Increased accumulation of cytosine arabinoside in human leukemic cells and enhancement of its cell-killing activity by uridine.

Isao Takahashi, Kochi Municipal Central Hospital
Naoki Hayashi, Okayama University
Toru Nakamura, Kochi Municipal Central Hospital
Toshiro Matuzaki, Okayama University
Toshio Murase, Okayama University
Ken Osada, Okayama University
Makoto Takeuchi, Okayama University
Yasufumi Ueki, Okayama University
Hiroshi Nakada, Kochi Municipal Central Hospital
Seiichi Yorimitsu, Kochi Municipal Central Hospital
Ikuro Kimura, Kochi Municipal Central Hospital
Increased accumulation of cytosine arabinoside in human leukemic cells and enhancement of its cell-killing activity by uridine.*

Isao Takahashi, Naoki Hayashi, Toru Nakamura, Toshiro Matuzaki, Toshio Murase, Ken Osada, Makoto Takeuchi, Yasufumi Ueki, Hiroshi Nakada, Seiichi Yorimitsu, and Ikuro Kimura

Abstract

The effects of uridine(UR) on the cell-killing activity of cytosine arabinoside(ara-C) against human leukemic cells, MOLT-4, and on ara-C accumulation in cells were studied. The 50% lethal dose(LD50) of ara-C as determined by clonogenic assay was decreased to 5.0 x 10(-8) mol from 9.0 x 10(-7) mol after 3 days exposure to 10(-3) mol of UR. The accumulation of 3H-ara-C at 24 and 48 h was significantly increased in culture medium containing 10(-8) mol of 3H-ara-C and 10(-3) mol of UR (5,129 +/- 123.5 vs 2,554 +/- 115.5 cpm/10(5) cells at 24 h, p less than 0.01, and 5,772 +/- 123.2 vs 1,372 +/- 51.8 cpm/10(5) cells at 48 h, p less than 0.01). It is noteworthy that cell-killing activity of ara-C against human leukemic cells was enhanced by the combination with a nucleoside(UR), but not with antileukemic agents.

KEYWORDS: cytosine arabinosids, uridine, antileukemic effect, accumulation of cytosine arabinoside

*PMID: 2075831 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
Increased Accumulation of Cytosine Arabinoside in Human Leukemic Cells and Enhancement of Its Cell-Killing Activity by Uridine

Isao Takahashia,*, Naoki Hayashib, Toru Nakamuraa,*, Toshiro Matuzakia, Toshio Muraseb, Ken Osadaa, Makoto Takeuchib, Yasufumi Uekib, Hiroshi Nakadaa,*, Seiichi Yorimitsua and Ikuro Kimurab

aDepartment of Medicine and Cancer Institute, Kochi Municipal Central Hospital, Sakurai-Cho, Kochi 780, and bDepartment of Medicine, Okayama University Medical School, Okayama 700, Japan

The effects of uridine(UR) on the cell-killing activity of cytosine arabinoside(ara-C) against human leukemic cells, MOLT-4, and on ara-C accumulation in cells were studied. The 50\% lethal dose(\textit{LD}_{50}) of ara-C as determined by clonogenic assay was decreased to 5.0×10^{-8} mol from 9.0×10^{-7} mol after 3 days exposure to 10^{-3} mol of UR. The accumulation of 3H-ara-C at 24 and 48 h was significantly increased in culture medium containing 10^{-8} mol of 3H-ara-C and 10^{-3} mol of UR (5.129 ± 123.5 vs 2.554 ± 115.5 cpm/106 cells at 24 h, \textit{p} < 0.01, and 5.772 ± 123.2 vs 1.372 ± 51.8 cpm/106 cells at 48 h, \textit{p} < 0.01). It is noteworthy that cell-killing activity of ara-C against human leukemic cells was enhanced by the combination with a nucleoside(UR), but not with antileukemic agents.

\textit{Key words}: cytosine arabinosids, uridine, antileukemic effect, accumulation of cytosine arabinosides

Cytosine arabinoside(ara-C), one of the most active drugs for treating patients with acute nonlymphocytic leukemia, is phosphorylated to ara-C triphosphate(ara-CTP), which inhibits DNA polymerase by competitive inhibition of deoxycytidine triphosphate(dCTP), through three sequential phosphorylations (1-3). It is rapidly inactivated to arabinosyl uracil(ara-U) by cytidine deaminase (4). Because some metabolic pathways are common to endogenous nucleosides as well as ara-C, the effect of the combination of ara-C and natural nucleosides has been investigated. For example, tetrahydouridine(THU), an inhibitor of cytidine deaminase, was capable of increasing the biological activity of ara-C (5). Thymidine enhanced the cytotoxicity of ara-C subsequently to a reduction in dCTP pools (6).

The concurrent administration of suboptimal dose of ara-C and uridine(UR) also resulted in longer survival of mice bearing leukemia L 1210 than the administration of ara-C alone (7).

These findings led us to investigate the effect of UR on the cell-killing activity of ara-C against human leukemic cells, MOLT-4, and on ara-C accumulation in cells \textit{in vitro}.
Materials and Methods

The human lymphoblastic cell line, MOLT-4, was maintained in suspension in culture medium containing RPMI 1640 medium with 10% heat-inactivated fetal calf serum (FCS) and fed with fresh medium three times a week. Cells in the exponential growth phase were used. Cell-killing activity of the combination of ara-C and UR was determined by the clonogenic assay. Ten thousand cells were obtained after 3 days of culture at 37°C in medium containing different concentrations of ara-C with or without 10⁻³ mol of UR, which was non-toxic and the highest dose in this experimental system, and then they were incubated in soft agar. Seven days after incubation at 37°C in a 5% CO₂ atmosphere, percents of colonies containing 50 or more cells at different concentrations of ara-C were determined.

The accumulation of ³H-ara-C in cells was also examined. Cells, 1.5 × 10⁶/ml, were cultured in medium containing 10⁻⁸ mol of ³H-ara-C with or without 10⁻³ mol of UR at 37°C in a 5% CO₂ atmosphere for 48h. The growth rate of cells in medium with UR was not different from that in medium without UR. The radioactivity of 200 μl of the cell suspension was determined in a scintillation counter 6, 24 and 48h after incubation. ³H-ara-C accumulation with cells was expressed by the radioactivity per 1.0 × 10⁶ viable cells. The experiments were carried out in triplicate.

Results and Discussion

The effect of UR on the cell-killing activity of ara-C is shown in Fig. 1A. The 50% lethal dose (LD₅₀) of ara-C, which was 9.0 × 10⁻⁷ mol in the control, decreased to 5.0 × 10⁻⁸ mol after

![Graph A and B](http://escholarship.lib.okayama-u.ac.jp/amo/vol44/iss6/8)
exposure to 10^{-3} mol of UR. Time courses of the accumulation of 3H-ara-C are demonstrated in Fig. 1B. The accumulation of 3H-ara-C at 24 h (5.129 ± 123.5 vs 2.554 ± 115.5 cpm/10^6 viable cells, $p < 0.01$) and 48 h (5.772 ± 123.2 vs 1.372 ± 51.8 cpm/10^6 viable cells, $p < 0.01$) were significantly accelerated by the presence of 10^{-3} mol of UR. Ara-C is widely used in combination with other antileukemic agents for the treatment of acute myelocytic leukemia. Because of the similarity of the metabolic pathways of ara-C to endogenous nucleosides, the combined effects of the above two have been investigated (5–7). Saslow et al. (7) found the life span of L 1210 leukemia-bearing mice to be prolonged by treatment with the conjugated suboptimal dose of ara-C and UR. They also found greater radioactivity of the spleen after the concurrent administration of UR and 3H-ara-C than after 3H-ara-C alone. Our studies demonstrated that UR enhanced the cell-killing activity of ara-C against a human lymphoblast leukemia cell line in vitro and also demonstrated that UR enhanced the accumulation of 3H-ara-C in leukemic cells at the concentration of 10^{-8} mol of ara-C.

These findings indicate that one possible cause of the action of UR on the activity of ara-C in vivo is the enhancement of the cell-killing activity of ara-C. The amount of phosphorylated products are correlate with the response of experimental tumor systems as well as human leukemia to ara-C (8,9). Enzymatic studies with dialyzed splenic supernatant from BDF1 mice bearing advanced leukemia L 1210 disclosed that 3H-ara-C was phosphorylated with uridine 5’- triphosphate (UTP) at twice the initial rate as compared to adenosine 5’- triphosphate (ATP) at equimolar concentrations (10). Therefore, the enhancement of the cell-killing activity of ara-C by UR may owe to an increased phosphorylation of ara-C in the presence of UTP derived from UR. The mechanism of the enhancement of ara-C accumulation in leukemic cells by UR is not clearly understood, but the increased cell-killing activity of ara-C against human leukemia cells could be achieved by the nucleoside, UR.

The combined efficacy of ara-C and UR on leukemia progenitors obtained from patients with acute nonlymphocytic leukemia is currently under study.

References

Received August 3, 1990; accepted September 28, 1990.