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Abstract—The performance of quantitative remote sensing
based on multidimensional synthetic aperture radars (SARs), and
polarimetric SAR systems in particular, depends strongly on a
correct statistical characterization of the data, i.e., on a complete
knowledge of the effects of the speckle noise. In this framework,
the eigendecompostion of the covariance or coherency matrices
and the associated decomposition have demonstrated the
potential for quantitative estimation of physical parameters. In
this paper, we present a detailed study of the statistics associated
with this decomposition. This analysis requires the introduction
of mathematical tools that are not well known in the remote
sensing community. For this reason, we include a review section to
present them. Using this work, we then present an expression for
the probability density function of the sample eigenvalues of the
covariance or coherency matrix. The availability of this expression
allows a complete study of the separated sample eigenvalues, as
well as, the entropy H and the anisotropy A. As demonstrated, all
these parameters must be considered as asymptotically nonbiased
with respect to the number of looks. In order to reduce the biases
for a small number of averaged samples, a novel estimator for the
eigenvalues is proposed. The results of this work are analyzed by
means of simulated and real airborne SAR data. This analysis
permits us to determine in detail the effects of the number of
averaged samples in the estimation of physical information in
radar polarimetry.

Index Terms—Eigendecomposition, estimation theory, po-
larimetry, speckle, synthetic aperture radar (SAR), target
decomposition theorems.

I. INTRODUCTION

AT present, there is increasing interest in the combination
of multidimensional radar imagery along with microwave

scattering models with the objective to retrieve quantitative
physical information about the Earth’s surface. In this context,
radar polarimetry has largely demonstrated a leading role,
thanks to its application in the framework of synthetic aperture
radar (SAR) technology [1]. On the one hand, since these sys-
tems are active, their monitoring capabilities are independent of
the weather conditions and of the day–night cycle. On the other
hand, the coherent recording and processing of data makes it
possible to retrieve Earth surface information with high spatial
resolution. One of the most important consequences of this
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coherent nature is that SAR data are affected by speckle noise
[2]–[4]. For one-dimensional (1-D) SAR systems, speckle
noise has been completely characterized by a multiplicative
noise model due to the exponential probability density func-
tion (pdf) of the SAR image intensity [2], [3]. In the case of
multidimensional SAR systems, and for polarimetric SAR
(PolSAR) systems in particular, the characterization and re-
duction of the speckle noise component has been an important
area of research since it represents one of the key limitations
of this technology [5]–[8]. Recently, it has been demonstrated
that the speckle noise component for multidimensional SAR
data, under a covariance matrix formulation, must be modeled
through a combination of multiplicative and additive noise
sources [9]. Therefore, it is important to determine in which
way speckle noise affects the retrieval of physical information
from multidimensional SAR data.

The bridge between radar measurements and the physical
parameters of the scatterer under study can be established by
the so-called target decomposition (TD) theorems [12], [13],
[15]–[17]. Among the different approaches proposed in the
literature, TD theorems based on the eigendecomposition of the
coherency matrix are one of the most suitable tools to perform
data interpretation in the study and characterization of natural
scatterers [13], [18]. The extraction of physical information via
the eigenvalues and eigenvectors, or the secondary parameters,
i.e., the entropy , the anisotropy and the and angles,
has been demonstrated by different authors. Some important
applications of the coherency matrix eigendecomposition are
unsupervised data classification [19], [20] and natural risks
management [21], [22]. Another fruitful application is the
extraction of quantitative surface parameters as proposed by
Cloude [23], applied to the PolSAR data by Hajnsek et al. [24],
[25], and extended by Allain et al. [26]. The same principle
has been employed to solve inverse problems on vegetation
remote sensing [27]. The main observation at this point is that
speckle noise shall also affect the eigenvalues and eigenvectors
associated with the eigendecomposition of the coherency, or
covariance matrices. Consequently, a detailed study of the
speckle noise effects over the eigendecomposition is necessary
in order to understand the effects of this noise component on the
quantitative estimation of the physical parameters of interest.
When dealing with multidimensional SAR data, interest lies in
the Hermitian, semidefinite positive coherency or covariance
matrices. Recently, several studies have pointed in this direc-
tion [28]–[30]. But despite this, the problem has been largely
considered in the mathematical community for symmetric, real,
covariance matrices [31] and the case of complex Hermitian
matrices did not arouse the same level of interest.
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This paper presents an in-depth study of the statistics char-
acterizing the eigendecomposition of Hermitian, semipositive
definite coherency or covariance matrices. The final objective is
to assess the estimated physical information quantitatively and
to determine the influence of the different processing parame-
ters, as for instance: the number of averaged samples or looks,
the number of data channels, etc. The next section introduces
the basics of the statistical PolSAR data description. Section III
presents a review of the results concerning the sample eigen-
values joint pdf for Hermitian matrices, which are extended in
Section IV. The pdf of the sample eigenvalues is employed in
Section V to characterize the sample eigenvalues, as well as the
entropy and the anisotropy. Section VI presents some observa-
tions about the parameter. Section VII validates and studies
the developed theory by means of simulated and real PolSAR
data. Finally, Section VIII contains the conclusions of this study.

II. MULTIDIMENSIONAL SAR DATA CHARACTERIZATION

A. Multidimensional SAR Data Description

A PolSAR system measures the 2 2 complex scattering ma-
trix . In order to better understand the physical information
contained within the data, vectorization of the matrix has been
proposed in the literature [13], [32]. This vector-based formula-
tion allows the extension of the ideas and concepts developed for
PolSAR data to arbitrary multidimensional SAR systems, e.g.,
polarimetric SAR interferometry (PolInSAR) [33]. Thus, de-
spite the fact that this paper is focused on the analysis of PolSAR
data, the study presented in the following is performed from the
perspective of a general multidimensional SAR system.

A multidimensional SAR system acquires complex SAR
images for , represented by the target vector

(1)

where indicates transposition. In (1), the subindex indicates
that the SAR images are acquired under some type of diversity.
In this paper, interest is on polarization diversity, in which
is a four-dimensional vector in a general case, or a three-di-
mensional (3-D) vector for backscattering under the BSA
(backscatter alignment) convention. For point scatterers, is
an -dimensional deterministic vector. Nevertheless, remote
sensing applications are primarily interested in the analysis
of natural or distributed targets. Thus, turns into an -di-
mensional random variable [13] which can not be employed
to characterize a distributed target without an assessment of
the consequences of the speckle noise component [34]. For
homogeneous data, under the Gaussian scattering assumption
and on the basis of the central limit theorem, is described by
a zero-mean, multidimensional, complex Gaussian pdf [5], [6]

(2)

where denotes transpose complex conjugation. The pdf in (2)
is completely characterized by the , Hermitian, semi-
positive definite covariance matrix

...
...

. . .
...

(3)

where is the expectation operator. In the literature, depar-
tures from the model given by (2) have been reported, especially
at high spatial resolutions or longer wavelengths. These devia-
tions are mainly due to the presence of data texture [35], [36].
Nevertheless, (2) is considered in the following as its simplicity
allows the analytical study of the eigendecomposition of .

Due to the speckle noise, must be estimated from the data
in (1). Under the assumption that , for , in (1)
are ergodic in mean and in correlation, the ensemble average
in (3) can be substituted by a spatial averaging. Additionally,
this spatial averaging makes sense only if the processes and

for are wide-sense stationary in mean.
Therefore, can be estimated by means of

(4)

The matrix , which corresponds to the maximum-likelihood
estimator (MLE) of [37], receives the name of sample covari-
ance matrix. In (4), the vectors for correspond
to the target vectors of every one of the averaged samples. The
statistics of are completely characterized by the Wishart dis-
tribution [5], [6], [38]

(5)

where is the exponential of the trace of the matrix
, and the multivariate gamma function is defined as

follows:

(6)

In (6), is the gamma function.

B. Eigendecomposition

In PolSAR, with the objective to better understand the in-
formation contained in the data from a physical point of view,
a different vectorization of the scattering matrix has been
proposed. Whereas (1) corresponds to a vectorization in the
so-called lexicographic matrix basis, a vectorization based on
the Pauli matrix basis, giving rise to the target vector , has
been considered [13]. From the coherency matrix is defined
as

(7)
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An important class of TD theorems is based on the eigendecom-
position of the matrix [13]. The eigenvectors can be consid-
ered as a set of orthonormal scattering mechanisms, whereas the
corresponding eigenvalue is interpreted as the scatterer power
associated with the eigenvector. It is evident that the presence of
the speckle noise affects the eigendecomposition of . Never-
theless, the characterization of speckle noise for results diffi-
cult as its different entries do not present the same mathematical
structure. This drawback can be overcome by considering the
equivalent matrix , since all its entries correspond to the Her-
mitian products of the components of (1) [9]. Since and are
related by a unitary similarity transformation, they present the
same eigenvalues but not the same eigenvectors. As a result, the
eigenvalue decomposition of is considered in the following.

Let be a Hermitian, semipositive define matrix.
Its eigendecomposition is

(8)

where

...
...

. . .
...

(9)

and for denote the eigenvalues of , called in
the following the true eigenvalues. The , complex, uni-
tary matrix ’ contains the eigenvectors of as its columns. A
general unitary matrix is specified by independent parame-
ters. Nevertheless, the matrix ’ is defined by inde-
pendent parameters since the eigenvectors can only be specified
up to a phase component. This phase term corresponds to the
absolute phase of an absolute target vector. As a consequence,

’ is defined up to phase components. The eigenvalues
for are considered as the set of primary param-
eters of the eigendecomposition. Additionally, two secondary
parameters have been defined in the frame of PolSAR: the en-
tropy and the anisotropy [13], [19]. For backscattering, i.e.,

is defined as

(10)

whereas the anisotropy is defined as

(11)

The decomposition [13] contains also the parameter
, which is derived from the eigenvectors of , which can be

modeled by

(12)

These vectors present five independent parameters, represented
in terms of five angles, which can be divided into an absolute
phase plus four additional independent parameters. From (12),
considering also (10), is defined as

(13)

Despite separately for present five independent
parameters, together they form an orthonormal basis. This con-
dition imposes additional restrictions in the number of indepen-
dent parameters of , for , resulting in ’ to be de-
fined by independent parameters, i.e., six independent
parameters for PolSAR in backscattering [14].

Since is estimated by means of the sample covariance ma-
trix as a consequence of the speckle noise, the eigendecom-
position of is estimated via the eigendecomposition of .
The eigendecomposition of is defined as

(14)

where

...
...

. . .
...

(15)

On the one hand, contains the eigenvectors of the sample
covariance matrix . On the other hand, the matrix contains

for which in the following shall be named the
sample eigenvalues. Similarly, the entropy (10), the anisotropy
(11), and the angle (13) can be defined for .

Since the matrix is characterized by the Wishart pdf (5),
this distribution shall also determine the properties of its eigen-
decomposition. Consequently, it is important to determine the
statistical properties of the eigenvalues and eigenvectors of
and also, to establish the relation with the eigendecomposition
of . The final result of this process is that, since the eigende-
composition can be employed to determine quantitatively cer-
tain physical properties of the scatterer under consideration, it
shall be possible to determine the final effects of speckle noise
over these physical quantities. The following study shall focus
exclusively on the statistical characterization of the eigenvalues
of the decomposition (14).

III. SAMPLE EIGENVALUES PDF: A REVIEW

This section presents a review about the results concerning
the joint pdf of the sample eigenvalues of Hermitian,
semipositive definite covariance matrices. The reason to give
this survey is that, despite the fact that problem has already
been considered for real, symmetric matrices [31], the complex
case has received little attention, and results are scattered in the
literature.

As observed in (14), the eigendecomposition of factorizes
it into two matrices: , which contains the sample eigen-
values and , which contains independent param-
eters. Consequently, the process to derive the marginal distri-
bution of the sample eigenvalues, denoted as , must be
divided into two steps. First, the transformation (14), along with
the determinant of its Jacobian, must be introduced into the
Wishart distribution (5). Second, the parameters of

, i.e., the parameters which determine the eigenvectors must
be integrated in order to derive . Since the eigenvectors
are integrated, this process prevents the statistics of (13) from
being studied.
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Equation (14) represents a multidimensional transformation
process. The direct calculation of the Jacobian’s determinant
can be extremely complicated and tedious. The alternative is
to obtain the Jacobian’s determinant, by means of the exterior
product of differential forms [39]–[41]. This approach is based
on the observation that the determinant of a matrix behaves as
the exterior product, since both are skew-symmetric, i.e., a per-
mutation of two variables changes the sign of the product. The
exterior product is also called wedge product, and it is denoted
by the symbol . The concept of exterior algebra, as the algebra
of the exterior product, was introduced by Herman G. Grass-
mann in 1844 in his extension theory [42]. In exterior algebras,
ordinary vectors receive the name of 1-forms, upon which the
exterior product acts with the following basic properties:

• ;
• ;
• , skew-symmetric property.

where is also a 1-form and is a constant. Elie Cartan ex-
tended the exterior product to the study of the exterior product
of differential forms under the observation that the product of
differential 1-forms behaves as . Let be an -di-
mensional Euclidean space defined by the independent coordi-
nates , for . Thus, a differential volume is de-
fined as

(16)

The other important operation which applies to differential
forms is the exterior derivative, which extends the idea of
derivative. The exterior derivative, denoted by , takes each

-form to a -form by considering that for each
. The interest on the exterior product of inde-

pendent differential forms lies in the fact that the Jacobian’s
determinant of a given transformation can be derived as the
exterior product of differential forms. Given a transformation of
coordinates , where , for , refer
to the coordinates of the domain of and , for ,
denote the coordinates of the range, then

(17)

In (17), the term can be clearly identified as the Ja-
cobian’s determinant of the corresponding transformation

. Given a matrix , the exterior product of the in-
dependent differential components is denoted by ,
called the volume element. For instance, for a general
matrix , whereas for a , sym-
metric matrix, with independent parameters,

. Until this point, only real differen-
tial forms have been considered. Given a complex,

. Equally, for a complex matrix
.

Given the eigendecomposition of the matrix (14), the ex-
terior product of its independent differential forms is [43]

(18)

where

(19)

Considering (17), it is possible to identify the Jacobian’s deter-
minant of the eigendecomposition in (18). Consequently, one
can find the joint pdf of the eigenvalues and eigenvectors of
by introducing (14) and (18) into (5). After minor manipula-
tions, one gets the differential form of the pdf

(20)

A. Sample Eigenvalues PDF: Integral Expression

In order to derive the marginal distribution of the sample
eigenvalues , it is necessary to integrate the dependence
on the unitary matrix in (20). Since , i.e.,
the unitary group of matrices, the integration process must be
undertaken within . Equation (20) depends on through

, and on the exterior product of differential
forms . Therefore, the nature of this second component
needs to be considered.

Let , for , be the complex orthonormal
columns of . Then, the differential exterior product

(21)

defines a unique measure over the group , which often re-
ceives the name of Haar measure [44], [45]. Equation (21) is
of extreme importance as it consists of the differential volume
with respect to which the integration over has to be de-
fined [46]. An important quantity is the so-called volume of the
complex unitary group

Vol

(22)

Occasionally, instead of (22), it is more convenient to define a
differential volume with respect to which the integration over
all the space is equal to 1. Doing so, the space of interest is
transformed into a probability space, in which probabilities can
be measured. The normalized differential volume is defined as

Vol
(23)

Equation (23) is now considered in (20) in order to integrate the
dependence on the eigenvectors in the matrix Q. Additionally,
(20) must be divided by in order to account for the abso-
lute phase of the eigenvectors. Thus

(24)
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Equation (24) represents the joint pdf of the sample eigenvalues
of the matrix , but as can be observed, it has to be considered
as an integral expression due to the integral over .

B. Sample Eigenvalues PDF: Infinite Series Expression

The integral term in (24) can not be solved by a term-by-
term integration. Nevertheless, it can be obtained on the basis
of the group representation theory [47] and the zonal polyno-
mials theory [49]. In the next section, these theories are briefly
presented, where interest shall be placed on those concepts and
properties which allow solving the integral expression in (24).

Formally, a group representation of a group is defined as a
group action of on a given vector space by means of invert-
ible maps. The interest here lies on the particular representation
of the group , i.e., the group of all , invert-
ible matrices over . In this case, the representation considers
the space of polynomials which are homogeneous of
degree in the entries of , Hermitian, positive definite
matrices, denoted by . Nevertheless, concern is on the conse-
quences that the representation of has over the space

, since the representation itself induces a decomposition of
into the direct sum of 1-D invariant subspaces [48]

(25)

where runs through all the partitions of
into at most parts; that is, are inte-
gers and . A polynomial , which
generates every one of the 1-D subspaces , is called the com-
plex zonal polynomial of the representation [49]. The properties
of these polynomials permit to solve the integral in (24). Thus,
a small description of them is presented in the following.

A complex zonal polynomial consists of a symmetric,
homogeneous polynomial of degree in the entries of the ma-
trix , which generates the subspace . From the definition
of the representation of itself, the space is in-
variant under the unitary group of matrices [48]. This
invariability of implies that the complex zonal polynomials
present the following property [49]:

(26)

i.e., complex zonal polynomials depend on the matrix only
through its eigenvalues. In opposition with respect to real zonal
polynomials (defined in the frame of which are de-
fined hierarchically [31], complex zonal polynomials present an
analytical expression as they consist, except for a normaliza-
tion constant, of the so-called Schur polynomials [50]. The main
property of interest of complex zonal polynomials in the frame
of the distribution presented in (24) is the so-called splitting
property. Following James [51] and Takemura [49], let and
be , Hermitian, positive definite matrices and .
Then

(27)

where is the identity matrix.
Going back to (24), one can observe, first, that its integral

term contains the trace of the matrix . On the

one hand, the polynomial can be easily identified as a
member of the space . On the other hand, if one considers
the factorization in (25), can be decomposed as follows
[49], [51]:

(28)

where the sum goes over all the partitions of . The integral
term in (24), depends on the trace of through
the exponential function. Considering the polynomial expansion
of the exponential function

(29)

Considering (27) and (29) into (24) [51]

(30)

The infinite series in (30) represents the complex hypergeo-
metric function of double matrix argument [51], [52]

(31)

Despite the integral in (24) has been solved, (30) is expressed in
terms of an infinite series. The series in (31) presents very com-
plicated convergence properties, making necessary the evalua-
tion of a high number of terms in order to have a reliable value
of the series [53].

IV. SAMPLE EIGENVALUES PDF: DETERMINANT EXPRESSION

Equation (30) represents the joint sample eigenvalues pdf.
Nevertheless, for practical purposes a simplification of (31)
is necessary. The answer to this question can be found within
soliton theory [54] and more specifically, on the concept of
functions (tau functions) [55], [56]. The interest on this type
of functions is on the fact that they permit us to obtain an
analytical expression for the infinite series (31).

A soliton is defined as a stable and isolated, i.e., solitary, trav-
eling nonlinear wave solution for a set of equations, or hierarchy
of differential equations, that obeys a superposition-like prin-
ciple, i.e., solitons passing through one another emerge unmod-
ified. A function consists of a sort of potential which gives
rise to these hierarchies of differential equations [57]. A func-
tion can be represented as [55], [56], i.e., this
function depends on a discrete variable and on two semiinfi-
nite sets of variables and named higher times. In its more
general form, a tau function presents the form of a double series
over partitions in Schur functions [50], [58]. Nevertheless, in-
terest is on the special class of functions called functions of
hypergeometric type and matrix argument. The first specializa-
tion is to consider functions of hypergeometric type, in which
the double series over partitions is simplified to a single series
[59], as in (31). The second particularization is to introduce a
change of variables into the functions through which and
are transformed into the so-called Hirota–Miwa variables [49],
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denoted as and . The in-
terest on this second set of variables is that functions are sym-
metric functions with respect to them, and, hence, they can be
considered as the eigenvalues of the Hermitian matrices and

, respectively [57]. Consequently, the function of hyper-
geometric type and matrix argument can be written as [57]

(32)

where denote the Schur functions and is a finite
function depending on the integer [59]. If one compares (32)
with (31), it can be observed that both expressions are formally
equal. The main characteristic of functions is that they present
an analytical expression which permits its evaluation without
the necessity to calculate the infinite series [59]. After selecting
the function to be a rational function, and considering

and being the eigen-
values of the Hermitian and matrices, respectively

(33)

where

(34)

and and represent the Vandermonde determinants of
and respectively,

defined as

(35)

In (33), the term is a determinant whose ele-
ments are the exponential function of the product of the eigen-
values , where the subindices and correspond to he in-
dices of the rows and columns of the matrix itself.

In order to derive the final expression of the joint sample
eigenvalues pdf (33) must be considered in (30). Consequently,
after some minor manipulations

(36)

A. Sample Eigenvalues PDF: Simplification and Analysis
of Dependences

The joint sample eigenvalues pdf given in (36) can be com-
pacted as follows. On the one hand, the constant

(37)

is considered. On the other hand, the expression of a
matrix determinant as a sum over the symmetric group, denoted
as , is also taken into consideration to simplify (36). Hence,
the determinant component in (36) can be considered as follows:

(38)

where , here, denotes a permutation of , i.e., an
element of the symmetric group of degree , i.e., . Also, ,
for , consist of each particular element of the
partition . The symbol is the parity or the permutation

, which equals or according to whether is an even or
odd permutation. Introducing (37) and (38) into (36)

(39)

It is worth to notice that all the sum terms of (39) present the
same qualitative structure, differing only on the permutation of
the true eigenvalues.

From (39), it can be observed that the joint sample eigen-
values pdf depends on the following:

• number of acquired SAR images , i.e., the covariance
matrix dimension;

• number of averaged samples, or looks, in order to derive
the sample covariance matrix (4) ;

• value of the true eigenvalues for , which
have to be considered as sorted, i.e.,

.

Additionally, (39) presents two limitations: it is only valid for
, as given by (5) and the sample eigenvalues need to be

considered as sorted (19).

V. SAMPLE EIGENVALUES STUDY

This section focuses on the statistical analysis of the sample
eigenvalues, the entropy and the anisotropy , on the basis of
(39). From this equation, it can be clearly observed that
can not be separated, in any case, as the product of the dis-
tributions of every particular sample eigenvalue , for

, that is, the sample eigenvalues can not be consid-
ered independent. As a consequence, in order to study the statis-
tical behavior of a particular eigenvalue , the remaining eigen-
values , for and , must be integrated in
(39), under the condition .
The analytical solution of this integration is extremely complex.
Thus, this study shall be conducted in two different directions.
First, a general statistical analysis of the sample eigenvalues,
in which , shall be detailed. Due to the complexity of

, this study is performed through numerical integration
methods. In a second step, (39) is analyzed asymptotically with
respect to the number of averaged samples .

The statistical analysis of the sample eigenvalues has been
performed in its most general form in the previous sections of
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this paper. Nevertheless, since this paper is especially focused
PolSAR, the previous analysis is considered for PolSAR data
in the backscattering case under the BSA convention, in which

.

A. Case of Study:

An analytical analysis of the particular sample eigenvalues
in its more general form, based on (39), is not feasible, since
the resulting expressions for the distributions of the sample
eigenvalues can only be given in an integral form. This analysis
is even complex in the simple case in which is fixed to a
value equal to 3. A feasible possibility to analyze the sample
eigenvalues is to consider numerical integration methods to
obtain the distribution of a particular eigenvalue, together with
its mean and variance values from (39). The main drawback
of this approach is that all the parameters in (39) need be
specified, making difficult the extraction of general conclusions
since a complete exploration of the parameters space would be
arduous.

For the case of analysis, PolSAR data in the backscattering
case are considered. Hence, the true eigenvalues are fixed to

(40)

The value of is not fixed, since its effect on the different quan-
tities wants to be determined. Finally, the different numerical
integration processes have to be performed according to the re-
gion of integration defined by . Under
these conditions, Fig. 1 presents the evolution of the distribu-
tions , for , as a function of the number of
averaged samples employed to construct , ranging from 3
to 64 samples. As observed, the number of averaged samples
has a clear effect on the distributions of the sample eigenvalues.
In addition, the evolution of these differs among the different
eigenvalues. The key values concerning the sample eigenvalues
are their mean and variance values. The mean value will show
whether the sample eigenvalue estimates correctly the corre-
sponding true eigenvalue or not, whereas the variance contains
the uncertainty of this estimation. The distributions presented in
Fig. 1 have been employed to derive the mean and the variance
values of the sample eigenvalues. Fig. 2 presents the evolution
of the mean values (dotted curves) as a function of the number
of averaged samples. The values of the true eigenvalues (40)
have been also included. As it can be deduced, the sample eigen-
values , for , can be considered as asymp-
totically nonbiased estimators of the true eigenvalues , for

. In addition, Fig. 3 presents the variance value
of the three sample eigenvalues. This figure clearly shows, that
the variances decrease with the number of looks, but also that the
variance depends on the value of the corresponding eigenvalue.
The eigenvalues are also employed to derive the entropy (10)
and the anisotropy (11) parameters. The corresponding mean
and variance values are presented by Figs. 4 (dotted curves) and
5, respectively. As observed in Fig. 4, the biases of the eigen-
values are also translated to and . Hence, the entropy and
anisotropy derived from the sample eigenvalues are also asymp-
totically nonbiased with respect to the true values. The variances
of these two parameters, as observed in Fig. 5, decrease with the

Fig. 1. Sample eigenvalues distributions for n = 3; . . . ; 64 and fl ; l ; l g =
f3;2; 1g. (a) p (� ). (b) p (� ). (c) p (� ).

number of looks. Fig. 5 also shows that the anisotropy is noisier
than the entropy.

As demonstrated, the sample eigenvalues present a de-
creasing bias with respect to the corresponding true values,
which can not be determined analytically due to the complexity
associated with (39).
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Fig. 2. Sample eigenvalues and AQ-MLE estimators of the eigenvalues
fl ; l ; l g = f3; 2; 1g.

Fig. 3. Sample eigenvalues variance values for n = 3; . . . ; 64 and
fl ; l ; l g = f3;2; 1g.

Fig. 4. Sample values and AQ-MLE estimators of the entropy (H) and the
anisotropy (A) fl ; l ; l g = f3;2; 1g.

Fig. 5. Entropy and anisotropy variance values for n = 3; . . . ; 64 and fl =

3; l = 2; l = 1g.

B. Asymptotic Study/MLE Approach

As concluded previously, the sample eigenvalues , for
, present a decreasing bias with respect to the true

eigenvalues , for . Consequently, these biases
need to be characterized analytically with the objective to cor-
rect them. Since the joint distribution of the sample eigenvalues
is available, (39), the maximum-likelihood estimator (MLE) ap-
proach could be explored. Nevertheless, this approach is not vi-
able since the maximization of the log-likelihood function of
(39) involves the maximization of a determinant. This maxi-
mization presents such a complex process to find the MLE of
the true eigenvalues that it can not be considered for practical
purposes.

1) Eigenvalues Asymptotic MLE (A-MLE): In order to
derive an alternative expression for the MLE, (39) needs
to be simplified. As given in (39), consists of a
sum over , by introducing a permutation of the true
eigenvalues , for , within the exponential
function. A given permutation of the eigenvalues different
from the natural ordering , is characterized by
the fact that the true eigenvalues do not follow the restriction

. In (39) it must be considered that

and the fact that the permutation affects only the exponential
term. Let

and (41)

be the exponential term of (38) and consider the transposition
of the terms and of the true eigenvalues, i.e.,

and (42)
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Fig. 6. Plots of the six sum terms which define p (� ), for 3 and 8 looks, m = 3 and fl ; l ; l g = f3;2; 1g. (a) p (� ) n = 3. (b) p (� ) n = 8.

where and . Hence

(43)

(44)

Considering , due to

(45)

Finally, by considering (45) in (41) and (42)

(46)

Since a permutation of can be considered as the
product of transpositions of the elements and such that

and , the higher the number of transpositions,
the lower the exponential term (in absolute value), with respect
to the exponential term of the permutation . If
one considers now this result within (39), the term of the sum
corresponding to the permutation , i.e., the term
corresponding to the main diagonal in the determinant expres-
sion given by (36), is the most important sum term. As a re-
sult, the higher the number of transpositions of the permutation

, the lower the importance of the sum term into
. This effect can be clearly observed in Fig. 6 for the dis-

tribution of the maximum sample eigenvalue. Finally, since the

number of samples is an argument of the negative exponen-
tial functions (41) and (42), the higher the number of looks, the
higher this difference. Again, Fig. 6 shows the difference for the
number of samples equal to 3 and 8.

As a result, as the number of samples increases, all the
sum terms of the distribution (39), but the one corresponding
to the permutation , shall be negligible as they
are centered outside the integration interval

. Therefore, for high enough, (39) can be
approximated by

(47)

Equation (47) represents the approximation, for high enough,
of the joint pdf for the sample eigenvalues of the Hermitian,
semipositive definite matrix . A different problem which has
been considered in the literature is to determine the joint pdf
of the sample eigenvalues when the covariance matrix is sym-
metric and semipositive definite, i.e., a real matrix. From [31]

(48)

where, represents the hypergeometric function of
double symmetric matrix argument and is
a constant which makes the integration of (48) equal to 1. The
function does not present an analytical formula sim-
ilar to (33) [31], [52]. Hence, it can be only calculated through
the evaluation of an infinite series. Nevertheless,
presents an approximation formula for large [31]. Using this
approximation, one can prove that (48) can be approximated by

(49)
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If (49) is compared with (47), one can observe that both pdfs are
formally equal. The sole difference is a factor equal to in
(49) which accounts, basically, for the fact that the off diagonal
elements of the symmetric sample covariance matrix contain
one independent parameter in the real case, instead of the two for
the complex case. It can be concluded that despite the evident
differences, for large , the estimation of the true eigenvalues
becomes basically the same in the real and in the complex case.
In the case of multidimensional SAR data, interest lies in the
complex case, as a consequence of the coherent nature of this
technology.

Considering (47), Appendix A presents the derivation of the
MLE, which is considered as an asymptotic MLE, denoted in
the following by A-MLE. The estimation of the true eigenvalues
results from the inversion of the following set of equations:

(50)

Equation (50) is also found in the real case [31], but with an ap-
proximation . In the complex case, the approximation
is of order as a consequence of the approximation in-
troduced at the beginning of this section, leading to (47). The
main drawback of (50) is that it can not be inverted. Neverthe-
less, it gives an expression of the sample eigenvalues , for

, as a function for the true eigenvalues , for
; under the limitation that (39) can be simpli-

fied by (47), which occurs only for high enough. From (50), it
can be concluded that for a large number of looks, , for

, i.e., the sample eigenvalues are asymptotically
nonbiased estimators of the true eigenvalues, as proved previ-
ously. It is clear that the second addition term of (50) consists of
the bias of the sample eigenvalues. Despite (50) is only valid for

high enough, in what it follows, its validity shall be extended
to the complete range of looks . The limitation for small is
that this characterization has to be considered only from a qual-
itative point of view.

In order to employ (50) to characterize PolSAR data in the
backscattering case, relative eigenvalues are now considered,
i.e., , for . This operation allows plot-
ting the biases of the sample eigenvalues, the entropy and the
anisotropy in 3-D plots. The next list details, on the basis of
(50) and for , the behavior of the sample eigenvalues, the
entropy and the anisotropy.

• : As given by Fig. 7, the largest eigenvalue is overes-
timated, in such a way that the larger the entropy , the
higher the bias. The lowest bias corresponds to .

• : Fig. 8 demonstrates that the second eigenvalue can
be overestimated or underestimated. For PolSAR data
presenting low entropy, the second eigenvalue is basically
underestimated. Nevertheless, for high entropies, the
anisotropy has to be considered. For high entropy, in the
case of a low anisotropy, the second eigenvalue is overesti-
mated, whereas it is underestimated for high anisotropies.

• : From Fig. 9 it can be clearly deduced that this eigen-
value is always underestimated, in such a way, that, the

Fig. 7. Bias of the first eigenvalue �� (n = 64).

Fig. 8. Bias of the second eigenvalue �� (n = 64).

higher the entropy of the data, the higher the bias (in abso-
lute value).

• : Fig. 10 depicts the bias of the entropy, from where it can
be concluded that the entropy is always underestimated.
The largest biases are found for high entropies, or in those
cases in which . The bias presents the smallest value
for .

• : The bias of the anisotropy presented in Fig. 11 clearly
shows that this quantity can be overestimated or underesti-
mated. From a practical point of view, can be considered
always overestimated. Only in those cases in which
the anisotropy is underestimated.

2) Eigenvalues Asymptotic Quasi MLE (AQ-MLE): In the
process to derive the A-MLE, it is possible to introduce some
approximations which can allow finding an approximate solu-
tion for the inversion of (50). These approximations are detailed
in Appendix B. As a result, an estimator is proposed. This esti-
mator is considered to be asymptotic due to the approximation
presented in (47). Additionally, the adjective quasi is introduced
in order to reflex the approximations introduced in the process
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Fig. 9. Bias of the third eigenvalue �� (n = 64).

Fig. 10. Bias of the entropy �H (n = 64).

Fig. 11. Bias of the anisotropy �A (n = 64).

to derive the MLE. As a result, the AQ-MLE eigenvalues , for
are given by

(51)

where , for , are the sample eigenvalues
derived from . Again, this approximation is of order
due to the approximations considered to arrive to (47). Since
(51) is strictly only valid in the asymptotic case, this result
has been also found in the real case, although with an approx-
imation order of [31]. As performed previously, the
validity of (51) is extended to any value of . The performance
of the AQ-MLE (51) is analyzed by considering the same data
studied at the beginning of this section. Fig. 2 presents the
correction introduced in the sample eigenvalues (solid curves),
whereas Fig. 4 depicts the correction over the entropy and
the anisotropy values (solid curves). The plots demonstrate
that (51) is able to correct the biases when the number of
averaged samples is high. However, when the number of looks

is small, the AQ-MLE only corrects part of these biases.

VI. NOTES ON THE PARAMETER

As indicated in Section II-B, the decomposition con-
sists of three main parameters. This paper concentrates specif-
ically on and , which have been derived from the sample
eigenvalues. The process followed to obtain the joint pdf of
these sample eigenvalues (39) prevents us obtaining any infor-
mation concerning . Nevertheless, for completeness, some in-
sights about the behavior of are now presented. A first option
to obtain the statistical behavior of would be to integrate the
matrix in (20) and then, to apply the model presented in (12)
to the corresponding eigenvectors. This alternative is character-
ized by a high mathematical complexity, which suggests itself
as a subject of future study. A second choice would be to use
Monte Carlo techniques to study the convergence of at the
same time as .

Nevertheless, the reader is referred to the works presented in
[28] and [29]. In these two studies, the authors evaluated, al-
beit in a qualitative way, the statistical behavior of the
parameters. Both works arrive to the same conclusions. As has
been demonstrated quantitatively in the previous sections of this
paper, the entropy is underestimated, whereas the anisotropy
is overestimated. In [28], the authors also indicated the depen-
dence of these biases with respect to the level of entropy. The
authors of both works indicated that the parameter presents
also a bias with respect to its true value. But, in this case, the
bias is smaller than in the case of or . One important con-
clusion which can be extracted from [28] and [29] is that the
eigenvectors, and therefore, the parameters extracted from them,
are less affected by the estimation or the speckle noise reduction
process.

VII. VALIDATION AND RESULTS

The sample eigenvalues distribution given by (39) is based
on the Gaussian scattering assumption. This hypothesis, despite
being only valid to describe homogeneous distributed scatterers,
has been widely validated in the literature over real SAR data.
Nevertheless, the direct validation of (39) over real data presents
the problem that access to the true eigenvalues is not possible
due to the uncertainty originated by the eigenvalues biases. As
a result, a validation process by means of simulated data is nec-
essary, since access to the true information is granted.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 21:26 from IEEE Xplore.  Restrictions apply.



LÓPEZ-MARTÍNEZ et al.: STATISTICAL ASSESSMENT OF EIGENVECTOR-BASED TARGET DECOMPOSITION THEOREMS 2069

Fig. 12. Probability density distributions comparison fl ; l ; l g = f3; 2; 1g.

A. Simulated Data

As it has been pointed out in Section V, it is not possible to
obtain a simple analytical expression for the distribution of the

sample eigenvalues , for . Hence, the theo-
retical expressions of these distributions are obtained through a
numerical integration of (39). SAR data has been simulated on
the basis of the algorithm presented in [60], in which, reflection
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symmetry in a plane normal to the line of sight is considered.
Data has been simulated according to the true eigenvalues given
in (40), which give rise to the following covariance matrix:

(52)

in which the copolar correlation is equal to 0.2. As deduced from
(52), , whereas two different values have been considered
for the number of looks, i.e., and . Fig. 12 presents
the result of this validation process, where, the continuous line
represents the theoretical distributions derived from (39). As it
can be observed, the distributions derived from simulated data
completely agree with the theoretical values of the distributions.

In the different plots in Fig. 12, the correction given by (51)
has been also included in order to visualize its effect over the
distribution of the sample eigenvalues. As it can be observed,
the correction (51) shifts the distributions of the first eigenvalue
to the coordinates center, as the first eigenvalue is overestimated.
On the contrary, (51) shifts the distributions of the second and
the third eigenvalues away from the coordinates center, as these
eigenvalues are underestimated in this case.

B. Experimental Data

In order to illustrate the results presented in the previous
sections of this paper, they are now considered in the frame
of experimental SAR data. The data were acquired by the
airborne ESAR system, operated by the German Aerospace
Center (DLR), in March 2000 in the frame of the Alling-SAR
2000 campaign. Data consist of a L-band, fully polarimetric
dataset of a site close to the village of Alling, 25 km southeast
of Munich, Germany. Incidence angle ranges from 25 in near
range to 56 in far range. The image contains a rural landscape
where small-scale agricultural parcels can be easily identified.
Some of these fields contain crops in different stages of growth,
whereas others are ploughed terrain ready to be planted. Addi-
tional forest, small lakes and urban areas are also encountered
in the scene.

In what follows, only the behavior of and is considered
as they allow a compact analysis of the eigenvalues. The depen-
dence on the number of averaged samples or looks to estimate

is studied by considering spatial averaging windows of di-
mensions ranging from 3 3 to 11 11 samples. On the other
hand, it has been demonstrated that the eigenvalue biases depend
on the eigenvalues themselves (50). Owing to this reason, seven
different areas have been selected, which correspond to: shallow
water, rough surfaces, vegetated areas, and forested areas, cov-
ering all the range of entropy.

Tables I and II present the entropy and anisotropy values de-
rived from the sample eigenvalues , for , in
the different areas and for different values of averaged samples.
The last column gives the relative difference between the esti-
mated values

% (53)

For the case of the anisotropy, is just substituted by in (53).
The first observation which can be deduced from Tables I and II

TABLE I
ENTROPY (H) ESTIMATED FROM THE SAMPLE EIGENVALUES

� , FOR i = 1; 2; . . . ;m.

TABLE II
ANISOTROPY (A) ESTIMATED FROM THE SAMPLE EIGENVALUES

� , FOR i = 1; 2; . . . ;m.

is that the larger the number of averaged samples, the higher the
entropy and the lower the anisotropy. This behavior of the real
measurements reflects the theoretical behavior demonstrated in
Section V, where it was shown that the entropy derived from
the sample eigenvalues is underestimated with respect to its real
value, whereas anisotropy is basically overestimated. Conse-
quently, these results confirm the fact that the sample eigen-
values consist of biased estimators of the true eigenvalues. Nev-
ertheless, a more in-depth analysis of Tables I and II confirms
also the asymptotic nature of the sample eigenvalues, the en-
tropy and the anisotropy.

With respect to the entropy values presented in Table I, from
low entropy areas, i.e., shallow water and rough surface areas,
it can be observed that they present the lowest variation with
respect to the number of looks. This validates the theoretical re-
sult presented in Fig. 10, which showed that the entropy bias is
proportional to the entropy itself, in such a way that higher en-
tropies present the higher biases. The special case of rough sur-
faces was specifically analyzed by the authors in [28], arriving to
the same conclusions. In the same way, Table II corroborates the
anisotropy bias behavior given at Fig. 11. Nevertheless, despite
the overestimation of the anisotropy can be clearly observed, a
direct relation with the entropy values can not be established.
Finally, if Table I is compared with Table II, one can clearly de-
duce that the anisotropy presents a larger variation with respect
to the number of looks. This fact suggests that a larger number
of looks is necessary in order to estimate a reliable anisotropy
value, compared with the entropy.

The sample eigenvalues derived in the areas presented in
Tables I and II have been also employed to derive the AQ-MLE
of the true eigenvalues; see (51). Results are presented in
Tables III and IV, respectively. First of all, if one compares
the values of and derived from the sample eigenvalues at
Tables I and II with those derived with the AQ-MLE approach,
Tables III and IV, it is clear that this approach is only able to
correct part of the eigenvalues biases, as it has been derived
under the asymptotic hypothesis. A closer look to the entropy
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TABLE III
ENTROPY (H) ESTIMATED FROM THE AQ-MLE EIGENVALUES

l̂ , FOR i = 1; 2; . . . ;m

TABLE IV
ANISOTROPY (H) ESTIMATED FROM THE AQ-MLE EIGENVALUES

l̂ , FOR i = 1; 2; . . . ;m

values demonstrates that the AQ-MLE approach makes pos-
sible to reduce the number of looks in order to estimate reliable
entropy values. In the case that the covariance matrix is
obtained by 11 11 pixel averaging windows, the results at
Tables I and III are quite the same, i.e., the AQ-MLE does
not correct the entropy value. Nevertheless, if one compares
the same values in the tables referring to the anisotropy, i.e.,
Tables II and IV, it can be clearly observed that the AQ-MLE
approach introduces a correction in the anisotropies. This fact
reinforces the idea suggesting that the anisotropy needs from
more samples than the entropy, in order to estimate a reliable
value. This can be explained by the fact that the anisotropy
value is obtained from the second and the third eigenvalues of

, which are more affected by the speckle and thermal noises.
Finally, we note that the estimation problems are worse for

forested and heavily vegetated terrain (high entropy) than for
nonvegetated surfaces (low entropy). Hence it can be concluded
that quantitative parameter estimation using PolSAR alone is
probably better suited to surface rather than vegetation prob-
lems. It is important to point out that this high entropy for veg-
etation is due to the random scattering environment itself and
not to a system effect such as noise. Hence in order to secure
more robust estimates, the “entropy” of vegetation scattering
must somehow be reduced. One way to do this is to employ
polarimetric interferometry (PolInSAR) where the coherence
over vegetated regions can be controlled by baseline selection
and parameter sensitivity still provided by polarization diver-
sity. Future studies will consider bias and estimation issues in
this higher dimensional environment.

VIII. CONCLUSION

In this paper, we have presented an in-depth statistical anal-
ysis of the eigendecomposition of the complex Hermitian co-
variance and coherency matrices, as well as for the associated

decomposition. From the detailed analysis of the ex-
isting literature, it was observed that this problem presents sev-
eral similarities with the study of real symmetric matrices. In
this study, we have extended existing results in order to obtain
a simple expression for the distribution of the sample eigen-
values. From the study of this expression, it has been possible
to conclude that the sample eigenvalues, the entropy and the
anisotropy are asymptotically nonbiased estimators of the cor-
responding true values. Finally, these biases can not be com-
pletely corrected as they also depend on the value of the signals
to recover.

The existence of the biases for the sample eigenvalues is crit-
ical when quantitative remote sensing is addressed, since they
have to be seen as a source of error, which shall be transmitted to
the physical parameters obtained from them. In order to correct
the effects of these biases, an asymptotic quasi maximum-likeli-
hood estimator is proposed. The application of this estimator to
real data demonstrates, as shown theoretically, its incapability
to fully correct all the biases. Nevertheless, the biases are no so
critical for classification applications, since in these cases, the
effects of the biases can be mitigated by the fact that other pa-
rameters, such as the span, are also considered. Finally, we have
considered the effect of the number of averaged samples in order
to estimate the entropy and the anisotropy . It is demon-
strated that the minimum number of looks to consider these
quantities unbiased differ in such a way since the anisotropy are
more affected by the sample eigenvalues biases than the entropy.

The main conclusion to be extracted from the study presented
in this paper is that PolSAR speckle noise presents a big im-
pact on quantitative physical parameters estimation, especially
in high entropy environments. We have considered in the pre-
vious sections the eigen- and the decompositions as
tools to retrieve the physical parameters. Since there exist alter-
native approaches to derive the physical information of interest,
one can speculate about the possibility that these alternative
techniques shall be also affected by the same type of effects
shown in this paper. The bottom line of all this work is that
the problem of speckle noise in multidimensional SAR systems
needs further research work in order to determine completely
its effects on useful data and with the objective to improve its
filtering and removal.

APPENDIX A

This Appendix contains the derivation of the MLE of the
eigenvalues, given its joint asymptotic distribution (47). The
log-likelihood function of (47) is

(A.1)
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Considering the value of the constant , as given by (37), the
maximization process of (A.1) is given in (A.2), shown at the
bottom of the page. The derivative of the term is

(A.3)

In the same way, the derivative of the term is

(A.4)

In order to find the maximum of (A.1), the addition of (A.3) and
(A.4) is considered

(A.5)

Consequently, one derives the following system of equations:

(A.6)

APPENDIX B

This Appendix contains the approximations in the process to
derive the A-MLE, detailed in Appendix A, which allow finding
(51). Due to the presence of a bias in the sample eigenvalues, one
can consider that the true eigenvalues for and
its estimators are for will present a difference.
Therefore, in the term labeled as in (A.2) it can be written

(B.1)

(B.2)

Consequently, the derivative of the term in (A.2) takes the
expression given in (B.3), shown at the bottom of the page. If
one considered the expansion of the logarithm function into its
polynomial series expansion, i.e., its Taylor series

(B.4)

the derivative in (B.3) can be approximated by the next
expression

(B.5)

If the simplification presented by (B.5) of the term of (A.2)
is introduced into this equation, one can easily arrive to the next
expression

(B.6)

Finally, if (B.6) is make zero, it is derived that

(B.7)

Therefore, the estimators of the true eigenvalues for
, i.e., for , considering the sample

(A.2)

(B.3)
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eigenvalues for as the available data, take the
expression

(B.8)
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