Dentistry

Dentistry fields

Okayama University

 $Year \ 2008$

Class I Gap-formation in Highly-viscous Glass-ionomer Restorations: Delayed vs Immediate Polishing

Masao Irie^{*} Yukinori Maruo[†] Goro Nishgawa[‡] Kazuomi Suzuki^{**} David C. Watts^{††}

*Okayama University, mirie@md.okayama-u.ac.jp

 $^{\dagger} \rm Okayama$ University

[‡]Okayama University

**Okayama University

^{††}University of Manchester Dental School

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information Repository.

http://escholarship.lib.okayama-u.ac.jp/dentistry_general/11

1

Class I gap-formation with highly-viscous glass-ionomer restorations $\mathbf{2}$ minimized by delayed polishing. 3 4 **RESEARCH MANUSCRIPTS** $\mathbf{5}$ Short title: Delayed polishing technique on Class I restorations 6 Clinical relevance: Delaying polishing for one day resulted in improved gap-formation for $\overline{7}$ 8 Class I restoration of highly-viscous conventional and conventional glass-ionomer cements. Abstract 9 10 This in vitro study evaluated the effects of delayed versus immediate polishing to permit 11 maturation on interfacial gap-formation around highly-viscous conventional glass-ionomer cement (HV-GIC) in Class I restorations together with determination of associated mechanical 12properties. Cavity preparations were made in occlusal surfaces of premolar teeth. Three HV-13GICs were studied (Fuji IX GP, GlasIonomer FX-II and Ketac Molar) and one conventional 14glass-ionomer cement (C-GIC, Fuji II, as a control), with specimen sub-groups (n = 10) for 15each property measured. After polishing, either: (i) immediately (6 min) after setting or (ii) 16after 24 h storage, the restored teeth were sectioned in a mesio-distal direction through the 17center of the model Class I restorations. The presence or absence of interfacial-gaps was 18 measured at x 1000 magnification at 14 points (each 0.5-mm apart) along the cavity 1920restoration interface; (n=10; total points measured per group = 140). Marginal gaps were 21similarly measured in Teflon molds as swelling data, together with shear-bond-strengths to

07-75

22 enamel and dentin, and flexural strengths and moduli. For three HV-GICs and one C-GIC,

significant differences (p<0.05) in gap-incidence were observed between polishing (i)

immediately and (ii) after one-day storage. In the former case, 80-100 gaps were found. In the

25 latter case, only 9-21 gaps were observed. For all materials, their shear-bond-strengths,

26 flexural strength and moduli increased significantly after 24 h storage.

 $\mathbf{27}$

28 Introduction

As a restorative material, conventional glass-ionomer cements (C-GIC) have certain desirable 29properties. C-GIC include chemical bonding to enamel and dentin substrates, release of 30 31anticariogenic fluoride into adjacent hard tissues and a low coefficient of thermal expansion similar to that of dentine.^{1,2} However, C-GICs are susceptible to fracture and exhibit low wear 32resistance. Therefore, these deficiencies have limited their use to areas subject to low 33masticatory stresses.² Because of the low fracture toughness, mechanical strength and 34brittleness of C-GICs, efforts were made to improve their mechanical properties by the 35addition of powder.³⁻⁵ Highly-viscous C-GICs (HV-GICs) were developed to overcome 36 early moisture sensitivity and low mechanical properties associated with conventional 37materials. And then they were designed as an alternative to amalgam for posterior preventive 38restoration.^{1,2} Highly-viscous or high powder-liquid ratio C-GICs, such as Fuji IX GP, Ketac 39 Molar and GlasIonomer FX-II, provide a "condensable" feel and are particularly used for the 40 atraumatic restorative treatment (ART) technique introduced by the World Health 41 Organization (WHO) for use in developing countries.^{6, 7} Indications for these cements in 42

43 general practice are to small Class I cavities, deciduous teeth and long-term temporaries.^{2, 8-12}

The polishing period is another factor that may influence the seal-ability around a cervical or 44a cavity restoration. Polishing after storage in water for one day resulted in improved gap 4546formation for cervical restorations or dentin cavities of a resin-modified glass-ionomer cement (RM-GIC) or a C-CGI.¹³⁻¹⁷ Due to the structure of RM-GIC or C-GIC and their hydrophilic 47nature, water sorption and subsequent swelling may lead to partial compensation of the 48shrinkage. The preservation of sealing around a restoration would benefit most if water 49sorption and setting shrinkage could proceed simultaneously. However, water sorption occurs 50only at a later stage compared with setting shrinkage.¹⁸ Currently, no information is available 5152regarding the interfacial-gap formation behavior around Class I restoration of a C-GIC.

53In the oral environment, C-GICs must also withstand masticatory and parafunctional stresses. And these stresses vary markedly in different clinical situations. Thus, thresholds in 54mechanical properties needed for success may vary considerably from case to case, with 55stronger C-GICs being required where greater stresses are anticipated. Flexural test are 56appropriate to assess the mechanical properties of restorative and luting cements.^{9, 13, 16} In 57previous studies, C-GICs were proposed to improve their marginal seal by enhancement of 58their flexural strength and bonding ability after 24 h water-storage.¹³ Appropriate elastic 59moduli and proportional limit values are also desirable.¹⁶ 60

61 The principal aims of the present study, therefore, were: 1) to evaluate both gap-formation 62 integrity around but-joints in model restorations, analogous to Class I restoration of HV-GICs 63 and 2) determination of the early development of their flexural and adhesive properties,

– 3 –

64	compared with those of a C-GIC. An important clinical variable was to be assessed in this
65	connection: namely, the effect on these properties of an immediate versus a 24 h -delayed
66	finishing procedure. Hence, a major hypothesis to be tested was that premature finishing
67	would significantly reduce interfacial integrity, relative to delayed finishing. Several
68	additional properties, including shear-bond-strengths, were also to be measured, to further
69	elucidate the effects of water-uptake over 24 h upon intrinsic and interfacial material behavior,
70	and to discriminate between the different material types.
71	
72	Materials and Methods
73	The basic properties of three HV-GICs and one C-GIC, as a control, are summarized in Tables
74	1. Human premolars, extracted for orthodontic reasons, were used for the experiment. After
75	extraction, each tooth was immediately stored in distilled water at 4°C for one to two months
76	before use.
77	Four C-GICs were investigated (Table 1), which were placed according to the
78	manufacturers' instructions. Dentin Conditioner was applied for 20 s, and rinsed with water.
79	Ketac Conditioner was applied for 10 s, and rinsed with water. The cavity was filled with
80	mixed GIC using a syringe tip (Centrix C-R Syringe System, Centrix, Connecticut, USA) and
81	covered with a plastic strip and was stored in an incubator at 37 $^{\circ}$ C and 100% relative
82	humidity for 4 min after mixing as setting procedure. The restored teeth were then coated with
83	a varnish (Fuji Varnish, GC, Tokyo, Japan).

84

85 Gap-Formation around Class I restoration:

86 **1. Preparing and Polishing Procedures:**

A Class I cavity was prepared in the human premolar surface, having a length of 3.5 mm, a 87 width of approximately 2 mm with a depth of 1.5 mm, using a tungsten carbide bur 88 (200,000-rpm) and a fissure bur (8,000-rpm) under wet conditions (Figure 1). Cavosurface 89 walls were finished to a butt joint. This design differed from a Class I clinical cavity in that 90 cavity corners were geometric-box angles to prepare a constant-volume model. One cavity 91was prepared in each of 80 teeth; (4 materials x 2 polishing or inspecting times x 10 repeats = 9280). The surfaces of designated restorations were polished immediately after setting, with 93abrasive points (Silicone Mide, Shofu, Kyoto, Japan) while rinsing with distilled water in an 9495effort to avoid desiccation and breakdown. The other designated specimens were stored after setting in distilled water at 37°C for 24 h. Then the surfaces of the restorations were polished, 96 97 as described above.

98 **2: Inspection Procedures**

Each tooth was sectioned in a buccolingual direction through the center of the restoration with
a low-speed diamond saw (Isomet, Buehler Ltd., Lake Bluff, IL). The presence or absence of
marginal gaps was measured at 14 points (each 0.5-mm apart) along the cavity restoration
interface (n=10; total points measured=140) using a traveling microscope (X1,000,
Measurescope, MM-11, Nikon, Tokyo, Japan) (Figure 1). The number of gaps in each position
was totaled and expressed as a sum for each sample.^{14, 15, 17}

105

– 5 –

106 Marginal Gap in Teflon Cavity

Since Teflon does not react with GICs, it was used as a mold to measure the degree of setting shrinkage (immediately after setting) and any hygroscopic expansion (after 1-day storage in water) of the GICs. Each prepared Teflon mold (n = 10), with a depth of 1.5 mm and a diameter of 3.5 mm, was placed on a silicone oil-coated glass plate, and filled with GIC using a syringe tip, then covered with a plastic strip until set. The sum of the maximum gap-width and the opposing gap width (if any) was expressed as the marginal gap in the Teflon cavity.

114 Shear Bond Strengths to Enamel and to Dentin

115Wet grinding of buccal surfaces was performed with up to 1000 grit silicon carbide abrasive 116paper until a flat enamel or superficial dentin area of at least 4 mm in diameter was exposed. The surface was pretreated as described above. A split Teflon mold with a cylindrical hole 117118 (diameter, 3.6 mm; height, 2 mm) was clamped to the prepared enamel or dentin surface. The Teflon mold was filled with various restorative materials using a Centrix syringe tip (Centrix 119 120 C-R Syringe System, Centrix, Connecticut, USA). It was covered with a plastic strip and the material was hardened by light irradiation, as described above. For each material, 10 121122specimens were prepared. Prepared specimens were secured in a mounting jig. At a time of either 6 minutes from start of mixing procedure, or after 24 h water-storage, the shear force 123was transmitted by a flat (blunt) 1 mm broad shearing edge making a 90° angle to the 124125direction of the load (or the back of the load plate). The shear force was applied (Autograph 126DCS-2000, Shimadzu, Kyoto, Japan) at a cross-head speed of 0.5 mm/min. The stress at

- 6 -

127	failure was calculated and recorded as the shear-bond strength. The failed specimens were
128	examined under a light microscope (x 4; SMZ-10, Nikon, Tokyo, Japan) to determine the total
129	number of adhesive failure surfaces. ¹⁶
130	
131	Flexural strength and flexural modulus of elasticity.
132	Teflon molds ($25 \times 2 \times 2$ mm) were used to prepare flexural specimens (n=10/group). Each GIC
133	was setting as described above. Flexural properties were measured, both immediately after
134	setting and after 24 h storage, using the three-point bending method with a 20 mm-span and a
135	load speed of 0.5 mm/min (5565, Instron, Canton, MA, USA) outlined in ISO 9917-2 (1996)
136	and the flexural modulus was calculated (Software Series IX, Instron, Canton, MA, USA).
137	
138	All procedures, except for cavity preparation, were performed in a thermo-hygrostatic room
139	kept at 23 \pm 0.5 °C and 50 \pm 2 % relative humidity. Ten specimens were made for each material,
140	storage period and property investigated. The results were analyzed statistically using the
141	Mann-Whitney U test, Tukey Test (non-parametric), ^{14-17, 19} Tukey Test, <i>t</i> -Test, or Fisher Exact
142	Test (Sigmastat 3.1, Systat software, Inc., Point Richmond, CA).
143	
144	RESULTS

Table 2 summarizes the interfacial gap formation observed in the Class I with three HV-GICs and a normal C-GIC (as a control), when the specimen was polished immediately after light-activation and after delayed polishing. For all materials, the sums of gaps were

– 7 –

significantly fewer with delayed polishing, compared to immediate polishing.

Table 3 summarizes the marginal gap width between the four GICs and Teflon molds under two conditions. The two columns represent the linear (diametral) setting shrinkage-strain immediately after setting and after one-day storage. The data for polishing after one-day storage was significantly better compared with that for polishing immediately. With immediate and after one-day stages, the values of Fuji IX GP and GlasIonomer FX-II were significantly less than for Fuji II.

Tables 4 summarize the shear bond strength to the enamel surface and the mode of fracture, respectively. Immediately after setting, the value of shear bond strength of Ketac-Molar was significantly less than that of the normal C-GIC (Fuji II). However there was no difference between the four GICs after one-day storage. The data for polishing after one-day storage were significantly better compared with that for polishing immediately. For all groups, no significant differences in fracture mode were observed between immediate and 24 h.

Tables 5 summarize the shear bond strength to the dentin surface and the mode of fracture, respectively. Immediately after setting, the value of shear bond strength of Fuji IX GP and Ketac-Molar were significantly less than that of Fuji II. It was not significantly different between the three C-GICs, except GlasIonomer FX-II, after one-day storage. The data for polishing after one-day storage were significantly better compared with that for polishing immediately. For all groups, no significant differences in fracture mode were observed between immediate and 24 h.

168 All materials showed significantly higher flexural strengths after 1 day than immediately

- 8 -

169 after setting (Table 6).

Table 7 summarizes the flexural modulus under two conditions. The tendency of results was similar to the flexural strength, increasing after storage. All materials showed significantly higher value than when the specimens were measured immediately after setting.

174 **DISCUSSION**

This study used a model cavity for the geometry of typical Class I cavities. This only approximates the Class I morphology and is not the typical morphology for a C-GIC, but has the advantage of a constant volume, reproducible geometry that is beneficial for an in vitro scientific study.

179This study demonstrated that polishing of four GICs should not be performed immediately after the filling and setting procedure but should be delayed to a later time to prevent 180 interfacial gap-formation between the material and the Class I cavity. In contrast to the 181 marginal gap of approximately 80-100 gaps when the specimen was polished immediately 182183 after setting, the gap was near zero when the specimen was polished after storage in water for 1 day. The GICs shrink during the setting reaction, so interfacial gaps form as the adhesion 184 between tooth-cavity and glass-ionomers does not resist the shrinkage-stress.^{13, 20, 21} However, 185after 1-day water storage the shrinkage-stresses of the materials are effectively compensated 186 for or even converted into expansion-stress due to water uptake and swelling.^{1,2,, 4, 18} Water 187 absorption of C-GICs reportedly affects cavity adaptation and reduces microleakage.^{3, 13} 188 Although the hygroscopic expansion may not be enough to compensate for the setting 189

- 9 -

190	shrinkage, it plays an important role in reducing the shrinkage caused by the cement setting
191	reaction and thus improves the interfacial gap-formation in the restoration. ^{14, 15}
192	The marginal gap measured using the Teflon mold showed a similar pattern, with respect to
193	the polishing condition, to that obtained using the Class I restoration, as mentioned above. The
194	marginal gap observed even after the specimen was stored in water for 1 day indicated that the
195	hygroscopic expansion did not fully compensate for the setting-shrinkage.
196	The bond-strength, flexural-strength and flexural-modulus of 1-day storage were
197	significantly higher than those measured immediately for the all C-GICs, and
198	inter-relationships have been reported previously. ^{3, 13, 22} As expected, cements show higher
199	bond and mechanical strengths when fully set than during the setting reaction. Also the pH, an
200	index of the extent of the hardening reaction for GICs, gradually increases for 24 hours. ^{1, 2, 23}
201	Therefore it can be presumed that completing of the setting reaction of a GIC requires at least
202	24 hours.
203	After 1-day storage a HV-GIC (Fuji IX GP) performed significantly better than its
204	corresponding conventional C-GIC (Fuji II). Increasing powder-liquid ratio is the main reason
205	for improving these results, as the two C-GICs are otherwise very similar. This improvement
206	is achieved by a reduction in the glass particle-size. However GlasIonomer FX-II and Ketac
207	Molar Aplicap did not clearly show this pattern. This may be explained by differences in
208	density, distribution or content of the powder, and the polyacrylic or maleic acid concentration
209	or molecular weight of polyacrylic or maleic acid of the liquid. A number of variations led to a
210	HV-GIC with improved physical properties. ²⁴

– 10 –

211	Investigating interfacial gap-formation after 24 h storage, for C-GICs, had value, as was
212	also found in studying various types of restorative filling materials. ¹³⁻¹⁷ The greater interfacial
213	integrity of GICs resulted from harmony between: good bond-strength, low setting shrinkage
214	or possibly some hygroscopic expansion. With HV-GICs it is thus generally advisable to
215	adjust of occlusion immediately after initial setting and perform a final contouring and
216	finishing by delayed polishing procedure. And, it is thought that a HV-GIC is the most useful
217	and significant restorative material for some pediatric or geriatric patients.
218	A more extensive approach to the evaluation of sealing efficacy with C-GICs would require
219	longer-term durability testing or load-cycling.
220	
221	References
222	1. Tosaki S & Hirota K (1994) Current and future trends for light cured systems, In Hunt PR,
223	ed Glass ionomers: The next generation – Proceedings of the 2nd international symposium on
224	glass ionomers Philadelphia 35-46.
225	2. Davidson CK & Mjor IA (1999) Advanced in Glass-Ionomer Cement Quintessence

226 Chicago 15-50.

- 3. Irie M & Nakai H (1987) The marginal gap and bonding strength of glass ionomers *Dental Materials Journal* 6(1) 46-53.
- 4. Wilson AD & McLean JW. *Glass-Ionomer Cement* Quintessence Chicago, 1988 57-72.
- 230 5. Guggenberger R, May R & Stefan KP (1998) New trends in glass-ionomer chemistry.
- 231 Biomaterials 19(6) 479-483.

- 6. Frencken J Phantumvanit P & Pilot T (1994) Manual Atraumatic Restorative Treatment
 Technique of Dental Caries. 2nd ed. Groningen: WHO Collaborating Center for Oral Health
 Services Research University of Groningen.
- 7. Frencken JE, Songpaisan Y, Phantumvanit P & Pilot T (1994) An atraumatic restorative
 treatment (ART) technique: evaluation after one year. *International Dental Journal* 44(5)
 460-464.
- 8. Mount GJ (1995) Some physical and biological properties of glass ionomer cement. *International Dental Journal* 45(2) 135-140.
- 9. Peutzfeldt A (1996) Compomers and glass ionomers: Bond strength to dentin and
 mechanical properties *American Journal of dentistry* 9(6) 259-263.
- 10. Tyas MJ, Anusavice KJ, Frencken JE, & Mount GJ (2000) Minimal Intervention dentistry
- 243 a review. FDI Commission Project 1-97 International Dental Journal 50(1)1-12.
- 244 11. Yip H-K, Smales RJ, Yu C, Gao X-J & Deng D-M (2002) comparison of atraumatic
- restorative treatment and conventional cavity preparations for glass-ionomer restorations in
- primary molars: one-year result *Quintessence International* 33(1) 17-21.
- 12. Yu C, Gao X-J, Deng D-M, Yip H-K & Smales RJ (2004) Survival of glass ionomer restorations placed in primary molars using atraumatic restorative treatment (ART) and conventional cavity preparations: two-year results *International Dental Journal* 54(1) 42-46.
- 250 13. Irie M & Suzuki K (2000) Marginal seal of resin-modified glass ionomers and
- 251 compomers: Effect of delaying polishing procedure after one-day storage *Operative Dentistry*
- 252 25(6) 488-496.

- 14. Irie M & Suzuki K (2002) Effect of delayed polishing on gap formation of cervical
 restorations *Operative Dentistry* 27(1) 59-65.
- 255 15. Irie M, Tjandrawinata R & Suzuki K (2003) Effect of delayed polishing on Interfacial gap
- formation of Class V restorations *Operative Dentistry* 28(5) 554-561.
- 257 16. Irie M, Suzuki K & Watts DC (2004) Marginal and flexural integrity of three classes of
- luting cement, with early finishing and water storage *Dental Materials* 20(1) 3-11.
- 259 17. Irie M, R Tjandrawinata, Suzuki K & Watts DC (2006) Root-surface gap-formation with
- 260 RMGIC restorations minimized by reduced P/L ratio of the first increment and delayed
- 261 polishing *Dental Materials* 22(5) 486-497.
- 18. Feilzer AJ, Kakaboura AI, de Gee AJ & Davidson CL (1995) The influence of water
- sorption on the development of setting shrinkage stress in traditional and resin-modified glass
- 264 ionomer cements *Dental Materials* 11(3) 186-190.
- 19. Conover & Iman RL (1981) Rank transformations as a bridge between parametric and
 nonparametric statistics *Amer Statistician* 35(3) 124-129.
- 267 20. Feilzer AJ, de Gee AJ & Davidson CL (1988) Curing contraction of composites and glass
 268 ionomer cements *Journal of Prosthetic Dentistry* 59(4) 297-300.
- 269 21. Sidue SK (1994) Marginal contraction gap formation of light-cured glass ionomers
 270 American Journal of Dentistry 7(2) 115-118.
- 271 22. Irie M & Nakai H (1988) Mechanical properties of silver-added glass ionomers and their
- bond strength to human tooth *Dental Materials Journal* 7(1) 87-93.
- 273 23. Anusavice KJ (1996) Phillips' science of dental materials 10th ed. WB Saunders Co.,

274 Philadelphia 565-566.

276

Biomaterials 17(6) 479-483.

- 275 24. Guggenberger R, May R. & Stefan KP (1998) New trends in glass-ionomer chemistry
- 277278279Mesial Distal 280G \mathbf{E}_{i} 281D 282G 2835 6 7 8 9 10 (11) 284D 285286287288**Caption to Figure** 289
- 290 Figure Class I restoration and each measurement location for gap-formation.
- 291 E: Enamel substrate, D: Dentin substrate, G: Glass ionomer restorative material

Material	Manufacturer	Batch No.	Powder/Liquid, Components, Surface treatment
Restirative materials			
Fuji IX <mark>GP</mark>	GC Corp. Tokyo, Japan	P: 0404301 L: 0404301	3.6P: fluoroaluminosilicate glassL: copolymer of acrylic and maleic acids, polybasic carboxylic acid, water
GlasIonomer FX-II	Shofu Corp.	P: 120304 L: 050302	2.6P: fluoroaluminosilicate glassL: copolymer of acrylic acid and tri-carboxylic acid, water
Ketac Molar Aplicap	3M ESPE AG Seefeld, Germany	169574	Precapsulated P: fluoroaluminosilicate glass L: polycarbonic acid, tartaric acid, oligomers, water
Fuji II (as a control)	GC Corp. Tokyo, Japan	P: 0309091 L: 0309121	2.7P: fluoroaluminosilicate glassL: copolymer of acrylic and maleic acids, polybasic carboxylic acid, water
Conditioner agents			
Dentin Conditioner	GC Corp. Tokyo, Japan	151021	Polyacrylic acid, water. Apply with brush 20 seconds - rinse - gently dry 5 seconds
Ketac Conditioner	3M ESPE AG Seefeld, Germany	00026	Polyacrylic acid, water Apply with brush 10 seconds - rinse - gently dry 5 seconds

Table 1 Restorative Materials and conditioner agents investigated

	Number of speci	mens	s she	owi	ng g	aps												Sum
Restorat	tion		Μ	edia	ıl			Bot	tto	m					Dis	tal		
	Polishing time	1	2	3	4	5	6	7	8	8	9	10		11	12	13	14	
Fuji IX (GP																	
	Immediate	10	5	2	4	2	1	7		7	7	3		7	6	9	10	80 (NS) [*] a [#] S ^{**}
	After one-day storage	2	0	0	0	0	1	1		0	0	0		0	0	0	5	9 (S) b
GlasIon	omer FX-II		_				_		_		_	_		_	_			
	Immediate	9	5	4	4	2	5	6	5		7	7		7	3	6	10	80 (NS) a S
	After one-day storage	5	0	0	0	0	1	0	0)	0	0		1	0	0	5	12 (NS) b
Ketac M	Iolar Aplicap																	
	Immediate	10	6	6	5	6	5	7	,	9	5		7	8	9	6	10	99 (NS) c S
	After one-day storage	4	0	0	2	0	1	0		2	2		1	4	2	0	3	21 (NS) d
Fuji II (as a cor	ntrol) Immediate	10	5	4	4	5	7	1(0	1()	6	3	7	6	7	10	94
(45 4 201			0			0	, C	1	1		1	0	2	,	0	,	10	S
	After one-day storage	/	U	U	2	0	2		1		1	0	2	1	0	I	4	21

Table 2 Effect of poisning time on gap formation around Class 1 restorat
--

N=10 (total measuring points, 1 - 14 = 140)

*: vs. Fuji II (Man-Whitney U-Test, S: Significant difference, NS: Not significant difference, alpha=0.05) #: Means with the same letters were not significantly different by Tukey test. (p>0.05, non-parametric^{14-17, 19}). : Immediate vs. After 1-day storage (Man-Whitney U-Test, S: Significant difference, alpha=0.05)

	p value*	
Immediately	After one-day storage	
14.3 (2.3) (S) [#]	9.3 (2.2) (S)	<0.001
14.3 (3.5) (S)	9.5 (1.7) (S)	< 0.05
17.0 (2.4) (S)	11.8 (3.0) (NS)	< 0.001
20.0 (3.3)	12.9 (3.0)	<0.001
	Immediately 14.3 (2.3) (8) * 14.3 (3.5) (8) 17.0 (2.4) (8) 20.0 (3.3)	Mean (S.D.) Immediately After one-day storage 14.3 (2.3) (S) * 9.3 (2.2) (S) 14.3 (3.5) (S) 9.5 (1.7) (S) 17.0 (2.4) (S) 11.8 (3.0) (NS) 20.0 (3.3) 12.9 (3.0)

Table 3 Effect of polishing time on marginal gap-width in the Teflon mold (micrometer).

N=10, Diameter in Teflon mold: 3.5 mm. *: *t*-test.

[#]: vs. Fuji II (*t*-test, S: Significant difference, NS: Not significant difference, p>0.05)

Restoration	Mean	p value [*]	
	Immediately	After one-day storage	p value [#]
Fuji IX GP	2.50 (0.64) a b	8.29 (1.87) c	< 0.001
	0 / 2 / 8 **	0/3/7	NS
GlasIonomer FX-II	2.78 (0.58) a	8.41 (1.52) c	< 0.001
	0 / 0 / 10	0 / 0 / 10	NS
Ketac Molar Aplicap	1.83 (0.53) b	5.99 (2.90) c	< 0.001
	0 / 8 / 2	0 / 7 / 3	NS
Fuji II (as a control)	2.93 (0.90) a	6.44 (1.97) c	< 0.001
	0 / 2 / 8	0 / 3 / 7	NS

Table 4 Shear bond strength to enamel surface (MPa) immediately after setting and one-day storage.

*: *t*-test. #: Fisher Exact test. NS: Not significantly different (p>0.05)

**: Number with each fracture mode, adhesive failure at the bonding site / mixed failure / cohesive failure, N=10 Means with the same letters were not significantly different by Tukey test. (p>0.05).

Restoration	Mea	p value [*]	
	Immediately	After one-day storage	p value [#]
Fuji IX GP	1.38 (0.55) a	8.80 (1.12) c	< 0.001
	0 / 0 / 10**	0 / 0/ 10	NS
	2 12 (0 45) 1		.0.001
Glaslonomer FX-II	2.12 (0.45) b	5.45 (1.03) d	<0.001
	0 / 0 / 10	0 / 0 / 10	NS
Ketac Molar Aplicap	1.42 (0.59) a	7.17 (1.99) c d	<0.001
	0 / 0 / 10	0 / 0 / 10	NS
Fuji II (as a control)	2.20 (0.67) b	8.59 (2.00) c	< 0.001
	0 / 0 / 10	0 / 0 / 10	NS

Table 5 Shear bond strength to dentin surface (MPa) immediately after setting and after one-day storage.

*: *t*-test. #: Fisher Exact test. NS: Not significantly different (p>0.05)

**: Number with each fracture mode, adhesive failure at the bonding site / mixed failure / cohesive failure, N=10 Means with the same letters were not significantly different by Tukey test. (p>0.05).

Restoration	Μ	Mean (S.D.)					
	Immediately	After one-day storage					
Fuji IX GP	1.83 (0.79) a	29.18 (5.39) b	< 0.001				
GlasIonomer FX-II	1.70 (0.53) a	17.29 (1.87) c	<0.001				
Ketac Molar Aplicap	1.89 (0.88) a	19.33 (5.38) c	<0.001				
Fuji II (as a control)	2.00 (1.59) a	15.33 (2.07) c	<0.001				

Table 6 Flexural strength (MPa) immediately after setting and after one-day storage.

*: *t*-test, N=10

Means with the same letters were not significantly different by Tukey test. (p>0.05).

Restoration	Mean (S.D.)	p value [*]
	Immediately	After one-day storage	
Fuji IX GP	1.30 (0.34) a	14.54 (1.97) b	< 0.001
GlasIonomer FX-II	1.82 (0.43) a	12.63 (1.92) b	<0.001
Ketac Molar Aplicap	1.98 (0.95) a	14.43 (4.34) b	<0.001
Fuji II (as a control)	1.57 (1.01) a	12.63 (4.10) b	<0.001

Table 7 Flexural modulus (GPa) immediately after setting and after one-day storage.

*: *t*-test, N=10

Means with the same letters were not significantly different by Tukey test. (p>0.05).