A theorem on semi-centralizing derivations of prime rings

Arif Kaya*

*Ege University

Copyright ©1985 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
A THEOREM ON SEMI-CENTRALIZING DERIVATIONS OF PRIME RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

ARIF KAYA

Let R be an (associative) ring with center C, and S a subset of R. A derivation $d : x \mapsto x'$ of R is said to be centralizing (resp. skew-centralizing) on S if $ss' - ss' \in C$ (resp. $ss' + ss' \in C$) for every $s \in S$. More generally, d is defined to be semi-centralizing on S if $ss' - ss' \in C$ or $ss' + ss' \in C$ for every $s \in S$.

The following has been proved in [1, Theorem 1 (2)] and [2, Theorem 2].

Theorem 1. Let d be a non-zero derivation of a prime ring R, and S a non-zero ideal of R.

(1) If d is centralizing or skew-centralizing on S, then R is commutative.

(2) If d is semi-centralizing on R, then R is commutative.

In this very brief note, we improve the above theorem as follows:

Theorem 2. Let d be a non-zero derivation of a prime ring R, and S a non-zero ideal of R. If d is semi-centralizing on S, then R is commutative.

Proof. Suppose, to the contrary, that R is not commutative. In view of Theorem 1 (1), d is not centralizing on S and R is of characteristic not 2. Then, by [1, Lemma 4], $S \cap C = 0$ and there exists $t \in S$ such that $t^4 \neq 0$ but $(t^2)' = 0$. Since R is a prime ring, so is the non-zero ideal $T = Rt^2R$ of R. Moreover, by [1, Lemma 1 (3)], $0 \neq T' \subseteq Rt^2R + Rt^2R' \subseteq T$. Hence d induces a non-zero derivation of T which is semi-centralizing on T. Thus, T is commutative by Theorem 1 (2), and therefore R itself is commutative by [1, Lemma 1 (1)]. This is a contradiction.

Acknowledgement. The author expresses his gratitude to Professor Hisao Tominaga for the final form of this paper.

References

ARIF KAYA

DEPARTMENT OF MATHEMATICS
EGE UNIVERSITY
BORNOVA, İZMİR, TURKEY

(Received September 10, 1985)