed from a single scatterer at the centre of the
imaging patch, such as in Fig. 7. Range and azimuth
slices can be used to calculate the peak sidelobe ratio
(PSR) and the integrated sidelobe ratio (ISLR). These
are defined to be the difference between the mainlobe and
greatest sidelobe and the ratio of all energy in the sidelobes
to the energy in the mainlobe. Fig. 9 shows a comparison for
the azimuthal slice of the ISLR and PSR for a single point
scatterer as the relative hot-clutter power is varied. As the
range PSR and ISLR remain almost constant for each of
the three cases, only the azimuth ratios are analysed.

As expected when the interference level increases, the
ISLR increases while the PSR decreases. Slow-time STAP
appears to perform much better than the results from
Fig. 8 owing to the different parameters chosen. Eventually
it does degrade around 40 dB and is outperformed by
fast-time STAP.

6 Realistic training

Realistic training is achieved by using one set of realisa-
tions for the jammer signal to estimate the weight vector
and another independent set to contaminate the image to
be processed. This is consistent with the training methods
described in [9] where the interference-only signal can be
measured at the end of a PRI where ground returns are
very weak. Slow-time STAP does not change in perform-
ance with realistic training, since it still requires averaging
over a number of pulses.

However, with fast-time STAP, there the two side-effects as
described in [17]. The first is ‘training modulation’, which
arises owing to averaging over a finite number of different
realisations. The second is ‘coherence modulation’, which
results from non-stationarity in the covariance estimate. It is
important to understand the effect of realistic training data
on this algorithm and how it effects a focussed SAR image.

To isolate the modulations, a simulation with only the
direct-path signal is used as it represents a spatially

SAR image slow-time STAP fast-time STAP

SAR image slow-time STAP fast-time STAP

a

b

Fig. 6 SAR images

a For b ¼ 230 dB
b For b ¼ 20 dB
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stationary environment. Unlike the ideal conditions in this
study, using no averaging in a real system would give a
very poor estimate of the interference covariance. As a
result, there is a trade-off between the accuracy of the

estimate and the modulation owing to training. Fig. 10
shows a PSF with no averaging (M0 ¼ 1) and with signifi-
cantly more averaging (M0 ¼ 39).

Averaging over a greater number of pulses has the
effect of raising the sidelobes of the PSF and skewing
the range slice to the left. Although the mainlobes for the
range slice are very similar, distortions in the sidelobes
are approximately 5–10 dB. This is much worse for the
azimuth slice indicating that training modulation adds a
significant distortion to the SAR image.

Similarly to isolate the coherency modulation, a simu-
lation with no averaging (M 0 ¼ 1) is performed using
realistic training data. Fig. 11 shows the PSF with 30, 40
and 50 dB of interference power.

As the interference power is increased, the fast-time
STAP algorithm needs to adapt more strongly. This has
the side effect of modulating the phase of the SAR signal
and consequently the three images in Fig. 11 demonstrate
raised sidelobe levels and increased blurring. Although
there is some shape for the first two cases, when
b0 ¼ 50 dB, imaging fails completely.

7 Conclusion

This paper has demonstrated how hot-clutter can degrade a
multichannel SAR image and cause it to be completely

Fig. 7 SAR point spread function

——— conventional imaging
– . – . – . slow-time STAP
– – – – fast-time STAP

a For b ¼ 210 dB
b For b ¼ 60 dB

Fig. 8 SINR and MSE comparisons

——— conventional imaging
– . – . – . slow-time STAP
– – – – fast-time STAP

Fig. 9 ISLR and PSR comparisons

——— conventional imaging
– .– . – . slow-time STAP
– – – – fast-time STAP

Fig. 10 PSF demonstrating training modulation

——— for M0 ¼ 1
– – – – for M0 ¼ 39
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distorted. Three algorithms have been presented to show
how both stationary and non-stationary interferences can
be suppressed. The first algorithm was a space-time multi-
channel imaging algorithm and by using a large number
of pulses, offers some interference reduction through the
process of burn-through.
The second algorithm was optimal slow-time STAP,

which has the ability to reject the direct-path interference
and a small amount of hot-clutter. This property allows
slow-time STAP to be able to use realistic training data
without any compromise in performance.
The third algorithm, fast-time STAP has shown to be far

more effective than the first two algorithms in the presence
of strong hot-clutter. The drawback of this algorithm comes
when using realistic training data. Being able to maintain
phase coherency while suppressing the interference is
hard to achieve and is the focus of future work.
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9 Appendix: SMI estimate using ideal
training data

Consider the following rank one covariance estimate
(M0 ¼ 1) of the mth pulse using the LN � 1 interference
plus noise signal Z(u), defined in Section 3.3

R̂I ¼ ZðumÞZ
H ðumÞ þ mILN [ C

LN�LN
ð38Þ

where the covariance matrix has also been diagonally loaded
to avoid a non-singular inverse. Using this covariance will
perfectly cancel the interference if there is no averaging
done and the CINR tends to infinity. Consider the following
derivation, with the desired target represented by T and the
dependence on um has been dropped for Z(um)

�xðt; uÞ ¼ ½ðZZH þ mIÞ�1s�H ðT þ ZÞ

¼ sH ðZZH þ mIÞ�1
ðT þ ZÞ ð39Þ

Using the matrix inversion lemma gives:

�xðt; uÞ ¼ sH ðm�1I � m�2Zð1þ m�1ZHZÞ�1ZH ÞðT þ ZÞ

¼ m�1sHT þ sH m�1Z�
m�2ZZH ðT þ ZÞ

1þ m�1ZHZ

� �

¼ m�1sHT

þ sH
m�1Zð1þ m�1ZHZÞ � m�2ZZH ðT þ ZÞ

1þ m�1ZHZ

� �

¼ m�1sHT

þ sH
Zþ m�1ZZHZ� m�1ZZHT � m�1ZZHZ

mþ ZHZ

� �

¼ m�1sHT þ sH
Z� m�1ZZHT

mþ ZHZ

� �
ð40Þ

If the diagonal loading is small compared to the interference
power, this can be reduced to

�xðt; uÞ ’ m�1sHT �
m�1sHZZHT

ZHZ

¼ m�1sH I �
ZZH

ZHZ

� �
T

¼ m�1sHPIT ð41Þ

where PI is a projection onto the space orthogonal to the
interference. This result is commonly known as the Hung–
Turner projection [18, 19].

Fig. 11 PSF demonstrating coherency modulation

——— for b0 ¼ 30 dB
– .– . – . for b0 ¼ 40 dB
– – – – for b0 ¼ 50 dB
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