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WATER RESOURCES RESEARCH, VOL. 32, NO. 2, PAGES 449-458, FEBRUARY 1996 

An improved genetic algorithm for pipe network optimization 

Graeme C. Dandy, Angus R. Simpson, and Laurence J. Murphy 
Department of Civil and Environmental Engineering, University of Adelaide, Adelaide, Australia 

Abstract. An improved genetic algorithm (GA) formulation for pipe network 
optimization has been developed. The new GA uses variable power scaling of the fitness 
function. The exponent introduced into the fitness function is increased in magnitude as 
the GA computer run proceeds. In addition to the more commonly used bitwise mutation 
operator, an adjacency or creeping mutation operator is introduced. Finally, Gray codes 
rather than binary codes are used to represent the set of decision variables which make up 
the pipe network design. Results are presented comparing the performance of the 
traditional or simple GA formulation and the improved GA formulation for the New 
York City tunnels problem. The case study results indicate the improved GA performs 
significantly better than the simple GA. In addition, the improved GA performs better 
than previously used traditional optimization methods such as linear, dynamic, and 
nonlinear programming methods and an enumerative search method. The improved GA 
found a solution for the New York tunnels problem which is the lowest-cost feasible 
discrete size solution yet presented in the literature. 

Introduction 

Over the last 5 years a methodology for the application of 
genetic algorithms (GAs) to water distribution pipe network 
optimization has been developed [Murphy and Simpson, 1992; 
Dandy et al., 1993; Simpson et al., 1993; Murphy et al., 1993; 
Simpson et al., 1994]. Previous research has concentrated on 
developing a methodology for applying GAs to pipe network 
optimization using a simple genetic algorithm. This paper ex- 
tends the earlier research by presenting an improved genetic 
algorithm formulation. There are three main changes to the 
simple GA that significantly enhance its performance and have 
been shown to result in substantial reductions in the cost of the 

optimized pipe network designs. The following features are 
incorporated in the improved genetic algorithm formulation: 
(1) variable power scaling of the fitness function, (2) an adja- 
cency mutation operator, and (3) use of Gray codes. 

This paper gives an overview of the genetic algorithm tech- 
nique by describing a simple GA and its application to pipe 
network optimization. Next, the features of the improved GA 
are described. The paper then describes the application of the 
improved GA to the New York City tunnels problem. Previous 
studies of the New York tunnels problem are reviewed. The 
performance of the improved GA formulation is then com- 
pared to the performance of the traditional GA formulation. 
Finally, the designs determined by the GA search are com- 
pared with the solutions of previous studies of the New York 
tunnels problem. 

The Pipe Network Design Problem 
The optimal design of water distribution networks for gravity 

systems as addressed in this paper may be formulated as fol- 
lows. For a given layout of pipes and a set of specified demand 
patterns at the nodes, find the combination of pipe sizes which 
'gives the minimum material and construction cost subject to 
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the following constraints: (1) Continuity of flow must be main- 
tained at all junctions. (2) The head loss in each pipe is a 
known function of the flow in the pipe, its diameter, length, 
and hydraulic properties. (3) The algebraic sum of the head 
losses around each loop should equal zero. (4) Minimum and 
maximum pressure limitations at certain nodes in the network 
must be satisfied. (5) Minimum diameter requirements may be 
specified for certain pipes in the network. 

Genetic Algorithms 
A genetic algorithm is a member of a class of search algo- 

rithms based on artificial evolution [Holland, 1975]. GAs sim- 
ulate mechanisms of population genetics and natural rules of 
survival in pursuit of the ideas of adaptation. The GA search, 
sometimes with modifications to the simple GA formulation, 
has been shown to perform efficiently in a number of applica- 
tions. This efficiency indicates the robustness of the search 
method that underlies the GA approach and the flexibility of 
the formulation itself [Goldberg, 1989]. 

In recent years a number of researchers have applied the 
genetic algorithm technique to certain aspects of the design of 
pipeline systems. Goldberg and Kuo [1987] applied the tradi- 
tional GA to the optimization of the operation of a steady state 
serial gas pipeline consisting of 10 pipes and 10 compressor 
stations each containing 4 pumps in series. The objective in 
that study was to minimize power while supplying a specified 
flow and maintaining allowable pressures. Davidson and 
Goulter [1994] used GAs to optimize the layout of a branched 
rectilinear network, such as a rural natural gas or water distri- 
bution system. The optimal layout in that case was assumed to 
be the one of least length. The layout solutions were repre- 
sented by blocks of binary code, and new GA operators of 
recombination and perturbation were introduced to reduce the 
number of infeasible solutions created by the traditional GA 
operators of crossover and mutation. Walters and Lohbeck 
[1993] studied the case of pipe networks with one demand 
pattern and no constraints on minimum pipe diameters. They 
showed that the GA effectively converges to near-optimal 
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Table 1. Available Pipe Sizes and Pipe Costs for New York 
City Tunnels Duplication and Corresponding Codes as 
Examples of Genetic Algorithm (GA) Coding Schemes 

Corresponding Coded 
Substrings 

Diameter, Pipe Cost, 
inches S/foot Binary Gray 

0 0 0000 0000 

36 93.5 0001 0001 
48 134.0 0010 0011 

60 176.0 0011 0010 
72 221.0 0100 0110 

84 267.0 0101 0111 

96 316.0 0110 0101 

108 365.0 0111 0100 
120 417.0 1000 1100 

132 469.0 1001 1101 

144 522.0 1010 1111 

156 577.0 1011 1110 

168 632.0 1100 1010 
180 689.0 1101 1011 

192 746.0 1110 1001 

204 804.0 1111 1000 

Note that 1 inch = 25.4 mm and 1 foot = 0.3048 m. 

branched network layouts, as selected from a directed base 
graph which defines a set of possible layouts. In that study the 
nodal connectivity within the trial branch network solutions 
was represented by a string of code. Alternative GA coding 
schemes, including a binary representation and an integer rep- 
resentation, were also investigated in that study. Walters and 
Cembrowicz [1993] extended these concepts using linear pro- 
gramming for the optimal selection of pipe sizes for branched 
pipe networks generated by a GA. The combination of GAs, 
graph theory, and linear programming was found by Walters 
and Cembrowicz [1993] to be the basis for an effective search 
for near-optimal branched pipe network designs. 

Coded Strings 

The genetic algorithm requires that the decision variables 
describing trial solutions to the pipe network design problem 
be represented by a unique coded string of finite length. This 
coded string is similar to the structure of a chromosome of 
genetic code. Consider a coded string consisting of 21 coded 
substrings each of 4 binary bits. This coded string of 84 binary 
bits may, for example, represent a design for a simple pipe 
network consisting of 21 pipes. Each 4-bit substring represents 
one of 16 possible choices of pipe size for one of the 21 pipes 
in the network. A selected mapping between the coded sub- 
strings and the design variables associates the artificial genetic 
code with a pipe network design. For example, Table 1 gives a 
mapping between coded substrings and actual pipe diameters 
for the New York tunnels problem considered later in this 
paper. 

Fitness of a Coded String 

The fitness of a coded string representing a pipe network 
design is determined by both the pipe costs and the hydraulic 
performance of the pipe network design. The cost of the pipe 
network design is taken as the sum of (1) materials, construc- 
tion, maintenance, and operation costs and (2) penalty costs 
(where the minimum pressure requirements are violated). 

A steady state hydraulic analysis of the pipe network design 
is performed to assess the hydraulic feasibility of the proposed 

system. This hydraulic analysis involves the prediction of the 
flows in the pipes and hydraulic heads at the nodes in the pipe 
network under steady state conditions. The hydraulic analysis 
method adopted in this study uses the Newton-Raphson tech- 
nique applied to the set of simultaneous nonlinear algebraic 
equations in terms of the unknown flow corrections around the 
loops. These are called the loop equations [Epp and Fowler, 
1970]. Wood and Rayes [1981] demonstrated the reliability of 
this method. 

As hydraulic analysis is required for all new strings during 
the GA run, this can be computationally intensive. As part of 
this research, we have implemented sparse matrix techniques 
to ensure the hydraulic solver is as fast as possible. 

A Simple Genetic Algorithm 
A brief description of the steps in using simple genetic al- 

gorithms for pipe network optimization is repeated here for 
completeness [Simpson et al., 1993]: 

1. Generation of initial population. The GA randomly 
generates an initial population of coded strings representing 
pipe network solutions of population size N (typically N = 
100 to 1000). Each bit position in the string takes on a value of 
either 1 or 0. Each of the N strings of the random starting 
population represents a possible combination of pipe sizes and 
thus represents a different configuration of a pipe network. 

2. Computation of network cost. The GA considers each 
of the N strings in the population in turn. It decodes each 
substring into the corresponding pipe size and computes the 
total material and construction cost. The GA determines the 

costs of each trial pipe network design in the current popula- 
tion. 

3. Hydraulic analysis of each network. A steady state hy- 
draulic network solver computes the heads and discharges un- 
der the specified demand patterns for each of the network 
designs in the population. The actual nodal pressures are com- 
pared with the minimum allowable pressure heads, and any 
pressure deficits are noted. 

4. Computation of penalty cost. The GA assigns a pen- 
alty cost for each demand pattern if a pipe network design does 
not satisfy the minimum pressure constraints. The pressure 
violation at the node at which the pressure deficit is maximum 
is used as the basis for computation of the penalty cost. The 
maximum pressure deficit is multiplied by a penalty factor k 
(e.g., k = $5 million/foot of pressure head), which is a mea- 
sure of the cost of a deficit of one unit of pressure head. 

5. Computation of total network cost. The total cost of 
each network in the current population is taken as the sum of 
the network cost (step 2) plus the penalty cost (step 4). 

6. Computation of the fitnesses. The fitness of the coded 
string is taken as some function of the total network cost. The 
GA computes the fitness for each proposed pipe network in 
the current population as the inverse of the total network cost 
from step 5. Two other forms of fitness function were tried; 
however, the use of the inverse was found to be the most 
effective in the GA search. 

7. Generation of a new population using the selection op- 
erator. The GA generates new members of the next genera- 
tion by a selection scheme. The probability of selection of 
string i, p•, to go into the next generation of N members using 
a proportionate selection method is given by 
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J N p,=f; •f•. 
j=l 

(1) 

where fi is the fitness of string i (determined in step 6). 
8. The crossover operator. Crossover is the partial ex- 

change of bits between two parent strings to form two offspring 
strings. Crossover occurs with some specified probability of 
crossover Pc for each pair of parent strings selected in step 7. 
To perform one-point crossover, a crossover point is randomly 
selected along the strings. The crossover operator exchanges 
the bits after the crossover point between the two selected 
parent strings. 

9. The mutation operator. Mutation occurs with some 
specified probability of mutation Pm for each bit in the strings 
which have undergone crossover. The bitwise complement mu- 
tation operator changes the value of the bit to the opposite 
value (i.e., 0 to 1 or 1 to 0). 

10. Production of successive generations. The use of the 
three operators described above produces a new generation of 
pipe network designs using steps 2 to 9. The GA repeats the 
process to generate successive generations. The least cost 
strings (e.g., the best 20) are stored and updated as cheaper 
cost alternatives are generated. Typically, a GA will evaluate 
between 100 and 1000 generations. 

An Improved Genetic Algorithm Formulation 
The improved GA formulation was achieved by the combi- 

nation of (1) variable exponent fitness scaling, (2) an adjacency 
mutation operator, and (3) Gray code representation. This 
order was found to be the order of significance of each feature 
in providing an improvement compared with the simple GA. 

Scaled Fitness of a Coded String 

Goldberg [1989] reported on fitness scaling mechanisms used 
to adjust the calculated raw fitness of strings in a population to 
maintain appropriate levels of competition between the 
strings. Gillies [1985] considered a power law form of fitness 
scaling, where the scaled fitness f• is some power of the raw 
fitness fi given by (2). Gillies used a value of n = 1.005 in a 
machine vision application. 

f• = f•' (2) 

The variable exponent n in (2) is used to modify the fitness 
function as part of the improved GA formulation. This is a 
crucial feature of the new improved GA formulation. The 
value of the exponent n is allowed to increase in steps as the 
GA run develops. The starting population of N strings is gen- 
erated randomly and, as a consequence, this population and 
early generations are likely to contain diverse strings of genetic 
code. The average string fitness in the starting population will 
be relatively low, and the individual string fitnesses may vary 
significantly, and yet all of the strings may possess potentially 
valuable genetic information. A low value of the exponent n 
should be employed at the start of the GA run, for example, 
n = 1, so the GA can sort through the potential strengths of 
the ordinary strings in the early generations. A low value of n 
preserves some population diversity in the early generations. A 
larger value of the expofient n is not appropriate here since the 
GA search may be misguided by encouraging one extraordi- 
nary string to dominate the new populations. 

After a number of generations a large number of useful 

string similarities are recognized and have become established. 
The value of the exponent n in the fitness function may be 
increased in steps during the intermediate generations. As the 
GA run progresses further, the highly fit string similarities that 
have evolved begin to dominate the populations. The strings 
are constructed of similar genetic code and their magnitudes of 
raw fitness may be very similar. A high value of the exponent 
n, say 3 or 4, is needed to accentuate the small differences in 
string fitness. 

The Adjacency Mutation Operator 

An adjacency or creeping mutation operator has also been 
included in the improved GA formulation. Davis and Coombs 
[1987] and Coombs and Davis [1987] introduced an operator 
called "creep" into their study of the design of packet- 
switching communication networks. The coded strings were 
lists of communication link speeds that corresponded to links 
in the network, and creep altered selected link speeds upward 
or downward one or more steps in the list of allowable link 
speeds. The adjacency mutation operator presented here op- 
erates in a similar manner and is applied to complete decision 
variable substrings chosen randomly from the coded string. 
The adjacency mutation operator presented in this paper mu- 
tates the selected complete decision variable substring to an 
adjacent decision variable substring up or down the list of 
design variable choices. For example, the decision variable 
substring 0001 may be mutated up to 0010 (for binary coding) 
or mutated down to 0000. The substring 0000 may be mutated 
up to 0001 or may be left as 0000 since it cannot be mutated 
down. The adjacency mutations contrast with the traditional 
bitwise mutations that may or may not produce an adjacent 
substring. For example, the substring 0000 may be altered by a 
bitwise mutation to 1000, 0100, 0010, or 0001. The substrings 
1000 and 0100 are very distant from 0000 in the substring list. 
Bitwise mutations with low probability and adjacency muta- 
tions were both used in the improved GA formulation. 

The adjacency mutation operator proposed here allows for 
the adjustment of conditional probabilities of upward and 
downward adjacency mutations (e.g.,pal = 0.6 means there is 
a 60% probability of the adjacency mutation operator moving 
the pipe size from the current size to the next smaller size 
rather than the next larger size). The probability of the direc- 
tion of the adjacency mutation can be biased in either direc- 
tion. 

Gray Coding Scheme 

Fundamental GA theory favors the use of coding schemes 
that are based on small alphabets. Small alphabets such as 
binary codes generate longer coded substrings and hence max- 
imize the number of string similarities or schemata in a pop- 
ulation of coded strings [Goldberg, 1990]. 

Traditionally, binary coding has been used to specify the 
mapping. However, the improved GA formulation uses a Gray 
code representation. Table 1 presents the alternative mappings 
between design variable choices and coded substrings for both 
binary and Gray coding schemes. 

The Gray code representation is such that adjacent decision 
variable coded substrings differ by one bit or are separated by 
a Hamming distance of 1 [Caruana and Schaffer, 1988]. For 
example, only 1 bit changes between neighboring substrings of 
0011 and 0010 and 0110, etc. By comparison, adjacent sub- 
strings in binary coding may differ by any number of bits. For 
example, adjacent substrings 0111 and 1000 differ by 4 bits. 
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Figure 1. New York City water supply tunnels. 

This extreme Hamming distance of 4 is referred to as a Ham- 
ming cliff. Since similar genetic code represents adjacent de- 
sign variable choices, the Gray codes ensure that trial network 
solutions that are nearby in the solution space are represented 
by similarly coded strings. 

Hollstien [1971] concluded Gray codes may be preferred to 
binary codes, since adjacent integers are only 1 bit distant and 
bitwise complement mutations cause less disruption of the 
solution. On the basis of experimental results, Bethke [1981] 
found Gray codes improved the performance of the GA and 
suggested the reason for this is that the Gray code maps Eu- 
clidean neighborhoods into Hamming neighborhoods. Ca- 
ruana and Schaffer [1988] found the Gray codes to be better 
than or equivalent to binary coding for six functions tested, 
including the five functions considered by DeJong [1975]. Ca- 
ruana and Schaffer [1988] concluded that by eliminating the 
Hamming Cliff of binary coding the Gray codes might improve 
the performance of the GA. The GA is blind to the mapping 
that occurs between a coded string and the set of design vari- 
ables the string describes, and the GA process is not concerned 
with the method of evaluation of the coded string. Caruana 
and Schaffer suggested the GA may be misled by biases, such 
as a Hamming cliff, introduced by the mapping. 

Case Study: The New York City Water Supply 
Tunnels Problem 

Schaake and Lai [1969] developed an optimization tech- 
nique to determine the most economically effective design for 

the proposed additions to the primary water distribution sys- 
tem of New York City. The system at that time was composed 
of a network of deep rock tunnels of large diameter (up to 204 
inches, or 5182 mm). U.S. Customary units are used primarily 
in this paper to enable comparison against previously pub- 
lished results. Proposed expansions included the construction 
of gravity tunnels parallel to the existing tunnels to enable the 
system to meet increased water demands while maintaining 
minimum acceptable pressures. The New York City primary 
water supply tunnel system (as considered in the Schaake and 
Lai paper) is shown in Figure 1. The tunnel system is a gravity 
flow system that draws water (2017.5 feet3/s or 57,129.5 L/s) 
from the Hillview Reservoir at node 1. The primary tunnel 
system consisted of City Tunnels number 1 and number 2. City 
Tunnel number 1 extended from Hillview Reservoir to node 16 

in Brooklyn by way of Manhattan. City Tunnel number 2 ex- 
tended between Hillview Reservoir and Richmond downtake 

by way of Queens. City Tunnel number 1 was constructed 
around 1920 and City Tunnel number 2 was constructed 
around 1940 [de Neufville et al., 1971]. The age of the City 
Tunnels and possible population increases with the associated 
increased water demands indicated the need for expansions to 
the existing network. 

A single demand pattern was considered for the improved 
tunnel system, and a corresponding minimum allowable total 
head was specified at each node, as given in Table 2. A hy- 
draulic analysis for the projected demands applied to the ex- 
isting tunnel system shows that nodes 16, 17, 18, 19, and 20 fall 
significantly below the required minimum total head [Bhave, 
1985]. Nodes 1 to 15 have acceptable hydraulic grade line 
elevations. 

The lengths and diameters of the 21 existing pipes are given 
in Table 3. A Hazen-Williams roughness coefficient C = 100 
is assumed for all existing and new pipes. The available tunnel 
sizes and associated costs considered for the New York City 
tunnels additions are presented in Table 1. 

Table 2. Nodal Data for New York City Water Supply 
Tunnels 

Minimum 

Demand, Total Head, 
Node feet3/s feet 

1 Reservoir 300.0 
2 92.4 255.0 

3 92.4 255.0 

4 88.2 255.0 

5 88.2 255.0 

6 88.2 255.0 

7 88.2 255.0 

8 88.2 255.0 

9 170.0 255.0 
10 1.0 255.0 

11 170.0 255.0 
12 117.1 255.0 

13 117.1 255.0 
14 92.4 255.0 

15 92.4 255.0 

16 170.0 260.0 
17 57.5 272.8 
18 117.1 255.0 
19 117.1 255.0 
20 170.0 255.0 

Note that 1 foot3/s = 28.36 L/s. 
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Table 3. Pipe Data for the New York City Water Supply 
Tunnels 

Existing 
Start End Length, Diameter, 

Pipe Node Node feet inch 

[1] 1 2 11600 180 
[2] 2 3 19800 180 
[3] 3 4 7300 180 
[4] 4 5 8300 180 
[5] 5 6 8600 180 
[6] 6 7 19100 180 
[7] 7 8 9600 132 
[8] 8 9 12500 132 
[9] 9 10 9600 180 

[10] 11 9 11200 204 
[11] 12 11 14500 204 
[12] 13 12 12200 204 
[13] 14 13 24100 204 
[14] 15 14 21100 204 
[15] 1 15 15500 204 
[16] 10 17 26400 72 
[17] 12 18 31200 72 
[18] 18 19 24000 60 
[19] 11 20 14400 60 
[20] 20 16 38400 60 
[21] 9 16 26400 72 

Note that Hazen-Williams roughness coefficient C = 100 for all 
tunnels. 

Previous Studies 

Since the original work by Schaake and Lai [1969] a number 
of studies in pipe network optimization have considered the 
New York water supply tunnels as a case study to demonstrate 
the effectiveness of their respective techniques. The results of 
these studies are summarized in Table 4. 

In the following review a continuous diameter design is an 
optimized set of pipe diameters that may take on any contin- 
uous real value. A discrete diameter design is a set of pipe 
diameters that are selected from a specified set of pipe sizes. A 
split pipe design may be derived from a continuous diameter 
design by decomposing a length of continuous diameter into 
partial lengths of the two adjacent discrete diameters (one 
smaller and one larger) to create a pipe with equivalent hy- 
draulic properties. 

In the original work on the problem, Schaake and Lai [1969] 
used a linear programming approach to find the optimum pipe 
diameters for assumed values of the total head at each node. 

The decision variable for each pipe was its diameter raised to 
the power 2.63, thus leading to a set of linear constraints. The 
nonlinear terms in the objective function were approximated 
using piecewise linearization. No check was made to determine 
whether the assumed nodal heads led to an optimum solution 
overall. As shown in Table 4, the final solution obtained in- 
volves duplicating almost all pipes in the system at a cost of 
$78.09 million (all costs in this paper are given in 1969 dollars). 
As the minimum cost solution to a pipe network problem with 
one demand pattern and no constraints on minimum pipe 
diameters tends toward a branched system, it is expected that 
better solutions to the problem can be obtained by duplicating 
fewer tunnels. 

The optimization model of Quindry et al. [1981] was an 
extension of the linear programming approach used by 
Schaake and Lai [1969]. First, an optimal solution for an as- 
sumed set of nodal heads was obtained. The dual variables 

were then used to identify the relative changes required in the 
nodal heads so as to get the maximum rate of improvement in 
the objective function. The heads were adjusted and the linear 
program was rerun. This procedure was repeated until no 

Table 4. Comparative Designs for the New York Tunnels Problem 

Diameters of Duplicate Tunnels, inches 

Schaake and Quindry et al. Gessler Bhave 
Pipe Lai [1969] [1981] [1982] [1985] 

Morgan and 
Goulter [1985] 

(Slightly Infeasible*) 
Kessler [ 1988] 

(Clearly Infeasible*) 

Fujiwara and 
Khang [1990] 

(Clearly Infeasible*) 

[1] 52.02 0.0 0 0.0 
[21 49.90 0.0 0 0.0 
[3] 63.41 0.0 0 0.0 
[4] 55.59 0.0 0 0.0 
[5] 57.25 0.0 0 0.0 
[6] 59.19 0.0 0 0.0 
[7] 59.06 0.0 100 0.0 
[8] 54.95 0.0 100 0.0 
[9] 0.0 0.0 0 0.0 

[10] 0.0 0.0 0 0.0 
[11] 116.21 119.02 0 0.0 
[12] 125.25 134.39 0 0.0 
[13] 126.87 132.49 0 0.0 
[14] 133.07 132.87 0 0.0 
[15] 126.52 131.37 0 136.43 
[16] 19.52 19.26 100 87.37 
[17] 91.83 91.71 100 99.23 
[18] 72.76 72.76 80 78.17 
[19] 72.61 72.64 60 54.40 
[2o] 0.0 0.0 0 0.0 
[21] 54.82 54.97 80 81.50 

Total cost, $M 78.09 63.58 41.8 40.18 
Diameter design continuous continuous discrete continuous 

0 

0 

0 

0 

0 

0 

144 

0 

0 

0 

0 

0 

0 

0 

0 

96 

96 

84 
60 

0 

84 

39.20 

discrete 

0.0 

0.0 

0.0 

0.0 

0.0 
0.0 

0.0 

0.0 

0.0 

0.0 
0.0 

0.0 

0.0 

0.0 

156.11 
72.00 

96.60 

78.00 
59.78 

0.0 

72.27 

39.0 

split pipe 

0.0 

0.0 

0.0 

0.0 

0.0 
0.0 

73.62 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

99.01 

98.75 

78.97 

83.82 

0.0 

66.59 

36.1 

continuous 

$M, millions of dollars. 
*KYPIPES analysis. 
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Table 5. Variation of n for Improved GA Formulation 
Runs 

Value of n Evaluation Number Interval 

0 < evaluations < 50,000 
50,001 < evaluations < 100,000 

100,001 < evaluations < 150,000 
150,001 < evaluations < 200,000 

further improvement was obtained. As shown in Table 4, the 
solution obtained involves no duplication of City Tunnel num- 
ber 1. The total cost of the design was $63.58 million. 

Gessler [1982] used a partial enumeration technique and 
discrete pipe sizes to search a subset of the total solution space. 
He searched two separate regions of the solution space with 
consideration of the reinforcement of either City Tunnel num- 
ber 1 or City Tunnel number 2. The lowest-cost discrete diam- 
eter solution obtained in each case was used as a starting 
solution for a gradient search technique that used continuous 
pipe sizes. The lowest-cost design involving the reinforcement 
of City Tunnel number 1 involved the duplication of only seven 
tunnels (Table 4) at a cost of $41.8 million. 

Bhave [1985] used a heuristic procedure based on the iden- 
tification of an efficient branched configuration. In the method, 
nodal heads for the branched configuration were progressively 
adjusted so as to give the maximum reduction in system cost. 
The method identified City Tunnel number 2 (without tunnel 
[20]) as the branched configuration to be optimized. The op- 
timal configuration (given in Table 4) involved the duplication 
of only six tunnels at a total cost of $40.18 million. 

Morgan and Goulter [1985] applied a linear programming 
approach coupled with a hydraulic network solver to the New 
York water supply tunnels problem. They used a split pipe 
approach in which the decision variables were the lengths of 
pipe of a specified diameter that replace the current size. Pipes 
may be increased or reduced in size or eliminated entirely (of 
course, the last two alternatives do not apply to the New York 
problem). After each iteration, hydraulic consistency was 
checked using the hydraulic network solver. The discrete pipe 
solution obtained by Morgan and Goulter is given in Table 4 
and involves duplicating six tunnels at a cost of $39.20 million. 
The discrete pipe solution was found to be slightly infeasible 
but acceptable in terms of normal expected accuracies of sim- 
ulation modelling. A split pipe solution with a cost of $38.9 
million was also obtained. 

Kessler [1988] applied a decomposition technique consisting 
of two submodels [Kessler and Shamir, 1991] to the New York 
water supply tunnels problem. In the first submodel the heads 
at the nodes are fixed, and a minimum concave cost of flow 
algorithm is used to find the pipe flows. These are then fixed 
and the head variables are found in the second submodel using 
linear programming. The two submodels are solved interac- 
tively until convergence is achieved (which usually occurs after 
two iterations). It can be shown that a local optimum is ob- 
tained. A split pipe solution with a cost of $39.0 million was 
obtained. This is shown to be clearly infeasible later in this 
paper. 

Fujiwara and Khang [1990] used a two-phase decomposition 
method that combined the methods of Alperovits and Shamir 
[1977], Quindry et al. [1981], and Mahjoub [1983]. In the first 
phase a nonlinear programming gradient method was used to 
find the optimum head loss in each pipe (and hence the pipe 

diameters) for an assumed set of flows. A correction was then 
applied to the assumed flow in each loop using the Lagrange 
multipliers associated with the previous solution. This process 
was continued until it converged on a local optimum. In the 
second phase the nodal heads obtained at the end of the first 
phase were fixed. A nonlinear optimization model was run that 
found the optimum flow in each pipe for these nodal heads. 
This gave a new local optimum that could be used to restart the 
first phase. Iteration occurred between the two phases in such 
a way as to obtain a better local optimum solution. Fujiwara 
and Khang [1990] proposed a continuous diameter pipe solu- 
tion with a cost of $36.1 million, but this design is shown later 
in the paper to be clearly infeasible. 

Genetic Algorithm Optimization 
The simple genetic algorithm formulation and the improved 

genetic algorithm formulation developed in this paper were 
both applied to the New York City tunnels network design 
problem. A 4-bit binary coded substring permits representa- 
tion of 16 discrete alternative choices for a design variable. 
Since there are 21 existing pipes in the New York City network 
that may be duplicated, the coded strings representing a trial 
pipe network design are constructed of 84 binary bits (21 by 
4-bit coded substrings). The result is a vast solution space of 
162• or 2 $4 (= 1.9343 x 1025) different pipe network designs. 

The variable power scaling of the fitness function given in (3) 
is an important element of the improved GA. The exponent n 
was chosen as n = 1 for the simple GA runs. The exponent n 
was allowed to vary throughout the improved GA runs, as 
shown in Table 5. 

f• = ( 1 / cost,) n (3) 

where fl is the scaled fitness of string i and cost, is the sum of 
all costs for string i (including penalty costs). 

The GA parameters chosen for the simple GA runs (T1 to 
T5) and improved GA runs (I1 to I5) are given in Table 6. The 
GA parameters chosen for the improved GA runs are identical 
except that the adjacency mutation operator was not employed 
in the traditional GA runs. 

The GA runs were allowed 200,000 evaluations of different 
designs. This number of designs is only a relatively small frac- 
tion of the total solution space. Each GA run used approxi- 
mately 50 min of central processing unit time on a Sun Sparc 
1 + Station (running with the operating system SunOS 4.1) for 
the 200,000 function evaluations. A considerable proportion of 
this time is for the hydraulic analysis of each of the designs. 

Crossover occurs with a specified probability Pc, which is a 
GA parameter that may be varied. A value ofp•. = 0.5 and a 
population size of N = 100 imply that approximately 50 (i.e., 
p,. ß N) of the 100 coded strings in the new population will be 
created by crossing over two strings from the previous gener- 
ation. The other 50 or so strings pass to the new generation 
without being crossed over. GA researchers [DeJong, 1975; 
Grefenstette, 1986; Goldberg, 1989] have suggested good per- 
formance of the GA may be obtained using high crossover 
probabilities (p,. = 0.5 to 1.0). Bitwise complement mutation 
should occur with low probability (Pro = 0.001 to 0.05). A 
value of Pm= 0.01 implies that approximately 1 bit in every 
100 bits crossed over is mutated. Since the string length is 84 
bits for the New York problem, with a value Ofpm = 0.01, on 
the average, 42 bits will be mutated from 50 strings crossed 
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Table 6. GA Parameter Values 

GA Parameters 

Traditional (T)/Improved (I) GA Runs 

T1/I 1 T2/I2 T3/I3 T4/I4 T5/I5 

Population size, N 
Number of generations 
Number of evaluations 

Probability of crossover, p• 
Probability of bitwise mutation, Pm 
Probability of adjacency mutation, p, 
Conditional probability of downward 

adjacency mutation, Pa 
Pressure violation penalty multiplier, 

k ($M/foot) 

500 200 200 100 100 

800/534 1000 1000 2000 2000 
200,000 200,000 200,000 200,000 200,000 

0.5 1.0 1.0 1.0 1.0 

0.01 0.01 0.01 0.01 0.005 

0.0/0.5 0.0/1.0 0.0/1.0 0.0/1.0 0.0/0.5 
0.0/0.5 0.0/0.6 0.0/0.6 0.0/0.6 0.0/0.6 

12.5 10.0 15.0 10.0 5.0 

over to form a new population. A high probability of crossover 
(Pc = 1.0) and a low probability of bitwise mutations (Pm = 
0.01) are employed for most of the GA runs. 

An adjacency mutation occurs when a string for the new 
generation is selected with a specified probability Pa. Every 
string for the new generation is subject to an adjacency muta- 
tion when a value of P a = 1.0 is used. A coded decision 
variable substring from among those which form the string is 
selected randomly. It is replaced by the adjacent decision vari- 
able substring down the substring list (toward 0000) with the 
conditional probability of a downward adjacency mutation Pa. 
Otherwise it is replaced with the adjacent decision variable 
substring up the list. A value ofpa -- 0.6 indicates a slight bias 
in the direction of a downward adjacency mutation or to the 
next smallest pipe rather than to the next largest pipe. 

An evaluation of a coded string is required for every new 
string created in a generation when an old string is altered by 
crossover and/or by bit or adjacency mutation. The expected 
number of generations for a given number of evaluations can 
be computed by considering the expected number of new 
strings created in a new population. It is given by the following 
equation: 

Ng = N[ 1 - (1 - Pc) (1 - Pa) ] (4) 
where N a is the expected number of generations for the eval- 
uation of E new strings. 

The denominator in (4) is the expected number of new 
strings per generation. It should be noted that crossover and 
adjacency mutation occur independently, whereas bit mutation 
is only possible for strings which undergo crossover. 

The random number generator seed producing the initial 
generation of strings was held constant for all the GA runs. 
This will produce the same sequence of random numbers and 

generate the same starting population of designs. Generation 
of the same starting population is useful for the comparison of 
the GA formulations and combinations of the GA parameters. 

The pressure violation penalty multiplier k is the cost of a 
hydraulic grade line violation per foot of pressure head deficit. 
A particular level of the penalty multiplier sets the severity of 
the penalty costs imposed. The selected value of the penalty 
multiplier must produce penalty costs such that near-optimal 
infeasible solutions cost slightly more than the optimal solu- 
tion. The optimal solution is not usually known, and an appro- 
priate value of the pressure violation penalty multiplier differs 
from one problem to the other. As a result, some trial and 
error adjustment of the pressure violation penalty multiplier is 
necessary. The numbers of infeasible network solutions 
present in the search and the feasibility of the lowest-cost 
network solutions determined by the search should provide an 
indication of the suitability of the chosen value of the pressure 
violation penalty multiplier. A value of k = $5.0 million/foot 
generated many low-cost marginally infeasible network de- 
signs. 

Although the selection of the parameters for the genetic 
algorithm model requires some judgement, the authors have 
optimized 14 networks ranging in size from 14 to 260 pipes and 
have found that the results obtained are relatively insensitive 
to these parameters. The lowest-cost feasible pipe network 
designs determined by the five simple GA formulations and the 
five improved GA formulations are given in Table 7. The 
improved GA runs achieve a minimum cost feasible design for 
$38.80 million. This design is the lowest-cost feasible discrete 
pipe design identified in the literature. The evaluation num- 
bers at which the lowest-cost designs were found are also given 
in Table 7. 

Figure 2 shows a plot of the best of generation costs against 
evaluation numbers for the traditional GA run T1 and the 

Table 7. Results of the GA Runs 

Simple GA Runs 

Lowest-Cost Feasible Evaluation 

GA Run Design, $M Number 

Improved GA Runs 

Lowest-Cost Feasible Evaluation 

GA Run Design, $M Number 

Ti* 41.93 199,250 
T2 51.07 163,800 
T3 45.07 121,600 
T4 48.23 128,600 
T5 40.33 158,000 

Ii* 38.80 96,750 
I2 39.06 137,400 
I3 38.80 151,400 
14 39.06 145,700 
15 39.17 187,700 

*Plots are given in Figures 2 and 3. 
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Figure 2. Best of generation costs for simple genetic algo- 
rithm (GA) run T1 and improved GA run I1. 
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Figure 3. Average generation costs for simple GA run T1 
and improved GA run I1. 

equivalent improved GA run I1. Figure 3 shows a plot of the 
average generation costs against evaluation numbers for T1 
and I1. A similar decreasing cost with generation characteris- 
tics is exhibited by T1 and I1 up to about 40,000 evaluations. 
Beyond this point, the improved GA formulation I1 can be 
seen to display superior performance and to generate solutions 
with significantly lower costs. 

The five least-cost feasible genetic algorithm designs and 
three infeasible genetic algorithm designs identified by any of 
the improved GA formulations are presented in Table 8. The 
corresponding total hydraulic heads at nodes 16, 17, and 19 for 
the eight GA designs are shown in Table 9. The lowest-cost 
feasible GA design has a cost of $38.80 million. Three feasible 
discrete pipe networks have been identified by the improved 
GA that are lower in cost ($38.80, $39.06, and $39.17 million) 
than the Morgan and Goulter [1985] network is at $39.20 mil- 
lion. 

Table 10 shows the hydraulic heads at the three critical 

nodes for the previous designs. The acceptability of solutions is 
also related to the relative accuracy of network simulators. A 
solution may be regarded as infeasible for a "crisp" violation of 
the pressure constraints; however, it may be quite acceptable 
on a "fuzzy" basis. 

The Morgan and Goulter [1985] design is seen to be slightly 
infeasible. However, the pressure head violations are so small 
that the solution could be considered to be a valid feasible 

solution to the problem. The hydraulic analysis was carried out 
using the hydraulic network solver developed for this study. 
Similar results were obtained using the KYPIPES Computer 
Program. 

The GA designs shown in Table 8 belong to one of two 
groups of designs. The first group of designs duplicates pipe [7] 
in City Tunnel number 1, while the other group of designs 
duplicates pipe [15] at the upstream end of City Tunnel num- 
ber 2. These same results also indicate pipes [16], [17], [18], 
[19], and [21] require duplication. 

Table 8. The Least-Cost Improved GA Network Designs (Diameters of Duplicate Pipes 
in Inches) 

Feasible Designs Infeasible Designs 

Pipe GA 1 GA 2 GA 3 GA 4 GA 5 GA 6 GA 7 GA 8 

[1] 0 0 0 0 0 0 0 0 
[2] 0 0 0 0 0 0 0 0 
[3] 0 0 0 0 0 0 0 0 
[4] 0 0 0 0 0 0 0 0 
[5] 0 0 0 0 0 0 0 0 
[6] 0 0 0 0 0 0 0 0 
[7] 0 144 156 0 0 0 84 0 
IS] 0 0 0 0 0 0 0 0 
[9] 0 0 0 0 0 0 0 0 

[•o1 o o o o o o o o 
[•] o o o o o o o o 
[•21 o o o o o o o o 
[•3] o o o o o o o o 
[14] 0 0 0 0 0 0 0 0 
[15] 120 0 0 120 108 96 0 0 
[16] 84 96 96 84 96 96 96 96 
[17] 96 108 96 108 96 96 96 96 
[18] 84 72 84 72 84 84 84 84 
[19] 72 72 72 72 72 72 72 72 
[20] 0 0 0 0 0 0 0 0 
[21] 72 72 72 72 72 72 72 72 

Total Cost $M 38.80 39.06 39.17 39.22 39.28 38.52 36.19 33.62 
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Table 9. Hydraulic Heads for GA Designs 

Minimum Heads at the Three Most Critical Nodes, feet 

Minimum 

Required 
Head, feet 

Feasible Designs Infeasible Designs 

GA 1 GA 2 GA 3 GA 4 GA 5 GA 6 GA 7 GA 8 

Node 16 

260.0 260.52 260.01 260.08 260.52 260.23 259.95 259.48 258.99 
Excess +0.52 +0.01 +0.08 +0.52 +0.23 -0.05* -0.52* - 1.01' 

Node 17 

272.8 272.86 272.82 272.88 272.86 273.02 272.75 272.28 271.79 
Excess +0.06 +0.02 +0.08 +0.06 +0.22 -0.05* -0.52* - 1.01' 

Node 19 

255.0 255.71 255.71 255.04 256.43 255.39 255.10 254.50 254.07 
Excess +0.71 +0.71 +0.04 + 1.43 +0.39 +0.10 -0.50* -0.93* 

Cost, $M 38.80 39.06 39.17 39.22 39.28 38.52 36.19 33.62 

*A negative value indicates the pressure constraint is violated. 

The infeasible GA designs in Table 8 demonstrate substan- 
tial cost savings for some small violations of the pressure head 
constraints. Infeasibility may be acceptable in some circum- 
stances, particularly if a small hydraulic head deficiency is 
accompanied by large cost savings. The GA 8 design represents 
a cost saving of about $5.17 million (13.3%) compared with the 
lowest-cost feasible design. This may be an acceptable low-cost 
design with a hydraulic head deficiency of approximately 1 foot 
at nodes 16, 17, and 19. Infeasible designs become more prom- 
inent in the GA search when the pressure violation penalty 
cost multiplier is smaller. 

The design proposed by Fujiwara and Khang [1990] was 
claimed to be the lowest-cost published design solution to the 
New York City tunnels problem, but it is actually infeasible 
with the heads at nodes 16, 17, and 19 falling below the min- 
imum allowable values. Thus the GA 1 design with a cost of 
$38.80 million is the lowest-cost, feasible, discrete diameter 
design for the New York City water tunnels problem to date. 

Summary and Conclusions 
An improved genetic algorithm formulation for pipe net- 

work optimization has been presented in this paper. The !m- 
proved GA formulation features (1) variable power scaling of 
the fitness function, (2) an adjacency mutation or creep oper- 
ator, and (3) the use of Gray codes. The pipe network designs 
are represented by coded strings constructed using a binary 

alphabet. The variable exponent used to modify raw fitness 
values helps to maintain competitiveness throughout the GA 
search. In the early generations a low value of the exponent n 
overlooks small differences in string fitness, and this helps to 
preserve population diversity and allows for global exploration 
of the solution space. In the later generations, where highly fit 
(i.e., highly desirable) elements of the solution become more 
clearly evident, a high value of the exponent n emphasizes 
small differences in string fitness, and this helps to concentrate 
the search on the best regions of the solution space. The 
adjacency mutations change complete decision variable coded 
substrings to adjacent coded substrings in the list of design 
variable choices. The adjacency mutations are subtle disrup- 
tions of the code which permit local exploration of the solution 
space. The coded substrings which form the string are mapped 
to design variable choices, such as pipe diameters, by a Gray 
coding scheme. Gray codes are such that similar codes repre- 
sent consecutive design variable choices, and therefore simi- 
larly coded strings represent designs nearby in the solution 
space. 

The performance of the simple and improved genetic algo- 
rithm formulations applied to the New York City tunnels prob- 
lem was investigated. In addition, the results have been com- 
pared to solutions obtained previously in the literature using 
other techniques. Previously, the results by Fujiwara and Khang 

Table 10. Hydraulic Heads for Previous Designs Using the Hydraulic Network Solver Developed in This Research 

Minimum Heads at the Three Most Critical Nodes, feet 

Allowable Morgan and 
Head, Schaake and Quindry et al. Gessler Bhave Goulter [1985] Kessler [1988] 
feet Lai [1969] [1981] [1982] [1985] (Infeasible) (Infeasible) 

Fujiwara and 
Khang [1990] 
(Infeasible) 

Node 16 

260.0 261.02 260.97 260.32 260.84 261.56 258.51 
Excess + 1.02 +0.97 +0.32 +0.84 + 1.56 -1.49' 

Node 17 

272.8 273.81 273.66 273.10 273.38 272.79 273.04 
Excess + 1.01 +0.86 +0.30 +0.58 -0.01' + 1.04 

Node 19 

255.0 256.14 256.04 255.86 255.96 254.99 255.22 
Excess + 1.14 + 1.04 +0.86 +0.96 -0.01' +0.22 

Cost, $M 78.09 63.58 41.8 40.18 39.20 39.0 

259.30 

-0.70* 

272.26 

-0.54* 

254.24 

-0.76* 

36.1 

*A negative value indicates the pressure constraint is violated. 
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[1990] were considered to be the lowest-cost solution; however, 
it has been shown that their solution is, in fact, infeasible. 

The improved genetic algorithm produces significantly lower 
cost solutions than the simple genetic algorithm. The improved 
GA technique has identified three discrete diameter designs 
for the New York City tunnels problem with lower costs than 
feasible networks identified by any other technique in the lit- 
erature. The lowest-cost feasible discrete pipe solution from 
the improved GA has a cost of $38.80 million. 

One significant advantage of the GA technique is that a 
range of solutions is produced by the GA such that the decision 
maker can choose between similarly priced alternatives. Some 
other criteria may then be used to decide which alternative is 
selected. 

Notation 

costi cost of the design represented by string i. 
E number of new evaluations. 

fi raw fitness of string i. 
f; scaled fitness of string i. 
k pressure violation penalty multiplier (S/unit of 

hydraulic head). 
n variable exponent in fitness function. 
N population size. 

Ng expected number of generations for the evaluation of 
E new strings. 

p• probability of selection of string i. 
P a probability of adjacency mutation. 
Pc probability of crossover. 
P d conditional probability of downward adjacency 

mutation. 

Pm probability of random bitwise mutation. 
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