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Abstract— Flood extent maps derived from SAR images are a 
useful source of data for validating hydraulic models of river 
flood flow. The accuracy of such maps is reduced by a number of 
factors, including changes in returns from the water surface 
caused by different meteorological conditions and the presence of 
emergent vegetation. The paper describes how improved 
accuracy can be achieved by modifying an existing flood extent 
delineation algorithm to use airborne laser altimetry (LiDAR) as 
well as SAR data. The LiDAR data provide an additional 
constraint that waterline (land-water boundary) heights should 
vary smoothly along the flooded reach. The method was tested on 
a SAR image of a flood for which contemporaneous aerial 
photography existed, together with LiDAR data of the un-flooded 
reach. Waterline heights of the SAR flood extent conditioned on 
both SAR and LiDAR data matched the corresponding heights 
from the aerial photo waterline significantly more closely than 
those from the SAR flood extent conditioned only on SAR data. 
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I.  INTRODUCTION 
Flood extent maps derived from remotely sensed data are of 

considerable use in hydrology, providing spatially distributed 
data for validating hydraulic models of river flood flow, for 
emergency flood relief management and for developing 
spatially accurate hazard maps. The all-weather day-night 
capability of SAR sensors gives these a considerable advantage 
for flood mapping over sensors operating at visible or infrared 
wavelengths, as the latter are unable to penetrate the cloud that 
often accompanies flood events. Flood water usually appears 
dark compared to the surrounding land because the smooth 
water surface acts as a specular reflector. However, wind or 
rain may cause roughening of the water surface, such that the 
backscatter from the water may rise to similar or greater levels 
than the surrounding land. A further complicating factor may 
be the presence of emergent vegetation at the flood edge, 
leading to substantial increase in backscatter due to multiple 
reflections. These factors tend to reduce the accuracy of SAR-
derived flood extent maps. 

Methods for the automatic delineation of flood extent in 
SAR images of both fluvial and tidal environments have been 
developed by several authors (see e.g. [1, 2]). A technique  for 
delineating a fluvial flood using a statistical active contour 

model (or snake) applied to a single-frequency single-
polarisation SAR image of the flood to identify regions of  
homogeneous speckle statistics is described in [3, 4]. This was 
aimed at producing an observed flood extent against which to 
validate the flood extent predicted by a hydraulic model. The 
technique was applied to a flood imaged using the ERS-1 SAR 
sensor, and proved capable of identifying 75% of the flooded 
area correctly, with 70% of the waterline coinciding with 
ground data to within 20m. The main error in waterline 
position was found to be due to un-flooded short vegetation 
adjacent to the flood giving similar radar returns to open water, 
causing an over-estimate of flood extent. The loss of flood 
extent due to emergent vegetation was found to be a secondary 
source of error. 

However, further investigation revealed that, as a result of 
these error sources and the relatively large size of the ERS 
pixel, the heights of the SAR waterline along a flooded reach 
could exhibit considerable noise. One reason for this was that 
the snake algorithm did not constrain the SAR waterline height 
to vary smoothly along the reach, and thus did not exploit the 
fact that changes in height along a reach are usually very 
gradual. With the level of height errors exhibited, the SAR 
image often became much less useful for flood model 
validation than it could otherwise be. 

This paper describes how improved accuracy can be 
achieved by modifying the existing flood extent delineation 
algorithm to use airborne LiDAR as well as SAR data. The 
algorithm is modified to look not only at SAR image space but 
also at LiDAR DTM and vegetation height maps, so that the 
snake can be conditioned to be smoothly-varying in ground 
height as well as in SAR intensities and textures. 

II. TEST DATA SET 
The event used to test the method was a 1-in-5 year flood 

on the Thames west of Oxford that occurred in December 
1992. An ERS-1 overpass occurred just after the flood peak, at 
a time when there was no wind or rain in the area. Aerial 
photographs were acquired at the time of the overpass [5], so 
that the SAR snake waterlines conditioned without and with 
the LiDAR data could be compared with the waterline from the 
aerial photos. The floodplain over this reach is semi-rural, with 
the majority of fields being used at the time for pasture or 
having been ploughed. The flood waterline was delineated by 



eye from the aerial photos and georeferenced [4]. The error in 
the waterline position was assessed from waterline segments 
where the waterline was observed to lie alongside a hedgerow 
or field boundary that could be located on a 1:25000 scale map, 
and was found to be less than 20m.  

LiDAR data of the un-flooded reach were subsequently 
acquired by the Environment Agency of England and Wales 
(EA). By comparing them with GPS readings, the LiDAR 
heights were found to have a random error of 10.2 cm and a 
systematic error of 2.6cm. The post-processed LiDAR DTM 
and vegetation height maps were obtained from the EA. These 
were degraded to 2m pixel size to avoid too large a mismatch 
with the SAR pixel size of 12.5m. Fig. 1 shows a section of the 
DTM (1.5km square) with the aerial photo waterline overlain. 

III. FLOOD EXTENT EXTRACTION FROM SAR DATA 
The algorithm to delineate a flood in a SAR image using an 

active contour model is described in [3], and only an overview 
is presented here. Active contour models or snakes are useful 
for converting incomplete or noisy edge maps into smooth 
continuous vector boundaries [6]. The edge image space is 
searched using a dynamic curvilinear contour that is driven to 
be attracted to edge pixels using an energy minimisation 
function, so that the contour can link together unconnected 
edge segments. The contour (snake) is represented in a 
piecewise linear fashion as a set of nodes (i.e. the coordinates 
of the snake points) linked by straight line segments.  

Ivins and Porrill [7] developed a statistical snake that 
operates on the image itself rather than an edge image, 
dispensing with the need for a prior edge detection stage.The 
statistical snake is formulated as an energy minimisation 
problem with the total snake energy E(u(s)) given by – 

E(u(s)) = Etension + Ecurvature - ∫∫ G(I(x, y)) dx dy        (1) 

where u(s) = (x(s), y(s)) describes the contour position (x, y) in 
the 2-D image space as a vector function of an arc length 
parameter s. Etension and Ecurvature are energies generated by the 
model’s internal tension and stiffness constraints, which favour 
a smooth uncrenellated contour made up of evenly spaced 
nodes. G is a goodness functional that measures how 
homogeneous in tone and texture is a set of image pixels I(x,y). 

  

 
 

G provides an estimate of how similar the mean intensity µ’ 
and variance of the set of n pixels on the contour immediately 
on either side of a particular snake node are to the mean 
intensity and variance of those pixels contained within the 
interior of the contour. The dependence of G on µ’ is given by 
– 

G(µ’) = 1 – n(µ’ – µ)2/vk2                         (2) 

where µ and v are respectively the mean and variance of the 
seed population enclosed within the contour, and k is a 
parameter that can be adjusted to tune algorithm performance. 
G is equal to 1 for a set of pixels with µ’ = µ, but falls to zero if 
µ’ differs from µ by k√(v/n) (i.e. k standard deviations, with k 
usually set at around 2 or 3). 

The roles of the tension and curvature constraints are to 
produce a contour of appropriate smoothness with evenly 
spaced nodes, by a consideration of the balance between image 
and curvature forces. Consider adjacent snake nodes at 
positions ui-1, ui and ui+1, linked by vectors vi and vi+1.  The 
contribution to the total curvature energy is [3] – 

∆Ecurvature =  γ |vi+1 – vi|2/ ai            (3) 

where ai is the distance between the midpoints of  vi and  vi+1, 
and γ is a curvature energy weighting parameter. The 
contribution to the tension energy is given by – 

∆Etension =  λ(|ui+1 – ui|2+ |ui – ui-1|2)          (4) 

where λ is the tension energy weighting parameter. The 
magnitudes of these energies can be adjusted using the 
weighting parameters. Too large a value for the curvature 
parameter will make the curvature term dominate the model 
energy and produce an unrealistically smooth contour. Too 
large a value of the tension parameter will favour a short 
contour and stifle the growth of the snake. The scheme used to 
adjust the snake to minimise its energy is the algorithm of 
Williams and Shah [6]. 

Fig. 2 shows a section of snake waterline generated using 
SAR data only, overlain on the SAR image. The snake was 
seeded manually as a narrow strip lying along the course of the 
un-flooded river channel, ensuring that it contained only 
flooded pixels. The snake shows a tendency to leak to higher 
ground (see the DTM in Fig. 1). This is likely to be due to the 
presence of vegetated fields, which correspond to areas of low 
SAR backscatter and are likely to be misclassified as flooded. 

 

 

Figure 2. Waterline conditioned only on SAR data overlain on 
SAR data 

Figure 1. A section of the aerial photo waterline (white) 
overlain on the LiDAR DTM (lighter = higher). The low-

lying north-west part of the image was flooded 



IV. FLOOD EXTENT EXTRACTION FROM SAR AND LIDAR 
DATA 

The snake algorithm was modified so that the snake is 
conditioned not only on the SAR image, but also on the LiDAR 
DTM, so that it becomes smoothly-varying in ground height as 
well as in SAR intensities and textures. The LiDAR DTM is 
able to provide a ground height at each pixel, so that each 
position u(x, y) becomes u(x, y, z). The modification involves 
using the LiDAR heights to measure curvatures and tensions at 
snake nodes in 3-D rather than 2-D space. Consider an instance 
where an un-flooded field with low SAR backscatter is 
adjacent to a flood edge, such that the field is included in the 
SAR waterline determined by the snake (Fig. 3). As there will 
likely be a rise in height (dh) across the field perpendicular to 
the true flood edge, the error in the waterline will give rise to a 
significant component of curvature in the vertical plane, which 
will not be present in the waterline segments adjacent to the 
field. To reduce the vertical curvature component at node i in 
Fig. 3, the snake will try to contract to drag node i back to be 
collinear with nodes i-1 and i+1, which will also reduce the 
horizontal curvature. The 3-D tension energy will also be 
reduced by this move. In order to take account of the fact that a 
change in height at a node should in general cause different 
changes in 3-D curvature and tension compared to the same 
magnitude change of node position in the xy plane, the LiDAR 
heights were scaled by a weighting factor wl with respect to the 
(x, y) coordinates. 

For the modified algorithm, the LiDAR image was 
degraded to the same pixel size as the SAR image (12.5m) by 
averaging the LiDAR heights within each SAR pixel. Fig. 4 
shows a section of the snake conditioned on both SAR and 
LiDAR data, overlain on the SAR data. It is clear that the 
tendency of the snake to leak onto higher ground has been 
much reduced compared to Fig. 2 (see also Fig. 1 DTM). This 
behaviour is repeated at a number of other points over the 
whole waterline. It turns out that the main errors in waterline 
position corrected using the LiDAR are due to un-flooded short 
vegetation adjacent to the flood  giving similar returns to open 
water. 

V. QUANTITATIVE COMPARISON OF METHODS 
A quantitative estimate of the improvement in performance 

using LiDAR data was made by comparing height differences 
between the snake and aerial photo waterlines. These were 
heighted by superimposing them on the LiDAR DTM. Only 
snake nodes on low slopes and in areas of short vegetation in 
the LiDAR vegetation height map were selected for heighting, 
as these were the ones likely to be heighted most accurately. 
For each snake node selected, the aerial photo height to 
associate with the snake height was found by finding the height 
of the closest aerial photo waterline point. To ensure that 
adjacent pairs of heights were largely uncorrelated, the pairs 
selected were thinned further so that no pair was closer than 
200m to another. Parameters were optimised by minimising the 
sum of the squared height differences between the snake nodes 
and their corresponding aerial photo waterline points. For the 
snake conditioned on only SAR data, the parameter optimised 
was k. For the snake conditioned on SAR and LiDAR data, k 
and wl were optimised.  

 
For the snake conditioned only on SAR data, the minimum 

r.m.s. error was obtained for k = 2.0, for which the snake 
waterline heights turned out to be significantly higher than 
those of the aerial photo. For the snake conditioned on SAR 
and LiDAR data, the minimum r.m.s. error was obtained for k 
= 3.0 and wl = 0.15. In this case, there was no significant 
difference between the snake and aerial photo waterline 
heights. There was also a factor of four reduction in r.m.s. error 
compared to that for the snake conditioned only on SAR data. 
The snake sections shown in Figs. 2 and 4 are for the relevant 
optimum parameters. 

VI. DISCUSSION  
The emphasis in the foregoing has been on ERS SAR data 

because of the availability of simultaneous ERS SAR and 
aerial photography of the 1992 Oxford flood.  While the ERS 
SAR sensor has single polarisation and a fixed viewing angle, 

 

 

Figure 4.  Waterline conditioned on SAR and LiDAR data overlain on 
SAR data. 

O 

O 

O 

O 

O 

i+1 

i 

i-1 

Flooded 
area 

Field with low backscatter 

=    waterline determined from SAR only  
       (O =  snake nodes) 

Figure 3. An example error that might be corrected using LiDAR. 

dh 

dh     =    height of node i above  nodes i-1 and i+1 

=    waterline determined from SAR and LIDAR 



the advent of later sensors with higher resolutions, multiple 
polarisations and variable viewing angles (e.g. RADARSAT, 
ENVISAT ASAR) has allowed improved flood delineation 
(e.g. [8]). ERS SAR data also have poorer resolution than 
airborne LiDAR data, whereas the high resolution satellite 
SAR sensors due for launch shortly (e.g. RADARSAT-2, 
TerraSAR and the Cosmo-Skymed constellation) will have 
resolutions more similar to that of LiDAR. The technique 
should also be applicable in this case. 

Production of a more smoothly-varying waterline may 
allow the development of improved performance measures for 
flood extent validation based on patterns of height differences 
between observed and modelled waterlines rather than on 
patterns of wet or dry pixels as at present [9]. This aspect is 
currently being studied. 

VII.   CONCLUSION  
An algorithm has been developed for the automatic 

extraction of flood extent using a snake generated from 
combined SAR and LiDAR data, and the resulting waterline 
compared to that generated using SAR data alone. The 
conclusion is that the use of LiDAR data has resulted in an 
observed waterline that varies more smoothly along the reach 
and is a better match to our best estimate of the true waterline 
heights.   
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