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Summary

� Most plant species have a range of traits that deter herbivores. However, understanding of

how different defences are related to one another is surprisingly weak. Many authors argue

that defence traits trade off against one another, while others argue that they form coordi-

nated defence syndromes.
� We collected a dataset of unprecedented taxonomic and geographic scope (261 species

spanning 80 families, from 75 sites across the globe) to investigate relationships among four

chemical and six physical defences.
� Five of the 45 pairwise correlations between defence traits were significant and three of these

were tradeoffs. The relationship between species’ overall chemical and physical defence levels

was marginally nonsignificant (P = 0.08), and remained nonsignificant after accounting for phy-

logeny, growth form and abundance. Neither categorical principal component analysis (PCA)

nor hierarchical cluster analysis supported the idea that species displayed defence syndromes.
� Our results do not support arguments for tradeoffs or for coordinated defence syndromes.

Rather, plants display a range of combinations of defence traits. We suggest this lack of

consistent defence syndromes may be adaptive, resulting from selective pressure to deploy a

different combination of defences to coexisting species.

Introduction

Herbivores consume over 20% of global annual net primary pro-
ductivity (Agrawal, 2011) and strongly affect the standing bio-
mass of primary producers in terrestrial and marine systems (Cyr
& Pace, 1993; Poore et al., 2012). As a result, plants have evolved
a range of physical and chemical defences that reduce the nutri-
tional quality of the foliage (e.g. tannins), make it difficult for
herbivores to access or process foliage (e.g. spines, hairs, latex, leaf
toughness), are toxic to herbivores (e.g. cyanide, alkaloids,
phenolics), or attract insects that attack herbivores (e.g. extrafloral
nectaries) (Duffey & Stout, 1996; Hanley et al., 2007; Agrawal
& Konno, 2009; Ness et al., 2009; Ballhorn et al., 2010;
Spalinger et al., 2010).

The assumption that defences are costly underlies theories to
explain the distribution of defences among plant parts (e.g.
optimal defence theory, Rhoades & Cates, 1976) and among
individuals and species with varying access to resources (e.g.
growth-differentiation balance hypothesis, Herms & Mattson,
1992) or with different life-history characteristics (such as growth
rates, Coley, 1988). Consequently, allocation of resources to
defences is predicted to trade off with other plant functions such as
growth or reproduction (reviewed in Koricheva, 2002). Similarly,
within a plant, defences are predicted to trade off against one
another because a finite pool of resources is being divided between
different types of defence (Janzen, 1966; Steward & Keeler, 1988;
Eck et al., 2001; Cornelissen et al., 2009; Read et al., 2009). These
ideas have been used to suggest that there will be tradeoffs between
physical and chemical defences (Steward & Keeler, 1988; Twigg
& Socha, 1996; Cornelissen et al., 2009; Read et al., 2009),
induced and constitutive defences (Morris et al., 2006; Kempel
et al., 2011), tolerance and resistance to herbivores (Leimu &
Koricheva, 2006; but see N�u~nez-Farf�an et al., 2007), and biotic
defence (e.g. by ants) and direct chemical and/or physical defences
(Janzen, 1966; Rehr et al., 1973; Koricheva & Romero, 2012).

Empirical evidence for a tradeoff between physical and chemi-
cal defences has been mixed. Cornelissen et al. (2009) found a tri-
angular relationship between total phenolics and fibre across 34
subarctic species, with species showing high concentrations of
phenolics with low fibre, high fibre with low concentrations of
phenolics, or low quantities of phenolics and fibre, but never high
quantities of both traits. Read et al. (2009) found positive or null
correlations between leaf toughness and both total phenolics and
tannin activity measured as protein precipitation across 125 spe-
cies from New Zealand and New Caledonia. Twigg & Socha
(1996) found strong negative correlations between fluoroacetate
concentration and spines and toughness, but not hairs, in 28 spe-
cies of Gastrolobium. There was no correlation between total
phenolics and any mechanical property across six species of
rainforest trees in Australia (Iddles et al., 2003). Finally, a
meta-analysis across five correlations from two studies found no
significant correlation between physical and chemical defences
(Koricheva et al., 2004, although the sample size in this analysis
was very small).

Plants generally allocate resources to several defensive traits
simultaneously (Paul & Hay, 1986; Duffey & Stout, 1996;
Agrawal & Fishbein, 2006; Read et al., 2009). The absence of
clear tradeoffs in previous research could be a result of these stud-
ies using a pairwise approach between single physical and chemi-
cal defences rather than integrating across the suite of chemical
and physical defences employed by each species. Therefore, our
first aim was to determine whether there is a tradeoff between the
overall physical and chemical defence levels.

In addition to investigating the tradeoff between aggregated
indices of physical and chemical defences, we aimed to provide a
broad overview of the myriad correlations between defence
variables. Defence strategies are often phylogenetically conserved
(e.g. Cactaceae usually have spines, Myrtaceae have oil glands,
and Euphorbiaceae tend to have latex; Mabberley, 1997) and
plant species tend to have a suite of different types of defence
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(Duffey & Stout, 1996; Agrawal & Fishbein, 2006; Read et al.,
2009). To get a broad understanding of plant defence strategies,
we therefore need to consider multiple traits simultaneously,
across a wide range of species. However, most previous studies of
plant defences focus either on one or two traits across a large
number of species and taxa (e.g. Levin, 1976; Cornelissen et al.,
2009) or on multiple traits within taxonomically restricted
groups (e.g. Steward & Keeler, 1988; Hanley & Lamont, 2002;
Agrawal & Fishbein, 2006; Travers-Martin & Muller, 2008).

Although there has been considerable research on tradeoffs
between plant defences, a second school of thought predicts that
plants display coadapted complexes of defence traits, or defence
syndromes (Feeny, 1976; Kursar & Coley, 2003; Agrawal &
Fishbein, 2006). Much of the theory and evidence suggest that
there is a gradient in defence allocation, ranging from species
with high levels of defence to species with low levels of defence
(Kursar & Coley, 2003). Under this school of thought, allocation
to all defensive traits will often reflect ecological differences, such
as the quality or type of habitat and/or plant apparency (Janzen,
1974; Feeny, 1976).

Empirical studies generally support the idea that plants can be
categorized into defence syndromes. For example, hierarchical
cluster analysis of seven traits suggested that 24 species of
Asclepias could be characterized by three defence syndromes, rep-
resenting species with high N and high amounts of latex and tric-
homes, species with high C : N ratios and tough leaves, and
species with low C : N ratios and high concentrations of cardeno-
lides (Agrawal & Fishbein, 2006). Hierarchical cluster analysis
for seven species of Brassicaceae also revealed three groups: high
N with high glucosinolates; high N with high trichome densities
and high proteinase inhibitor activity; and low N, high C : N and
low glucosinolates (Travers-Martin & Muller, 2008; though N is
an important component of both glucosinolates and C : N ratio).
Finally, in a larger comparative study, da Silva & Batalha (2011)
showed that 61 species from a cerrado community in Brazil fell
into five groups. Three of these groups had four or fewer species
and were distinguished by a single trait. The two remaining
groups represented a syndrome of low C : N and high specific leaf
area, and a syndrome of high C : N, low specific leaf area (SLA)
and presence of alkaloids, tannins and terpenoids.

In this study we aimed to extend our previous understanding of
interspecific patterns in plant defences by asking how general these
patterns are. Specifically, we asked whether tradeoffs and/or defence
syndromes are seen across species from a broad range of taxonomic
groups, from a wide range of habitats around the world. We
collected a dataset of six physical and four chemical defence traits,
measured on 261 species spanning 203 genera and 80 families,
including a lichen, ferns, gymnosperms and angiosperms growing
under natural conditions at a range of sites, to provide an unprece-
dented quantification of the tradeoffs and correlations among plant
defences using both pairwise analyses and multivariate statistics.

In summary, our aims were to:
� test the hypothesis that there is a negative relationship between
species’ overall level of physical and chemical defence;
� quantify the correlations between a wide range of types of
physical and chemical defences;

� test the hypothesis that plant species are clustered in defence
syndromes.

Materials and Methods

Sampling

We worked at 75 study sites spanning every continent except
Antarctica, and latitudes from 74.5°N to 51.5°S (Moles et al.,
2011). We generally studied the four species with the greatest
leaf area index at each site (exceptions described in Moles et al.,
2011 and species list provided in Supporting Information,
Table S1). One advantage of our method of selecting species is
that it chooses species without consideration of their defence
strategy, which means that we get general results that are dis-
tinct from, and complementary to, previous studies of clades
with particularly interesting defence strategies. The final species
list included 261 species spanning 80 plant families (see Table
S2 for a summary of the taxonomic composition of our data-
set), and included 106 tree species, 90 shrub species, 58 herba-
ceous species (broadly defined, and including the lichen) and
seven climbing species.

We sampled fully expanded photosynthetic units (usually
leaves or leaflets, but occasionally photosynthetic stems or phyll-
odes; henceforth ‘leaves’) from mature, outwardly healthy indi-
viduals of each species, as close to the peak growing season as
possible (full details of material selection in Moles et al., 2011).
At least 40 g of fresh material was collected from at least five indi-
viduals of each species and placed in paper bags ready for oven
drying. An additional three fresh leaves from each of five plants
of each species were placed in plastic bags with damp tissue, and
stored in a cooler or refrigerator until their SLA could be mea-
sured. Although we attempted to eliminate as many sources of
variation as possible, there were some factors that were not con-
trolled in our sampling, including leaf position, reproductive sta-
tus and previous exposure to herbivores (see supplementary
methods of Moles et al., 2011 for further discussion).

Traits

We selected a range of traits that have been shown to make it dif-
ficult for herbivores to access or process leaf tissue, decrease leaf
loss to herbivores, reduce growth or survivorship of herbivores,
and/or increase the plants’ survival or reproduction (evidence for
each trait reviewed below and in Moles et al., 2011). However, as
we have not quantified the fitness advantage plants accrue from
possessing each of our traits, they are formally resistance traits
rather than defences per se (Strauss & Agrawal, 1999). These
traits can affect different herbivores in different ways (Tanentzap
et al., 2011), and the fitness advantage conferred by a given trait
depends on a range of factors, including the assemblage of herbi-
vores present, other functions of the trait, the suite of other traits
possessed by the plant, and the environment in which the plants
grow (Koricheva, 2002).

Local environmental conditions (e.g. soil type, light, nutrient
and moisture availability) and exposure to recent herbivory
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(Coley et al., 1985; Karban & Meyers, 1989) can affect the
expression of defence or resistance traits in an individual plant.
By considering several physical and chemical traits across a wide
range of taxa and habitats, we aimed to quantify the relationships
among traits given the inherent background variation in local
environmental conditions. Thus, the observed relationships
among traits are those currently occurring in the surveyed plants,
with all other factors affecting the expression of defence traits
varying naturally among plants or sites.

Methods for all trait measurements are described in Moles
et al. (2011).

The physical traits quantified were as follows:
� Specific leaf area. Leaves with low SLA have higher physical
toughness (Iddles et al., 2003; Moles et al., 2011), which is an
extremely effective defence against herbivores (Choong et al.,
1992; Turner, 1994; Hanley et al., 2007; Clissold et al., 2009).
� Presence/absence of hair on mature foliage. Hairs make it difficult
for invertebrates to access leaf tissue, decrease losses to herbivores
(Moles & Westoby, 2000; Hanley et al., 2007), reduce herbivore
growth and survivorship (Haddad & Hicks, 2000; Agrawal &
Fishbein, 2006), and reduce oviposition (Haddad & Hicks,
2000). We used a simple presence/absence instead of trichome
density because the wide variety of different sizes and shapes of
trichomes across our study species would make it very difficult to
make meaningful quantitative comparisons. Further, all hairs,
including glandular hairs, were counted as physical defences.
There is certainly scope for a more detailed investigation of this
trait in future studies.
� Presence/absence of extrafloral nectaries. Extrafloral nectaries
occur in over 90 plant families, and the omnivorous invertebrates
they attract (typically ants) attack herbivorous insects, thus
increasing the host plant’s survival and/or reproductive success
(Ness et al., 2009).
� Presence/absence of spinescence. Spines, thorns and prickles are
an effective form of defence against a range of herbivores, particu-
larly mammals (Hanley et al., 2007).
� Presence/absence of succulent leaves. Succulence is primarily
related to water availability. However, invertebrate herbivores
may have difficulty processing succulent tissue. In a field study in
Africa, succulent species lost only three-quarters of the leaf area
lost by nonsucculent species, and grasshoppers removed almost
twice as much leaf area from nonsucculent species than from
succulent species in cafeteria experiments (Perez-Harguindeguy
et al., 2003).
� Presence/absence of latex. Latex deters chewing herbivores, par-
ticularly invertebrates, and experimental removal of latex
increases herbivory (Agrawal & Konno, 2009). Although latex is
a defence with both physical and chemical features, we have fol-
lowed historical precedent in including it as a physical defence
(Agrawal et al., 2008).

The chemical traits quantified were as follows:
� Lipid content. The percentage of dry leaf tissue made up of oils
(such as terpenes), cuticular waxes and resins. Many studies have
shown that these traits deter or otherwise negatively affect herbi-
vores (Lincoln, 1985; Peeters, 2002; Jones et al., 2003; Marko
et al., 2008).

� Ash content. The percentage of dry leaf mass remaining after
combustion at 600°C for 12 h. This is a measure of defences such
as silica-based phytoliths and calcium oxalates. Silica is wide-
spread and abundant in plant tissues, especially in grasses, which
are typically 2–5% silica (Massey et al., 2006; Cooke &
Leishman, 2012). Calcium oxalate occurs in most plant families
and is the most abundant insoluble mineral in plant tissue,
accounting for 3–80% of plant dry mass (Franceschi & Nakata,
2005; Korth et al., 2006). Both silica and calcium oxalates reduce
feeding by a range of herbivores, including insects and mammals
(Djamin & Pathak, 1967; Galimuhtasib et al., 1992; Ward et al.,
1997; Korth et al., 2006; Massey et al., 2006; Hanley et al.,
2007).
� Polyethylene glycol (PEG)-binding capacity. We used Silanikove
et al.’s (1996) PEG-binding assay as a measure of tannins.
Tannins deter feeding in a range of herbivores (Furstenburg &
Vanhoven, 1994; Fritz et al., 2001; Roslin & Salminen, 2008).
Tannins can reduce metabolic and growth efficiency in inverte-
brates (Roslin & Salminen, 2008), reduce protein and dry matter
digestibility, cause endogenous nitrogen loss, and cause damage
to the gastrointestinal tract, kidney and liver in mammals
(Shimada, 2006; Spalinger et al., 2010). We chose the PEG-
binding assay rather than a traditional colorimetric assay for two
reasons: it measures the degree to which tannins bind to plant
protein (a functional trait that is relevant to animals) rather than
the concentration of a suite of chemicals that can have varying
effects on herbivores; the PEG-binding assay provides a straight-
forward quantitative index, while the different types of tannins
found in different plant taxa produce different chromophores at
similar concentrations and thus confound colorimetric assays
(Mueller-Harvey, 2006). The use of PEG binding as a tannin
assay is most applicable to mammalian herbivores, but predicting
insect responses to tannins relies more on understanding the pro-
oxidant activity of each tannin as well as the oxidative conditions
in the gut (Barbehenn & Constabel, 2011). A larger project is
underway to understand how the different approaches described
intersect.
� Cyanogenic glycosides. The ability to release hydrogen cyanide
in response to cell damage is a widespread defence trait that is
effective against a wide range of invertebrate and vertebrate herbi-
vores (Ballhorn et al., 2010).
We also recorded the absolute and relative abundance of each of

our sample species at each site. Absolute abundance was a simple
estimate of the leaf area index of each of our study species. Relative
abundance was calculated by dividing the leaf area index for each
of our study species by the total leaf area index for the field site
(details in Moles et al., 2011). Finally, we placed each study spe-
cies into coarse growth form categories (tree/shrub/herb/climber).

Data analyses

Unless stated otherwise, we analysed the data with R (R Develop-
ment Core Team, 2007).

We began by performing cross-species analyses to quantify
pairwise relationships between traits. These models included a
random effect for site, to account for the fact that species sampled
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at the same site are not independent, and weighted cases such that
each species or subspecies received a total weight of 1 (that is, the
247 species or subspecies that occurred at only one site received
weights of 1, while the 16 species or subspecies that occurred at
more than one site received weights inversely proportional to the
number of sites at which they occurred). R2 values were calcu-
lated by sequential reduction in residual sum of squares on addi-
tion of the term (as usual), adding fixed-effects terms to the
model before the random-effect term for site. SLA data were
log10-transformed before analysis.

We performed phylogenetic analyses on all pairwise trait
comparisons that involved at least one continuous variable.
Phylogenetic trees were built using Phylomatic (http://www.
phylodiversity.net/phylomatic/phylomatic.html) using a mega-
tree based on the most recent Angiosperm Phylogeny Group
classification (APG III 2009; Phylomatic megatree R20091110).
We then used the analysis of traits module in Phylocom 4.1
(Webb et al., 2008) to obtain values for each phylogenetically
independent contrast. Species that occurred at multiple sites were
given a mean value calculated across all the sites at which they
occurred. Contrasts for two continuous variables were analysed
using regressions through the origin (Garland et al., 1992). For
analyses between continuous and binary variables, contrasts for
which the state of the binary variable changed were tested for dif-
ference from zero, using t-tests. It is not possible to run analyses
of two binary variables in Phylomatic.

Defence indices

We used latent variable modelling (LVM) to calculate an index
of chemical defence and an index of physical defence for each
species. One benefit of LVM is that it explicitly recognizes the
presence of underlying variables (in this case, overall chemical
defence and overall physical defence) that are difficult or impossi-
ble to measure, but which are correlated with variables that we
can measure (in this case, traits such as presence of spines, hairs
and latex) (Sammel et al., 1997; Regan et al., 2002; Grace, 2006).
We began by grouping variables based on their correlations.
Traits with significant negative correlations were placed in sepa-
rate groups, and traits with positive correlations were put in the
same group. For chemical traits, ash and cyanide were placed in
one group, with lipid and PEG binding in another group. For
physical attributes, hair and latex made up one group with SLA,
extrafloral nectaries, spines and succulent leaves in the other
group. Quantile–quantile plots were constructed for each of the
continuous variables. All plots indicated that each of these
variables was approximately normally distributed. Therefore, for
the purposes of a latent variable model, we assumed the continu-
ous variables were normally distributed, with means related to
the relevant sub-index via a simple linear model. Percentage
variables were logit-transformed before analysis. For presence–
absence data, we assumed a binary distribution and used logistic
regression to relate the mean probability of presence to the sub-
index. A separate sub-index was generated for each group, and
indices for chemical and physical defence were calculated by add-
ing scores from the component sub-indices. Additional details of

the methodology, and the R source code used for constructing
the chemical index are provided in Methods S1.

Relationships between indices of chemical and physical
defence were assessed using both cross-species analyses and phylo-
genetic regressions (methods as described earlier). We also per-
formed a quantile regression using the quantreg package in R, to
quantify the shape of the data cloud. A random effect for site
could not be included in quantile regressions, but a fixed effect
for site was not significant (P = 0.86) in the fifth percentile
analysis.

Multivariate analyses

We used categorical principal component analysis (CATPCA;
Gifi, 1991) in SPSS 15.0 (SPSS Inc., Chicago, IL, USA) to
explore the relationships among all traits simultaneously. This
analysis allows the inclusion of categorical variables with numeri-
cal variables, and the existence of a nonlinear relationship
between traits (Ellis et al., 2006; Costantini et al., 2009). Binary
traits were treated as ordinal, while continuous traits were treated
as numerical.

We used hierarchical cluster analysis (performed with SPSS
15.0) to determine whether our species were grouped in defence
syndromes. Trait values were transformed so they ranged from 0
to 1. We used Euclidean distances as the dissimilarity measure-
ment and UPGMA as the linking procedure (Legendre &
Legendre, 1998), using. We tested for the presence of species
groups in the a priori unstructured set of samples using the simi-
larity profile routine (SIMPROF) in the software package Primer
V.6. This routine contrasts the similarity profile (i.e. Euclidean
distance between samples plotted against the rank order of simi-
larities) of the observed data to that expected by chance (obtained
by 9999 permutations, with the values for each variable indepen-
dently permuted across all species; Clarke et al., 2008).

Fig. 1 The relationship between indices of physical defence, and chemical
defence. Indices were generated using latent variable modelling (see
Methods S1 for detailed methods). The lines show the fifth and the 95th

quantiles, from quantile regression.
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Results

The relationship between the index of overall physical defence
and the index of overall chemical defence was marginally nonsig-
nificant (P = 0.076; slope =�0.13; R2 = 0.014; Fig. 1). This
result was not affected by excluding the lichen (P = 0.071). There
was no significant relationship between the indices of physical
and chemical defence after accounting for phylogeny (P = 0.27;
slope =�0.12; R2 = 0.007), ruling out the possibility that a
significant relationship is being obscured by phylogenetic
nonindependence of the data.

Next we added a term for growth form to investigate whether
the inclusion of taxa of differing growth forms obscures a signifi-
cant relationship between chemical and physical defences.
However, growth form did not explain a significant proportion
of the variation in this analysis (P = 0.26).

Quantile regression showed that the slope of the 95th quantile
was not significantly different from zero (P = 0.20). The slope of
the 10th quantile was not significant from zero either (P = 0.21).
However, the fifth quantile (lower line, Fig. 1) had a slope signifi-
cantly different from zero (P = 0.03; slope =�0.52); that is, our
data cloud is triangular. There are species with high physical and
chemical defence levels or high levels of either chemical or physi-
cal defence, but there is a lack of species with low levels of both
chemical and physical defence.

Pairwise correlations between defence traits

Five of the 45 pairwise correlations between defence traits were
statistically significant after applying a sequential Bonferroni
(Rice, 1989). Three of these were consistent with tradeoffs
between defences: a negative relationship between lipid content
and ash content (P < 0.001, R2 = 0.07), a negative relationship
between ash content and PEG-binding capacity (P < 0.001,
R2 = 0.17), and a positive correlation between SLA and ash con-
tent (P < 0.001, R2 = 0.19; low SLA is related to higher tough-
ness). There was a positive relationship between ash content and
the likelihood of a species having hair (P < 0.001, R2 = 0.05), and
species with extrafloral nectaries were disproportionately likely to
have spines (P < 0.001, R2 = 0.06). A further six relationships had
P-values < 0.05, but did not retain significance after sequential
Bonferroni (Fig. 2).

The results corrected for phylogeny were qualitatively similar
to the results of cross-species analyses in all but one case (Table
S3). The exception was the relationship between lipid content
and ash content, which was significant in cross-species
(P < 0.001) but not in phylogenetic analyses (P = 0.59). In this
case, the significant cross-species relationship is most likely driven
by one or more divergences deep in the phylogeny. In the other
cases, our results show that the cross-species results are neither
obscured nor artificially strengthened by phylogenetic relation-
ships among the study species.

Finally, we used categorical principal component analysis (PCA)
to investigate multivariate relationships among our variables
(Fig. 3a). The first axis explained 19.47% of the variation and sep-
arates species with high PEG-binding ability from species with

high values of ash and SLA. The second axis separates species with
spines from those with high lipid content (14.07% of variation).
Extrafloral nectaries were better correlated with axis 3 (12.72% of
variation), succulent leaves and latex were correlated with axis 4
(10.15%), and cyanide was correlated with axis 5 (10.02%).

Evidence for defence syndromes

The low proportion of significant pairwise correlations between
traits is not what we would predict if these traits fell into tightly
coordinated syndromes. Consistent with this, arraying species in
the multivariate space defined by the categorical PCA did not
reveal any obvious clusters (Fig. 3b). We also applied hierarchical
cluster analysis, a technique that has been previously used to
argue for the existence of defence syndromes in plants (Agrawal
& Fishbein, 2006). The phenogram for our data did not support
the idea that our species were clustered in distinct groups (Fig. 4),
and similarity profile analyses showed no evidence that the profile
of between-species similarities differed from that expected under
the null hypothesis of no structure (SIMPROF, p = 0.013,
P = 0.26) – that is, our study species do not display coordinated
defence syndromes.

Discussion

Across a taxonomically and geographically broad sample of plant
species we found no evidence of a tradeoff between the overall
chemical and physical defences against herbivores, and few nega-
tive relationships between pairs of defence traits; and no evidence
for coordinated defence syndromes. Thus, it appears that while
there can be correlations between pairs of traits, or syndromes of
defence among closely related species (Agrawal & Fishbein,
2006; Travers-Martin & Muller, 2008), in general, plants
employ a range of different combinations of defences against
their herbivores.

Three of the 45 pairwise comparisons in our data revealed sig-
nificant tradeoffs between defence traits. These results are broadly
consistent with the findings of previous studies spanning multiple
defences. Three of the 21 pairwise correlations among seven
defence traits in 24 milkweeds (Asclepias) were statistically signifi-
cant, with none of these being tradeoffs (Agrawal & Fishbein,
2006). There were negative relationships between phenolics and
two traits, spines and leaf thickness; positive relationships between
phenolics, SLA and leaf density, but no significant relationships
between spines and SLA, leaf density or leaf thickness in seedlings
of 14 species of Hakea (Hanley & Lamont, 2002). There were no
significant correlations between alkaloids, mechanical defences
and nectaries across 19 species of Ipomoea (Steward & Keeler,
1988). There was no correlation between indices of extrafloral
nectaries and glands or trichomes across 31 species of the
Gossypieae, but there was a negative relationship between glands
and trichomes (Rudgers et al., 2004). Finally, the only significant
cross-species relationship from the 15 pairwise correlations
between toughness, alkaloids, terpenoids, tannins, latex and tric-
homes across 61 species from a cerrado community was a negative
relationship between trichomes and latex (da Silva & Batalha,
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2011). Across these studies, there is a low incidence of significant
correlations, and an even lower incidence of tradeoffs.

The low incidence of tradeoffs might be partly explained by
the fact that it would not be possible for every trait in a study of
more than two traits to be negatively related to all other traits,
because if traits a and b are both negatively related to trait c, then
traits a and b will be positively correlated. In addition, the theory
that predicts tradeoffs between defences is about allocation of
resources, rather than about levels of expression of traits. This

study, like the vast majority of the previous studies, measured
expression of defence traits (which is biologically relevant,
because this is what the herbivores encounter). Calculating the
costs of producing and maintaining traits that use different cur-
rencies (e.g. carbon, silicon, nitrogen), and that have functions in
addition to their roles in defence is well beyond what we can do
here. However, addressing the mismatch between theory
(allocation) and data (expression) is an important direction for
the future. Another question for the future is whether traits that

Fig. 2 Pairwise correlations between the four chemical and six physical traits. P-values and R2-values are from mixed-effects models including a random
effect for site (see the Materials and Methods section for details). These were cross-species analyses, where each species was given a total weight of 1.
The five correlations that remained significant after applying sequential Bonferroni are marked with asterisks and are surrounded by heavy boxes.
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are built using the same resource (e.g. nitrogen-based defences or
carbon-based defences) are more likely to display tradeoffs than
are traits that use different resources (though this particular trade-
off could also appear as a result of a tradeoff between qualitative
and quantitative defence). Finally, many innate and inducible
chemical defences protect plants from biotrophic fungal, bacterial
and viral microbes (Dangl & Jones, 2001; Dodds & Rathjen,
2010) as well as herbivores. If chemical defences are primarily

aimed at microbes, whereas physical defences primarily deter
larger herbivores, these defence types would likely reflect the local
composition of the herbivore and microbe communities, and
would not necessarily occur as a tradeoff.

A broad comparative study such as ours necessarily incorpo-
rates variation from a wide range of sources, including habitat
and abiotic pressures, the identity and abundance of herbivores,
and characteristics of the species, such as life form and evolution-
ary history. We have attempted to control for some of these fac-
tors in this study, but many sources of variation remain.
Significant relationships will be found only if they are strong
enough to be detected against this background noise. In light of
this, the five significant relationships between defence traits that
we did detect are both strong and likely to apply across a wide
range of ecosystems and species.

We have become accustomed to finding constellations of inter-
related traits in comparative ecology. For instance, traits such as
seed mass, plant size, time to maturity, longevity and wood den-
sity are related to seedling survival, seed production, relative
growth rate and dispersal distance, and together characterize a
species’ life-history strategy (Weiher et al., 1999; van Gelder
et al., 2006; Moles & Westoby, 2006). Traits such as SLA, leaf
lifespan, leaf nitrogen and photosynthetic rate form the leaf eco-
nomics spectrum (Wright et al., 2004). However, defence traits
are clearly different. It is well established that different defences
deter different types of herbivores and that defences can act syner-
gistically to reduce damage (Agrawal, 2007). Perhaps having a
different combination of defences from coexisting plant species is
also advantageous. If so, selection for unusual combinations of
traits could contribute to the very weak correlations between dif-
ferent defences at the cross-species level. This question would be
best addressed using data for a large number of defence traits
across the suite of coexisting species within a community. It
would also be interesting to compare the region of trait space
occupied by the species within a community with that occupied
by the species in this global study. In other words, are certain
traits or values of traits absent at local scales because they are not
adaptive (e.g. because certain types of herbivores are not present
or because of environmental factors) or does selection for unusual
combinations of traits maintain high degrees of variation among
coexisting species?

Many of the traits we measured have functions in addition to
their roles in deterring herbivores. For instance, scleromorphy
protects leaves from damage from the abiotic environment, as
well as from herbivores (Turner, 1994). The conflicting tradeoffs
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involved with the differing roles of the traits we measured might
reduce the likelihood of plants displaying clear defence
syndromes. However, this confounding reduces the chances of
syndromes existing – it does not bias our analyses against finding
syndromes if they are present. The argument that a high degree
of allocation to one trait means that a plant will have fewer
resources available for a second trait is also robust to the traits
having multiple roles, so on this logic we would still expect to see
tradeoffs between traits. However, the benefit of having a second
function could make allocation to a second trait more advanta-
geous than if the second trait acted solely as a defence. This
would reduce our chances of finding tradeoffs among traits.
Nonetheless, if tradeoffs between defence traits are weak enough
that the vast majority are obscured by other functions, then it
seems that tradeoffs among defences are not a major priority for
plants in resource allocation.

Three results stand out from the pairwise analyses of correla-
tions between defences. First, only one correlation involving SLA
retained significance after sequential Bonferroni. Thus, although
SLA is an indicator of leaf toughness (a highly effective plant
defence), and also a central component of the leaf economics spec-
trum, it is a surprisingly poor predictor of a species’ suite of chemi-
cal and physical defences. Secondly, four of the five significant
pairwise relationships were between ash content and another
defence. This suggests that phytoliths and calcium oxalates (traits
that have often been overlooked in the defence literature) might
form an important component of a plant’s defence strategy. The
negative relationship we found between ash content and PEG-
binding capacity is consistent with Cooke & Leishman’s (2012)
recent demonstration of a negative relationship between silica con-
tent and total phenols. Thirdly, the only relationship between
extrafloral nectaries and other defences was a positive association
with spines. This relationship is largely the result of four species of
Acacia and one Caesalpinia that possessed both spines and EFNs
(extrafloral nectarys), though there were also species from the
Rosaceae, Euphorbiaceae and Capparaceae that possessed both
defences. Our finding does not support Janzen’s (1966) hypothe-
sis that species with biotic defence, such as ants, should have lower
chemical or physical defences. Our results are in line with a recent
meta-analysis, which showed that while species with food bodies
and domatia had significantly lower direct defences, there was no
effect of extrafloral nectaries on direct defences (Koricheva &
Romero, 2012).

A novel finding from our analysis of the relationship between
species’ physical and chemical defences was the scarcity of species
that had both low chemical defence and low physical defence.
Most of our species had high chemical and physical defence
levels, or high levels of either chemical or physical defence. It is
possible that the lack of undefended plants is an artefact resulting
from our selection of the four most abundant species in each
ecosystem. This would occur if very rare species escaped from
herbivores by being inconspicuous, rather than through defences
(Feeny, 1976). However, our species had leaf area indices ranging
from 0.002 to 3.92 m2 m�2, and represented between 0.3 and
88% of the total leaf area at the study sites, and neither absolute
nor relative cover explained a significant proportion of the

variation when included in analyses of physical vs chemical
defence (absolute cover, P = 0.82; relative cover, P = 0.27). Thus,
we think it is more likely that our finding results from our inclu-
sion of an unprecedented range of defence traits. There are many
different ways for a plant to defend itself against herbivores, and
although plants do not all invest in the same types of defences,
most species invest in at least some types of defence. The exis-
tence of a suite of species that escape from herbivores through
rapid growth and being inconspicuous is widely accepted (Feeny,
1976; Hay & Fenical, 1988; Kricher, 2011). However, a negative
relationship between how conspicuous a plant is and defence
does not mean that inconspicuous species are not defended. In
fact, it is quite a challenge to think of plant species that do not
have any form of defence against herbivores.

Our study asks whether there is evidence for tradeoffs or
defence syndromes across a wide range of species and environ-
ments. It remains the case that there might be tradeoffs or syn-
dromes at other levels of organization, such as within species,
within genera or across coexisting species within habitats. If rela-
tionships do occur at lower taxonomic levels, or within particular
communities, it will be interesting to ask whether these results
are simply lost in the unavoidable noise associated with a global
sample, or whether other ecological and evolutionary processes
mask the relationships. It could also be that the tradeoff is not
between particular types of defence, but rather between overall
allocation to defences (both physical and chemical together) and
nondefence factors such as growth and reproduction.

Our conclusions are limited to the most abundant species at
each site, and to the set of physical and chemical traits we mea-
sured. It would be interesting to do a similar study on rare spe-
cies, and incorporating additional traits would give a more
comprehensive understanding of tradeoffs and correlations
among plant defence traits. Our first suggestion would be to
incorporate additional nitrogen-based defences.

There is still much to be learned about plant defences. In the
near future, we plan to use our data to test hypotheses about fac-
tors such as the nutritional content of the foliage, apparency, hab-
itat quality and climatic conditions that might drive selection for
plant defences. Many of these hypotheses will be addressed using
an aggregated index of defence, rather than data for individual
defences, and it will be important to consider allocation to
defence as part of a plant’s ecological strategy rather than consid-
ering defences in isolation. However, these are only parts of the
picture. Ultimately, we would like to provide an integrated analy-
sis of the complex intercorrelations among plant defences, envi-
ronmental conditions, herbivores and herbivory. For now, we
have shown that across a broad sample of abundant plant species,
the set of common defence traits we measured were neither
grouped in syndromes nor arrayed as a series of tradeoffs. That is,
our results are contrary to both of the major ideas in the
literature.
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