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PREFACE 
 

Proteins are the core of life, providing functional support for all chemical 

processes in living cells. To perform this task, proteins must have a specific structure 

achieved by folding from its linear primary level to a three dimensional architecture. 

Disturbing this process will unavoidably leads to serious metabolic and physiological 

changes. Throughout evolution, molecular chaperones and complex quality control 

mechanisms evolved to keep protein structures functional in their lifespan. When 

something goes awry, misfolded proteins may aggregate, being involved in 

conformational diseases where Alzheimer’s, Parkinson’s, Andrade’s syndromes and 

prion disease are epitomes. A legion of factors may contribute to protein misfolding, 

including point mutations, chemical stress, post-translational modifications and abnormal 

quality control mechanisms. 

Protein glycation is a non-enzymatic post-translational modification where 

arginine and lysine side chains are irreversibly modified by carbonyl-containing 

molecules.  Contrary to controlled post-translational modifications, like phosphorylation 

or glycosylation, where enzymes specifically modify proteins to produce a certain 

cellular effect, glycation is a chemical process and any protein or other biomolecules with 

free amino groups are potential targets of the Maillard reaction. Moreover, there are 

several carbonyl-containing molecules in vivo, like glucose and methylglyoxal that have 

the ability to irreversibly modify proteins through this process. Thus, it is expected that 

the extensive non-enzymatic unregulated modification of particular proteins might have a 

deleterious effect on protein structure and function and be associated with cell and tissue 

damage observed in some pathologies and aging. In fact, the observation that AGE-

modified proteins accumulate in several clinical conditions links protein glycation to a 

sizeable amount of human diseases such as diabetes mellitus, age-related disorders, 

atherosclerosis and amyloid diseases. Due to the increase of older populations associated 

with the appearance of new diseases, there is a growing interest in this post-translational 

modification and in the development of therapies to inhibit the Maillard reaction. 

However, despite being extensively studied, the role of protein glycation in the 

development of pathological conditions and the mechanisms involved in the formation of 
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this post-translational modification in vivo are still unknown. This is likely to be related 

to our limited knowledge concerning the formation and biochemical effects of AGE-

modified proteins in vivo. The elucidation of these processes could be achieved using 

cellular models of protein glycation allowing the study of the metabolic conditions that 

lead to an increase of AGE formation and its biochemical effects on protein targets and 

cell physiology. 

 The major goals of the investigations presented in this thesis focused on 

understanding the biochemical effects of protein glycation in vivo by methylglyoxal, 

which is considered the most relevant glycation agent in biological systems, using 

Saccharomyces cerevisiae as a cellular model. The second aim was to investigate the 

relationship between protein glycation and amyloid fibril formation in vivo. Detailed 

molecular and kinetic models of protein amyloidogenesis in vivo that accurately describe 

the role of glycation in this process will contribute for the design of novel therapeutic 

strategies for these widespread human diseases. 

In Chapter I, a detailed overview of the relevant literature introduces and 

describes the theme. Following a brief description about the origins of the Maillard 

reaction, the chemical modification of proteins by carbonyl-containing compounds 

(protein glycation) is presented. A review of methylglyoxal metabolism in living cells 

including the biochemical effects of this main glycation agent in vivo, especially as a 

protein modifier through the Maillard reaction, was made. Finally, the implications of 

protein glycation in several human pathologies are described together with the effects of 

this post-translational modification in protein structure and function.         

In Chapter II, protein glycation by methylglyoxal was investigated in vivo using 

Saccharomyces cerevisiae. In this study, we provided the first evidence that this 

non-enzymatic post-translational modification also affects short-lived organisms like 

yeast. Importantly, different glycation phenotypes were identified, which depend directly 

on the intracellular methylglyoxal concentration. Furthermore, the results show that, 

although protein glycation is a non-enzymatic process, preferential protein targets exist. 

This work validated Saccharomyces cerevisiae as a eukaryotic cell model for 

understanding protein glycation in vivo. 
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In Chapter III, the specific protein glycation targets were identified and the 

chemical nature and molecular location of MAGE on these proteins were assigned. A 

novel method, based on the hidden information of peptide mass fingerprint, was 

developed. Three glycolytic enzymes and heat shock proteins were found to be glycated 

in vivo. In addition, a cellular response to protein glycation appears to exist: the activation 

of the molecular chaperone pathway involving Hsp26 that reduces the detrimental effects 

of protein misfolding and aggregation. Enolase2, the main yeast protein target, endures a 

glycation-dependent activity loss due to the modification of a critical arginine residue 

essential for dimer stability and hence activity.  

Chapter IV describes the effects of glycation in vivo by methylglyoxal on the 

structure, thermal stability and enzyme activity of yeast enolase. Our results demonstrate 

that glycation causes enolase unfolding and structural changes, leading to loss of 

biological function. Furthermore, we provided direct evidences for the existence of 

substantial differences between in vivo and in vitro glycation. These results raise serious 

doubts on the relevance of the huge amount of research work that employed in vitro 

glycated proteins to understand the glycation effects on protein structure and function. 

The results described in the next two chapters (Chapter V and Chapter VI) 

establish a bridge between protein glycation in vivo and amyloid disorders. In chapter V, 

the analysis of methylglyoxal-derived protein glycation in transthyretin-amyloid deposits 

extracted from Portuguese-type FAP patients is reported. This study unequivocally 

revealed the presence of the MAGE argpyrimidine, suggesting that protein glycation by 

methylglyoxal is involved in this neurodegenerative amyloid disorder. Taking advantage 

of the established cellular model of protein glycation and the fact that yeast has been used 

to study protein aggregation in the context of prion and Parkinson’s disease, different 

amyloidogenic human TTR variants were expressed in yeast and TTR amyloid fibril 

formation under glycation conditions was investigated. This work, described in chapter 

VI, gives the first experimental evidence that protein glycation promotes the formation of 

transthyretin amyloid fibrils in vivo.   

The concluding remarks in chapter VII provide an integrative framework of the 

findings presented in this thesis. The relevance of this work and perspectives for further 

studies are also highlighted in this chapter.  
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SUMMARY 
 

Protein glycation, the non-enzymatic and irreversible modification of amino 

groups by carbonyl compounds, is assuming an important role in the context of a wide 

range of human pathologies, including diabetes mellitus, age-related disorders and 

neurodegenerative diseases of amyloid type. Hence, there is a growing interest in this 

post-translational modification and, ultimately, the quest for inhibitors of protein 

glycation. However, despite extensive research, mainly by in vitro glycation studies with 

relevant or model proteins, the role of glycation in pathological conditions is still 

unknown. Therefore, cellular research models are required to investigate protein 

glycation in vivo, the resulting biochemical effects and its role in human diseases. 
In the work presented in this thesis, a novel approach was developed to 

investigate protein glycation in vivo by methylglyoxal and its biochemical effects. 

Moreover, the role of glycation by methylglyoxal in protein amyloidogenesis was also 

investigated. It was found that protein glycation occurs in yeast and defined glycation 

phenotypes were identified. Although protein glycation was primarily associated with 

complex organisms and long-lived proteins, this post-translational modification also 

affects short-lived organisms like yeast. A direct relationship between methylglyoxal 

formation rate and protein glycation was observed. A kinetic model of methylglyoxal 

metabolism was developed to investigate the relative importance of the glyoxalase 

pathway, aldose reductase and methylglyoxal formation rate on the methylglyoxal 

steady-state concentration and their relationship with protein glycation in vivo. It was 

found that the glyoxalase system and aldose reductase enzyme are equally important as 

key anti-glycation defenses in yeast.  A higher methylglyoxal input leads to a direct 

increase in methylglyoxal concentration even in the presence of the glyoxalase system 

and aldose reductase. In fact, challenging non-growing yeast cells with a high D-glucose 

medium, consequently increasing methylglyoxal formation rate, causes methylglyoxal-

derived protein glycation even in the reference strain with all enzymatic defenses against 

methylglyoxal. Therefore, there is a subtle balance between methylglyoxal metabolism 

and the accumulation of MAGE-modified proteins, in which cells can prevent MAGE 

formation only until anti-glycation defenses are overcome.  
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Interestingly, glycation in yeast appears to be a targeted process, whereby only a 

few proteins are modified. Protein identification, MAGE assignment and location were 

determined by mass spectrometry. The heat shock proteins Hsp71/72 and Hsp26 were 

found to be glycated in vivo. Hsp26, a critical element in the unfolding stress response, 

was only detected in the soluble form upon glycation. This finding shows that Hsp26 is 

most likely activated in glycation conditions, similarly to what happens in thermal stress. 

Three glycolytic enzymes were also glycated in yeast, namely phosphoglycerate mutase, 

aldolase and enolase, being the latter the main glycation target. This discovery prompted 

a deeper study of the biochemical implications of enolase glycation in vivo. Despite the 

observed glycation-dependent activity loss of enolase, glycolysis and cell viability 

remained unchanged, hinting that yeast cells evolved to cope with high glycation levels. 

To investigate the effects of glycation on enolase structure and enzymatic activity, the 

protein was purified from yeast cells under native and in vivo glycation conditions. For 

the first time, a protein was studied while enduring glycation in physiological conditions, 

allowing a direct comparison between in vivo and in vitro protein glycation. Significant 

differences were found between these distinct experimental conditions. In vivo glycation 

appears to be a specific process with only a few amino acid residues consistently 

modified with the same MAGE. Structural changes, evaluated by circular dichroism 

spectroscopy and thermal denaturation, showed that glycation mainly decreases α-helical 

content and increase unordered structure while enolase structural rigidity increases. In 

vitro, a greater molecular heterogeneity was observed with different MAGE occurring at 

the same molecular locations. α-Helical content also decreased, but in vitro glycation 

markedly increases β-sheet content and structural rigidity was further enhanced. It was 

also observed that glycation causes enolase unfolding and dimer dissociation. 

Based on the identification of MAGE location by mass spectrometry, a molecular 

model for enolase inactivation upon glycation was developed. Glycation occurs at R414, 

a critical residue for dimer stability. Modification of R414 disrupts electrostatic 

interactions with E20 on the other enolase chain that stabilize the enolase dimer, leading 

to its dissociation and consequent formation of inactive monomers. 

The molecular location of MAGE in enolase suggests that the tri-dimensional 

structure may directly influence glycation reaction. The modified-arginine residues were 



Summary 

  xix 

mainly found in an arginine-rich crevice located at the dimer interface, but solvent 

accessible. This arginine-rich cave could create a favourable environment for 

methylglyoxal-derived glycation reactions, sequestering free methylglyoxal that evaded 

from its catabolic routes. Hence, the high enolase reactivity towards methylglyoxal-

induced protein glycation could scavenge methylglyoxal, preventing changes in the 

biochemical functionalities of other proteins. Upon glycation, enolase unfolds but cells 

activate the refolding chaperone pathway to counteract enolase misfolding and to limit 

the harmful effects associated with extensive protein misfolding and aggregation. 

Yeast cells emerged as a living test tube to investigate the biochemical effects of 

glycation on protein structure and function in vivo. So, taking advantage of this finding, 

the link between protein glycation and amyloid disorders, was investigated. Using an 

improved procedure for the extraction of amyloid fibrils from FAP patients, we provided 

the first unequivocal evidence that methylglyoxal-derived advanced glycation end-

products are present in transthyretin amyloid deposits of FAP patients. Thus, we studied 

the effect of protein glycation in transthyretin amyloid fibril formation in yeast. For this 

purpose, TTR variants with different amyloidogenic potentials (TTR-wt, TTR-L55P and 

TTRd-D) were expressed in Saccharomyces cerevisiae and amyloid deposits were 

detected by fluorescence microscopy. It was observed that TTR is glycated when yeast 

cells are exposed to glycation conditions. Furthermore, the formation of transthyretin-

amyloid aggregates in cells expressing the amyloidogenic TTR-L55P variant is induced. 

These results provide the first direct evidence that glycation causes protein aggregation in 

vivo in the context of human amyloid disorders. 

 The presented results and conclusions are of great value not only to increase our 

knowledge about protein glycation and its biochemical effects in vivo, but also to assign a 

clear role of this non-enzymatic process in the development of amyloid disorders. In this 

context, yeast cells will certainly be useful as a eukaryotic model to study these processes 

at a cellular level. This is of vital importance in the design of novel or improved 

therapeutic strategies to inhibit protein glycation and counteract its harmful effects.  

 

Keywords: Protein glycation, methylglyoxal, misfolding diseases, anti-glycation 

defenses, Saccharomyces cerevisiae 
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RESUMO 

 
A glicação de proteínas é uma modificação pos-traducional, tendo como 

consequência a modificação irreversível de grupos amina por compostos contendo grupos 

carbonilo. Esta modificação tem sido implicada em diversas patologias humanas, tais 

como diabetes mellitus, doenças relacionadas com o envelhecimento e doenças 

neurodegenerativas do tipo amilóide. Neste contexto, a glicação de proteínas tem sido 

alvo de interesse na comunidade científica, com o objectivo final de desenvolver 

estratégias para inibir esta modificação pos-traducional. No entanto, apesar de 

intensivamente investigada in vitro com proteínas modelo ou clinicamente relevantes, o 

papel da glicação de proteínas no desenvolvimento de diversas condições patológicas não 

é ainda conhecido. Assim, é de extrema importância desenvolver modelos celulares para 

investigar a glicação de proteínas in vivo, os seus efeitos bioquímicos e finalmente a sua 

importância nas diversas doenças humanas em que está envolvida.  

 Neste trabalho, foi desenvolvida uma nova abordagem para investigar a glicação 

in vivo pelo metilglioxal e os seus efeitos bioquímicos. Para além disso, foi também 

investigado o papel da glicação de proteínas pelo metilglioxal na formação de fibras 

amilóides derivadas de uma proteína amiloidogénica. Observou-se a acumulação de 

proteínas glicadas pelo metilglioxal na levedura Saccharomyces cerevisiae, com 

diferentes fenótipos de glicação. Apesar da glicação de proteínas ter sido associada a 

organismos complexos e proteínas com baixo turnover, esta modificação pos-traducional 

também afecta microrganismos como a levedura. Foi observado que existe uma relação 

directa entre a velocidade de formação de metilglioxal e a ocorrência de glicação. Um 

modelo cinético do metabolismo do metilglioxal em S. cerevisiae foi construído para 

investigar a importância da via dos glioxalases, do aldose reductase e da velocidade de 

formação de metilglioxal na concentração em estado estacionário deste α-oxoaldeído. 

Com esta análise, verificou-se que o sistema dos glioxalases e o aldose reductase são 

igualmente importantes como defesas anti-glicação pelo metilglioxal. Observou-se 

também que existe uma relação directa entre a velocidade de formação de metilglioxal e a 

sua concentração em estado estacionário, mesmo na presença do sistema dos glioxalases 
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e do aldose reductase. De facto, um aumento da formação de metilglioxal, através da 

exposição de células a uma concentração elevada de D-glucose, provoca a glicação de 

proteínas pelo metilglioxal na estirpe de referência que apresenta todas as defesas 

enzimáticas contra o metilglioxal. Em condições fisiológicas, as células previnem a 

acumulação de proteínas modificadas pelo metilglioxal, mas só até as suas defesas serem 

ultrapassadas. 

 Na levedura S. cerevisiae, a glicação é um processo específico, onde apenas 

algumas proteínas são modificadas. Estas proteínas foram identificadas por 

espectrometria de massa, assim como a natureza e localização dos produtos avançados de 

glicação derivados do metilglioxal (MAGE, Methylglyoxal Advanced Glycation End-

products). As proteínas de choque térmico Hsp71/72 e Hsp26 foram identificados e 

apresentam modificações pos-traducionais derivadas da glicação pelo metilglioxal. A 

Hsp26, um elemento crítico na resposta celular a condições de stress de unfolding, foi 

apenas detectada na forma solúvel após glicação. Esta observação indicia que a Hsp26 é 

activada em condições de glicação, tal como se verifica em condições de stress térmico. 

Para além destas proteínas, três enzimas glicolíticos estão também glicados in vivo: o 

fosfoglicerato mutase, o aldose e o enolase, sendo este último o principal alvo de 

glicação. Um estudo detalhado das implicações bioquímicas da glicação in vivo do 

enolase foi realizado. Apesar de ter sido detectada uma diminuição da actividade deste 

enzima devido à glicação, a via glicolítica e a viabilidade celular permaneceram 

inalteradas, sugerindo que a levedura evoluiu de forma suportar elevados níveis de 

glicação. Para averiguar o efeito da glicação na estrutura e actividade enzimática do 

enolase, esta proteína foi purificada em condições nativas e em condições de glicação. 

Pela primeira vez, os efeitos da glicação in vivo na estrutura e função de uma proteína, 

foram investigados. Para além disso, este estudo permitiu efectuar uma comparação 

directa entre a glicação de proteínas in vivo e in vitro, tendo sido encontradas diferenças 

significativas. In vivo, a glicação aparenta ser um processo específico, em que apenas 

alguns resíduos de aminoácidos são consistentemente modificados pelo mesmo MAGE. 

Nestas condições, a glicação induz alterações estruturais, observadas por dicroismo 

circular, com uma diminuição do conteúdo em hélice α e um aumento da estrutura 

desordenada e da rigidez estrutural. In vitro, foi observado uma elevada heterogeneidade 
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molecular, com o mesmo resíduo de aminoácido modificado por diferentes MAGE em 

diferentes moléculas de proteína. Foi também detectada uma diminuição do conteúdo em 

hélice α, mas a glicação in vitro induz um aumento significativo de folha β. Em ambas as 

condições experimentais, a glicação causa a desnaturação do enolase, com a consequente 

dissociação do dímero, a forma activa do enzima. 

 Com base na identificação da localização molecular dos MAGE por 

espectrometria de massa, foi proposto um modelo para a inactivação do enolase pela 

glicação. Esta modificação pos-traducional ocorre em R414, essencial para a estabilidade 

da forma dimérica. A formação de uma hidroimidazolona neste resíduo de arginina 

destrói as interacções electrostáticas com E20 da outra cadeia que estabilizam o dímero, 

levando à sua dissociação e consequente formação de monómeros inactivos.  

 A localização molecular dos MAGE no enolase sugere que a estrutura 

tridimensional da proteína influencia as reacções de glicação. As modificações ocorrem 

maioritariamente numa cavidade rica em resíduos de arginina localizada na interface do 

dímero. Este local pode criar um ambiente favorável a reacções de glicação pelo 

metilglioxal, eliminando assim o metilglioxal não catabolisado pelos sistemas 

enzimáticos. Assim, a elevada reactividade do enolase para reacções de glicação 

derivadas do metilglioxal pode diminuir a concentração intracelular deste α-oxoaldeído, 

prevenindo assim a alteração da função de outras proteínas celulares. Após glicação, o 

enolase sofre alterações estruturais resultando na desnaturação da proteína e a célula 

activa a via de refolding para neutralizar os efeitos nocivos associados a processos de 

misfolding proteico e agregação. 

 Os estudos apresentados nesta tese revelaram que a levedura S. cerevisiae 

constitui um excelente modelo para investigar in vivo os efeitos bioquímicos da glicação 

na estrutura e função de proteínas. Assim, o papel da glicação de proteínas em doenças 

amilóides foi estudado na levedura S. cerevisiae como modelo celular. Utilizando um 

método aperfeiçoado de extracção de fibras amilóides de pacientes com polineuropatia 

amiloidótica familiar (FAP, Familial Amyloidotic Polyneuropathy), foi detectada 

inequivocamente a presença da argipirimidina (um produto avançado de glicação 

derivado do metilglioxal) nos depósitos amilóides de transtirretina (TTR). Esta 

observação indica que a glicação de proteínas deverá estar envolvida nesta doença 
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amilóide. Para investigar o papel da glicação na transtirretina e consequente formação de 

fibras amilóides in vivo, variantes da TTR com diferentes potenciais amilóidogénicos 

(TTR-wt, TTR-L55P and TTRd-D) foram expressos em S. cerevisiae e os depósitos 

amilóides foram detectados por microscopia de fluorescência. Foi observada glicação in 

vivo da TTR quando as células foram expostas a condições favoráveis à ocorrência deste 

processo. Nestas condições experimentais, foi observada uma indução da formação de 

depósitos amilóides derivados da variante amiloidogénica TTR-L55P. Esta observação 

constitui a primeira evidência experimental de que a glicação de proteínas induz a 

agregação e formação de fibras amilóides in vivo.        

 

 No seu conjunto, os resultados apresentados nesta tese e as conclusões inerentes 

são bastante importantes não apenas para compreender os mecanismos envolvidos na 

glicação de proteínas e consequentes efeitos bioquímicos in vivo, mas também para 

clarificar o papel deste processo não enzimático no desenvolvimento de diversas 

patologias humanas, como as doenças do tipo amilóide. Neste contexto, a levedura 

Saccharomyces cerevisiae constitui um excelente modelo para investigar estes processos 

a nível celular. Estes estudos são de vital importância para desenvolver novas abordagens 

terapêuticas para inibir a glicação de proteínas e minimizar os seus efeitos prejudiciais. 
 
Palavras-chave: Glicação de proteínas, metilglioxal, doenças conformacionais, defesas 

anti-glicação, Saccharomyces cerevisiae 
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ADP   Adenosine diphosphate 

AGE  Advanced glycation end-products 

ALS   Amyotrophic lateral sclerosis 

AP-1   Activator protein-1  

apoB   Apolipoprotein-B 

BSA   Bovine serum albumin 

CD   Circular dichroism 

CEL   Nε-(carboxyethyl)lysine 

CML    Nε-(carboxymethyl)lysine 

CoA   Coenzyme A 

C-terminal  Carboxyl-terminal 

D   Aspartatic acid 

DAPI   4',6-Diamidino-2-phenylindole 

DHAP    Dihydroxyacetone phosphate 

DHB   2,5-Dihydroxybenzoic acid 

DNA   Deoxyribonucleic acid  

DRA   Dyalisis-related amyloidosis  

DTNB   5,5’-Dithiobis(2-nitrobenzoic acid) 

DTT   Dithiothreitol 

E   Glutamatic acid 

EDTA   Ethylenediamine tetraacetic acid 

ENO2   Yeast enolase2 gene 

ESI-FTMS  Electrospray ionization - Fourier transform mass spectrometry 

FAP   Familial amyloidotic polyneurophaty  

G   Glycine 

GAP   D-Glyceraldehyde 3-phosphate 

GAPDH  D-Glyceraldehyde 3-phosphate dehydrogenase 

GLO1  Yeast glyoxalase I gene 

GLO2  Yeast glyoxalase II gene coding for the cytosolic isoform 

GLO4  Yeast glyoxalase II gene coding for the mitochondrial isoform 

GLR  Glutathione oxidoreductase 

GPX  Glutathione peroxidase 
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GSSG  Oxidized glutathione 

H  Histidine 

HbA1  Haemoglobin glycated by glucose 

HOG   High osmolarity glycerol 

HPLC   High performance liquid chromatography 

HSA   Human serum albumin  

Hsp   Heat shock protein 

ICAM-1  Intercellular adhesion molecule 1 

IGF-I   Insulin growth factor-1  

IL-1   Interleukin-1 

IL-6   Interleukin-6 

K   Lysine 

kcat  Catalytic constant 

Km  Michaelis constant  

L   Leucine 

LB   Luria Bertani  

LC-MS   Liquid cromathography-mass spectrometry 

LDL   Low-density lipoprotein 

M   Methionine 

MAGE   Methylglyoxal advanced glycation end-products 

MALDI-FTMS Matrix assisted laser desorption ionization - Fourier transform mass 

spectrometry 

MALDI-TOF  Matrix assisted laser desorption ionization - time of flight 

MAP   Mitogen-activated protein 

MAPK   Mitogen-activated protein kinase 

MCP-1   Monocyte chemoattractant protein-1 

MES   2-(N-morpholino)ethanesulfonic acid 

MG-H   Hydroimidazolone  

min  Minutes 

MODIC  Lysine-arginine methylglyoxal-derived cross-link 

MOLD   Methylglyoxal-lysine dimer 

mRNA   Messenger RNA 
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NADH   Nicotinamide adenine dinucleotide, reduced form  

NADP+   Nicotinamide adenine dinucleotide phosphate, oxidized form 

NADPH  Nicotinamide adenine dinucleotide phosphate, reduced form  

NFκB   Nuclear factor-κB  

NMR   Nuclear magnetic ressonance     

P   Proline 

PACE   Paired basic amino acid cleaving enzymes 

PAGE   Polyacrilamide gel electrophoresis 

PBS   Phosphate buffer saline 

PDGF   Platelet-derived growth factor 

PEP   Phosphoenolpyruvate 

PepMix1   Peptide mixture for mass spectrometers calibration 

PLAS   Power law analysis and simulation software 

PMF   Peptide mass fingerprint 

PMSF   Phenylmethylsulfonyl fluoride 

ProMix3  Protein mixture for mass spectrometers calibration 

PVDF   Polyvinylidene difluoride 

Q   Glutamine 

R   Arginine 

RAGE   Receptor for advanced glycation end-products 

RBP   Retinol-binding Protein 

RNA   Ribonucleic acid 

ROS   Reactive oxygen species    

rpm   Rotations per minute 

S   Serine 

S-buffer  Sorbitol-containing buffer 

SDLGSH  S-D-Lactoylglutathione 

SDS   Sodium dodecyl sulphate 

SOD-1   Superoxide dismutase-1  
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1. THE MAILLARD REACTION  
 

The Maillard reaction is one of the most ubiquitous chemical reactions in food 

chemistry and biological systems. The expression Reaction du Maillard was introduced 

by the French chemist Louis Camille Maillard who studied the reactions between sugars 

and amino acids or other amine-containing compounds (Maillard, 1912). As a result of 

the reaction, a brown coloration was observed and therefore the Maillard reaction is also 

referred as the browning reaction. The association of the reaction with the attractive 

colours and flavours of cooked food has its origins at least half a million years ago when 

Man first employed fire to cook. During the Second World War, the preservation of 

military food rations focused the minds of food scientists on the Maillard reaction and 

showed that the reaction could also be detrimental to food quality. The research on the 

Maillard reaction in biological systems began with the recognition, in the 1970s, that this 

reaction also occurs in vivo in diabetic patients and healthy subjects (Bunn et al., 1975). 

Presently, the Maillard reaction comprises a broad range of non-enzymatic reactions 

between carbonyl-containing compounds and amino groups leading to the formation of 

irreversible modifications, known as advanced glycation end-products (AGE). This term 

was introduced by Brownlee and co-workers (Brownlee et al., 1984) to describe the 

brown, fluorescent and cross-link structures produced in the latter stages of the reaction 

between sugars and proteins in vivo, although some AGE have no colour or fluorescence 

and neither are cross-link structures. Biomolecules with free amino groups like proteins, 

nucleotides and basic phospholipids can be irreversibly modified by this non-enzymatic 

reaction.  

 

 

2. PROTEIN GLYCATION  

 

Protein glycation, the result of the Maillard reaction in proteins, is a post-

translational modification whereby lysine and arginine side chains are irreversibly 

modified by carbonyl compounds producing AGE in a non-enzymatic process (Lo et al., 

1994; Westwood & Thornalley, 1995; Westwood & Thornalley, 1997). N-terminal free 
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amino groups and thiol groups of cysteine residues are also potential targets, although 

with cysteine, reversible and unstable adducts are usually formed (Lo et al., 1994; 

Westwood & Thornalley, 1997). Moreover, the N-terminal is usually modified, leaving 

arginine and lysine side chains as the main glycation targets in proteins (Driessen et al., 

1985). 

The first step in protein glycation involves the nucleophilic attack by the nitrogen 

atom of the protein amino group to the electrophilic carbonyl group of an aldehyde or 

ketone. After the elimination of a water molecule, a Schiff’s base is generated, which 

undergoes a spontaneous rearrangement, the Amadori rearrangement, to form the 

Amadori product, a ketoamine (Hodge, 1955; Koenig et al., 1977; Westwood & 

Thornalley, 1997). The reaction of glucose with lysine residues leads to specific Amadori 

products termed fructosamines (Njoroge & Monnier, 1989; Westwood & Thornalley, 

1997) (Figure I.1). Although the Amadori product is more stable than the Schiff’s base, it 

undergoes a complex series of chemical reactions, such as intramolecular rearrangements, 

oxidative and non-oxidative fragmentation and dehydratation reactions to yield an 

irreversible bound adduct, the AGE (Bucala & Cerami, 1992; Vlassara et al., 1994; 

Westwood & Thornalley, 1997) (Figure I.1). In older scientific literature, protein 

glycation refers only to lysine modifications by glucose with the formation of 

fructosamines, the Amadori product. Currently, glycation is used in a more general way, 

comprising all the reactions leading to AGE formation. 

Protein glycation depends on the concentration, specific reactivity and duration of 

exposure to the glycation agent (Acharya & Manning, 1980; Eble et al., 1983; Farah et 

al., 2005; McPherson et al., 1988), the presence of catalytic factors (as metal and buffer 

ions and oxygen) (Fu et al., 1996; Smith & Thornalley, 1992a; Smith & Thornalley, 

1992b; Watkins et al., 1987), the physiological pH and temperature (Smith & Thornalley, 

1992a; Smith & Thornalley, 1992b) and the protein half-life (Schleicher & Wieland, 

1986). Moreover, the location of the amino acid residue in a folded protein also 

influences the rate of glycation, either because the neighbouring amino acids influence 

the pKa value of the amino acid side chain undergoing glycation or restrict the binding of 

the glycation agent (Ahmed et al., 2005; Westwood & Thornalley, 1997). 
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Figure I.1. Initial steps of protein glycation by glucose, including the formation of the Schiff’s base and the 
Amadori product. The Schiff’s base, which is formed by the nucleophilic attack of the amino group to the 
carbonyl group, undergoes the Amadori rearrangement to produce fructosamines, the Amadori product. 
Through a complex series of chemical reactions, irreversible protein adducts, the advanced glycation end-
products (AGE), are produced. These adducts may involve protein cross-link by the reaction with another 
protein amino group. Adapted from (O'Brien, 1997; Westwood & Thornalley, 1997).  

 

The first two characterized AGE were Nε-(carboxymethyl)lysine (CML), a 

degradation product of fructosamines (Ahmed et al., 1986), and pentosidine, a fluorescent 

lysine-arginine cross-link (Sell & Monnier, 1989) (Figure I.2). These AGE were 

identified in vivo and accumulate with age in tissue collagens and lens proteins (Ahmed 

et al., 1986; Dyer et al., 1991; Dyer et al., 1993; Sell & Monnier, 1989). The early 

observation that CML and pentosidine formation requires oxidation reactions (Ahmed et 

al., 1986; Baynes, 1991) led to the concept of glicoxidation, in which the Amadori 

product autoxidation is essential of AGE formation (Baynes, 1991). In this context, 

oxygen is sometimes referred as fixative of the irreversible Maillard reaction 

modification of proteins (Baynes, 1991; Thorpe & Baynes, 1996). This is in agreement 

with the original concept that the Amadori product is the central precursor to AGE 

formation (Hodge, 1953; Hodge, 1955). However, it was found that Schiff’s base 

fragmentation also occurs, prior to the Amadori rearrangement (Namiki & Hayashi, 1975; 

Namiki & Hayashi, 1983). Furthermore, Wolff and Dean also found that metal-catalysed 

autoxidation of glucose may be more important than the initial attachment of glucose to 
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the amino group (Wolff & Dean, 1987; Wolff et al., 1991). Nowadays, it is 

acknowledged that multiple sources and mechanisms for AGE formation in vivo exist. 

These comprise oxidative and non-oxidative 

reactions of reducing sugars, Schiff’s bases, 

Amadori products and metabolic intermediates, 

although these processes are not yet fully 

understood. Importantly, glucose autoxidation, 

Schiff’s base fragmentation and Amadori products 

autoxidation yield highly reactive dicarbonyl 

compounds, such as 3-deoxyglucosone, glyoxal and 

methylglyoxal (Figure I.3) (Hayashi et al., 1986; 

Kato et al., 1987; Thornalley et al., 1999; Wells-knecht et al., 1995). These compounds 

also react directly with protein amino groups forming ketoimines, similar to 

fructosamines, but much more reactive (Figure I.3) (Hunt et al., 1993; Lo et al., 1994; 

Westwood & Thornalley, 1997). This implies that dicarbonyl compounds are relevant 

glycation agents and points to the fact that other reducing sugars may also initiate 

glycation reactions. Since the early discovery of glycated hemoglobin in vivo by glucose, 

designated HbA1, which increases as a function of the mean glycaemia of diabetic 

patients (being now used as a glycaemia biomarker), glycation by glucose has been 

thoroughly investigated (Bunn et al., 1975). Nevertheless, any reducing sugar can initiate 

glycation reactions with protein amino groups. Glucose is indeed the least reactive of all 

sugars, being speculated that this was the main reason why glucose was selected as the 

major metabolic fuel during evolution (Bunn & Higgins, 1981). Several different AGE 

derived from glycation agents, other than glucose, were identified and different glycation 

agents can produce the same AGE. For instance, arabinose and ribose are precursors of 

pentosidine (Dyer et al., 1991; Wells-knecht et al., 1995). In the nucleus, ADP-ribose is 

an important glycation agent leading to the formation of CML and pentosidine 

(Cervantes-Laurean et al., 1996). Fructose, ascorbic acid and glyceraldehyde, to name 

only a few, are also relevant glycation agents (Bakhti et al., 2007; Nagaraj & Monnier, 

1992; Schalkwijk et al., 2004; Seidler & Seibel, 2000; Tessier et al., 1999). 

 

Figure I.2. Structure of CML and
pentosidine, the first characterized AGE. 
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Figure I.3. Formation of dicarbonyl compounds in the early steps of protein glycation. These highly 
reactive compounds may derive from glucose autoxidation, Schiff’s base fragmentation reactions and/or 
Amadori product autoxidation (Hayashi et al., 1986; Thornalley et al., 1999; Wells-knecht et al., 1995). 
Methylglyoxal, glyoxal and 3-deoxyglucosone can also initiate protein glycation with the formation of a 
ketoimine that undergoes several chemical reactions to yield AGE (Hunt et al., 1993). 

 

 

Recent investigations showed that in physiological conditions, reactive dicarbonyl 

compounds are key intermediates of protein modification by the Maillard reaction (Chang 

& Wu, 2006; Thornalley, 1994; Thornalley, 1996). Although these compounds are 

present in very low concentrations compared to glucose, they are far more reactive. These 

observations focused the attention on methylglyoxal, since this α-oxoaldehyde is present 
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in all cells, being considered the most relevant glycation agent in vivo. In addition, inside 

living cells glucose concentration is negligible, while methylglyoxal is at a steady-state 

concentration in the micromolar range. 

 

 

3. METHYLGLYOXAL  

 

Methylglyoxal, a highly reactive α-oxoaldehyde, is an unavoidable product of 

cellular metabolism and therefore is present in all cells, either in normal or pathological 

conditions. The biochemical research on methylglyoxal started with the discovery of an 

enzymatic system that catalysed the conversion of α-oxoaldehydes, including 

methylglyoxal, into α-hidroxyacids - the glyoxalase system (Dakin & Dudley, 1913a; 

Dakin & Dudley, 1913b; Neuberg, 1913). Neuberg and his co-workers proposed that 

methylglyoxal was a key glycolytic metabolite and this concept was widely accepted for 

several years (Neuberg & Kobel, 1928). However, Lohmann established that reduced 

glutathione (GSH) is an essential cofactor for glyoxalase activity (Lohmann, 1932) while 

glycolysis does not require glutathione. Moreover, the glyoxalase-catalysed reaction 

produces D-lactate, instead of L-lactate, which is formed by glycolysis in muscle extracts 

even in the absence of GSH (Racker, 1951). These observations led to a gradual dismissal 

of the role of methylglyoxal as a metabolic intermediate. However, glyoxalase activity, 

methylglyoxal and D-lactate were detected in a wide variety of organisms, raising the 

question about their metabolic role (Hopkins & Morgan, 1945). The hypothesis 

introduced in the 1960s by Szent-Györgyi that glyoxalase I and methylglyoxal regulate 

cell division (the promine-retine theory) and might be involved in cancerogenesis (Szent-

Gyorgyi, 1965) gave a sudden impulse to the research in this area and led to the discovery 

of several new pathways involved in methylglyoxal metabolism and the biochemical 

effects of this α-oxoaldehyde. 

 

 

 

 



 Chapter I
  

9 

3.1. Methylglyoxal formation in biological systems 

    

In living cells, methylglyoxal is formed through enzymatic and non-enzymatic 

pathways. Methylglyoxal may be produced by reactions catalysed by enzymes involved 

in L-threonine metabolism (Lyles & Chalmers, 1992; Ray & Ray, 1987) and in the 

catabolism of the ketone bodies acetoacetate and acetone (Aleksandrovskii, 1992; 

Casazza et al., 1984; Koop & Casazza, 1985). The only enzyme that specifically 

catalyses methylglyoxal formation is methylglyoxal synthase, which appears to exist only 

in bacteria (Cooper & Anderson, 1970; Hopper & Cooper, 1971). Methylglyoxal is also a 

by-product of glycolysis, arising from the non-enzymatic decomposition of the triose 

phosphates dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde 3-phosphate 

(GAP) (Richard, 1993). Incidentally, this reaction is known since the mid-thirties 

(Meyerhof & Lohmann, 1934), but was considered an artefact of no physiological 

significance. Other non-enzymatic sources of methylglyoxal are the Maillard (Thornalley 

et al., 1999) and lipoperoxidation (Esterbauer et al., 1982) reactions (Figure I.4).  

Methylglyoxal synthase (glycerone-phosphate phospho-lyase, EC. 4.2.3.3.), first 

purified from Escherichia coli, catalyses the formation of methylglyoxal from the triose 

phosphate DHAP (Hopper & Cooper, 1971; Hopper & Cooper, 1972). D-Lactate 

produced by the glyoxalase system may then be converted to pyruvate by D-lactate 

dehydrogenase (D-lactate:NAD+ oxidoreductase EC. 1.1.1.28), providing a by-pass for 

pyruvate formation from DHAP via glycolysis (Cooper & Anderson, 1970). 

Methylglyoxal synthase is cooperatively inhibited by inorganic phosphate and appears to 

have three DHAP binding sites (Hopper & Cooper, 1972). Inorganic phosphate inhibition 

is reduced in an allosteric manner by DHAP (Hopper & Cooper, 1971). Thus, this 

enzyme is strongly inhibited by high inorganic phosphate concentrations, suitable for 

glyceraldehyde 3-phosphate dehydrogenase activity [GAPDH, D-glyceraldehyde-3-

phosphate:NAD+ oxidoreductase (phosphorylating), EC. 1.2.1.12] and glycolysis. If the 

concentration of inorganic phosphate decreases sufficiently to diminish GAPDH activity, 

the triose phosphate concentration increases, methylglyoxal synthase activity rises and 

methylglyoxal is produced from DHAP (Hopper & Cooper, 1971; Hopper & Cooper, 

1972). This regulation mechanism may restore the inorganic phosphate concentration 
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required to glycolysis, while still producing pyruvate (Cooper, 1984). Therefore, it was 

suggested that methylglyoxal synthase plays a role in the regulation of glycolysis 

depending on the availability of intracellular inorganic phosphate (Cooper, 1984). In 

Desulfovibrio gigas, this by-pass can reach about 40% of the glycolytic flux (Fareleira et 

al., 1997). Methylglyoxal synthase was found in prokaryotes (Cooper, 1975; Cooper, 

1984), but its presence in eukaryotic cells is highly controversial (Phillips & Thornalley, 

1993b; Phillips & Thornalley, 1993a; Ray & Ray, 1981; Sato et al., 1980). In 

Saccharomyces cerevisiae, although methylglyoxal synthase activity was reported in 

mutant strains (Murata et al., 1985), no activity was detected in wild-type strain growing 

either aerobic or anaerobically with different carbon sources (Penninckx et al., 1983). 

Also, no sequence homology to methylglyoxal synthase in S. cerevisiae was revealed by 

genomic analysis, casting even more uncertainty about the presence of this enzyme 

(Hodges et al., 1999). 

 

 

 

 
 
 
Figure I.4. Main routes of methylglyoxal formation in biological systems. This α-oxoaldehyde is an 
unavoidable product of cell metabolism, being produced from L-threonine and acetoacetate metabolism 
(Casazza et al., 1984; Lyles & Chalmers, 1992). The Maillard and lipoperoxidation reactions also produce 
methylglyoxal. However, the most important pathway for methylglyoxal formation in eukaryotic cells is the 
glycolytic by-pass where the β-elimination of the phosphate group from DHAP and GAP produces this α-
oxoaldehyde (Richard, 1993). In microorganisms, methylglyoxal may be enzymatically formed from 
dihydroxyacetone phosphate by methylglyoxal synthase (Hopper & Cooper, 1971; Hopper & Cooper, 
1972). 
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The catabolism of L-threonine, via aminoacetone, mediated by the enzyme 

semicarbazide-sensitive amine oxidase [SSAO, amine:oxygen oxidoreductase 

(deaminating) (copper-containing), EC.1.4.3.6.] is another source of methylglyoxal 

(Lyles & Chalmers, 1992). L-Threonine catabolism mainly produces glycine and acetyl-

CoA, through the action of an enzyme complex with aminoacetone as intermediate. In 

low CoA conditions, such as in diabetic ketoacidosis, where most CoA is in the form of 

acetyl-CoA, the formation of aminoacetone from threonine increases, enhancing 

methylglyoxal production by the activity of SSAO (Tressel et al., 1986). Methylglyoxal 

may also be produced from the enzymatic oxidation of acetoacetate by myeloperoxidase 

(donor:hydrogen-peroxide oxidoreductase, EC. 1.11.1.7) (Aleksandrovskii, 1992). The 

enzymatic oxidation of acetone by cytochrome P450 IIE1 [substrate,reduced-

flavoprotein:oxygen oxidoreductase (RH-hydroxylating or -epoxidizing), EC 1.14.14.1] 

in a NADPH-dependent two-step reaction, with acetol as intermediate, also produces 

methylglyoxal (Casazza et al., 1984; Koop & Casazza, 1985). Ketone bodies are likely to 

be an important source of methylglyoxal in pathological conditions like ketosis and 

diabetic ketoacidosis (Turk et al., 2006). 

The most important pathway for methylglyoxal formation in eukaryotic cells is 

the glycolytic by-pass, where the β-elimination of the phosphate group from triose 

phosphate intermediates DHAP and GAP produces methylglyoxal (Figure I.5) (Richard, 

1993). At physiological pH, phosphorylated trioses are much more reactive towards the 

loss of α-carbonyl protons than the corresponding triose, producing an enediolate 

phosphate, which has a low energy barrier for the phosphate group expulsion (Richard, 

1984). Thus, the substrate deprotonation to an enediolate phosphate intermediate 

followed by the phosphate group cleavage leads to the formation of methylglyoxal 

(Figure I.5) (Richard, 1993). An estimative for the methylglyoxal non-enzymatic 

formation rate is given as 0.1 mM per day (Richard, 1993). Therefore, the stabilization of 

the enzyme-bound enediolate phosphate intermediate in the reaction catalysed by triose 

phosphate isomerase (TIM, D-glyceraldehyde-3-phosphate aldose-ketose-isomerase, EC. 

5.3.1.1) is an absolute requirement to avoid the substrate degradation into methylglyoxal. 

In fact, the enzyme-bound enediolate phosphate intermediate is protonated approximately 
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106 folds faster than it expels the phosphate group (Richard, 1991). This is achieved by 

the interaction between the phosphate group of the enzyme-bound intermediate and a 

flexible loop of the enzyme (Alber et al., 1981; Banner et al., 1975).  

 

 
 
 
 
Figure I.5. Methylglyoxal formation from the triose phosphates dihydroxyacetone phosphate (DHAP) and 
glyceraldehyde 3-phosphate (GAP). Triose phosphates are unstable molecules and the β-elimination 
reaction of the phosphate group from the common enediolate phosphate intermediate irreversibly yields 
methylglyoxal. The stabilization of this intermediate by triose phosphate isomerase (TIM) is essential to 
avoid methylglyoxal formation. However, enediolate phosphate intermediate can leak from the enzyme 
active site forming methylglyoxal in a paracatalytic reaction. Adapted from (Richard, 1993).    
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With the deletion of four amino acid residues within this TIM loop, the resulting enzyme 

is a better catalyst of the elimination reaction (which generates methylglyoxal) than the 

normal isomerization reaction (Pompliano et al., 1990). Unfortunately, TIM is almost 

perfect and the enediolate intermediate could leak from the enzyme active center 

producing methylglyoxal in a paracatalytic reaction (Richard, 1991) (Figure I.5). 

Consequently, the degradation of GAP and DHAP to methylglyoxal is observed, albeit at 

a very slow rate compared to the isomerization reaction catalysed by TIM (Iyengar & 

Rose, 1981; Webb et al., 1977).  

The rate of methylglyoxal formation depends on the organism, tissue, cell 

metabolism and physiological conditions. In most cases, it appears to be directly 

associated with the glycolytic flux, confirming that the glycolytic by-pass is the main 

pathway for methylglyoxal production. Some tumour cells show a high glycolytic flux, 

the Warburg effect (Altenberg & Greulich, 2004), and consequently methylglyoxal 

concentration is increased. Yeast cells also show a high glycolytic activity and, in S. 

cerevisiae, methylglyoxal formation accounts for 0.3% of the total glycolytic flux 

(Martins et al., 2001a). In Desulfovibrio gigas, where methylglyoxal synthase activity is 

present, 40% of D-glucose is metabolised into methylglyoxal (Fareleira et al., 1997). 

 

 

3.2. Methylglyoxal catabolism  

 

  Methylglyoxal, a highly reactive and inherently toxic compound, irreversibly 

damages proteins and nucleic acids through the Maillard reaction (Lo et al., 1994; Oya et 

al., 1999; Westwood & Thornalley, 1997). High doses of methylglyoxal cause cell death 

while, with sublethal concentrations, a cell growth delay is observed (Kalapos, 1999; 

Maeta et al., 2005b; Okado et al., 1996; Ponces Freire et al., 2003). Therefore, protective 

enzymatic mechanisms evolved to prevent the damage of biomolecules by this 

unavoidable product of cell metabolism. The glyoxalase system is, by far, the most 

investigated catabolic route for this α-oxoaldehyde. Nevertheless, since methylglyoxal 

can be either oxidized or reduced, some oxide-reductases and dehydrogenases are capable 

of using methylglyoxal as substrate (Kalapos, 1999). Several enzymes were then 
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implicated in methylglyoxal catabolism, namely α-oxoaldehyde dehydrogenase 

[2-oxoaldehyde:NAD(P)+ 2-oxidoreductase, EC. 1.2.1.23] (Monder, 1967), aldehyde 

dehydrogenase (aldehyde:NAD+ oxidoreductase, EC.1.2.1.3) (Izaguirre et al., 1998), 

aldose reductase [alditol:NAD(P)+ 1-oxidoreductase, EC.1.1.1.21.] (Vander Jagt et al., 

1992), methylglyoxal reductase (D-lactaldehyde:NAD+ oxidoreductase, EC. 1.1.1.78) 

(Ray & Ray, 1984) and pyruvate dehydrogenase [pyruvate: dihydrolipoyllysine-residue 

acetyltransferase-lipoyllysine 2-oxidoreductase (decarboxylating, acceptor-acetylating), 

EC. 1.2.4.1)] (Baggetto & Lehninger, 1987). Although the real significance of each of 

these pathways in methylglyoxal catabolism in vivo and their role as anti-methylglyoxal 

derived glycation defense are not yet fully understood, the glyoxalase system and aldose 

reductase enzyme emerge as the most relevant methylglyoxal catabolic pathways. 

 

 

3.2.1. The glyoxalase system  

 

The conversion of methylglyoxal to lactic acid in animal tissues was discovered 

by Neuberg (Neuberg, 1913) and Dakin and Dudley (Dakin & Dudley, 1913a; Dakin & 

Dudley, 1913b) in independent studies. Even though it was initially believed that only 

one enzyme catalysed this reaction, named glyoxalase by Dakin and Dudley (Dakin & 

Dudley, 1913a; Dakin & Dudley, 1913b), Racker showed that in fact two enzymes, 

glyoxalase I and glyoxalase II, are involved in the production of lactic acid from 

methylglyoxal (Racker, 1951). The glyoxalase system comprises glyoxalase I (S-D-

lactoylglutathione methylglyoxal-lyase, EC 4.4.1.5) and glyoxalase II (S-2-

hydroxyacylglutathione hydrolase, EC 3.1.2.6), that convert methylglyoxal to D-lactate 

using reduced glutathione as a specific cofactor (Racker, 1951; Thornalley, 1990). 

Glyoxalase I catalyses the formation of S-D-lactoylglutathione from the hemithioacetal, 

produced by the non-enzymatic reaction between methylglyoxal and GSH (Thornalley, 

1990; Thornalley, 1993; Vander Jagt et al., 1975). Then, glyoxalase II catalyses the 

thioester hydrolysis to D-lactate, regenerating GSH (Thornalley, 1990; Vander Jagt, 

1993) (Figure I.6).  
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Interest in the mammalian glyoxalase system arised in part from evidences that 

associate methylglyoxal and derived AGE with the pathogenesis of diabetic 

complications and neurodegenerative diseases (Thornalley, 1993; Thornalley, 1996). It is 

clear that the glyoxalase system acts primarily as a detoxification pathway of toxic 

methylglyoxal. However, several studies preclude the end of the discussion about the 

biological functions of this enzymatic system. For instance, immature, proliferating cells 

and tissues have a high glyoxalase I activity but a low glyoxalase II activity, whereas in 

mature differentiated cells the reverse is observed (Principato et al., 1982). Nevertheless, 

there are no evidences for a causal relationship between the glyoxalase system and cell 

proliferation. In S. cerevisiae, glyoxalase I and glyoxalase II mutants are viable, 

discarding any association between the glyoxalase system activity and cell survival, 

except when cells are challenged with methylglyoxal (Bito et al., 1997; Inoue & Kimura, 

1996). 

 

 
 

 
Figure I.6. The glyoxalase system. This enzymatic pathway comprises two enzymes (glyoxalase I and 
glyoxalase II) responsible for the GSH-dependent catabolism of methylglyoxal, producing D-lactate 
(Racker, 1951; Thornalley, 1990).  
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Glyoxalase I  

 

Glyoxalase I activity was found in most organisms throughout the evolutionary 

scale, from prokaryotes to eukaryotes. It was purified and characterized at the molecular 

and kinetic level from various sources, namely mammalian tissues (Aronsson & 

Mannervik, 1977; Baskaran & Balasubramanian, 1987; Han et al., 1976; Marmstal & 

Mannervik, 1979), plants (Deswal & Sopory, 1991; Deswal & Sopory, 1999; Norton et 

al., 1990), E.  coli (Clugston et al., 1998), S. cerevisiae (Marmstal et al., 1979), 

Leishmania infantum (Sousa Silva et al., 2005; Vickers et al., 2004) and Plasmodium 

falciparum (Deponte et al., 2007).  

The major physiological substrate of glyoxalase I is methylglyoxal, which 

accumulates markedly when this enzyme is inhibited in situ by cell-permeable inhibitors 

or GSH depletion (Abordo et al., 1999; Thornalley, 1993; Thornalley et al., 1996). 

However, glyoxal, phenylglyoxal, hydroxypiruvaldehyde and 4,5-dioxovalerate are also 

substrates for glyoxalase I (Jerzykowski et al., 1973; Vander Jagt et al., 1975; Vander 

Jagt et al., 1972). This enzyme is highly specific to GSH and no activity is observed with 

L-cysteine, oxidized glutathione (GSSG), L-cysteinylglycine and γ-L-glutamylcysteine 

(Behrens, 1941; Carnegie, 1963; Wieland et al., 1956). Glyoxalase I is selectively 

overexpressed in leukemia cells and a specific inhibitor of this enzyme was shown to be a 

potential anti-cancer agent (Sakamoto et al., 2000). Overexpression of glyoxalase I 

prevents the formation of hyperglycemia-induced AGE in bovine endothelial cells, 

indicating a protective role for this enzyme in diabetic complications (Shinohara et al., 

1998). 

The reaction mechanism of glyoxalase I is not straightforward due to the 

non-enzymatic hemithioacetal formation from methylglyoxal and GSH, implying the 

simultaneous presence of the three species in equilibrium. A steady-state kinetic analysis 

led to the proposal of a mechanism with the unusual feature of alternative one- and 

two-substrate branches, the latter involving GSH and methylglyoxal as the first and 

second substrate, and the former having their hemithioacetal adduct as the substrate 

(Figure I.7) (Mannervik et al., 1974). The dissociation constant for the hemithioacetal 

(3x10-3 M) is in the range of intracellular glutathione concentration (Vander Jagt, 1993) 
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and therefore, the fraction of methylglyoxal that exists as hemithioacetal is markedly 

dependent on the GSH concentration (Vander Jagt, 1993). Hence, a reduction in GSH 

concentration, as observed in several physiological conditions such as oxidative stress, 

may diminish the glyoxalase system catalytic capacity.  

Human and S. cerevisiae glyoxalase I are Zn2+ metalloenzymes (Cameron et al., 

1997; Frickel et al., 2001; Marmstal et al., 1979; Ridderstrom et al., 1998), while E. coli 

glyoxalase I is a Ni2+ dependent enzyme (Clugston et al., 2004; He et al., 2000). Human 

glyoxalase I is a homodimer and each monomer consists of two structurally equivalent 

domains (Cameron et al., 1997). The enzyme contains two active sites located at the 

dimer interface and residues from both subunits contribute to each of the binding pockets 

(Cameron et al., 1997). The essential zinc ion, which is located at the active site, is 

coordinated by four amino acids, two from each subunit (glutamine Q33 and glutamate 

E99 from one chain, and histidine H126 and Q172 from the other chain) (Cameron et al., 

1997). The reaction mechanism entails a base-catalysed shielded-proton transfer from C-

1 to C-2 of the hemithioacetal to form an ene-diol intermediate followed by rapid 

ketonization to the thioester product (Thornalley, 1990; Thornalley, 2003a). Glutamate 

residue 172 is directly involved in the catalytic mechanism, presumably serving as the 

base that abstracts the proton from the hemithioacetal substrate (Ridderstrom et al., 

1998). 

Interestingly, yeast glyoxalase I is a monomer with two copies of a segment 

equivalent to the human enzyme monomer, suggesting that gene duplication events 

occurred during the evolution of the yeast glyoxalase I gene (Cameron et al., 1997; 

Marmstal & Mannervik, 1978; Ridderstrom & Mannervik, 1996). This observation raises 

the question whether yeast glyoxalase I has two active sites, like the human enzyme, in a 

single polypeptide chain. Indeed, two functional active sites were found in yeast 

glyoxalase I (Frickel et al., 2001). Although unusual, other enzymes have also two 

functional active sites within the same polypeptide chain (Darby et al., 1998; Mitsuhashi 

et al., 2000; Sjostrom et al., 1980; Wacker et al., 1984). Recently, it was shown that 

Plasmodium falciparum glyoxalase I also contains two active sites in a single polypeptide 

chain, displaying cooperative properties (Deponte et al., 2007). 
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Figure I.7. Glyoxalase I-catalysed formation of S-D-lactoylglutathione. Glyoxalase I behaves like a 
one-substrate enzyme converting hemithioacetal, produced by the non-enzymatic reaction between 
methylglyoxal and GHS, into S-D-lactoylglutathione (A). This enzyme can also catalyse the formation of 
S-D-lactoylglutathione directly from methylglyoxal and GSH, being considered a two-substrate enzyme 
(Mannervik et al., 1974). 
 

 

The analysis of the amino acid sequence of yeast glyoxalase I, coded by the GLO1 

gene (YML004C) (Inoue & Kimura, 1996), revealed three potential N-glycosylation sites 

at asparagine amino acid residues N24, N126 and N184 (Inoue & Kimura, 1996). 

Actually, it was observed that yeast glyoxalase I contains 0.75% of carbohydrates, hinting 

for the possible glycosylation of the enzyme (Douglas et al., 1986). Two of the predicted 

putative phosphorylation sites of human and bacterial glyoxalases I (Ranganathan et al., 

1993) were also found in yeast (threonine T96 and serine S144), together with a new 

probable phosphorylation site (T429) (Inoue & Kimura, 1996). However, the biological 

function of glyoxalase I phosphorylation remains unclear.  

In yeast, the glyoxalase system is a defense mechanism against methylglyoxal. 

The glyoxalase I activity increases after methylglyoxal addition to the growth medium 

and in cells grown in glycerol as carbon source (Inoue & Kimura, 1996; Inoue et al., 

1998; Penninckx et al., 1983). Glyoxalase I gene has two stress response elements in the 

5´flanking region (Inoue et al., 1998). An increase of GLO1 expression is induced by 

osmotic stress, thereby avoiding methylglyoxal accumulation due to the enhanced 

glucose consumption for glycerol synthesis, used as a compatible solute for adaptation to 

highly osmotic conditions (Inoue et al., 1998). This response is mediated by the high 
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osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway (Inoue et 

al., 1998). Interestingly, cells treated with methylglyoxal also develop a stress response, 

inducing the expression of GLO1 gene through Hog1p that is phosphorylated and 

translocated into the nucleus (Maeta et al., 2005a). These observations indicate that 

methylglyoxal may function as a signal initiator of the HOG-MAPK pathway (Maeta et 

al., 2005a).  

 

 

Glyoxalase II  

 

Glyoxalase II, a glutathione thioesterase, has been purified and characterized from 

several tissues of mammalian source (Allen et al., 1993; Ball & Vander Jagt, 1981; Oray 

& Norton, 1980; Principato et al., 1984; Uotila, 1973), plants (Maiti et al., 1997; Norton 

et al., 1990), yeast (Talesa et al., 1990b) and Leishmania infantum (Trincao et al., 2006). 

Glyoxalase II seems to be absent from the human spleen, mouse heart and rat skeletal 

muscle (Jerzykowski et al., 1978), although the results may differ depending on the 

technique used for the glyoxalase II activity assay (Martins et al., 1999). This feature can 

be illustrated with glyoxalase II from yeast S. cerevisiae; even though Penninckx and co-

workers did not detect any glyoxalase II activity (Penninckx et al., 1983), this enzyme is 

unequivocally present in this organism (Bito et al., 1997; Martins et al., 1999). 

Glyoxalase II consistently shows a specific activity of 600-900 µmol.min-1.mg-1, except 

for S. cerevisiae in which an extremely low specific activity (1.34 µmol.min-1.mg-1) was 

reported (Vander Jagt, 1993). However, in the same study, the Km value obtained (7 µM) 

is not in agreement with more recent studies where the Km value reported was 110 µM 

for the purified enzyme (Bito et al., 1997), 360 µM in situ and 150 µM in cell free 

extracts (Martins et al., 1999).  

Besides cytosolic glyoxalase II, a mitochondrial isoform of the enzyme was also 

found (Bito et al., 1997; Cordell et al., 2004; Maiti et al., 1997; Talesa et al., 1990a; 

Talesa et al., 1988; Talesa et al., 1989). In mammals, both isoforms are coded by a single 

gene, being the different isoenzymes produced by alternative translation initiation of the 

gene transcripts (Cordell et al., 2004). In S. cerevisiae, two different nuclear genes code 
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for the mitochondrial (GLO4, YOR040W) and the cytosolic glyoxalase II (GLO2, 

YDR272W) (Bito et al., 1997). GLO4 is only expressed on glycerol-containing medium, 

while GLO2 expression is observed with both glucose and glycerol (Bito et al., 1997). 

The amino acid sequences of both enzymes are 59.1% identical and show high 

similarities with human glyoxalase II (Bito et al., 1997). Since glyoxalase I activity is 

absent from rat (Talesa et al., 1988; Talesa et al., 1989) and yeast mitochondria (Bito et 

al., 1997), the presence of mitochondrial glyoxalase II is quite intriguing. Nevertheless, 

Scire and co-workers found S-D-lactoylglutathione in mitochondria, raising the 

hypothesis that mitochondrial glyoxalase II hydrolyses the thioester that diffused or was 

transported to this cellular compartment (Scire et al., 2000). Furthermore, it was also 

suggested that S-D-lactoylglutathione uptake by the mitochondria and the subsequent 

glyoxalase II activity could function as a pathway for mitochondrial GSH import (Scire et 

al., 2000). Even though it is a very interesting possibility, it requires further research, 

mainly because active GSH import to the mitochondria has been described (Martensson 

et al., 1990). Another possibility is that mitochondrial glyoxalase II catalyses the 

hydrolysis of other glutathione thioesters formed in this organelle. Although S-D-

lactoylglutathione is the preferred substrate, glyoxalase II shows a broad specificity for 

GSH thioesters and can catalyse the hydrolysis of S-D-manendolylglutathione, S-D-

acetylglutathione, S-D-acetoacetylglutathione and S-D-glycolylglutathione, among others 

(Thornalley, 1990; Thornalley, 1993; Vander Jagt, 1993). The enzyme is however highly 

specific for glutathione moiety, since no activity was detectable with CoA esters and 

thioglycolate (Thornalley, 1990; Vander Jagt, 1993). Interestingly, in trypanosomatids, 

where glutathione is functionally replaced by trypanothione [N1,N8-bis(glutathionyl) 

spermidine], glyoxalase II is specific for trypanothione thioesters (Irsch & Krauth-Siegel, 

2004; Sousa Silva et al., 2005).  

Although previous studies indicated that glyoxalase II was not a metalloenzyme, 

the crystal structure of human enzyme shows the presence of two Zn2+ ions per molecule 

(Cameron et al., 1999). Intriguingly, mitochondrial glyoxalase II from Arabidopsis 

thaliana can accommodate a number of different metal centers although the predominant 

is Fe3+Zn2+ (Marasinghe et al., 2005).  
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Glyoxalase II contains two domains in which the first folds into a four-layered β-

sheet (similar to metallo-β-lactamases) and the second is predominantly α-helical 

(Cameron et al., 1999). The active site contains two metal-binding sites. The first consists 

of three histidine residues (H110, H56 and H54), a bridging aspartic acid residue (D134) 

and a bridging water/hydroxide ion. The second metal binding site contains two histidine 

residues (H173 and H59), a terminal bound aspartic acid (D58) and the same bridging 

aspartic acid residue (D134) and water/hydroxide ion (Cameron et al., 1999). Based on 

these observations it was suggested that the hydroxide ion could act as the nucleophile 

(Cameron et al., 1999), which is markedly different from the previously proposed 

mechanism involving a direct nucleophilic attack of a histidine residue located on the 

active site to the thioester substrate producing an acyl-imidazole intermediate that would 

rapidly hydrolyse (Thornalley, 1993; Vander Jagt, 1993). However, it is noteworthy that 

Cameron and co-workers used S-(N-hydroxy-N-bromophenylcarbamoyl)glutathione, 

which is a poor glyoxalase II substrate (Cameron et al., 1999). This substrate analogue 

binds to the domain interface through hydrogen-bonding interactions between the glycine 

and cysteine residues of the glutathione moiety and the enzyme, probably through 

arginine (R249) and lysine residues (K249 and K252) (Cameron et al., 1999).  

Glyoxalase II has been associated with important human pathologies. Of 

particular interest are the studies of Willingham and co-workers, showing that among 

4850 haploid yeast mutants containing deletions of non-essential genes, 52 were sensitive 

to Huntington fragment toxicity including a ∆GLO2 mutant strain, lacking cytosolic 

glyoxalase II (Willingham et al., 2003). Additionally, ∆GLO4 yeast strain, lacking 

mitochondrial glyoxalase II, was sensitive to α-synuclein toxicity, while no toxicity was 

observed with ∆GLO2 mutant strain (Willingham et al., 2003). Glyoxalase II was also 

recently implied as a pro-survival factor of p53 family of transcription factors, which 

include p63 and p73 (Xu & Chen, 2006). It was observed that glyoxalase II gene is up-

regulated by p63 and p73 and, after overexpression, the cytosolic but not the 

mitochondrial form of glyoxalase II, inhibits cell apoptotic response to methylglyoxal 

(Xu & Chen, 2006). This may suggest that methylglyoxal can act as a signal initiator for 

several cellular responses.   
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3.2.2. Aldose reductase  

 

 Aldose reductase, a member of the aldo-keto reductase superfamily, was first 

described by Hers, who observed the NADPH-dependent reduction of glucose and other 

aldehydes to polyols by extracts of seminal vesicles and placenta (Ginsburg & Hers, 

1960; Hers, 1956). Aldose reductase is the first enzyme of the so-called polyol pathway 

(Burg et al., 1996), reducing D-glucose in a NADPH-dependent reaction to sorbitol, 

which is then converted to D-fructose by the NAD+-dependent sorbitol dehydrogenase 

(Jeffery & Jornvall, 1983; Leissing & McGuinness, 1983) (Figure I.8). The observation 

that the polyol pathway activity is increased during hyperglycaemia (Gonzalez et al., 

1984a; Gonzalez et al., 1984b), leading to several cellular damages and NADPH/NAD+ 

depletion (Yabe-Nishimura, 1998), suggests a role for aldose reductase in the 

pathogenesis of diabetic complications. In fact, transgenic mice overexpressing aldose 

reductase in lens epithelial cells accumulate high levels of sorbitol and become highly 

susceptible to the development of diabetic cataracts (Lee et al., 1995b). When a sorbitol 

dehydrogenase-deficient mutation is also present in these transgenic mice, a larger 

accumulation of sorbitol and further acceleration of diabetic cataracts were observed (Lee 

et al., 1995b). Additionally, since fructose is a stronger glycation agent than glucose, an 

increase in AGE formation is likely to occur (Schalkwijk et al., 2004). Hence, several 

aldose reductase inhibitors were developed as possible therapeutic agents for diabetic 

clinical complications (Iwata et al., 2006; Ramasamy et al., 1997; Yabe-Nishimura, 

1998). 

 Consistent with the idea that aldose reductase and related enzymes may function 

primarily in detoxification, this enzyme exhibits a broad substrate specificity for a variety 

of aldehydes. In fact, compared to several physiological substrates, D-glucose is a poor 

substrate for aldose reductase, with a Km of 70 mM and a kcat/Km of 9.1x102 M-1.min-1 

(Vander Jagt et al., 1990; Vander Jagt et al., 1992). So, the significance of aldose 

reductase in the polyol pathway may be quite limited under non-diabetic conditions. An 

extensive study of substrate specificity towards trioses, trioses phosphate and related 

three carbon aldehydes and ketones revealed that aldose reductase has a higher affinity 

for methylglyoxal (Km of 8 µM and kcat/Km of 1.8 x 107 M-1.min-1), suggesting that this 
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enzyme may be relevant in methylglyoxal detoxification (Vander Jagt et al., 1992). The 

NADPH-dependent reduction of methylglyoxal by aldose reductase mainly produces 

acetol with only traces of D-lactaldehyde being detected, indicating that the reduction 

occurs primarily on the aldehyde carbonyl group (Vander Jagt et al., 1992). Acetol, 

which is also a substrate of aldose reductase, can be further reduced to L-1,2-propanediol 

at expense of another NADPH molecule (Vander Jagt et al., 1992). D-Lactaldehyde can 

also be reduced to D-1,2-propanediol by aldose reductase (Vander Jagt et al., 1992) 

(Figure I.9). 

 

 

 
 
 
Figure I.8. The polyol pathway. In this alternative route of D-glucose metabolism, sorbitol is produced 
from D-glucose by aldose reductase using NADPH as cofactor. Sorbitol is subsequently converted to D-
fructose by sorbitol dehydrogenase. Adapted from (Yabe-Nishimura, 1998).   
 

 

 

Interestingly, human aldose reductase contains a putative glutathione binding site 

near the active site that may be relevant to methylglyoxal catabolism since in vivo, most 

of this α-oxoaldehyde is in the form of glutathione-derived hemithioacetal (Cappiello et 

al., 1996). In the presence of glutathione, the hemithioacetal produced is also a substrate 
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for aldose reductase and a shift in the product distribution was observed with D-

lactaldehyde being the major product compared to acetol (Vander Jagt et al., 2001) 

(Figure I.9). In this case, aldose reductase acts like a methylglyoxal-specific ketone 

reductase instead of an aldehyde reductase (Vander Jagt et al., 2001). At low GSH 

concentration, methylglyoxal reduction by aldose reductase mainly produces acetol, a 

poor substrate for the second reduction reaction (Vander Jagt et al., 1992). In fact, acetol 

accumulation was observed in diabetic patients (Reichard et al., 1986). The reaction 

catalysed by aldose reductase is reversible and, therefore, acetol may be converted back 

to methylglyoxal (Vander Jagt et al., 2001). Hence, the reduction of this α-oxoaldehyde 

to acetol may be an undesirable reaction (Vander Jagt et al., 2001). Although this enzyme 

is involved in methylglyoxal detoxification, the accumulation of acetol, together with 

NADPH depletion and sorbitol concentration increase, could explain the beneficial 

effects of aldose reductase inhibition in the context of diabetic complications. 

Aldose reductase transcription is stress-inducible, playing an important protective 

role against methylglyoxal citotoxicity. Hydrogen peroxide induces aldose reductase 

mRNA synthesis (Nishinaka & Yabe-Nishimura, 2001) and methylglyoxal also promotes 

a dose and time-dependent increase in aldose reductase mRNA, protein levels, and 

enzymatic activity (Yabe-Nishimura et al., 2003). In S. cerevisiae, aldose reductase is 

coded by the GRE3 gene (YHR104W) and its expression is also up-regulated in several 

conditions such as osmotic and oxidative stress (Aguilera & Prieto, 2001). These type of 

cellular stress increases intracellular methylglyoxal concentration and yeast displays a 

regulatory protective mechanism that involves the induction of GRE3 gene expression 

(Aguilera & Prieto, 2001; Aguilera & Prieto, 2004). The GRE3 overexpression increases 

methylglyoxal tolerance and complements the glyoxalase system deficiency of a mutant 

strain lacking glyoxalase I (Aguilera & Prieto, 2001).    
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Figure I.9. Methylglyoxal catabolism by aldose reductase. Depending on the presence of GSH, aldose 
reductase catalyses the NADPH-dependent reduction of methylglyoxal to acetol (reduction of aldehyde 
group) or to lactaldehyde (reduction of ketone group). These compounds are then converted to propanediol 
by another NADPH-dependent reaction catalysed by aldose reductase. Adapted from (Vander Jagt & 
Hunsaker, 2003). 
 

 

 

3.3. Biochemical effects of methylglyoxal  

 

 Methylglyoxal has two functional groups: a highly reactive aldehyde group and an 

electron acceptor ketone group. The electronic interaction between the adjacent C=O 

double bonds leads to a charge delocalization (Szent-Gyorgyi, 1976; Ventura & Cubas, 

1992). The higher polarization of the aldehyde C=O double bound makes the aldehyde 

group more reactive than the ketone group (Abdulnur, 1976; Jencks, 1987). As a result, 

methylglyoxal is an excellent electrophile molecule, being involved in nucleophilic 

addition to the carbonyl group (Jencks, 1987; Szent-Gyorgyi, 1980). In biological 

systems, the main nucleophiles are the amine groups of proteins, nucleic acids and basic 
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phospholipids, which can be irreversibly modified by the Maillard reaction. 

Methylglyoxal also reacts with protein and GSH sulphydryl groups, but this reaction is 

considered to be reversible.  

Methylglyoxal is a mutagenic and genotoxic agent, able to modify nucleic acids. 

This α-oxoaldehyde mainly reacts with guanine nucleotides (Shapiro et al., 1969; 

Shapiro & Hachmann, 1966), being the relative reactivity towards poly-guanosine, poly-

adenine and poly-uracil of 90:7:3 (Krymkiewicz, 1973). Methylglyoxal reacts with 

deoxyguanosine, producing a stable adduct identified as carboxyethylguanine (Papoulis 

et al., 1995; Thornalley, 2003b). The reaction proceeds rapidly with RNA and denatured 

DNA but very slowly with native duplex DNA (Krymkiewicz, 1973). Glycated DNA was 

detected in vivo in human samples and cultured human smooth muscle cells and bovine 

aorta endothelium cells, using immunochemical techniques, HPLC and LC-MS (Bucala 

et al., 1984; Schneider et al., 2006; Seidel & Pischetsrieder, 1998). There are evidences 

that DNA glycation causes loss of genomic integrity associated with genotoxic effects. 

High methylglyoxal concentration leads to interstrand cross-links in duplex DNA 

(Rahman et al., 1990), strand breaks (Pischetsrieder et al., 1999; Rahman et al., 1990) 

and increased mutation frequency (Cajelli et al., 1987; Migliore et al., 1990; 

Pischetsrieder et al., 1999). Furthermore, Lee and co-workers found an increased 

mutation rate in transgenic embryos of diabetic mice that was linked to high glucose 

concentration (Lee et al., 1995a).  

 Basic phospholipids (phosphatidylethanolamine and phosphatidylserine) are also 

potential targets of the Maillard reaction, due to the presence of free amino groups, 

forming lipid-linked AGE (Bucala et al., 1993). This process is accompanied by 

oxidation of the unsaturated fatty acid side chains, with 4-hydroxyhexenal and 4-

hydroxynonenal as major products (Al-Abed et al., 1996; Bucala et al., 1993). Glycated 

phospholipids were detected in rat liver, with increased levels in streptozotocin-induced 

diabetic animals (Pamplona et al., 1995). Carboxymethylethanolamine, a lipid-linked 

AGE found in vivo, is considered a biomarker of phospholid modification by the Maillard 

reaction (Requena et al., 1997). Recently, it was shown that diabetic patients plasma 

contains high amounts of glycated phospholids, identified as an Amadori-product of the 

reaction between phosphatidylethanolamine and glucose (Nakagawa et al., 2005). Like 
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proteins, phospholipids amino groups may also react with other carbonyl-containing 

compounds like methylglyoxal. However, phospholipids glycation mechanisms and the 

resulting lipid-linked AGE structures are still poorly understood.  

 

 

Protein glycation by methylglyoxal  

 

 In physiological conditions, methylglyoxal reacts reversibly with amino acid side 

chains of arginine, lysine and cysteine residues. Irreversible reactions may occur with 

lysine and arginine residues leading to the formation of irreversible adducts on proteins 

known as MAGE (methylglyoxal advanced glycation end-products). A large number of 

studies showed that methylglyoxal reacts to and modifies proteins, such as BSA 

(McLaughlin et al., 1980; Lo et al., 1994; Vander Jagt et al., 1992), HSA (Ahmed et al., 

2005), aspartate aminotransferase, collagens(Bowes & Cater, 1968) and lens proteins 

(Riley & Harding, 1995), among others. Several MAGE were characterized through 

model reaction systems and identified in vivo (Figure I.10).   

 The reaction between methylglyoxal and lysine residues leads to the formation of 

Nε-(carboxyethyl)lysine (CEL) (Ahmed et al., 1997). This MAGE was detected in vivo in 

human lens proteins at a concentration similar to CML, and an increase in CEL 

concentration was observed with age (Ahmed et al., 1997). Methylglyoxal is also 

responsible for protein cross-links, one of the major consequences of protein glycation 

(Fu et al., 1994; Sell & Monnier, 1989). With lysine residues, methylglyoxal forms 

methylglyoxal-lysine dimers (MOLD), originally identified in model reaction systems 

(Nagaraj et al., 1996). MOLD was also found to accumulate with age in lens proteins at 

significantly higher levels than pentosidine (Frye et al., 1998), and also increases in 

diabetic patients compared to normal subjects (Nagaraj et al., 1996). These observations 

highlight the importance of methylglyoxal as an intermediate of protein cross-link 

derived from the Maillard reaction. Besides the lysine cross-link, a lysine-arginine 

methylglyoxal-derived cross-link, termed MODIC, was also described (Lederer & 

Klaiber, 1999).  
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Figure I.10. Chemical structures of MAGE. Methylglyoxal reacts preferentially with arginine side chain to 
form hydroimidazolones, tetrahydropyrimidine (THP) and argpyrimidine, a fluorescent MAGE. Protein 
cross-links are also observed with lysine residues (MOLD) and with both lysine and arginine residues 
(MODIC). To a better understanding of the modification caused by methylglyoxal, arginine and lysine side 
chains are shown. Adapted from (Nemet et al., 2006).  
 

 

 Contrary to glucose, methylglyoxal preferentially modifies arginine residues (Lo 

et al., 1994; Oya et al., 1999). The non-fluorescence protein bound imidazolone, 5-

hydroimidazolones [Nδ-(5-methyl-imidazolone-2-yl)-ornithine] (Henle et al., 1994) is 

produced by the reaction between methylglyoxal and arginine residues. This MAGE has 

been identified in vivo (Ahmed et al., 2003; Niwa et al., 1997b; Uchida et al., 1997), and 

is present at high levels in the kidneys of streprozotocin-induced diabetic mice (Niwa et 

al., 1997a). Hydroimidazolones, believed to be the major product of methylglyoxal-

derived protein glycation, exist as three structural isomers (MG-H1, MG-H2 and MG-H3) 

(Ahmed et al., 2002; Ahmed & Thornalley, 2002). Another non-fluorescent MAGE, 

tetrahydropyrimidine [THP, Nδ-(4-carboxy-4,6-dimethyl-5,6-dihydroxy-1,4,5,6-

tetrahydropyrimidin-2-yl)ornithine], is also derived from the reaction with arginine (Oya 

et al., 1999). Besides protein cross-link, the formation of fluorescent adducts is another 

important feature of protein glycation. For instance, BSA and lens proteins modified by 

methylglyoxal exhibit new fluorescence properties (Lo et al., 1994; Riley & Harding, 

1995). The MAGE responsible for this new fluorescence properties was identified as 
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argpyrimidine [Nδ-(5-hydroxy-4,6-dimethylpyrimidine-2-yl)-L-ornithine] (Oya et al., 

1999; Shipanova et al., 1997). The emission fluorescence spectra of argpyrimidine and 

methylglyoxal-modified proteins are similar, suggesting that this MAGE is a relevant 

product and that the intrinsic proteins fluorescence associated to pathological conditions 

may be due in part to methylglyoxal-derived glycation (Shipanova et al., 1997). Using 

specific antibodies towards proteins modified by methylglyoxal, which major antigenic 

epitope is argpyrimidine, revealed the presence of this fluorescent MAGE in the intima 

and media small artery walls of diabetic kidneys (Oya et al., 1999), and in human lens 

proteins (Padayatti et al., 2001). In the latter case, the amount of argpyrimidine was 

related to lens aging and cataractogenesis (Padayatti et al., 2001).  

Contrasting with the irreversibility of arginine and lysine modifications, 

interactions with cysteine residues are reversible, resulting in the formation of 

hemithioacetals (Lo et al., 1994). Recent reports raised the possibility that the reversible 

cellular responses induced by methylglyoxal may involve reversible cysteine 

modifications. The S. cerevisiae transcriptional factor Yap1, a functional homologue of 

mammalian AP-1, is reversibly activated by methylglyoxal by a non-disulfide bounds 

mechanism, since a Yap1 mutant with only one cysteine residue can still be activated 

(Maeta et al., 2004). In mammals, the formation of a specific MAGE seems to be 

involved in TNF-induced cell death (Van Herreweghe et al., 2002). The chemical nature 

of this cysteine-methylglyoxal adduct is unknown due to its unstable and reversible 

nature (Maeta et al., 2004). In this context, it was proposed that phosphorylated 

glyoxalase I could convert the normally reversible hemithioacetal into irreversible 

adducts (Van Herreweghe et al., 2002). If this is true, methylglyoxal and the glyoxalase 

system would have an important role in cell physiology, regulating protein activity while 

extensive unregulated irreversible modifications could result in cell dysfunction (Van 

Herreweghe et al., 2002). In addition, it was described that methylglyoxal inactivates the 

mitochondrial permeability transition pore, through a fast, reversible and specific reaction 

(Speer et al., 2003). In this case, the authors suggested that a reversible arginine 

modification would be involved (Speer et al., 2003). 
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4. PROTEIN GLYCATION IN HUMAN PATHOLOGIES: THE AGE HYPOTHESIS  

 

 Post-translational modifications are important biological tools for the production 

of several protein species from a single gene, which may vary in structure, function, 

biological half-life and display differentiated protein-protein interactions. However, the 

extensive non-enzymatic unregulated modification of particular proteins, by glycation for 

example, could have a deleterious effect on protein structure and function. These changes 

might be associated with cell and tissue damage observed in several pathological 

conditions and aging. This is markedly different from controlled post-translational 

modifications where enzymes modify specific sites on determined proteins to produce a 

given effect. In the mid 1980s, the “AGE hypothesis” was introduced in the 

pathophysiology of diabetes mellitus and related clinical complications (Bucala & 

Cerami, 1992; Vlassara, 1994; Vlassara et al., 1994). According to this hypothesis, 

increased AGE formation alters the structure and function of tissue proteins, contributing 

to the development of diabetes mellitus clinical complications. The AGE hypothesis was 

introduced in the context of diabetes mellitus, since the earlier studies about protein 

glycation considered mainly glucose as a glycation agent. As glucose-derived protein 

glycation is an extremely slow process (being considered to occur only if the protein 

persists in the body for months to years), a large amount of research work focused on 

CML and pentosidine accumulation in long-lived proteins like lens crystalline and 

collagen (Ahmed et al., 1986; Dyer et al., 1991; Dyer et al., 1993; Sell & Monnier, 

1989). Indeed, CML and pentosidine accumulation is accelerated by hyperglycemia and 

correlates with the severity of clinical complications such as retinophaty, nephrophaty, 

neurophaty, vascular disorders, diabetic cataracts and diabetic atherosclerosis (Ahmed, 

2005; Beisswenger et al., 1993; Dyer et al., 1991; Dyer et al., 1993; Sell et al., 1992). 

The accumulation of AGE-modified proteins was obviously associated with the high 

glucose concentration in the plasma of diabetic patients. Nowadays, several different 

aspects need to be added to this hypothesis. As stated before, glucose is the least reactive 

sugar (Bunn & Higgins, 1981), thus highly reactive compounds, such as methylglyoxal, 

are more relevant glycation agents. It was also observed that short-lived plasma proteins 

(Makita et al., 1991; Makita et al., 1992) and intracellular proteins are irreversibly 
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modified by glycation (Giardino et al., 1994; Gugliucci & Allard, 1996). Besides its 

higher reactivity, methylglyoxal reacts preferentially with arginine residues and several 

new AGE structures were discovered and identified in vivo (as described in 3.3.1). It is 

noteworthy that the stimulation of glucose metabolism observed in diabetes mellitus and 

related clinical complications causes an increase of methylglyoxal levels (McLellan et al., 

1994). Another important question resulted from the observation that AGE also 

accumulate in other diseases like atherosclerosis in non-diabetic individuals (Kume et al., 

1995) and patients with dialysis-related amyloidosis (DRA) (Miyata et al., 1994a; Miyata 

et al., 1994b; Miyata et al., 1993). Alzheimer’s disease (Du Yan et al., 1997a; Vitek et 

al., 1994; Yan et al., 1994a) and Parkinson’s disease (Castellani et al., 1996; Munch et 

al., 2000) are significant examples of AGE accumulation in amyloid deposits. It is now 

believed that protein glycation plays a major role in these disorders although the 

underlying mechanisms are still unknown. Importantly, in all these pathological 

conditions glycaemia is normal. These observations led to the introduction of a new type 

of cellular stress, carbonyl stress, which is caused by a generalized increase in the 

concentration of reactive carbonyl AGE- precursors (like methylglyoxal), glycoxidation 

and lipoxidation products (Baynes & Thorpe, 1999). In line with this concept, protein 

glycation is not due to hyperglycaemia but to carbonyl stress that may result from an 

increased concentration of glycation agents and/or a decrease of their catabolism (Baynes 

& Thorpe, 1999). Noteworthy, carbonyl stress includes oxidative and non-oxidative 

pathways (Baynes & Thorpe, 1999). 

 Much research efforts have been focused in the glycation effects on protein 

function and structure and cell physiology that underlies the genesis or contribute to the 

development of pathological conditions. It is believed that protein glycation leads directly 

to changes in the function of specific proteins with consequences to normal cell 

physiology. Furthermore, glycated proteins promote directly oxidative stress and, by 

interaction with cell receptors, trigger cellular responses and inflammation that may lead 

to cell dysfunction. 
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4.1. Biochemical effects of protein glycation  

 

4.1.1. Protein structure and function  

 

 Since the discovery that AGE-modified proteins accumulates in several human 

pathologies, the implications of protein modifications induced by glycation have been 

extensively investigated. In this context, it is of extreme importance to understand 

whether these processes are mechanistically related or merely associated with disease 

processes. 

Arginine, lysine and cysteine residues are usually present in enzymes active sites. 

Almost all glycolytic enzymes, for example, contain arginine residues in their active site 

(Nelson & Cox, 2000). Consequently, the irreversible modification of these residues 

would alter enzyme activity. For instance, methylglyoxal inactivates Cu,Zn-superoxide 

dismutase with the formation of covalent cross-links, releasing copper ions from the 

enzyme (Kang, 2003). Methylglyoxal at just 1 µM (physiological concentration) 

decreases GAPDH activity by 20%, while exposure to 1 mM causes a 97% inhibition 

(Lee et al., 2005). Likewise, glycation by methylglyoxal and other glycation agents 

decreases the activity of several enzymes, namely glutathione reductase, lactate 

dehydrogenase, GAPDH (Morgan et al., 2002), aspartate aminotransferase (Seidler & 

Seibel, 2000), catalase (Yan & Harding, 1997), Na,K-ATPase (Garner et al., 1990) and 

esterase activity in HSA (Ahmed et al., 2005). In other cases, enzymatic activity 

increases upon glycation, as observed in the esterase activity of hemoglobin and 

myoglobin (Sen et al., 2007). Interestingly, it was recently discovered that Hsp27 and α-

crystallins enhance their chaperone activity upon glycation by methylglyoxal (Nagaraj et 

al., 2003; Oya-Ito et al., 2006). Glycation is also responsible for changing molecular 

conformation (Raabe et al., 1996) with redistribution of the secondary structure elements 

(Bakhti et al., 2007; Bouma et al., 2003), enhancing hydrophobicity (Bakhti et al., 2007) 

and altering protein stability (Luthra & Balasubramanian, 1993; Raabe et al., 1996; 

Seidler & Seibel, 2000). In addition, protein glycation could also be the direct cause of 

protein misfolding with important cellular consequences in the context of amyloidotic 

neurodegenerative diseases (Bouma et al., 2003; Ledesma et al., 1994). Although some 
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of these glycated proteins were identified in vivo, in the majority of these studies, proteins 

were glycated in vitro by incubation with different glycation agents (like methylglyoxal, 

glyoxal, ribose, glucose and triose phosphates) and, in most cases, in non-physiological 

conditions. So, the relevance of the observed results is arguable considering that any 

protein with lysine and arginine residues is a target for glycation. Indeed, chemical 

modifications by methylglyoxal and phenylglyoxal have been used for about forty years 

to identify critical residues involved in enzyme catalysis (Raess et al., 1985; Takahashi, 

1968; Takahashi, 1977a; Takahashi, 1977b).  

Glycation of specific proteins could alter different cellular functions in several 

ways. In organisms from yeast to mammals, many proteins are translated as inactive 

precursors. These protein precursors, such as hormones, neuropeptides, adhesion 

molecules, growth factors, receptors, matrix metalloproteases, and plasma proteases, are 

cleaved to generate biologically active proteins. The recognition sequences for many 

proteolytic cleavage reactions are often paired basic amino acid residues like arginine-

arginine or arginine-lysine (Rehemtulla et al., 1992). One example is the paired basic 

amino acid cleaving enzymes (PACE), a serine protease that recognizes and cleaves 

arginine-arginine or arginine-X-lysine sequences (where X is any other amino acid 

residue) (Rehemtulla et al., 1992; Seidah & Chretien, 1997; Wise et al., 1990). Trypsin 

only cleaves the carboxyl side of lysine and arginine residues and thrombin hydrolyses 

arginine-glycine bonds on specific peptide chains. While the effect of methylglyoxal on 

these cleavage reactions is not completely understood, the presence of phenylglyoxal-

arginine adducts in RNase-A inhibits proteolytic cleavage by trypsin and chymotrypsin 

(Takahashi, 1968). Glycated proteins are in fact highly resistant to proteolysis (Fu et al., 

1992; Fu et al., 1994). A reduction in proteolytic cleavage reactions may prevent the final 

processing of many proteins, resulting in their eventual degradation (Dorner et al., 1992). 

Many signal sequences that dictate the final intracellular protein localization usually 

contain lysine and arginine residues (Pohlschroder et al., 2005). One example is the twin 

arginine translocation pathway in which the recognized peptide signal sequence contains 

an almost invariant twin arginine surrounded by a less conserved motif (Pohlschroder et 

al., 2005).  
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Cysteine, lysine and arginine residues are also generally located in putative active 

site of the tyrosine kinase receptor family and therefore glycation of these proteins will 

interfere with cell signalling (Portero-Otin et al., 2002).   

 A direct link between glycation of specific protein targets and cellular dysfunction 

in vivo has been described, mainly in the context of diabetes mellitus and related clinical 

complications. The interference on the normal physiology of low-density lipoproteins 

(LDL) particles is perhaps the best understood. The glycation process occurs both on the 

apolipoprotein B (apoB) (Bucala et al., 1994; Bucala et al., 1995) and phospholipids 

(Bucala et al., 1993) LDL components, leading to a diminished recognition of glycated 

LDL particles by the LDL receptor (Bucala et al., 1994; Bucala et al., 1995) (Figure 

I.11). Glycation of LDL apoB occurs mainly on a positively charged lysine residue within 

the putative receptor binding domain, essential for the specific recognition by the LDL 

receptor (Bucala et al., 1995). Therefore, in vivo clearance of glycated LDL is greatly 

reduced (Bucala et al., 1984; Steinbrecher & Witztum, 1984). Additionally, glycation 

increases LDL susceptibility to oxidative modifications (Bucala et al., 1993) (Figure I.11) 

and oxidized LDL are preferentially recognized by the macrophage scavenger receptor 

(Klein et al., 1995). Hence, glycation promotes directly an increased LDL uptake by the 

scavenger receptor enhancing foam cell formation, an earlier step in the development of 

atherosclerosis (Dominiczak, 1997).  

Portero-Otín and co-workers reported another example of receptor signalling 

impairment by glycation, in which methylglyoxal and glyoxal inhibit the activation of the 

epidermal growth factor receptor that regulates multiple cellular processes such as cell 

growth, mobility, differentiation, survival and death as a response to the epidermal 

growth factor (Portero-Otin et al., 2002). Interestingly, endothelial cells exposed to high 

glucose concentration show a mitogenic activity reduction of 70% due to glycation of the 

basic fibroblast growth factor (Giardino et al., 1994). Methylglyoxal also disturbs the 

interaction of endothelial cells with extracellular matrix by reacting within a short 

colagenous region containing arginine-glycine-aspartate (R-G-D) sequence that mediates 

endothelial cell adhesion to type IV collagen (Pedchenko et al., 2005). Glucose has no 

effect on cell adhesion, illustrating once more the relevance of methylglyoxal as the main 

protein glycation agent in vivo (Pedchenko et al., 2005). It was also reported that 
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glycation induces functional changes on the membrane attack complement regulatory 

protein CD59, which inhibits the activity of the complement system (Acosta et al., 2000). 

CD59 glycation promotes its inactivation, stimulating the proliferation of fibroblast and 

smooth muscle cells induced by the formation of the membrane attack complement in 

blood vessels and the consequent release of growth factors and cytokines (Acosta et al., 

2000). 

 

 

 

 
 

 

Figure I.11. LDL glycation and atherosclerosis. Formation of AGE-modified LDL particles increases the 
susceptibility for oxidative modifications. Oxidized LDL is recognized by the macrophage scavenger 
receptor instead of the LDL receptor. Glycation apoB may also reduce LDL recognition by the LDL 
receptor. LDL uptake by the scavenger receptor leads to foam cell formation that promotes atherosclerosis. 
Adapted from (Aronson & Rayfield, 2002).    
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The real significance of protein glycation is not yet perceived, mainly in other 

diseases besides diabetes mellitus, where it is becoming evident that protein glycation 

plays an important role.   

    

 

4.1.2. AGE:RAGE interaction  

 

AGE-modified proteins also exert cellular effects via interaction with specific 

AGE receptors, including the macrophage scavenger receptor (el Khoury et al., 1994) and 

the receptor for AGE (RAGE), the most extensively investigated receptor (Neeper et al., 

1992). RAGE, a member of the multi-ligand immunoglobulin superfamily of receptors 

(Neeper et al., 1992), is composed by three extracellular domains, namely a V-type 

domain with ligand binding properties and two C-type immunoglobulin domains (Neeper 

et al., 1992; Schmidt et al., 1992; Schmidt et al., 2001). Besides the extracellular region, 

this receptor also includes a single transmembrane-spanning domain that anchors RAGE 

to the membrane, and a short highly charged, cytosolic domain at the C-terminal (Neeper 

et al., 1992; Schmidt et al., 1992; Schmidt et al., 2001). The latter intracellular domain 

probably binds to signal transduction molecules in the cytoplasm to recruit cellular 

effector mechanisms after RAGE:ligand interaction. The C-truncated isoform of RAGE, 

termed soluble RAGE, lacks the transmembrane-anchoring domain and consequently is 

found in plasma (Malherbe et al., 1999). This cell surface receptor is found in smooth 

muscle cells, monocyte-derived macrophages, endothelial cells and neurons (Brett et al., 

1993; Schmidt et al., 2001). Although expressed at low levels in normal tissues, it 

becomes up-regulated where its putative ligands accumulate (Brett et al., 1993; Li et al., 

1998; Li & Schmidt, 1997; Tanaka et al., 2000).  

RAGE acts as a signal transduction receptor not only for CML-modified proteins 

(Kislinger et al., 1999), but also for MAGE modifications (Westwood et al., 1994). It was 

reported that methylglyoxal-modified arginine residues could function as a specific signal 

for receptor-mediated recognition (Westwood et al., 1997). Similar cellular effects were 

observed in human-cultured mesangial cells exposed to BSA glycated by glucose, 

glyceraldehyde or glycoaldehyde (Yamagishi et al., 2002).  
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The AGE:RAGE interaction elicits a wide range of cellular responses, including 

increased endothelial permeability (Wautier et al., 1996), monocyte chemotaxis 

stimulation followed by mononuclear infiltration (Kirstein et al., 1990), increased 

angiogenesis through production of vascular endothelial growth factor (VEGF) (Hirata et 

al., 1997; Yamagishi et al., 2002; Yamagishi et al., 1997), cell proliferation (Kirstein et 

al., 1992; Kirstein et al., 1990; Seki et al., 2003) and inflammatory processes (Basta et 

al., 2002; Sainhas et al., 1998; Schmidt et al., 2001). Although the precise mechanism of 

some of these responses is not yet fully understood, it is likely to involve the release of 

mediators like the pro-inflamatory cytokine interleukin-1 (IL-1), tumor necrosis factor-α 

(TNF-α) (Vlassara et al., 1988), interleukin-6 (IL-6) (Schmidt et al., 1994), the growth 

factors platelet-derived growth factor (PDGF) (Kirstein et al., 1990) and insulin growth 

factor-1 (IGF-1) (Kirstein et al., 1992). Moreover, monocyte chemoattractant protein-1 

(MCP-1) (Yamagishi et al., 2002) and vascular cell adhesion molecules, such as the 

vascular cell adhesion molecule-1 (VCAM-1) (Schmidt et al., 1995) and intercellular 

adhesion molecule 1 (ICAM-1) (Basta et al., 2002), are also induced by AGE:RAGE 

interaction (Figure I.12). Altogether, these responses could induce cellular dysfunction, 

being involved in several pathological conditions. Increased endothelium permeability, 

for example, leads to increased lipid entry into the subendothelium, relevant in the 

pathogenesis of atherosclerosis (Dominiczak, 1997). Furthermore, through RAGE 

interaction, AGE-modified proteins may prime pro-inflammatory mechanisms, thereby 

amplifying the inflammatory response (Basta et al., 2002).  

The interaction between RAGE and AGE-modified proteins enhances cellular 

oxidative stress, which appears to mediate this receptor signal transduction by activating 

the transcriptional factor NFκB (Yan et al., 1994b). One known RAGE-dependent 

cellular signal pathway involves the induction of oxidative stress with p21ras activation 

that will subsequently activate MAP kinases and ultimately NFκB, resulting in the 

transcription of target genes (Lander et al., 1997; Schmidt et al., 1995; Yan et al., 1994b).  

Noteworthy, RAGE gene has a putative NFκB binding site (Li & Schmidt, 1997). 

Therefore, AGE:RAGE interaction will trigger a positive feedback in which the increase 

of RAGE expression enhances the ability of this cell receptor for subsequent binding of 

more ligands molecules (Schmidt et al., 1999; Tanaka et al., 2000). 
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Figure I.12. Cellular responses to AGE:RAGE interaction. These responses are mediated by NF-κB, which 
is activated by the oxidative stress-dependent p21ras pathway. By these mechanisms, AGE can mediate cell 
toxicity.      

 

 

RAGE is a multi-ligand receptor interacting with other ligands besides AGE. The 

observation that this receptor is highly expressed during development, especially in the 

central nervous system, led to the discovery that RAGE is a cellular binding site for 

amphoterin, a protein associated with basement membranes and abundant in the 

developing central nervous system (Hori et al., 1995). RAGE-amphoterin interaction 

promotes neurite outgrowth in rat cortical neurons cultures (Hori et al., 1995; Huttunen et 

al., 1999). This observation indicates that RAGE has physiological relevant ligands 

distinct from AGE, being involved in normal physiological processes outside the context 

of AGE related disorders. Other important RAGE ligands are the amyloid β-sheet fibrils 

composed of amyloid β-peptide, structures found in Alzheimer’s disease (Du Yan et al., 

1997b; Yan et al., 1996). The interaction between RAGE and amyloid β-peptide also 

promotes NFκB activation and the production of macrophage-colony stimulating factor 

(Du Yan et al., 1997a). Amyloid forming β-sheet fibrils of amylin, serum amyloid A and 
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prion protein are also ligands for this receptor (Yan et al., 2000). Also, transthyretin 

amyloid fibrils are recognized by RAGE, eliciting a cellular response (Sousa et al., 

2001b; Sousa et al., 2000). These observations raised the question whether RAGE may 

function as a signal transduction receptor for β-sheet fibrils. Coincidence or not, protein 

glycation leads to a β-sheet content increase (Bouma et al., 2003) and several evidences 

raised the hypothesis that glycation directly promotes amyloid fibril formation (Bouma et 

al., 2003; Ledesma et al., 1994).   

 

 

4.1.3. Oxidative stress induced by glycation  

 

The association between glycation and oxidative stress is well documented, being 

both processes mutually stimulated. The previously referred glycoxidation theory implies 

that oxygen and oxidation reactions play an important role in the Maillard reaction 

(Baynes, 1991; Elgawish et al., 1996; Fu et al., 1994). Due to their chemical properties, 

AGE-modified proteins can cause oxidative stress per se (Elgawish et al., 1996). The 

transition metal-catalysed autoxidation of glucose and oxidative degradation of Schiff’s 

base and protein-bound Amadori products yield superoxide, hydroxyl-radicals and 

hydrogen peroxide (Hunt et al., 1993; Wolff, 1993; Wolff & Dean, 1987). So, in addition 

to the oxidative stress’ role as a modulator of AGE formation, glycated proteins can also 

enhance oxidative stress. For example, LDL glycation, increases LDL susceptibility to 

oxidative damage (Bucala et al., 1993). In vivo, it was shown that AGE deposits in the 

arterial wall could themselves generate free radicals capable of oxidizing vascular wall 

lipids and accelerate atherogenesis in hyperglycaemic diabetic patients (Mullarkey et al., 

1990). Mitochondrial protein glycation is also associated with mitochondria-induced 

oxidative stress (Rosca et al., 2005). 

In earlier investigations, free radicals formation was observed upon the reaction of 

methylglyoxal with proteins (McLaughlin et al., 1980; Sakurai & Tsuchiya, 1988). Using 

L-alanine as a model, Yim and co-workers found three types of free radical species 

produced upon methylglyoxal incubation: a cross-link radical cation, methylglyoxal 

radical anion and superoxide radical anion (Yim et al., 1995). Transition metals or 
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oxygen are not required to form of the cross-link radical cation and methylglyoxal radical 

anion. However, oxygen can accept an electron from the methylglyoxal radical anion 

generating superoxide radical and initiating damaging chain reactions (Yim et al., 1995). 

BSA glycated by methylglyoxal also generates protein-bound cross-link free radicals, like 

the ones observed for alanine (Lee et al., 1998). Moreover, glycated BSA is capable of 

catalysing oxidative modification of macromolecules, which suggests that in vivo 

accumulation of glycated proteins provides a stable locus for free radicals production, 

with consequent cellular damage (Lee et al., 1998) (Figure I.13).  

 The increased oxidative stress, caused by AGE-modified proteins or through 

RAGE interaction, may be directly involved in a wide range of pathological conditions. 

 

 
 

 
 
 
 
Figure I.13. Generation of oxidative stress during methylglyoxal-derived protein glycation. The reaction 
between methylglyoxal and protein amino groups leads to the formation of cross-link Schiff’s base which 
can donate an electron directly to methylglyoxal producing two radicals: cross-link radical cation and 
methylglyoxal radical anion. Oxygen can accept an electron from the anion to generate a superoxide radical 
anion. Importantly, glycated proteins can oxidize macromolecules contributing to oxidative damage. 
Adapted from (Lee et al., 1998). 
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4.2. Glycation in amyloid diseases  

 

 Amyloidosis is a generic term used to designate a group of clinical and 

biochemically diverse diseases characterized by protein deposition into insoluble fibrils 

with a characteristic structure, termed amyloid deposits (Ghiso et al., 1994; Sipe, 1992). 

There are over 16 biochemically distinct amyloidosis, each one characterized by the 

deposition of a particular amyloidogenic protein (Ghiso et al., 1994; Sipe, 1992). Several 

types of amyloidosis and their amyloid protein precursors were identified (Ghiso et al., 

1994). Alzheimer’s and Parkinson’s diseases are both neurodegenerative disorders of 

amyloid type affecting the central nervous system (Ross & Poirier, 2004). Alzheimer’s 

disorder is characterized by extracellular deposits of amyloid β-peptide and intracellular 

amyloid deposits of tau protein (Ghiso et al., 1994), whereas α-synuclein amyloid 

deposits are characteristic of Parkinson’s disease (Lucking & Brice, 2000). In familial 

amyloidotic polyneurophaty (FAP), a neurodegenerative amyloidosis affecting the 

peripheral nervous system, amyloid deposits are mainly composed of transthyretin 

(Andrade, 1952; Costa et al., 1978). Although there is no obvious sequence homology 

between the different amyloidogenic proteins, all amyloid deposits share particular 

biochemical features such as high insolubility and proteolysis resistance, a β-pleated 

sheet structure and similar tinctorial properties like apple-green birefringence under 

polarized light after Congo red staining and yellow-green fluorescence with thioflavin S 

(Ghiso et al., 1994; Sipe, 1992) (Figure I.14). These similarities suggest that common 

mechanisms are involved in this type of disorders. Since amyloidogenic proteins are 

normally innocuous it is believed that they undergo several structural modifications that 

eventually result in amyloid deposit formation. Numerous point mutations are associated 

with the amyloidogenic behaviour of several proteins like transthyretin (Saraiva, 2001), 

Aβ protein (Haass et al., 1994) and α-synuclein (Pankratz & Foroud, 2004; Valente et al., 

2004). In FAP, more than 80 transthyretin point mutations were associated with amyloid 

fibril formation (Saraiva, 2001). However, non-mutated transthyretin can also form 

amyloid deposits (Westermark et al., 1990), hinting for the complexity of amyloid fibril 

formation pathways where several factors beyond genetic determinants may play an 

important role. 
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The abnormal proteolytic processing and/or post-translational modifications 

including oxidation, phosphorylation, glycosylation, methylation and glycation, are 

probably involved in amyloidogenesis. Due to the biochemical similarities between 

glycated proteins and neurophatological amyloid lesions, Colaco and Harrington 

proposed that protein glycation might account for amyloid formation in vivo (Colaco & 

Harrington, 1994; Harrington & Colaco, 1994). Glycated proteins and amyloid deposits 

are highly insoluble, protease resistant, with characteristic cross-link structure, 

fluorescent and brown-coloured compounds (Colaco & Harrington, 1994; Harrington & 

Colaco, 1994). Moreover, glycation may cause protein aggregation and cross-link (Eble 

et al., 1983) producing detergent-insoluble, protease resistant aggregates similar to those 

isolated from the brain of Alzheimer’s disease patients (Ledl & Schleicher, 1990). In 

agreement with this hypothesis, AGE-modified proteins were detected in amyloid 

deposits from several amyloidosis such as Alzheimer’s (Smith et al., 1994; Yan et al., 

1994a) and Parkinson’s diseases (Castellani et al., 1996; Munch et al., 2000) and 

dialysis-related amyloidosis (DRA) (Miyata et al., 1993).         

    The contribution of protein glycation to amyloid formation and toxicity has 

been investigated in the context of DRA and Alzheimer’s disease. In DRA, amyloid 

deposits are derived from β2-microglobulin (β2M), which renal clearance is decreased in 

this pathology (Gejyo et al., 1986). β2M isolated from amyloid fibrils is markedly 

different from native β2M showing a more acidic pI, brown colour and fluorescence, all 

biochemical characteristics of AGE-modified proteins (Miyata et al., 1993). Indeed, β2M 

in amyloid plaques is strongly labelled with anti-AGE antibody, indicating that AGE-

modified β2M is the dominant component of DRA amyloid deposits (Miyata et al., 1993). 

The α-amino group of isoleucine residue from the N-terminal is the primary site for β2M 

AGE modification (Miyata et al., 1994b). Contrary to the native protein, AGE-β2M 

purified from long-term haemodialysis patients induces monocyte chemotaxis and 

macrophage activation (Miyata et al., 1994a), which could explain the observation that 

DRA amyloid deposits are surrounded by macrophages and other inflammatory cells 

(Depierreux et al., 1988). By RAGE interaction, AGE-β2M can initiate a local 

inflammatory response with the release of IL-1, TNF-α and IL-6, leading to the 

connective tissue degeneration and bone and joint destruction, characteristic of DRA 
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(Miyata et al., 1996; Miyata et al., 1994a). Contrary to diabetes mellitus and related 

clinical complications, enhanced AGE content is attributed to an increase of carbonyl 

compounds (carbonyl stress) found in chronic renal failure (Miyata et al., 1997; Miyata et 

al., 2000). Oxidative stress increase associated with uraemia (Miyata et al., 1997) may 

also promote AGE formation.  

 

 

 
 
Figure I.14. Amyloid deposits. (A) Electron microscopy of β2-microglobulin-derived amyloid deposits. (B) 
Atom force microscopy of β2-microglobulin amyloid fibril. Images were obtained from (Chatani et al., 
2006; Kihara et al., 2006). (C) Amyloid fibrils show unique tinctorial properties, such as apple-green 
birefringence under polarised light upon staining with Congo-red. TTR-amyloid fibrils are shown. Image 
obtained from (Saraiva, 2002).  
 

 

 In Alzheimer’s disease, both extracellular Aβ-peptide amyloid plaques and 

intracellular neurofibrillary tangles of tau protein are highly modified with AGE (Smith 

et al., 1994; Vitek et al., 1994; Yan et al., 1994a). It was therefore suggested that protein 

modifications through the Maillard reaction could stabilize the amyloid deposits, 

accounting for their high insolubility and protease-resistance (Smith et al., 1994). AGE-
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modified proteins in neurofibrillary tangles are associated with oxidative stress, based on 

histochemical evidence from increased levels of malondialdehyde epitopes and heme 

oxigenase antigens (Yan et al., 1994a). Likewise, recombinant tau protein glycated in 

vitro generates reactive oxygen species and higher molecular mass aggregates, and 

induces oxidative stress in neuroblastoma cells (Yan et al., 1994a). Tau protein isolated 

from neurofibrillary tangles contains two major post-translational modifications, 

phosphorylation and glycation (Ledesma et al., 1994). Both these modifications are 

necessary for the formation of protein aggregates similar to those found in vivo (Perez et 

al., 2002). Like in DRA, it is believed that protein glycation occurs due to carbonyl stress 

increase (Munch et al., 2003; Perez et al., 2002). Glycation of β-amyloid protein also 

promotes the nucleation and precipitation of this protein, suggesting an additional 

mechanism by which protein glycation may accelerate the progression of Alzheimer’s 

disease (Vitek et al., 1994). Protein cross-link derived from glycation in vivo might 

stabilize the specific β-amyloid peptide conformation and promoting further aggregation 

(Vitek et al., 1994). Besides the structural changes induced by glycation, AGE-modified 

tau induces neuronal oxidative stress, resulting in an increased expression of cytokine 

genes and amyloid precursor protein as well as the release of Aβ peptide (Yan et al., 

1995).  

The mechanisms underlying the toxicity of amyloid fibril formation are not yet 

known. In Alzheimer’s disease, it is believed that neurons are subjected to the deleterious 

cytotoxic effects of activated microglia and astroglia (Wong et al., 2001), to exacerbate 

inflammatory processes (Gasic-Milenkovic et al., 2003) and increase oxidative stress 

(Dickson, 2004). Reactive oxygen species can be generated during AGE modifications 

(Lee et al., 1998; McLaughlin et al., 1980; Sakurai & Tsuchiya, 1988) and the interaction 

with cellular receptors can also induce oxidative stress (Lander et al., 1997; Schmidt et 

al., 1995; Yan et al., 1994b), as well as the production of pro-inflamatory citokynes 

(Schmidt et al., 1994; Vlassara et al., 1988). Hence, protein glycation could be directly 

involved in the toxicity of amyloid deposits. The intracellular glycation of tau protein 

could also generate intracellular ROS, modulating cellular functions in a sustained 

fashion (Yan et al., 1994a). In Parkinson’s disease, oxidative stress is also related to 
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AGE-modified proteins found in Lewy bodies of α-synuclein deposits (Castellani et al., 

1996).   

The presence of the MAGE argpyrimidine in amyloid deposits isolated from FAP 

patients was unequivocally identified by chromatographic methods (Gomes et al., 2005a). 

Just like in DRA, Alzheimer’s and Parkinson’s diseases, carbonyl concentrations are 

significantly higher in amyloid-rich tissues of FAP patients compared to control subjects 

(Ando et al., 1997). Importantly, a clear relationship between transthyretin amyloid 

deposits and RAGE, the AGE receptor, was shown (Matsunaga et al., 2002). These 

observations hint for a possible implication of protein glycation in this neurodegenerative 

amyloidosis. 

Even though glycation is involved in amyloidosis, it is still controversial whether 

glycation of susceptible proteins could be an initial event in amyloid fibril formation or 

merely a result of amyloid fibril accumulation due to the longevity of the protein 

components which, as a result of their extreme insolubility and protease resistance, 

persist in the body for long periods of time. Nevertheless, several lines of evidence 

suggest that glycation directly promotes or accelerates abnormal protein deposition into 

β-fibrils structures characteristic of these pathologies. Münch and co-workers found AGE 

in very early Lewy bodies suggesting its involvement in protein cross-link and the 

formation of insoluble, non-degradable aggregates (Munch et al., 2000). In addition, 

glycation of tau protein leads to the formation of amyloid-like structure (Ledesma et al., 

1994). Regardless of the exact chronology of AGE accumulation, glycation increases 

protein insolubility and protease resistance (Fu et al., 1992; Fu et al., 1994), decreasing 

its turnover (Figure I.15). The accumulation of AGE-modified proteins also leads to 

inflammation and propagation of tissue damage by several mechanisms like oxidative 

stress increase and release of pro-inflammatory cytokines mediated by AGE:RAGE 

interaction (Figure I.15). Since amyloidosis are multifactor diseases, glycation may well 

be one progression factor superimposed on a pre-existent pathologic state in which this 

post-translational modification accelerates and determines the course of neuronal disease 

(Yan et al., 1994a). It is becoming evident that AGE in these deposits are not only static 

by-products of disease, but rather dynamic participants in neuronal dysfunction, inducing 

several cellular responses that lead to cell dysfunction and death. 



Introduction   

46 

 

 
 
Figure I.15. Potential role of protein glycation in amyloid diseases. Glycation of the amyloidogenic protein 
may induce conformational changes, and may also be involved in the transition of soluble aggregates to 
amyloid fibrils. The glycation of amyloid fibrils will increase their stability, just like glycation of the 
soluble aggregates. In each case, protein glycation may be involved in cellular damage by increasing 
oxidative stress or by activating different cellular responses such as inflammation through by AGE:RAGE 
interaction.  
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1. SUMMARY 
 

Methylglyoxal is the most important intracellular glycation agent, formed 

non-enzymatically from triose phosphates during glycolysis in eukaryotic cells. 

Methylglyoxal-derived advanced glycation end-products are involved in 

neurodegenerative disorders (Alzheimer’s, Parkinson’s and familial amyloidotic 

polyneuropathy) and in the clinical complications of diabetes mellitus. Research models 

for investigating protein glycation and its relationship to methylglyoxal metabolism are 

required to understand this process, its implications in cell biochemistry and their role in 

human diseases. We investigated methylglyoxal metabolism and protein glycation in 

Saccharomyces cerevisiae. Using a specific antibody against argpyrimidine, a marker of 

protein glycation by methylglyoxal, we found that yeast cells growing on D-glucose (100 

mM) present several glycated proteins at the stationary phase of growth. Intracellular 

methylglyoxal concentration, determined by a specific HPLC-based assay, is directly 

related to argpyrimidine formation. Moreover, exposing non-growing yeast cells to a 

higher D-glucose concentration (250 mM) increases methylglyoxal formation rate and 

argpyrimidine-modified proteins appear within 1 h. A kinetic model of methylglyoxal 

metabolism in yeast, comprising its non-enzymatic formation and enzymatic catabolism 

by the glutathione-dependent glyoxalase pathway and aldose reductase, was used to 

probe the role of each system parameter on methylglyoxal steady-state concentration. 

Sensitivity analysis of methylglyoxal metabolism and studies with gene deletion mutant 

yeast strains showed that the glyoxalase pathway and aldose reductase are equally 

important for preventing protein glycation in Saccharomyces cerevisiae. 
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2. INTRODUCTION 

 
The glycation of extracellular proteins plays a major role in diseases like diabetes 

mellitus and related clinical complications, where D-glucose is the main glycation agent 

(Brownlee, 1995; Bucala & Cerami, 1992). In neurodegenerative diseases of amyloid 

type, where protein β-fibrils accumulate with time in specific human tissues and organs, 

glycation may lead to a folding transition causing the formation of β-fibrils from 

unstructured protein deposits and activate receptor-mediated cellular responses (Bouma et 

al., 2003; Du Yan et al., 1997a). In Alzheimer’s disease (β-amyloid deposits) and FAP 

(transthyretin deposits) glycation is present in extracellular amyloid deposits (Chen et al., 

2004; Gomes et al., 2005a; Vitek et al., 1994). Intracellular protein glycation also occurs 

in amyloid fibrils in Alzheimer’s disease (τ deposits) and Lewy inclusion bodies of 

α-synuclein in Parkinson’s disease (Castellani et al., 1996; Yan et al., 1994a). As the 

concentration of D-glucose is very low inside living cells, other glycation agents must be 

present. Among these, methylglyoxal, a product of the non-enzymatic phosphate 

β-elimination of dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate in 

glycolysis, is likely to be the most significant in vivo (Richard, 1993).  

Methylglyoxal reacts irreversibly with amino groups in proteins, forming 

methylglyoxal advanced glycation end-products (MAGE) in a slow non-enzymatic 

process (Booth et al., 1997; Thornalley, 1999). Nε-(carboxyethyl)lysine and 

methylglyoxal-lysine dimers are the main products of the reaction of methylglyoxal with 

lysine residues, while with arginine it forms Nδ-(5-methyl-imidazolone-2-yl)-ornithine 

and Nδ-(5-hydroxy-4,6-dimethylpyrimidine-2-yl)-l-ornithine, commonly known as 

argpyrimidine (Shipanova et al., 1997; Westwood & Thornalley, 1997). Argpyrimidine is 

a specific marker of protein glycation by methylglyoxal (Shipanova et al., 1997). It has 

been detected in renal tissues (Oya et al., 1999) and lens proteins from diabetic patients 

(Ahmed et al., 1997) and in diabetic rat kidney mesangial cells (Padival et al., 2003). It 

was also found in human carcinoma cells exposed to high glucose concentration 

(Sakamoto et al., 2002) and in neurodegenerative disorders of amyloid type such as FAP 

(Gomes et al., 2005a).  
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Because AGE formation is an irreversible non-enzymatic process, preventing or 

delaying its occurrence may only be accomplished by reducing the amount of glycation 

agents such as methylglyoxal. This α-oxoaldehyde is mainly catabolised by two 

enzymatic pathways, whose relative importance is largely unknown (Figure II.1). The 

first is the glyoxalase pathway (Racker, 1951), comprising the enzymes glyoxalase I 

(lactoylglutathione methylglyoxallyase, EC 4.4.1.5) and glyoxalase II 

(hydroxyacylglutathione hydrolase, EC 3.1.2.6). It converts methylglyoxal to D-lactate 

using GSH as specific cofactor. The second is aldose reductase (aldehyde reductase, EC 

1.1.1.21) that reduces methylglyoxal to 1,2-propanediol in a NADPH-dependent two-step 

reaction (Vander Jagt & Hunsaker, 2003).  

 

 

 
 

 
Figure II.1. Methylglyoxal metabolism in S. cerevisiae. Methylglyoxal is formed non-enzymatically from 
DHAP and GAP during glycolysis. It is converted into D-lactate by the glyoxalase system or acetol through 
aldose reductase. This metabolic map was used to build a mathematical model comprising the reactions 
represented by blue arrows, with rate equations vi (dark red). Dynamic variables are marked red. 
Metabolites taken as constant or not considered in the model are marked black. Triose phosphates 
concentrations are constant and therefore methylglyoxal formation rate (v1) is also constant. Detailed rate 
equations, parameters and reference steady-state conditions are given in Table II.1. 
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Yeast cells growing on D-glucose show a high glycolytic flux and a high rate of 

methylglyoxal formation (Martins et al., 2001a), hinting that glycation might occur in 

these cells. Protein glycation by methylglyoxal in yeast, monitored by argpyrimidine 

formation in proteins, was evaluated in a set of null mutant yeast strains for genes 

involved in methylglyoxal detoxification: ∆GLO1, glyoxalase I gene; ∆GLO2, 

glyoxalase II gene; ∆GSH1, γ-glutamyl cysteinyl syntethase gene; ∆GRE3, aldose 

reductase gene; ∆YAP1, the transcription factor Yap1p gene. Yap1p closely correlates 

with glutathione metabolism (Moye-Rowley, 2003) and its activity is directly regulated 

by methylglyoxal in yeast, being therefore essential to the cell’s response to the 

continuous and unavoidable methylglyoxal formation (Maeta et al., 2004). A kinetic 

model of methylglyoxal metabolism in S. cerevisiae, based on experimentally determined 

parameters, was developed to probe the relative importance of each enzyme in preventing 

glycation. 

The mathematical model described here has been submitted to the Online Cellular 

Systems Modeling database and can be accessed at http://jjj.biochem.sun.ac.za/ 

database/gomes/index.html free of charge. 
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3. MATERIAL AND METHODS 
 

Reagents and materials  

 

Peptone, yeast extract and agar were obtained from Difco while D-glucose 

(microbiology grade) was from Merck. Mes, potassium dihydrogen phosphate, 

methylglyoxal 1,1-dimethyl acetal and monobromobimane were acquired from Fluka. 

Digitonin was obtained from CalBiochem. Coomassie brilliant blue G, Ponceau S, 

dithiothreitol, phenylmethylsulfonyl fluoride (PMSF), glass beads (452–600 microns), S-

D-lactoylglutathione (SDLGSH), 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB) and 1,2-

diaminobenzene were obtained from Sigma. 2,3-Dimethylquinoxaline was purchased 

from Aldrich while NADPH and GSH were obtained from Roche. Solvents were of 

HPLC grade while all other reagents were of analytical grade. 

 

Yeast strains and culture conditions 

 

Saccharomyces cerevisiae strains from the Euroscarf collection (Frankfurt, 

Germany) were: BY4741 (genotype BY4741 MATa; his3∆1; leu2∆0; met15∆0; ura3∆0), 

∆GLO1 (isogenic to BY4741 with YML004c::KanMX4), ∆GLO2 (isogenic to BY4741 

with YDR272w::KanMX4), ∆GSH1 (isogenic to BY4741 with YJL101c::KanMX4), 

∆GRE3 (isogenic to BY4741 with YHR104w::KanMX4) and ∆YAP1 (isogenic to 

BY4741 with YHR161c::KanMX4). ∆GRE3∆GLO1 strain (MATa; his3∆200; leu2∆1; 

ura3-52; trp1∆1; lys2-801; ade2-101; glo1::HIS3; gre3::KanMX4) was kindly provided 

by Dr. J. Prieto (Department Biotech, Instituto de Agroquimica y Tecnologia de los 

Alimentos, Valencia, Spain). Strains were kept in YPGlu [0.5% (w/v) yeast extract, 1% 

(w/v) peptone and 2% (w/v) D-glucose] agar slopes (2% agar) at 4 ºC and cultured in 

liquid YPGlu medium with 100 mM D-glucose. Experiments with non-dividing yeast 

cells were performed in 0.1 M Mes/NaOH pH 6.5 with 250 mM D-glucose. 

 

 

 



Protein glycation in Saccharomyces cerevisiae 

54 

Methylglyoxal preparation 

 

High purity methylglyoxal was prepared by acid hydrolysis of methylglyoxal 1,1-

dimethyl acetal as reported (Kellum et al., 1978), followed by fractional distillation under 

reduced pressure in nitrogen atmosphere (McLellan et al., 1992). Once prepared, 

methylglyoxal solutions were standardized by enzymatic assay with glyoxalase I and II 

(Racker, 1951). Purity was verified by HPLC analysis and 13C NMR (Bruker advance 

400 MHz, USA). 

 

Metabolite assay 

 

Samples were extracted with 2.5 M HClO4, stirred, kept on ice for 10 min and 

immediately analysed (as in the case of methylglyoxal assay) or stored at 80 ºC. 

Methylglyoxal concentration was determined by reverse phase HPLC as 

2-methylquinoxaline after derivatization with 1,2-diaminobenzene, as described 

(Cordeiro & Ponces Freire, 1996). For quantification, a calibration curve was obtained by 

plotting known methylglyoxal concentrations against ratios of analytic peak height to 

internal standard (1,2-dimethylquinoxaline) peak height. Glutathione was assayed by 

reverse phase HPLC with fluorescence detection (λemission,max/λexcitation,max 397/490 nm) 

after derivatization with monobromobimane, as described previously (Sousa Silva et al., 

2005). D-Glucose was enzymatically assayed with hexokinase/D-glucose 6-phosphate 

dehydrogenase (D-glucose assay kit, Boehringer Mannheim), following the 

manufacturer’s instructions. HPLC analysis were performed with a Beckman-Coulter 

high-pressure binary gradient pump 126, a Beckman-Coulter 168-diode-array detector (1 

nm resolution, 200–600 nm) and a Jasco FP-2020 Plus fluorescence detector. For 

methylglyoxal assay a Merck LichroCART 250–2 (250 mm x 2 mm) column with 

stationary phase Purospher 100 RP-18e, 5 µm, was used at a flow rate of 0.3 ml.min-1. 

For GSH assay, a Merck LichroCART 250-4 (250 mm x 4 mm) column with stationary 

phase Lichrospher 100 RP-18, 5 µm, was used at a flow rate of 1 ml.min-1. 
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Analysis of argpyrimidine modified proteins by western blot 

 

Total yeast protein extraction was performed by glass bead lyses as described 

(Ausubel et al., 1990). Briefly, cells were harvested by centrifugation and suspended in 

100 mM potassium phosphate buffer pH 7.4, containing 1 mM PMSF. An equal volume 

of glass beads was added and shaken in a vortex stirrer at maximum speed for five cycles 

of 1 min followed by 1 min of cooling on ice. The homogenate was centrifuged at 8000 g 

for 15 min at 4 ºC and the supernatants were retained. Protein concentration was 

determined using the Bio-Rad Bradford assay kit.  

Proteins (30 µg protein per lane) were separated by SDS/PAGE in a Mini-protean 

3 (Bio-Rad), using a 12% polyacrylamide separation gel and a 6% polyacrylamide 

stacking gel. Proteins were transferred to PVDF membranes (Hybond-P, Amersham 

Pharmacia Biotech), using the Mini Trans-Blot system (Bio-Rad). Transfer was 

performed with 39 mM glycine, 48 mM Tris, 0.0375% (w/v) SDS, and 20% (v/v) 

methanol. Pre-stained standard proteins (Bio-Rad) were also loaded on the gel. Total 

proteins were stained with Ponceau S solution [0.5% (w/v) Ponceau S in 1% (v/v) glacial 

acetic acid] to confirm the amount of protein transferred. The membrane was blocked 

overnight at 4 ºC in 1% (v/v) blocking solution in TBS (50 mM Tris with 150 mM NaCl 

pH 7.5). The blots were probed with anti-argpyrimidine monoclonal antibody, a kind gift 

from Dr. K. Uchida (Nagoya University, Japan), diluted 1:2000 in 0.5% (v/v) blocking 

solution in TBS for 2.5 h at room temperature (25 ºC). Washes, secondary antibody and 

detection procedures were performed using the BM Chemiluminescence Western 

Blotting Kit (Roche) following the manufacturer’s instructions. Each immunoblot was 

repeated three times from independent experiments. 

 

Enzyme activities assay and in situ kinetics 

 

Enzymatic activities were determined in situ using S. cerevisiae permeabilized 

cells. Permeabilization was achieved by incubation with 0.01% (w/v) digitonin in 0.1 mM 

Mes/NaOH, pH 6.5 for 15 min at 30 ºC, in an orbital shaker incubator (Infors HT). 

Enzyme activities were determined at 30 ºC in a 1.5 ml reaction volume, in 0.1 M Mes, 
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pH 6.5 and 70 mM of KH2PO4. All assays were performed on a Beckman DU-7400 diode 

array spectrophotometer, with temperature control and magnetic stirring, essential to 

maintain isotropic conditions.  

Aldose reductase activity was measured by following NADPH oxidation at 340 

nm in the presence of methylglyoxal. Apparent kinetic parameters were determined by 

varying NADPH concentration at fixed methylglyoxal concentrations. NADPH 

concentration was varied in the range of 0.03-0.13 mM and methylglyoxal concentration 

was changed between 0.25 and 6 mM. Glyoxalase I activity was assayed by SDLGSH 

formation (followed at 240 nm) in the presence of GSH and methylglyoxal (Racker, 

1951). Apparent kinetic parameters were determined by varying GSH concentration at 

fixed methylglyoxal concentrations. GSH concentration was varied in the range 0.4-6 

mM and methylglyoxal concentration was changed between 0.6 and 4 mM. Glyoxalase II 

activity was determined by following GSH formation, using SDLGSH as substrate 

(Martins et al., 2001b). Kinetic parameters were determined by varying SDLGSH initial 

concentration between 0.1 and 1.5 mM. 

 

Modeling and computer simulation 

 

Modeling and computer simulation were used to evaluate the relative importance 

of a few critical parameters of methylglyoxal catabolism on the methylglyoxal 

steady-state concentration in S. cerevisiae. The parameters considered were 

methylglyoxal influx, total thiol moiety concentration, NADPH concentration and 

enzyme activities (glyoxalase I, glyoxalase II and aldose reductase). Methylglyoxal 

metabolism in yeast was represented by a set of ordinary differential equations describing 

methylglyoxal formation from the triose phosphates, its reaction with GSH, aldose 

reductase and the glyoxalase pathway (Figure II.1 and Table II.1). Two-substrate 

sequential enzyme rate equations were assumed for aldose reductase and glyoxalase I 

while a single substrate irreversible Michaelis–Menten rate equation was assumed for 

glyoxalase II. NADPH concentration was considered to be constant at 1.7 mM (Vaseghi 

et al., 1999) and the GSH concentration was initially set at 4 mM (this work). In the 

model, we also assumed a constant methylglyoxal formation rate, calculated from the 
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previously reported intracellular concentrations of dihydroxyacetone phosphate (0.12 

mM) and D-glyceraldehyde 3-phosphate (2.5 mM) (Hynne et al., 2001) and the first order 

decomposition rate constants of 6.36 x 10-3 min-1 and 6.60 x 10-4 min-1, respectively (this 

study). Model parameters were determined by classic initial rate analysis or full time-

course analysis (Martins et al., 2001b; Sousa Silva et al., 2005). In the latter, the 

optimization step was performed using the differential evolution algorithm (Storn & 

Price, 1997) implemented in the library AGEDO (Abecasis et al., 2004). Simulations 

were performed with the software package PLAS (A.E.N. Ferreira, University of Lisbon, 

Portugal; http://www.dqb.fc.ul.pt/docentes/aferreira/plas.html). 
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4. RESULTS 
 

Protein glycation in yeast cells is a fast and non-random process 

 

Yeast strains growing in YPGlu medium (100 mM D-glucose) reach the stationary 

phase of growth in 9 days. At this time, cytosolic proteins were extracted and analysed by 

western blotting.  

Argpyrimidine-modified proteins were observed in all strains except BY4741 

(Figure II.2B). Compared to a total protein Coomassie blue stained gel (Figure II.2A) it is 

evident that only a few proteins are glycated. The high immunoreactivity observed 

reveals that argpyrimidine-modified proteins may appear before the stationary phase of 

growth. A time course of argpyrimidine formation in yeast proteins was then performed 

(Figure II.3A). Accumulation of the same argpyrimidine-modified proteins, starting after 

only 3 days of growth, was observed. ∆GLO1 and ∆GRE3 strains showed the highest and 

similar levels of argpyrimidine-modified proteins, hinting that both enzymes are equally 

important in preventing MAGE formation. This result led us to investigate argpyrimidine 

formation in a yeast strain lacking both aldose reductase and glyoxalase I genes 

(∆GRE3∆GLO1 strain). This strain is more prone to argpyrimidine formation than any 

other strain analysed (Figure II.3B). Argpyrimidine-modified proteins are observed after 

only 2 days of growth and the intensity of the immunoreactive proteins is much higher 

after 3 days of growth than after 9 days of growth for any other strains in which glycation 

occurs. Surprisingly, the ∆GLO2 strain, lacking glyoxalase II, presents very low 

glycation levels, detectable only after 9 days of growth.  

Although glycation has been described as a non-enzymatic process, where all 

proteins are putative targets, only three major argpyrimidine-modified proteins were 

observed by immunoblotting, with apparent molecular weights of 52, 40 and 35 kDa 

(Figure II.2B and II.3). Protein glycation in yeast cells is a fast and non-random process 

whereby specific protein targets for argpyrimidine formation appear to exist.  
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Figure II.2. Protein glycation in yeast cells. (A) Total protein Coomassie blue stained gel of the reference 
strain (BY4741) and mutant strains (∆GRE3, ∆GSH1, ∆YAP1, ∆GLO2 and ∆GLO1). (B) Argpyrimidine 
formation in intracellular proteins from the same yeast strains as in (A), probed by western blotting with a 
specific anti-argpyrimidine Ig. Proteins were extracted after 9 days of growth, at the stationary phase. Equal 
amounts of protein were loaded (30 µg). The membrane was incubated with the primary antibody for 2.5 h 
and immunocomplexes were visualized by chemiluminescence western blotting. Three major argpyrimidine 
immunoreactive protein bands with molecular masses of 52, 40 and 35 kDa are clearly observed. 
Representative gels and immunoblots, from a set of more than three experiments, are shown. 
 
 

 
 
 

Figure II.3. Time course of argpyrimidine formation in yeast. (A) Time course of argpyrimidine formation 
in single gene deletion strains. Yeast strains and growth time are shown. (B) Time course of argpyrimidine 
formation in a double mutant ∆GRE3∆GLO1, lacking glyoxalase I and aldose reductase. Argpyrimidine 
formation is a much faster process in this strain. In all immunoblots, the same three major immunoreactive 
protein bands are visible (52, 40 and 35 kDa). AGE-modified proteins were detected by western blot as 
described. Representative immunoblots, from a set of more than three experiments, are shown. 
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Methylglyoxal concentration in yeast cells, reaching a maximum at the end of the 

exponential phase, is in agreement with the observed glycation phenotypes (Figure II.4). 

Methylglyoxal concentration is significantly increased in yeast strains where 

argpyrimidine-modified proteins are observed (∆GLO1, ∆GRE3, ∆GSH1, ∆YAP1 and 

∆GRE3∆GLO1). The occurrence of glycation in the form of argpyrimidine modified 

proteins depends on increasing the intracellular methylglyoxal steady-state concentration. 

 

 

 
Figure II.4. Methylglyoxal concentration in yeast cells at the end of the exponential phase (18 h of 
growth). Methylglyoxal was quantified by HPLC as 2-methylquinoxaline after derivatization with 
1,2-diaminobenzene. Yeast strains showing glycation present higher levels of methylglyoxal, compared 
with the reference strain. Data are the averages from three independent experiments ± SD. 
 

 

Sensitivity analysis of methylglyoxal metabolism in yeast 
 
 

Glyoxalase I and aldose reductase emerged as the most important glycation 

preventing enzymes. To investigate the relative importance of the glyoxalase pathway 

and aldose reductase on methylglyoxal catabolism in yeast, a kinetic model was 

developed (Figure II.1 and Table II.1). The roles of glyoxalase I, glyoxalase II, aldose 

reductase activities and initial GSH concentration on methylglyoxal steady-state 

concentration were first investigated (Figure II.5). Glyoxalase I, as well as aldose 

reductase and GSH concentration, showed marked effects on methylglyoxal 

concentration (Figure II.5A, C and D). Absence of glyoxalase I (describing the ∆GLO1 

strain) predicts a threefold increase of methylglyoxal concentration (Figure II.5A), while 
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absence of aldose reductase activity (∆GRE3 strain) causes a twofold increase (Figure 

II.5D). Methylglyoxal concentration is also highly sensitive to GSH concentration and, as 

it decreases to very low levels (5% in the ∆GSH1 strain as compared to the reference 

strain) methylglyoxal concentration increases threefold (Figure II.5C). Glyoxalase II 

activity has virtually no effects on methylglyoxal concentration. Only when glyoxalase II 

activity decreases to 0.031% of its reference value does methylglyoxal concentration 

increases by 10%. Without glyoxalase II (∆GLO2 strain) the model predicts a threefold 

increase of methylglyoxal concentration, identical to the one predicted in the absence of 

glyoxalase I activity (Figure II.5B). This is neither in agreement with methylglyoxal 

concentration measurements nor with the glycation phenotypes for the ∆GLO1 and 

∆GLO2 strains.  
 

 

Table II.1. Rate equations and kinetic parameters of the methylglyoxal metabolic model represented in 
Figure II.1. Note that in this model there is conservation of the S-glutathionyl group: with the given initial 
values, S-glutathionyl total = GSH(0) = GSH(t) + SDLGSH(t) at any time t. 
 
 

 
 

 
To explore synergistic effects of both pathways on methylglyoxal steady-state 

concentration, glyoxalase I and aldose reductase activities were varied independently 

(Figure II.6). In the extreme case where both enzymes are absent (describing the 

∆GRE3∆GLOI strain) methylglyoxal concentration does not reach a steady state and 

increases with time (Figure II.6). Although methylglyoxal clearance through glyoxalase I 
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represents 60% of its catabolism, aldose reductase may be crucial when the glyoxalase 

system is limited, namely by GSH depletion in oxidative stress conditions. The pattern of 

methylglyoxal increase, predicted by simulation, agrees with the glycation phenotypes of 

all strains studied (except the ∆GLO2 strain) and was confirmed by methylglyoxal assay. 

 

 

 
 
 
Figure II.5. Sensitivity analysis of methylglyoxal metabolism in S. cerevisiae. Single parameter variation. 
The effects of system parameters on the methylglyoxal intracellular steady-state concentration were 
investigated by finite parameter changes (between zero- and threefold) around the reference steady state. 
All values are fold variations relative to the reference state (normalized values). System parameters were: 
glyoxalase I activity (A), glyoxalase II activity (B), initial GSH concentration (C) and aldose reductase 
activity (D). 
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Predicting glycation phenotype 

 

According to modeling and computer simulation, there is a linear relationship 

between methylglyoxal steady-state concentration and its formation rate (Figure II.7A). 

Therefore, a sudden increase in methylglyoxal concentration could promote 

argpyrimidine formation in BY4741 strain. In yeast (Aguilera & Prieto, 2001; Aguilera & 

Prieto, 2004; Inoue et al., 1998), mesangial cells (Padival et al., 2003) and in human 

carcinoma cells (Sakamoto et al., 2002) an overproduction of methylglyoxal can be 

caused if glucose catabolism is increased. Challenging BY4741 cells with a high 

D-glucose concentration (250 mM) in non-growing conditions, increases methylglyoxal 

concentration and argpyrimidine-modified proteins were observed after 1 h (Figure II.7B 

and C). Increased methylglyoxal concentration is directly related to glucose consumption 

(Figure II.7B). Interestingly, the same three major argpyrimidine-modified proteins are 

observed. However, in non-growing cells, intracellular protein glycation is a much faster 

process. Although the glycated proteins are the same, indicating that a similar glycation 

mechanism is present, cells have to deal with these modifications at an earlier stage. De 

novo protein synthesis is not occurring and the dilution effect caused by cell division is 

 
Figure II.6. Sensitivity analysis of 
methylglyoxal metabolism in S. 
cerevisiae. Synergistic effects of 
glyoxalase I and aldose reductase 
activities on methylglyoxal steady-
state concentration. The reference 
strain BY4741 (glyoxalase I and 
aldose reductase reference activities) 
and the mutants ∆GRE3 (reference 
activity of glyoxalase I and no aldose 
reductase activity) and ∆GLO1 
(reference activity of aldose reductase 
and no glyoxalase I activity) represent 
the conditions marked by red dots. All 
values are fold variations relative to 
the reference state (normalized 
values). 
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also absent. BY4741 cells, submitted to these experimental conditions remain viable 

(Figure II.7D) and do not undergo apoptosis, as shown by DNA fragmentation pattern 

analysis (data not shown). In the same experimental conditions of high D-glucose 

medium and non-dividing cells, all other strains show the same unchanged viability, even 

after 48 h (data not shown). 

 
 

 
 

 

Figure II.7. Predicting glycation phenotype: increasing methylglyoxal concentration causes the formation 
of argpyrimidine-modified proteins within 1 h in S. cerevisiae. (A) Simulated effect of finite changes of 
methylglyoxal input in methylglyoxal steady-state concentration. All values are fold variations relative to 
the reference state (normalized values). (B) D-Glucose consumption (squares) and methylglyoxal formation 
(triangles) in non-dividing BY4741 cells challenged with 250 mM D-glucose. (C) Formation of 
argpyrimidine-modified proteins in the reference strain in high D-glucose (250 mM). AGE-modified 
proteins were detected by western blot as described. Equal amounts of protein were loaded. (D) Viability 
assay of BY4741 yeast cells after exposure to high D-glucose. Incubation times are indicated, as well as 
dilution factors. Representative results from a set of more than three experiments are shown. 
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5. DISCUSSION 
 

We observed for the first time the formation of argpyrimidine-modified proteins 

in yeast cells. Although protein glycation has been primary associated with complex 

organisms and long-lived proteins exposed to high levels of glycation agents, this 

non-enzymatic, spontaneous and irreversible post-transcriptional modification also 

affects short-lived organisms like yeast. When growing in YPGlu medium (100 mM 

D-glucose), argpyrimidine-modified proteins are observed only in null mutant yeast 

strains for genes involved in methylglyoxal catabolism (∆GLO1, ∆GRE3, ∆GSH1, 

∆YAP1 and ∆GLO2). By contrast, non-growing BY4741 presents argpyrimidine-

modified proteins after only 1 h of exposure to high D-glucose medium. Formation of 

argpyrimidine-modified proteins in these conditions indicates that cells can prevent AGE 

formation only until anti-glycation defenses are overcome. ∆GRE3 and ∆GLO1 strains 

show similar levels of argpyrimidine-modified proteins, indicating that glyoxalase I and 

aldose reductase are equally important in preventing methylglyoxal-derived protein 

glycation in yeast. In fact, the double mutant ∆GRE3∆GLO1 strain is more prone to 

argpyrimidine formation than a strain lacking just one of these enzymes. Glyoxalase I is a 

key enzymatic anti-glycation enzyme (Shinohara et al., 1998). Although glyoxalase II is 

part of the glyoxalase system, a strain lacking glyoxalase II activity shows very low 

levels of argpyrimidine-modified proteins. This indicates that glyoxalase II plays a minor 

role in maintaining a low intracellular methylglyoxal concentration in the presence of 

high GSH concentration (4 mM in S. cerevisiae). In our model of yeast methylglyoxal 

metabolism, glyoxalase II activity is essential for replenishing GSH and therefore, the 

same methylglyoxal steady-state concentration is reached in the absence of either 

glyoxalase I or glyoxalase II. However, this steady state is reached after 4 days in the 

absence of glyoxalase II, while without glyoxalase I it is attained in only a few minutes. 

GSH biosynthesis in living cells also diminishes the glyoxalase II recycling effect. This 

explains the lower level of glycated proteins in ∆GLO2 cells and the similar 

methylglyoxal concentration, at the end of the exponential phase, compared to BY4741 

strain. 
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The role of aldose reductase as an anti-glycation enzyme is less clear due to its 

broad substrate specificity. This enzyme has been implied in the protection against 

methylglyoxal toxicity, an endogenous substrate for aldose reductase (Vander Jagt et al., 

1992). Aguilera and co-workers demonstrated that overexpression of aldose reductase 

increases methylglyoxal tolerance in S. cerevisiae and complements glyoxalase 

deficiency in the ∆GLO1 strain (Aguilera & Prieto, 2001). We observed a 1.5-fold 

increase in methylglyoxal concentration in an aldose reductase deficient strain, in 

agreement with simulated data. It is noteworthy that in the ∆GLO1 strain, a twofold 

increase in methylglyoxal concentration is observed, again in good agreement with 

simulated results. By sensitivity analysis, methylglyoxal detoxification by aldose 

reductase is highly relevant, assuming a significant proportion of methylglyoxal 

catabolism (40%). When the glyoxalase system is limited, namely by GSH depletion in 

oxidative stress conditions, aldose reductase may be crucial to maintain a low 

methylglyoxal concentration. Hence, aldose reductase is an important anti-glycation 

enzyme for methylglyoxal-induced protein glycation, almost as important as the 

glyoxalase pathway in yeast, and it should be considered in studies where the main goal 

is to prevent protein glycation.  

AGE formation is described as a non-enzymatic, irreversible modification of 

lysine and arginine residues slowly formed through long-term exposure to high 

concentration of sugars and reactive compounds like methylglyoxal. Therefore, any 

protein is a putative target of glycation. Here we demonstrate that protein glycation 

affects short-lived organisms like yeast and is fast and non-random. In agreement with 

this idea, in glomerular mesangial cells and human carcinoma cells, Hsp 27 is the primary 

target for methylglyoxal-induced AGE formation (Sakamoto et al., 2002). Van 

Herreweghe and co-workers reported a specific methylglyoxal-derived AGE formed 

during TNF-induced cell death, indicating that protein modification by methylglyoxal 

might be a targeted process, with yet unknown physiological roles (Van Herreweghe et 

al., 2002). Due to the non-enzymatic, irreversible and deleterious nature of protein 

glycation, the existence of specific protein targets is quite intriguing.  

An interesting feature is how non-dividing yeast cells neutralize the harmful 

effects of protein glycation. Answering this question will provide significant clues 
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regarding neurodegenerative disorders, where intracellular protein glycation in quiescent 

cells is associated with the pathology, and diabetic polyneuropathy, where quiescent cells 

are exposed to high D-glucose levels. It is also important in understanding how cell 

ageing due to glycation can be prevented. For this purpose, yeast cells are an outstanding 

cell model for investigating intracellular protein glycation and its implications in cell 

physiology. 
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1. SUMMARY  
 

Protein glycation by methylglyoxal is a non-enzymatic post-translational 

modification where arginine and lysine side chains form a chemically heterogeneous 

group of advanced glycation end-products. Methylglyoxal-derived advanced glycation 

end-products are involved in pathologies such as diabetes mellitus and neurodegenerative 

diseases of amyloid type. Since methylglyoxal is produced non-enzymatically from 

dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate during glycolysis, its 

formation occurs in all living cells. Understanding methylglyoxal glycation in model 

systems will provide important clues regarding glycation prevention in higher organisms 

in the context of widespread human diseases. Using Saccharomyces cerevisiae cells with 

different glycation phenotypes and MALDI-TOF peptide mass fingerprint we identified 

enolase2 as the primary methylglyoxal glycation target in yeast. Two other glycolytic 

enzymes are also glycated, aldolase and phosphoglycerate mutase. Despite enolase’s 

activity loss, in a glycation-dependent way, glycolytic flux and glycerol metabolism 

remained unchanged. None of these enzymes has any effect on the glycolytic flux, 

excepted for extreme changes, as evaluated by sensitivity analysis, showing that yeast 

glycolysis is a very robust metabolic pathway. Three heat shock proteins are also 

glycated, Hsp71/72 and Hsp26. For all glycated proteins, the nature and molecular 

location of some MAGE was determined by MALDI-TOF. Yeast cells experienced 

selective pressure towards an efficient use of D-glucose, with high methylglyoxal 

formation as a side effect. Glycation is a fact of life for these cells, and some glycolytic 

enzymes could be deployed to contain methylglyoxal that evades its enzymatic 

catabolism. Heat shock proteins may be involved in proteolytic processing (Hsp71/72) or 

protein salvaging (Hsp26). 
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2. INTRODUCTION 

 
 Protein glycation is a post-translational modification whereby amino groups in 

arginine and lysine side chains react irreversibly with carbonyl molecules forming 

advanced glycation end-products (AGE). Glycation is equivalent to a point mutation, 

exerting profound effects on protein structure, stability and function. AGE formation in 

proteins is associated to the clinical complications of diabetes mellitus (Brownlee, 1995), 

cataracts (Lyons et al., 1991), uraemia (Miyata et al., 1999), atherosclerosis (Kume et al., 

1995) and age related disorders (Bucala & Cerami, 1992). Glycated proteins are present 

in β-amyloid deposits and τ deposits in Alzheimer’s disease (Chen et al., 2004; Vitek et 

al., 1994; Yan et al., 1994a), in Lewy inclusion bodies of α-synuclein in Parkinson’s 

disease (Castellani et al., 1996) and in transthyretin amyloid deposits in FAP (Gomes et 

al., 2005a). In all these amyloid pathologies, β-sheet fibril structure and the presence of 

AGE are common features, suggesting a possible role for glycation in amyloid formation 

and pathogenesis. 

Methylglyoxal is the most significant glycation agent in vivo, being one of the 

most reactive dicarbonyl molecules in living cells. This compound is an unavoidable 

by-product of glycolysis, arising from the non-enzymatic β-elimination reaction of the 

phosphate group of dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate 

(Richard, 1993). Methylglyoxal reacts irreversibly with amino groups in lipids, nucleic 

acids and proteins, forming methylglyoxal advanced glycation end-products (MAGE) 

(Booth et al., 1997; Westwood & Thornalley, 1997) .  

Argpyrimidine, hydroimidazolones (isomers and oxidation products) and 

tetrahydropyrimidine (THP) are specific markers of protein glycation by methylglyoxal on 

arginine residues (Shipanova et al., 1997; Westwood & Thornalley, 1997). 

Methylglyoxal specifically forms Nε-(carboxyethyl)lysine (CEL) and methylglyoxal-

lysine dimer (MOLD) with lysine residues (Ahmed et al., 1997; Frye et al., 1998). 

Understanding methylglyoxal catabolism and the identity of MAGE protein 

targets are of prime importance with regard to glycation prevention. In eukaryotic cells, 

two pathways are responsible for methylglyoxal detoxification. The first is the formation 

of D-lactate by the glutathione-dependent glyoxalase system, comprising the enzymes 
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glyoxalase I (lactoylglutathione methylglyoxal-lyase, EC 4.4.1.5) and glyoxalase II 

(hydroxyacylglutathione hydrolase, EC 3.1.2.6) (Racker, 1951). The second is the 

producing of 1,2-propanediol by NADPH-dependent aldose reductase (alditol:NADP+ 

oxidoreductase, EC 1.1.1.21) (Vander Jagt et al., 1992; Vander Jagt & Hunsaker, 2003). 

In yeast, both pathways are equally important as anti-glycation defenses against protein 

glycation by methylglyoxal (Gomes et al., 2005b). Given its high glycolytic flux and 

consequently high intracellular methylglyoxal concentration, yeast is highly susceptible 

to protein glycation, making it a suitable eukaryotic model organism to investigate this 

process in vivo (Gomes et al., 2005b). Remarkably, only a few proteins appeared to be 

extensively glycated, and yeast cells cope remarkably well with glycation in vivo by 

methylglyoxal, remaining viable and without apparent growth changes (Gomes et al., 

2005b).  

In the present study, we identified the MAGE protein targets by peptide mass 

fingerprint and determined its nature and molecular location in the modified proteins. As 

some of these proteins are glycolytic enzymes, modeling and computer simulation was 

used to perform a sensitivity analysis of the glycation effects on glycolytic flux. 
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3. MATERIAL AND METHODS 

 
Reagents and materials  

 

Peptone, yeast extract, agar and yeast nitrogen base (YNB) were obtained from 

Difco while D-glucose (microbiology grade), KCl, NaCl, MgSO4, methanol and 

bromophenol blue were obtained from Merck. Coomassie Brilliant Blue G, Ponceau S, 

PMSF, glass beads (452-600 microns), adenine, uracil, L-methionine, L-histidine, 

L-leucine, L-tryptophan, MES, 3-phosphoglycerate, formic acid, ammonium 

hydrogencarbonate, dithiothreitol and iodoacetamide were obtained from Sigma. KH2PO4 

was obtained from Fluka, digitonin from CalBiochem and EDTA from BDH Chemicals 

LTD. Tris, SDS 20% (w/v) and glycine were obtained from BioRad. Modified trypsin 

was obtained form Promega; GELoader tips were obtained from Eppendorf; TFA and 

HPLC-grade acetonitrile were obtained from Riedel de Häen; type I water was obtained 

in a Millipore Milli-Q system; POROS 10 R2 revered-phase chromatography medium 

was obtained from PerSeptive Biosystems; α-cyano-4-hydroxicinamic acid (α-CHCA) 

and PepMix1 (mixture of peptide standards) were obtained from LaserBiolabs. 

 

Yeast strains and culture conditions 

 

Saccharomyces cerevisiae strains, Euroscarf collection (Frankfurt, Germany), 

were: BY4741 (genotype BY4741 MATa; his3∆1; leu2∆0; met15∆0; ura3∆0), ∆GLO1 

(isogenic to BY4741 with YML004c::KanMX4) and ∆GRE3 (isogenic to BY4741 with 

YHR104w::KanMX4). The YEpGRE3 transformant (Aguilera & Prieto, 2001) was 

kindly provided by Dr. J. Prieto (Dep. Biotech. Instituto de Agroquimica y Tecnologia de 

los Alimentos, Valencia, Spain). Strains were kept in YPGlu [0.5% (w/v) yeast extract, 

1% (w/v) peptone and 2% (w/v) D-glucose] agar slopes [2% (w/v) agar] at 4 ºC and 

cultured in liquid YPGlu medium or YNB [0.67% (w/v) yeast nitrogen base, 2% (w/v) D-

glucose and 0.025% (w/v) of L-methionine, L-histidine, L-leucine and uracil]. The 

YEpGRE3 transformants was cultured in minimal YNB medium without L-leucine 
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[0.67% (w/v) yeast nitrogen base, 2% (w/v) D-glucose, 0.02% (w/v) adenine, L-histidine, 

L-tryptophan and uracil]. 

 

Glycation experiments 

 

Cells were harvested at the end of the exponential phase, washed twice in water, 

suspended at a concentration of 5.2 x 108 in 0.1 M MES/NaOH (pH 6.5) with 250 mM D-

glucose and incubated at 160 r.p.m and at 30 ºC in a orbital shaker (Infors HT). Samples 

were taken at defined times for enzyme activity assays, metabolite measurement and 

protein glycation analysis by western blot. 

 

Western blot analysis: detection of protein glycation, yeast enolase and Hsp26 

 

Total yeast protein extraction was performed by glass bead lysis as described 

(Gomes et al., 2005b). Protein concentration was determined using the Bio-Rad Bradford 

assay kit. Proteins (30 µg protein per lane) were separated by SDS/PAGE in a Mini-

protean 3 system (Bio-Rad), using a 12% polyacrilamide separation gel and a 6% 

polyacrilamide stacking gel. Proteins were transferred to PVDF membranes (Hybond-P, 

Amersham Pharmacia Biotech), using the Mini Trans-Blot system (Bio-Rad). 

Transfer was performed with 39 mM glycine, 48 mM Tris, 0.0375% (w/v) SDS, and 

20% (v/v) methanol. Pre-stained standard proteins (Bio-Rad) were also loaded onto the 

gel. Total proteins were stained with Ponceau S solution [0.5% (w/v) Ponceau S in 1% 

(v/v) glacial acetic acid] to confirm the amount of protein transferred. The membrane 

was blocked overnight at 4 ºC in 1% (v/v) blocking solution in TBS (50 mM Tris with 

150 mM NaCl, pH 7.5). For argpyrimidine detection, the blots were probed with 

anti-argpyrimidine monoclonal antibody, a kind gift from Dr. K. Uchida (Laboratory of 

Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, 

Japan). Other methylglyoxal-derived AGE were probed with a polyclonal 

anti-methylglyoxal modification, kindly provided by Dr. R. Nagaraj (Case Western 

University, Cleveland, U.S.A.). An antibody to enolase, a kind gift from Dr. Park 

(Department of Microbiology, Chungnam National University, Korea), was used to 
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identify this protein in membranes. The small heat shock protein Hsp26 was identified by 

an anti-Hsp26 antibody, a kind gift from Dr. J. Buchner (Institut für Organische und 

Biochemie, Technische Universität München, Deutschland). Washes, secondary 

antibody and detection procedures were performed using the BM Chemiluminescence 

Western Blotting Kit (Roche) following the manufacturer’s instructions. Each 

immunoblot was repeated at least three times in independent experiments. 

 

Protein identification by peptide mass fingerprint 

 

Protein bands were excised and polypeptides subjected to reduction, alkylation 

and digestion with sequencing-grade modified trypsin in gel according to the method of 

Pandey et al. (Pandey et al., 2000). Sample peptides were assayed for peptide mass 

fingerprint (PMF) in a Voyager-DE STR MALDI-TOF mass spectrometer (Applied 

Biosystems). The peptide mixture was purified and concentrated by R2 pore 

microcolumns (Gobom et al., 1999) and eluted directly to the MALDI plate with 0.8 µl of 

recrystalized matrix α-cyano-4-hydroxycinnamic acid (α-CHCA) (10 mg.ml-1), prepared 

in 70% (v/v) acetonitrile with 0.1% (v/v) TFA. The mixture was allowed to air dry (dried 

droplet method). Monoisotopic peptide masses were used to search for homologies and 

protein identification with PEPTIDE MASS FINGERPRINT OF MASCOT 

(http://www.matrixscience.com). Searches were performed in the MSDB database. A 

mass accuracy of 50 - 100 p.p.m. was used for external calibrations, and cysteine 

carbamidomethylation and methionine oxidation as fixed and variable amino acid 

modifications, respectively. Criteria used to accept the identification were significant 

homology scores achieved in Mascot (53 for 95% confidence) and a minimum of four 

peptides matched with a protein sequence coverage greater than 10%.  

 

Metabolite assay  

  

All metabolites were measured in the extracellular medium after removing the 

cells by centrifugation (5200 g for 3 min). D-glucose, ethanol and glycerol were 
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enzymatically assayed using specific kits from Boehringer Mannheim, following the 

manufacturer’s instructions. 

  

In situ assay of enzyme activities  

 

Enzyme activities were determined in situ using S. cerevisiae permeabilized cells 

(Cordeiro & Freire, 1995). Permeabilization was achieved by incubation with 0.01% 

(w/v) digitonin in 0.1 M MES/NaOH (pH 6.5) for 15 min at 30 ºC, 160 r.p.m. in an 

orbital shaker incubator. Enzyme activities were determined at 30 ºC in a 1.5 ml reaction 

volume. All assays were performed on a Beckman DU-7400 diode array 

spectrophotometer, with temperature control and magnetic stirring, essential to maintain 

isotropic conditions during the assay. 

Enolase activity was followed by measuring phosphoenolpyruvate formation at 

240 nm. The reaction mixture, containing 50 mM Tris/HCl (pH 7.4), 100 mM KCl, 1 

mM MgSO4, 0.01 mM EDTA and 0.5 µg of protein in permeabilized cells, was 

pre-incubated for 10 min and the reaction was started by the addition of 4 mM of 

3-phosphoglycerate. In all assays, endogenous phosphoglycerate mutase activity was 

present at a large excess compared to enolase and, therefore, the measured activity solely 

depends on enolase. 

 

Sensitivity analysis 

 

Modeling and computer simulation were used to evaluate the effects of enolase, 

aldolase and phosphoglycerate mutase activity changes on glycolytic flux, defined as the 

rate of ethanol formation. The effect of glycerol 3-phosphate dehydrogenase activity on 

the steady-state methylglyoxal concentration was also investigated.  

The kinetic model used in this study was based on the model of Hynne et al. 

(Hynne et al., 2001), which includes most glycolytic enzymes, although the reactions of 

enolase and phosphoglycerate mutase are lumped together in an overall reaction. This 

model was extended to include these two reactions, with kinetic equations and parameters 

as in the model of Teusink et al. (Teusink et al., 2000). The connection with 
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methylglyoxal metabolism was achieved by including the model of Gomes et al.  (Gomes 

et al., 2005b), which comprises the glyoxalase pathway, aldose reductase and 

methylglyoxal formation from the triose phosphates. Simulations were performed with 

the software package POWER-LAW ANALYSIS AND SIMULATION, PLAS (A.E.N. Ferreira, 

Universidade de Lisboa, Portugal; http://www.dqb.fc.ul.pt/docentes/aferreira/plas.html). 

 

Protein structure 

 

Enolase dimer structure was represented by PDB entry 1ebh, containing Mg. It 

has 95% identity and 4% homology with enolase2. Molecular graphics images were 

produced using the UCSF CHIMERA package from the Resource for Biocomputing, 

Visualization, and Informatics at the University of California, San Francisco (supported 

by NIH P41 RR-01081) (Pettersen et al., 2004). Relative solvent surface accessibility was 

calculated according to the method of Gerstein (Gerstein, 1992). 
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4. RESULTS 
 

Identification of glycated proteins 

 

When non-growing yeast cells are exposed to 250 mM D-glucose, protein 

glycation occurs after just 1 h in the reference strain BY4741 (Figure III.1). Against all 

expectations for a non-enzymatic process, glycation is primarily detectable in only one 

protein band of 52 kDa (Figure III.1B and III.1C). Three more protein bands, of 70, 40 

and 35 kDa appear after 3 h, with much less intensity (Figure III.1B and C). To identify 

the proteins, protein bands were excised from the BY4741 Coomassie-stained gel (Figure 

III.1A) and subjected to in gel tryptic digestion. The resulting peptide mixtures were 

analysed by MALDI-TOF for protein identification by peptide mass fingerprint. The 52 

kDa protein was identified as enolase2 (2-phospho-D-glycerate-hydro lyase, EC 

4.2.1.11), as shown in figure III.1E. To further confirm the identity of this major 

glycation target in yeast, a western blot analysis was performed using a specific antibody 

against yeast enolase, with positive results (Figure III.1D). The 40 and 35 kDa proteins 

were identified as two other glycolytic enzymes (Figure III.1E), aldolase (D-fructose-1,6-

bisphosphate D-glyceraldehyde 3-phosphate-lyase, EC 4.1.2.13) and phosphoglycerate 

mutase (D-phosphoglycerate 2,3-phosphomutase, EC 5.4.2.1), respectively. The 70 kDa 

protein band was identified as a mixture of Hsp71 and Hsp72 (Figure III.1E). 

The same non-glycated protein bands, i.e. proteins extracted in conditions where 

glycation not yet occurred (Figure III.1C, lane 1), were also identified as the same 

proteins. The corresponding protein bands from ∆GLO1 and ∆GRE3 strains were 

identified as the same proteins. Greater sequence coverage was obtained in peptide mass 

fingerprints of non-glycated proteins. This is to be expected, because glycated proteins 

contain modified lysine and arginine side chains, and therefore are less amenable to 

trypsin hydrolysis and ionization. Moreover, due to the mass increase characteristic of an 

AGE, glycated peptides had no match in the databases and were therefore rejected. 

Nevertheless, this information can be exploited to identify the nature and molecular 

location of specific MAGE in glycated proteins. 
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Figure III.1. The main methylglyoxal-modified proteins in yeast are the glycolytic enzymes enolase, 
aldolase and phosphoglycerate mutase and the heat shock proteins Hsp71/72 and Hsp26. Non-growing 
BY4741 cells were incubated with 250 mM D-glucose to induce protein glycation in vivo. Samples, taken at 
the defined times, were analysed for total protein, argpyrimidine, methylglyoxal advanced glycation end-
products (MAGE) and yeast enolase. Methylglyoxal-modified protein bands were excised and digested in 
gel with trypsin for protein identification by MALDI-TOF peptide mass fingerprint. The figure shows a 
representative result from a set of more than three independent experiments. Equal amounts of proteins 
were loaded per lane (30 µg). (A) Total protein Coomassie-stained gel. (B) MAGE detection by western 
blotting. (C) Argpyrimidine detection in intracellular soluble proteins, probed by western blotting with a 
specific antibody towards argpyrimidine. Four major immunoreactive proteins were detected, the 52 kDa 
protein appearing as the main protein glycation target in yeast. (D) Enolase is the major glycation target in 
yeast. Total protein extract from strain BY4741, probed with antibody to enolase. The 52 kDa protein, 
which is highly modified by methylglyoxal, shows high immunoreactivity with anti-enolase antibody. (E) 
Identification of glycated proteins by MALDI-TOF peptide mass fingerprint. Criteria used for identification 
were significant homology scores achieved in MASCOT (53 for 95% confidence), a minimum of four 
peptides matched and a protein sequence coverage greater than 10%. 
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Chemical nature and molecular location of MAGE in glycated proteins 

 
 In the peptide mass spectra of all glycated proteins, several new peaks appear that 

do not have predicted m/z values. These could be caused by the occurrence of 

miscleavage associated with defined mass increases of specific MAGE. To identify some 

probable glycated peptides and the specific MAGE present, we performed a theoretical 

digestion of the identified proteins, considering up to two trypsin miscleavages 

(PEPTIDEMASS, Expasy, http://www.expasy.ch/tools/peptide-mass.html) and added to the 

resulting peptide masses the mass increment due to a specific MAGE. Using this 

approach with enolase, we observed that several peptides do show a mass increment of a 

specific MAGE. For example, the species at m/z 1723.9, present only in the peptide mass 

spectrum of glycated enolase, corresponds to peptide 409-422 with m/z 1669.9 plus 54 

Da, a mass increase characteristic of a hydroimidazolone (Figure III.2A and B). This 

peptide has one miscleavage at R414, suggesting the presence of one hydroimidazolone 

in this position. Interestingly, the same peptide is present only in the digestion of 

non-glycated enolase at an m/z of 1670.0 (Figure III.2A). Moreover, the species at m/z 

1741.9 corresponds to the enolase peptide of 1669.0 Da plus 72 Da due a CEL 

modification (Figure III.2B). The peptide at m/z 1669.0 has two lysine residues at 

positions 336 and 337. In this case, MS/MS data would indicate which residue is 

modified. In the mass spectrum used to identify aldolase, the species with m/z 1082.5, 

which is absent in the non-glycated protein, corresponds to the aldolase peptide with a 

theoretical mass of 1002.5 Da plus 80 Da of argpyrimidine. Once more, the aldolase 

peptide of 1002.5 Da has one miscleavage in arginine residue 334. This method was 

applied to all mass spectra, and the results are shown in Table III.1. We assumed that 

arginine or lysine residue modifications make these residues resistant to proteolysis by 

trypsin, and therefore miscleavages associated with specific mass increases are due to 

glycation. These data further confirm, at the molecular level, that the identified proteins 

are indeed glycated in vivo. Considering that we have sequence coverage of the identified 

proteins of at most 50%, a significant fraction of glycated peptides was detected. This 

analysis shows that the most common MAGE in vivo is hydroimidazolone, followed by 

argpyrimidine, at about half the frequency, whereas CEL and THP appear as minor 

modifications.  
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Figure III.2. Detection and molecular location of MAGE in glycated enolase in vivo. The figure shows a 
section of a MALDI-TOF spectrum of tryptic digests of glycated and non-glycated enolase. (A) Mass 
spectrum of non-glycated enolase. (B) Same section of MALDI-TOF spectrum from glycated enolase. New 
peaks are detectable, and some of them represent glycated peptides (red). In this case, a hydroimidazolone 
(mass increase of 54 Da) in residue R414 and a CEL (mass increase of 72 Da) in residue K336 or K337 are 
observed. 
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Table III.1. Identification and molecular location of MAGE in yeast glycated proteins. Glycated residues 
are shown in bold. MG-H, hydroimidazolone; Argp., argpyrimidine; CEL, Nε-(carboxyethyl)lysine. 
 

* Specific peptide from Hsp72 
 

 

The refolding chaperone pathway in yeast glycation 

 

Besides the identification of Hsp71/72, another heat shock protein, Hsp26, was 

detected co-migrating with phosphoglycerate mutase (Figure III.1, protein band 4). In 

glycation conditions, more peptides from Hsp26 appear, while in non-glycated samples, 

only one or two are detected (Figure III.3). Thus, upon glycation, a larger number of 

Hsp26 molecules are found in the soluble protein fraction. In fact, after 5 hours 

incubation of BY4741 cells with 250 mM D-glucose, the amount of soluble Hsp26 

increases, as evaluated by western blotting (Figure III.3C), confirming the above 

observation. As Hsp26 is mainly found as an insoluble 24-monomer complex that 

dissociates under stress conditions, its emergence in the soluble protein fraction is a sure 

sign of its activation (Stromer et al., 2003). Most peptides from phosphoglycerate mutase 

remain in the peptide mass spectrum from the glycated samples, as seen in figure III.3 

(47% sequence coverage). Hsp26 peptides lead to a sequence coverage of 52%. We then 

looked for the presence of glycated peptides from both phosphoglycerate mutase and/or 

Identified 
protein 

Observed 
mass (Da) 

Theoretical 
peptide mass 

(Da) 
Peptide sequence 

Mass 
increase 

(Da) 
MAGE Glycated 

resídue 

1723.92 1669.91 
LNQLLRIEEEL

GDK 
(409-422) 

54 MG-H R414 

1741.96 1669.03 
IATAIEKKAA

DALLLK 
(330-345) 

72 CEL K336 or 
K337 Enolase 

2178.09 2124.05 
SVYDSRGNPT
VEVELTTEK 

(9-27) 
54 MG-H R14 

Aldolase 1082.66 1002.54 VWVREGEK 
(332-339) 80 Argp. R335 

1736.68 1664.92 
IASKNQLESIA

YSLK 
(532-546) 

72 CEL K535 

Hsp71/72 

2058.94 2004.92 
RLIGRNFNDPE

VQGDMK 
(69-85)* 

54 MG-H R69 or 
R73 
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Hsp26. We observed that 4 peptides from phosphoglycerate mutase and one peptide from 

Hsp26 are glycated (Table III.2). 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure III.3. Detection of Hsp26 upon glycation. (A) MALDI-TOF spectrum of tryptic digestion of the 
non-glycated protein band 4 (Figure III.1), mainly showing peptides from phosphoglycerate mutase and one 
peptide, with low intensity, from Hsp26. (B) In glycation conditions, more peptides from Hsp26, with 
greater intensity, appear. These data suggest that the amount of Hsp26 in the soluble protein fraction 
increases upon glycation. (C) Western blot detection of Hsp26 in the soluble protein fraction. After 5 hours, 
an increase of Hsp26 is observed, consistent with the Hsp26 activation. 
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Table III.2. Analysis of the co-migrating proteins phosphoglycerate mutase and Hsp26 under glycation 
conditions; identification and molecular location of MAGE. Glycated residues are shown in bold. MG-H, 
hydroimidazolone; Argp., argpyrimidine; THP, tetrahydropirimidine. 
 

 

 

Glycation effects on enolase activity and glycolysis 

 

After identifying enolase as the primary glycation target, we investigated how its 

enzymatic activity was affected by glycation, in different yeast strains with distinct 

glycation phenotypes (Gomes et al., 2005b). Strains BY4741, ∆GLO1 and ∆GRE3, with 

different glycation levels, were challenged with 250 mM D-glucose, and enolase activity 

was determined in situ.  

The YEpGRE3 transformant, overexpressing aldose reductase, was used as a 

non-glycated control. YEpGRE3 cells are better protected against methylglyoxal-derived 

glycation, due to the increased GRE3 expression and increased aldose reductase activity. 

In this strain, glycation was only observed after 5 h, contrasting with strains BY4741, 

∆GLO1 and ∆GRE3, where it was detected after just 1 h, with increasing respective 

intensities (Figure III.4A). Strains with glycated enolase (BY4741, ∆GLO1 and ∆GRE3) 

showed a decrease of this enzyme activity, compared to the initial value, whereas the 

YEpGRE3 transformant, without glycated enolase, did not show enolase activity changes 

(Figure III.4B). This result indicates that glycation leads to a decrease of enolase activity. 

Consistent with the observation that glycation increases with time (Figure III.4A), after 2 

h, in situ enolase activity was lower than after 1 h for all strains analysed, except for the 

Identified 
protein(s) 

Observed 
mass 
(Da) 

Theoretical 
peptide mass 

(Da) 
Peptide sequence 

Mass 
increase 

(Da) 
MAGE Glycated 

resídue 

1320.48 1239.69 ADRLWIPVNR 
(71-80) 80 Argp. R73 

1500.55 1446.71 FGEEKFNTYRR 
(104-114) 54 MG-H R113 

1574.58 1429.72 LNERHYGDLQG
K(84-95) 144 THP R87 

 
 

Phosphogly-
cerate mutase 

 
 2360.94 2280.28 

DLLSGKTVMIA
AHGNSLRGLVK 

(169-190) 
80 Argp. R186 

Hsp26 1412.63 1358.75 LLGEGGLRGYA
PR(23-35) 54 MG-H R30 
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control YEpGRE3 transformant, in which enolase activity remained unchanged (Figure 

III.4B).  

The reference strain BY4741 displayed the lowest decrease of enolase activity 

(5% and 10% after 1 h and 2 h, respectively), whereas strains ∆GLO1 and ∆GRE3 

suffered a larger enzyme activity decrease (Figure III.4B). These results are in agreement 

with the corresponding glycation phenotypes. After 1 h, ∆GRE3 glycated enolase shows 

a 16% decrease of enzyme activity, higher than the 8% decrease observed in the ∆GLO1 

strain.  

Given the decrease in enolase activity caused by glycation, a study of D-glucose 

metabolism in these cells was performed (Figure III.5A). For this purpose, D-glucose, 

ethanol and glycerol were measured at different times, after incubation with 250 mM 

D-glucose. As three glycolytic enzymes are glycated, we expected that the glycolytic flux, 

measured by D-glucose consumption and ethanol formation, might be affected. 

Strikingly, no major differences were observed in the glycolytic flux of strains BY4741, 

∆GLO1 and ∆GRE3 (Figure III.5B). Glycolytic flux remained unchanged even in strains 

with deficiencies in methylglyoxal catabolism, showing higher enolase glycation and 

consequent inactivation. As glycolysis leads unavoidably to methylglyoxal formation, 

which modifies three glycolytic enzymes, D-glucose metabolism could be diverted to 

glycerol synthesis. Increasing glycerol formation could diminish the methylglyoxal 

concentration, because the triose phosphate pool is reduced due to its conversion to 

glycerol 3-phosphate. However, no significant differences were observed in glycerol 

concentration between those strains (Figure III. 5B). 

These results indicate that glycation in vivo of enolase and other glycolytic 

enzymes, with corresponding loss of enzyme activity, does not affect glycolytic flux. To 

further investigate why this is so, a sensitivity analysis using modeling and computer 

simulation was performed. 
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Figure III.4. In vivo glycation of enolase causes a decrease of its enzyme activity, directly related to 
glycation levels. Cells from different yeast strains, incubated with 250 mM D-glucose were sampled at 
indicated times. Glycated proteins were detected by western blotting using a specific anti-argpyrimidine Ig, 
and enzyme activity was determined in situ. (A) Time course of argpyrimidine formation in YEpGRE3 
transformant, BY4741, ∆GLO1 and ∆GRE3 strains. As a result of aldose reductase overexpression, 
YEpGRE3 only shows an argpyrimidine-modified protein band after 5 hours. Strains with deficiencies in 
methylglyoxal catabolism (∆GLO1 and ∆GRE3) have a higher methylglyoxal concentration (Gomes et al., 
2005b) and therefore higher levels of glycation. It’s noteworthy that glycation increases with time. 
Representative immunoblots from a set of more than three experiments are shown. Equal amounts of 
proteins were loaded per lane (30 µg). (B) In situ enolase activity in all strains studied, at different 
incubation times. Percentage activity is shown relative to time zero. A decrease of enolase activity is only 
observed in strains with glycated enolase and this decrease is related to glycation levels. Data are average 
from three independent experiments ± SD. 
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Figure III.5. Glycolysis, methylglyoxal metabolism and glycated proteins in yeast. (A) The well-known 
glycolytic pathway forms methylglyoxal as a non-enzymatic and unavoidable by-product. The triose 
phosphates are chemically unstable and suffer an irreversible β-elimination reaction of the phosphate 
group, forming the most powerful glycation agent in vivo, methylglyoxal. The main catabolic routes for 
methylglyoxal are the NADPH-dependent aldose reductase and the GSH-dependent glyoxalase pathway. 
Together, aldose reductase and glyoxalase I (green) are essential to maintain a low methylglyoxal 
steady-state concentration. Once formed, methylglyoxal has the potential to irreversibly modify just about 
any protein. However, in yeast, only one protein appears as a major target, enolase2, followed by aldolase 
and phosphoglycerate mutase (red). (B) Glycolysis and glycerol metabolism are unchanged by glycation. 
Energy metabolism appears unaffected even when three glycolytic enzymes are glycated and the major 
glycation target, enolase2, shows an activity loss of 20%. Strains analysed were BY4741 (blue), ∆GRE3 
(green) and ∆GLO1 (red). Data shown are averages from three independent experiments ± SD. 
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Sensitivity analysis of glycation effects on glycolysis  

 

The effect of changes in the activity of the main glycation targets, enolase, 

aldolase and phosphoglycerate mutase, on the glycolytic flux as predicted by modeling 

and computer simulation, is shown in Figure III.6. Aldolase and phosphoglycerate mutase 

have no effect on glycolytic flux, even if their activities had decreased to 1% of their 

reference activities (Figure III.6B and C). Glycolytic flux was more sensitive to enolase 

activity: a reduction of approximately 50% in ethanol formation predicted a reduction of 

enolase activity to 5% (Figure III.6A). A simultaneous decrease of aldolase, enolase and 

phosphoglycerate mutase activities to 70% of its reference activities causes a glycolytic 

flux decrease of less than 0.02%.  

According to these results, the decrease in enolase activity caused by glycation 

(between 5 and 25% in vivo) should have no effect in glycolytic flux. This is in 

agreement with our experimental results, where no differences in D-glucose consumption 

and ethanol formation were observed among the strains BY4741, ∆GLO1 and ∆GRE3 

(Figure III.5B). Even the simultaneous glycation of these three enzymes, each one 

loosing about one-third of its reference activity, would not cause any noticeable decrease 

of glycolytic flux. 

As glycolysis leads unavoidably to methylglyoxal formation, and glycation 

selectively modifies glycolytic enzymes, causing activity loss, changes in glycerol 

metabolism might occur. As a result of a slight decrease in the triose phosphate pool (data 

not shown) methylglyoxal concentration is indeed sensitive to changes in glycerol 

3-phosphate dehydrogenase (EC 1.1.99.5) activity (Figure III.6D).  An increasing in 

glycerol 3-phophate dehydrogenase activity by up to five-fold does not lead to a 

significant decrease in the steady-state concentration of methylglyoxal and triose 

phosphates. Therefore, stimulation of glycerol formation cannot lead to a decrease in 

methylglyoxal concentration. These predictions are consistent with the observations that 

glycerol metabolism is quantitatively identical in the three strains studied. 
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Figure III.6. Sensitivity analysis of glycation effects on glycolytic flux by modeling and computer 
simulation. Single, finite parameter changes (between zero-fold and two-fold) around the reference steady 
state were performed. All values are fold variations relative to the reference state (normalized values). 
System parameters were: (A) enolase activity, (B) aldolase activity and (C) phosphoglycerate mutase 
activity. The effect of glycerol 3-phosphate dehydrogenase activity on methylglyoxal steady-state 
concentration (D) was also studied. Except for extreme changes (95-99% activity loss), the glycated 
glycolytic enzymes enolase, aldolase and phosphoglycerate mutase have no effects on glycolytic flux. 
Consistent with our experimental results, enolase activity decrease due to glycation has no effects on 
ethanol formation and D-glucose consumption.  
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5. DISCUSSION 
  

Yeast cells evolved to use D-glucose efficiently; for this, they have a very high 

glycolytic flux and consequently an unavoidably high methylglyoxal production rate. 

Therefore, throughout evolution, defense mechanisms have developed to protect these 

cells against glycation. Understanding these mechanisms will provide important clues 

regarding glycation prevention in higher organisms. Nerve cells show a high rate of 

glycolysis, and several neurodegenerative diseases, like Alzheimer’s and Parkinson’s 

disorders are related to a higher AGE formation (Castellani et al., 1996; Yan et al., 

1994a). Tumour cells also show a high dependence on glycolysis, the Warburg effect 

(Altenberg & Greulich, 2004). In these cells, expression of glyoxalase I is increased 

(Davidson et al., 1999; Di Ilio et al., 1995), suggesting that an increase in methylglyoxal 

and AGE formation also occurs. 

 In yeast, protein glycation is a non-random process for which specific protein 

targets exist. Even though several proteins are observed in a Coomassie-stained gel, only 

one is highly modified by methylglyoxal. Three more protein bands appear to be slightly 

modified at a latter time, as judged by the western blot analysis. This is an unexpected 

observation, because, as glycation is a non-enzymatic process, all proteins are putative 

targets. We identified the four major glycation targets as the glycolytic enzymes enolase, 

aldolase and phosphoglycerate mutase and the heat shock proteins Hsp71/72 by MALDI-

TOF peptide mass fingerprint. Under glycation conditions, Hsp26 becomes detectable in 

the soluble protein fraction. Of these proteins, enolase2 is clearly the primary and most 

relevant glycation target in yeast. Glycation introduces miscleavages and defined mass 

increases in the observable peptides produced by trypsin hydrolysis. Therefore, we 

analysed the peptide masses, looking for miscleavages associated with specific mass 

increases caused by the presence of MAGE in peptides containing one lysine or arginine 

miscleavage residue. With this approach, we confirmed at the molecular level that the 

identified proteins are indeed glycated in vivo by methylglyoxal, and in some cases, the 

molecular position assignment of the specific MAGE was made. In enolase2, the 

modified lysines (CEL) are probably the ones with the highest solvent accessibility 

(Figure III.7). In contrast, hydroimidazolone-modified arginines were only found in an 
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arginine-rich crevice, located at the enolase2 dimer interface (Figure III.7). This arginine-

rich cave could work as a cage for free methylglyoxal. 

Glycation of enolase in vivo causes a decrease of its activity, directly related to 

methylglyoxal modification. Strains ∆GLO1 and ∆GRE3, with deficiencies in 

methylglyoxal catabolism and therefore higher levels of glycation (Gomes et al., 2005b), 

cause a larger decrease in enolase activity. The YEpGRE3 transformant, overexpressing 

aldose reductase, does not show glycation, and no decrease of enolase activity occurs. 

However, in all strains analysed, D-glucose consumption and ethanol formation rates 

were unchanged even when glycated enolase was present. Glycerol synthesis, an 

alternative branching point of glycolysis, remains unchanged. These results show that 

glycolytic flux is not affected, despite the decreased activity of enolase in all strains in 

which glycation occurs.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure III.7. Surface landscape of dimeric yeast enolase, showing solvent-exposed lysine (yellow) and 
arginine (cyan) residues. For greater clarity, the surface of one of the subunits is shown in light gray. Two 
views of the same molecule are shown, rotated clockwise by 180º along the molecule’s horizontal axis. 
According to MALDI-TOF analysis, CEL (orange) is located at K336 or K337. K336 (47% solvent 
accessibility) is by far the most solvent-accessible lysine in both subunits and is likely to be glycated. 
Hydroimidazolones (red) were found only in R14 and R414, located in an arginine-rich cleft, deeply 
recessed, but solvent accessible, at the interface of the two enolase subunits. The E20-R414 ion pair is 
essential to dimer stability. Its disruption upon glycation will lead to dimer dissociation into inactive 
monomers, thus explaining at a molecular level the glycation dependent enolase inactivation. This 
arginine-rich cave should provide highly favoured reaction conditions for MAGE formation, therefore 
sequestering methylglyoxal in an arginine cage. Sequence coverage by MALDI-TOF peptide mass 
fingerprint is highly representative, at 27%.  
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 Sensitivity analysis, by modeling and computer simulation, was used to assess the 

effects of each glycated glycolytic enzyme on glycolysis. For enolase, glycolytic flux is 

affected only when its activity decreases to 5% of its reference activity value. This is 

almost equivalent to an enolase null mutant yeast strain, which is not viable. The other 

two major glycation targets (aldolase and phosphoglycerate mutase) have virtually no 

effect on glycolytic flux, in good agreement with our experimental observations. 

As glycation is a non-enzymatic process, it is quite intriguing that it is targeted to 

specific proteins, being the functional aspects involved yet unknown. As methylglyoxal 

arises from glycolysis, perhaps these proteins are closer to the location of methylglyoxal 

formation than others, and methylglyoxal concentration is higher near these proteins. 

However, other glycolytic enzymes more closely located to methylglyoxal formation, 

such as triose phosphate isomerase and D-glyceraldehyde 3-phosphate dehydrogenase, 

are not glycated. Of the identified glycated proteins, aldolase is the only enzyme directly 

related to methylglyoxal formation and it only shows comparatively low glycation. 

Enolase, one of the most abundant proteins in yeast, could be associated with different 

glycolytic enzymes and therefore methylglyoxal concentration near this enzyme might be 

much higher than in the rest of the cell. Interestingly, in mammal cells, pure ββ-enolase 

binds with high affinity to the glycolytic enzymes aldolase and phosphoglycerate mutase 

(the other two main glycation targets in yeast) and also to pyruvate kinase (Merkulova et 

al., 1997). 

Protein concentration in vivo and arginine content might be other important 

parameters for protein glycation. Enolase is indeed one of the most abundant cell 

proteins. However, the differences between arginine content of this enzyme and most 

yeast glycolytic enzymes (containing between 8 and 13 arginine residues) do not explain 

this specific glycation. Moreover, phosphofructokinase (with 49 arginine residues) and 

pyruvate kinase (with 29 arginine residues) are not glycated. It is possible that arginine 

residues in enolase are more accessible for the reaction with methylglyoxal than they are 

in other proteins. This highlights the importance of the reactivity of individual proteins 

towards methylglyoxal, beyond a simple consideration of protein amount or number of 

amino groups. In vivo, this reactivity could depend not only of the arginine and lysine 
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contents, or protein and glycation agent concentrations, but also of the spatial location of 

arginine residues in a folded protein. It is not known whether this spatial location 

determines glycation specificity, but it is conceivable that the 14 arginine residues in 

enolase are more reactive towards methylglyoxal than are the 49 arginine residues of 

phosphofructokinase. As demonstrated by Speer et al., the reactivity of arginine peptides 

with methylglyoxal varies widely, due to the local chemical environment of the 

respective arginine residue (Speer et al., 2003). In the case of enolase2, the glycated 

lysines are the ones with the highest solvent accessibility (Figure III.7). Whereas glycated 

lysines are at the exposed surface of the protein, glycated arginines are located in an 

arginine-rich deep cleft, accessible to the solvent, at the interface between the two 

subunits (Figure III.7). Some of these arginines are involved in ion pairs that contribute to 

the enolase2 dimer stability. One of these ion-pairs, E20-R414 (Lebioda et al., 1989), is 

disrupted by R414 glycation (Figure III.8). Replacing arginine by hydroimidazolone will 

disrupt electrostatic interactions that stabilize the enolase2 dimer leading to its 

dissociation and consequent formation of inactive monomers. This molecular hypothesis 

for the glycation-dependent enolase 2 inactivation, albeit highly plausible, requires 

further research.  

It has been shown that cells can prevent AGE formation only until anti-glycation 

defenses are overcome (Gomes et al., 2005b). In these conditions, spontaneous protein 

glycation may be relevant to lower methylglyoxal concentrations. Enolase could indeed 

function as a methylglyoxal scavenger, preventing changes in the biochemical 

functionalities of other proteins. Being one of the most abundant proteins in cells, enolase 

is a good candidate for this role, as glycation of this protein would only have a limited 

impact on cell physiology. Indeed, our results show that, although glycation leads to a 

decrease of enolase activity, no changes have been detected in glycolytic flux, even in the 

∆GLO1 and ∆GRE3 mutant strains, which presents higher levels of glycation. It is 

noteworthy that the expression of ENO2 (gene that code for enolase2) is induced up to 

20-fold after the addition of glucose to yeast cells grown with ethanol as carbon source 

(Cohen et al., 1986). Again, by modeling and computer simulation, a 20-fold increase of 

this enzyme’s activity would have no effect on glycolytic flux. Interestingly, ∆GLO1 
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strain appears to have larger constitutive levels of enolase than the reference strain 

(Figure III.9). Thus, enolase may play other roles, besides being a glycolytic enzyme. 

 

 

 
 

Figure III.8. Surface structure representation of enolase showing the glycation of the critical arginine 
residues (R414, red) located in a deep cleft at the dimer interface. Once glycated, a critical salt bridge with 
glutamate residue 20 is disrupted (E20-R414, magnified view) and the dimer dissociates into inactive 
monomers. Glutamate residues 20 are shown in yellow.  
 

 

 

It was predicted that MAGE would be present in approximately 3-13% of cellular 

proteins (Ahmed et al., 2005). This is expected to have significant effects on protein 

structure and function, mainly by unfolding and aggregation (Ahmed et al., 2005). In the 

presence of denatured proteins, cells activate several pathways responsible for their 

recovery, preventing the detrimental effects of protein aggregation. In yeast, Hsp104 

facilitates disaggregation and reactivates aggregated proteins with assistance from Hsp71 

and Hsp40 (Cashikar et al., 2005). Recent data show that the small heat shock protein 

Hsp26 also participates in the recovery of misfolded proteins, by rendering aggregates 

more accessible to Hsp104/Hsp71/Hsp40 action (Cashikar et al., 2005). The presence of 
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Hsp26 in glycation conditions suggests that there is an activation of the refolding 

chaperone pathway. Moreover, glycation also affects Hsp71/72, another component of 

this chaperone pathway, and Hsp26 is also glycated in vivo. In mammal cells, the major 

glycation target in vivo is Hsp27, a protein that plays an important role in apoptosis and 

actin polymerization (Nagaraj et al., 2003; Padival et al., 2003). In stressed cells, 

increased levels of Hsp27 facilitate the repair or destruction of damaged proteins, thus 

promoting cell recovery. It has been shown that specific methylglyoxal modification of 

Hsp27 improves its chaperone activity (Nagaraj et al., 2003; Oya-Ito et al., 2006). So, 

glycation and/or activation of these specialized proteins (Hsp71/72 and Hsp26) could be 

of physiological importance in the cell response to glycation.  

 

 

 

 

 

 
 

Figure III.9. Western blot analysis of enolase. Cells were incubated with 250 mM of D-glucose and 
samples were taken at defined times, as indicated. Enolase amount in the soluble cytosolic fraction does not 
vary with time. However, the glyoxalase I null mutant (∆GLO1) shows a higher constitutive level than the 
reference strain BY4741. Representative immunoblots from a set of three experiments are shown. 
 

 

As glycolysis is the biochemical pathway that evolved under ancient anaerobic 

terrestrial conditions, it is possible that specialized proteins present in higher organisms 

are derived from glycolytic enzymes. This could be a critical evolutionary parameter for 

cells with high glycolytic fluxes and high intracellular methylglyoxal concentration. 

Another important process is the refolding pathway, through which stress-unfolded 

proteins might be salvaged in a significant amounts, instead of simply processed by 

proteolytic pathways. 
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1. SUMMARY 

 
 Protein glycation is an irreversible non-enzymatic post-translational modification 

associated with major structural and functional changes on cellular proteins, which could 

have an effect on cell physiology. Indeed, protein glycation was implied in a wide range 

of human pathological conditions like diabetes mellitus, age related disorders and 

neurodegenerative diseases of amyloid type, although the precise role of this 

post-translational modification on these diseases remains elusive. To investigate the 

effects of glycation on protein structure and function, most lines of research deploy 

model proteins glycated in vitro. The major drawback of this approach is the difference 

between the glycation process inside a living cell or organism and the glycation of a 

model protein by glycation agents in non-physiological conditions, on a buffer solution 

within a text tube where cellular responses are absent. 

Yeast was shown to be an ideal model to investigate glycation in vivo since 

different glycation phenotypes, controlled through experimental design, and specific 

glycation targets exist. The glycolytic enzyme enolase is the major target, enduring a 

glycation-depend activity loss.  

To get further insights into the biochemical effects of glycation in vivo, we 

investigated the effects of glycation on enolase structure, stability and function. A mass 

spectrometry analysis of in vivo and in vitro glycated enolase was also performed. It was 

found that glycation leads to structural changes with an increase in random coil structure, 

extensive dimer dissociation with monomer unfolding, and an increase of protein melting 

temperature. Concomitantly, a decrease of enolase enzymatic activity was observed. 

Striking differences between glycation in vivo and in vitro were also detected, with in 

vitro glycation causing more severe effects. Mass spectrometry analysis revealed that 

glycation in vivo appears to be a specific process. Altogether, these results highlight the 

importance of investigating protein glycation in model systems such as yeast.  
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2. INTRODUCTION 

 
Protein glycation is a specific non-enzymatic post-translational modification 

where arginine and lysine side chain amino groups are irreversibly modified by carbonyl 

compounds, forming AGE (Westwood & Thornalley, 1997). Methylglyoxal is the most 

significant glycation agent in vivo, considering its high reactivity and continuous 

formation mainly by the irreversible β-elimination of the phosphate group of DHAP and 

GAP (Richard, 1984; Richard, 1993; Thornalley, 1996). Albeit non-enzymatic, this is a 

physiological process that happens simultaneously with glycolysis, hence in all living 

cells. The glyoxalase pathway and aldose reductase are the main responsible systems for 

its catabolism (Racker, 1951; Thornalley, 1990; Vander Jagt et al., 1992), but a stable 

methylglyoxal steady state always exists and glycation reactions will unavoidably occur 

(Gomes et al., 2005b). Not surprisingly, increased protein glycation is associated with 

several human pathologies (Brownlee, 1995; Bucala & Cerami, 1992; Castellani et al., 

1996; Harrington & Colaco, 1994; Miyata et al., 1993; Yan et al., 1994a).  

It is of paramount importance to understand how glycation exerts its effects on 

target proteins. Glycation consequences on protein structure and function have been 

investigated mainly in vitro in non-physiological conditions regarding the concentration 

of the glycation agent and reaction conditions. In most cases, glycation agents were 

deployed in millimolar to molar concentrations for extended periods of time, from days to 

years (Bakhti et al., 2007; Bouma et al., 2003; Luthra & Balasubramanian, 1993; Raabe 

et al., 1996; Seidler & Kowalewski, 2003). In addition, protein interactions, which limit 

the accessibility of the glycation agent to reactive amino acid residues, are not taken into 

account. These studies are in sharp contrast to what happens in a living cell, where the 

concentration of glycation agents, namely methylglyoxal, is in the nanomolar to 

micromolar range and protein concentration is much higher. Consequently, to investigate 

the effects of glycation on protein structure and function in vivo, cellular models must be 

sought in conditions where target proteins exist and glycation can be controlled. Yeast 

offers an ideal cell model to investigate glycation in vivo, now that some glycation 

phenotypes and protein targets were identified (Gomes et al., 2006; Gomes et al., 2005b). 
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Among these, enolase2 (2-phospho-D-glycerate hydrolase, EC 4.2.1.11), shows a 

glycation-dependent enzyme activity loss (Gomes et al., 2006).  

In this work we expand our knowledge on the biochemical effects of 

methylglyoxal-mediated glycation in vivo on the structure, thermal stability and enzyme 

activity of yeast enolase. A comparison between the effects of glycation in vivo and in 

vitro was also performed. Moreover, a bottom-up mass spectrometry analysis of enolase 

glycation was performed by MALDI-TOF and FTMS. 
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3. MATERIAL AND METHODS 
 

Reagents and materials  

 

Peptone, yeast extract and agar were from Difco while D-glucose (microbiology 

grade), KCl and MgSO4 were obtained from Merck. Ammonium sulphate, NaH2PO4, 

Na2HPO4, NaCl, NaF, dithiothreitol, iodoacetamide and TFA were obtained from Sigma. 

Tris, SDS 20% (w/v) and glycine were obtained from BioRad. EDTA was obtained from 

BDH chemicals LTD while phosphoenolpyruvate and methylglyoxal 1,1-dimethyl acetal 

and 2,5 dihydroxybenzoic acid (DHB) were acquired from Fluka. Modified trypsin was 

obtained form Promega. GELoader tips were obtained from Eppendorf. POROS 10 R2 

reversed-phase chromatography medium was obtained from PerSeptive Biosystems. α-

Cyano-4-hydroxicinamic acid (α-CHCA), sinapinic acid (3,5 dimethoxy-4-

hydroxycinnamic acid), PepMix1 (mass spectrometry peptide standards) and ProMix3 

(mass spectrometry protein standards) were obtained from LaserBiolabs. Amicon filters 

were purchased from Millipore. 

Solvents acetonitrile and methanol were HPLC-grade obtained from Riedel de 

Häen; ultrapure water (type I) was obtained from a Millipore Milli-Q system.  

 

Yeast strains and growth conditions 

 

Saccharomyces cerevisiae strains, Euroscarf collection (Frankfurt, Germany), 

were: BY4741 (genotype BY4741 MATa; his3∆1; leu2∆0; met15∆0; ura3∆0) and 

∆GLO1 (isogenic to BY4741 with YML004c::KanMX4). Strains were kept in YPGlu 

agar slopes [0.5% (w/v) yeast extract, 1% (w/v) peptone, 2% (w/v) agar and 2% (w/v) D-

glucose] at 4 ºC and cultured in liquid YPGlu medium. To induce protein glycation, 

∆GLO1 strain was cultured for 9 days to reach the stationary phase of growth. The 

reference BY4741 strain was collected at the end of the exponential phase of growth (18 

hours). 
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Enolase purification 

 

Native enolase was purified from BY4741 yeast cells at the end of the exponential 

phase of growth (18 hours) while glycated enolase was purified from ∆GLO1 culture at 

the stationary phase (9 days). Purification was achieved by anion exchange 

chromatography and size-exclusion chromatography after ammonium sulfate protein 

precipitation from crude extracts, based on a previously described method (Kustrzeba-

Wojcicka & Golczak, 2000). Cells were disrupted by sonication (5 cycles of 1 min at 100 

watts with 1 min cooling on ice). The extract was centrifuged at 40000 g at 4 °C for 30 

min to eliminate cell debris and adjusted to 50% saturation of ammonium sulphate. 

Saturation was subsequently adjusted to 67% by solid ammonium sulphate addition. 

After centrifugation at 40000 g at 4 °C for 30 min, the supernatant was made 100% 

saturated and centrifuged again. The pellet, containing enolase, was suspended in 20 mM 

Tris/HCl pH 8.2, containing 5 mM MgSO4 and 1 mM EDTA. Sample was dialyzed 

overnight at 4 ºC against the same buffer to remove ammonium sulfate and applied to an 

ion-exchange chromatography column DEAE-Sephadex A-50 column (Pharmacia, 1-15 

cm2) equilibrated with 20 mM Tris/HCl, pH 8.2, containing 5 mM MgSO4 and 1 mM 

EDTA. Proteins were eluted with a linear NaCl gradient (0-0.5 M) at a flow rate of 1 

ml.min-1 and proteins were monitored at 280 nm. Protein-containing fractions were 

collected and probed by dot blot analysis using an anti-yeast enolase antibody (a kind gift 

from Dr. Park, Department of Microbiology, Chungnam National University, Korea). 

Fractions containing enolase were collected, concentrated by ultrafiltration using Amicon 

filters and applied to a size-exclusion column CM-Sephadex C-50 column (Pharmacia, 1-

15 cm2) equilibrated with 50 mM NaH2PO4:Na2HPO4 buffer, pH 7.4 containing 150 mM 

NaCl, 5 mM MgSO4 and 1 mM EDTA. Proteins were eluted with the same buffer at a 

flow rate of 1 ml.min-1. Again, fractions-containing enolase, as probed by dot blot, were 

collected and combined. In the purification of glycated enolase, the protein fractions were 

probed by dot blot with anti-MAGE antibody (a king gift from Dr. Ram Nagaraj, Case 

Western University, Cleveland, Ohio, U.S.A.) and with anti-enolase antibody. Enolase 

purity was assessed by SDS-PAGE. 
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In vitro glycation of purified enolase by methylglyoxal  

 

Methylglyoxal was prepared by acid hydrolysis of methylglyoxal 1,1-

dimethylacetal as reported by Kellum (Kellum et al., 1978) and purified by fractional 

distillation under reduced pressure in nitrogen atmosphere (McLellan et al., 1992). Once 

prepared, methylglyoxal solutions were standardised by enzymatic assay with glyoxalase 

I and II, as described (Racker, 1951). Purity was verified by HPLC and NMR analysis on 

a Bruker Avance 400. 

Purified native enolase (5 µM) was incubated with 10 mM methylglyoxal in 100 

mM potassium phosphate buffer, pH 7.4 at 30 ºC for 5 days in sterile conditions. Enolase 

concentration was determined spectrophotometrically (ε280 = 0.89 ml.mg-1.cm-1) (Huang 

& Dong, 2003) in a UV-vis spectrophotometer Jasco V-530. 

 

Western blot and HPLC analysis  

 

 Proteins (30 µg protein per lane) were separated by SDS/PAGE in a Mini-protean 

3 system (Bio-Rad), using a 12% polyacrilamide separation gel and a 6% polyacrilamide 

stacking gel. Proteins were transferred to PVDF membranes (Hybond-P, Amersham 

Pharmacia Biotech), using the Mini Trans-Blot system (Bio-Rad). Transfer was 

performed with 39 mM glycine, 48 mM Tris, 0.0375% (w/v) SDS, and 20% (v/v) 

methanol. Pre-stained standard proteins (Bio-Rad) were also loaded onto the gel. Total 

proteins were stained with Ponceau S solution [0.5% (w/v) Ponceau S in 1% (v/v) glacial 

acetic acid] to confirm the amount of protein transferred. For the dot blot assay, purified 

proteins were added directly to PVDF membranes previously activated with methanol 

and equilibrated with transfer buffer. The membranes were blocked overnight at 4 ºC in 

1% (v/v) blocking solution (Roche) in TBS (50 mM Tris/HCl with 150 mM NaCl, pH 

7.5). The anti-MAGE antibody was used diluted 1:5000 in 0.5% (v/v) blocking solution 

in TBS for 3 hours, while the anti-enolase antibody was used diluted 1:10000 in the same 

conditions. Washes, secondary antibody and detection procedures were performed using 

the BM Chemiluminescence Western Blotting Kit (Roche) following manufacturer 

instructions. 
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Detection of glycation-induced fluorescence was monitored by reversed phase 

HPLC on a Beckman-Coulter System Gold equipped with a Beckman-Coulter high-

pressure binary gradient pump 126, a Beckman-Coulter 168-diode-array detector (1 nm 

resolution, 200-600 nm) and a fluorescence detector FP-2020 Plus (Jasco). The mobile 

phase consisted of 0.08% (v/v) TFA in type I water (solvent A) and 0.08% (v/v) TFA in 

acetonitrile (solvent B), and the elution gradient program was: 10% to 80% solvent B in 

30 min; 80% to 10% solvent B in 10 min. Separation was achieved on a reversed phase 

analytical column (LiChrospher 100 Merck RP-18, 5 µm) at a flow rate of 1 ml.min-1. 

Eluting species were monitored by the fluorescence signal at λem./λexc. of 320/385 nm, 

characteristic of argpyrimidine.  

 

Mass spectrometry analysis 

 

 MALDI-TOF mass spectra were acquired in a Voyager-DE STR MALDI-TOF 

(Applied Biosystems). FTMS mass spectra were acquired in a Bruker Apex Ultra with a 7 

Tesla magnet. For intact protein mass measurement, sinapinic acid (20 mg.ml-1) prepared 

in 70% (v/v) acetonitrile with 0.1% (v/v) TFA was used as matrix and MALDI-TOF 

spectra were obtained in positive linear mode. To identify the purified proteins and assign 

the glycated amino acid residues, peptide mass fingerprint was performed. Proteins were 

excised and subjected to reduction, alkylation and digestion with sequencing-grade 

modified trypsin in gel, according to Pandey and co-workers (Pandey et al., 2000). The 

peptide mixture was purified, concentrated by R2 pore microcolumns (Gobom et al., 

1999) and eluted directly to the MALDI plate with 0.8 µl of recrystalized matrix α-

CHCA (10 mg.ml-1) prepared in 70% (v/v) acetonitrile with 0.1% (v/v) TFA. 

Monoisotopic peptide masses were used to search for homologies and protein 

identification with Peptide Mass Fingerprint of MASCOT (http://www.matrixscience.com). 

The identification of glycated amino acid residues was performed as described (Gomes et 

al., 2006). Briefly, a glycated enolase peptide should have a miscleavage associated with 

a defined mass increment of a specific MAGE. Moreover, an arginine modification 

should have a miscleavage in an arginine residue and the same stands for lysine 

modifications (Gomes et al., 2006). The analysis of glycated peptides was also performed 
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by FTMS. In this case, besides the in gel digestion, proteins were trypsin digested in 

solution, essentially as described (Olsen & Mann, 2004). The resulting peptide mixture 

was also purified using PerfectPure C-18 tips (Eppendorf) and diluted in 50% (v/v) 

acetonitrile with 0.1% (v/v) TFA for ESI-FTMS analyses. The peptide mixture was also 

analysed by MALDI-FTMS, using DHB matrix [10 mg.ml-1 prepared in 70% (w/v) 

acetonitrile with 0.1% (v/v) TFA] in an Anchorchip MALDI target.   

 

Structure and stability analysis 

 

Structural analysis was performed by circular dichroism (CD) spectroscopy and 

size-exclusion chromatography. Prior to CD analysis, individual protein species were 

separated by size-exclusion chromatography on an analytical column (Amersham-

Pharmacia Superdex™ 75 10/300 GL) with 10 mM phosphate buffer pH 7 containing 

100 mM NaF as the mobile phase at a flow rate of 0.4 ml.min-1 (LKB Bromma 2150 

isocratic pump with a UV detector JASCO 2075). Eluting peaks were monitored at 280 

nm and individual protein fractions were collected for further analysis. 

Secondary structure analysis was performed by far-UV CD (185-240 nm) in a 

Jasco J810 spectropolarimeter at 25 ºC (Julabo F25 temperature control unit) with 0.1 cm 

path length. CD spectra were deconvoluted using the CDSSTR algorithm (Johnson, 1999) 

on Dichroweb (http://www.cryst.bbk.ac.uk/cdweb/html/home.html) (Lobley et al., 2002; 

Whitmore & Wallace, 2004). The molar ellipticity was calculated on the basis of a mean 

residue mass of 107.13 Da. All the spectra were solvent baseline-corrected. 

Conformational stability measurements were performed by thermal-induced 

protein unfolding. CD denaturation curves were constructed by raising the temperature 

from 20 to 85 ºC and measuring the ellipticity at 222 nm. Tm value (temperature at which 

50% of denaturation occurs) of native and glycated enolase was calculated as previously 

described (Pace et al., 1990). 
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Enolase activity assay  

 

In all assays, enolase activity was determined at 30 ºC in a 1.5 ml reaction 

volume, on a Beckman DU-7400 diode array spectrophotometer, with temperature 

control and magnetic stirring, essential to maintain isotropic conditions during the assay. 

Enolase activity was followed by measuring phosphoenolpyruvate (PEP) consumption at 

240 nm and its concentration was calculated using ε = 1.42 mM-1.cm-1 determined in this 

work. The reaction mixture, containing 50 mM Tris/HCl (pH 7.4), 100 mM KCl, 1 mM 

MgSO4, 0.01 mM EDTA and known amount of protein, was pre-incubated for 10 min 

and the reaction was started by the addition of phosphoenolpyruvate.  

 

Protein structure 

 

Enolase dimer structure was represented by PDB entry 1ebh. Molecular graphics 

images were produced using the UCSF Chimera package from the Resource for 

Biocomputing, Visualization, and Informatics at the University of California, San 

Francisco (supported by NIH P41 RR-01081) (Pettersen et al., 2004). Relative solvent 

surface accessibility was calculated according to Gerstein (Gerstein, 1992). 
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4. RESULTS 
 
Characterization of enolase glycation by mass spectrometry  

 

Native enolase was purified from the BY4741 reference strain at the end of the 

exponential phase of growth and glycated in vitro by incubation with 10 mM 

methylglyoxal in 100 mM potassium phosphate buffer pH 7.4, a common glycation 

condition. Native enolase was also used as a control regarding enzyme activity, 

secondary structure composition and thermal stability. In vivo glycated enolase was 

purified from the ∆GLO1 strain at the stationary phase of growth, where glycation was 

previously observed (Gomes et al., 2005b). Protein purity and identity were verified by 

SDS-PAGE and Western blot analysis with anti-yeast enolase antibody, respectively. 

Protein identity was further confirmed by peptide mass fingerprinting after in gel trypsin 

digestion and MALDI-TOF analysis of the resulting peptide mixture (Table IV.1). 

 
 
Table IV.1. Protein identification by MALDI-TOF peptide mass fingerprint. Criteria used for identification 
were significant homology scores achieved in MASCOT (53 for 95% confidence), a minimum of four 
peptides matched and a protein sequence coverage greater than 10%.  
 

 
Swiss Prot. 

code 

Identified 

protein 

Peptides 

matched 

Mascot 

score 

Sequence 

coverage 

Native P00925 Eno2 30 131 62 % 

Glycated in vivo P00925 Eno2 22 112 49 % 

Glycated in vitro P00925 Eno2 17 66 45 % 

 
 

As previously shown, peptide mass fingerprint data contains information 

regarding MAGE nature and location (Gomes et al., 2006). Since only lysine and 

arginine residues are modified, tryptic digestion of glycated proteins would then produce 

peptides with at least one miscleavage associated to a defined mass increase 

corresponding to a specific MAGE (Figure IV.1). Proteins were also trypsin hydrolyzed 

in solution and the resulting peptide mixtures were analysed by MALDI-TOF and 

ESI/MALDI FTMS. In all cases, 60 to 70% sequence coverage was obtained. 
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Figure IV.1. Chemical detection and molecular location of MAGE in enolase. Glycated peptides show 
miscleavages associated with specific mass increments characteristics of a given MAGE (Gomes et al., 
2006). Figure shows sections of MALDI-TOF mass spectrum where the appearance of new peptides with a 
mass increment of a specific MAGE in enolase glycated in vivo (B) and in vitro (C) in comparison with the 
native protein (A) are observed. The complete analysis of the mass spectrometry data is present on tables 
IV.2 and IV.3. 
 
 

When enolase is glycated in vitro, 10 out of 14 arginine residues are modified by 

methylglyoxal in the form of hydroimidazolones while only one lysine residue, either 

K336 or K337, is modified to CEL (Table IV.2). Some arginine residues even form 

different MAGE, like R14 which may be modified as hydroimidazolone [observed mass 

of 2178.056 Da, corresponding to enolase peptide (9-27) with m/z of 2124.045 plus 54 

Da of a hydroimidazolone modification] or as THP [observed mass of 2268.088 

corresponding to the same enolase peptide (9-27) plus 144 Da of a THP modification] 

(Table IV.3). 
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Table IV.2. Chemical identification and molecular localization of MAGE in enolase by mass spectrometry. 
Glycated residues are shown in bold. MG-H, hydroimidazolone; Argp., argpyrimidine; CEL, Nε-
(carboxyethyl)lysine.   
 

‡ Observed by MALDI-FTMS  

 

Glycation Observed 
mass (Da) 

Theoretical 
peptide mass 

(Da) 
Peptide sequence 

Mass 
increase 

(Da) 
MAGE Glycated 

residue 

1269.67 1215.61 VYARSVYDSR 
(5-14) 54 MG-H R8 

1310.63 1256.71 
TGAPARSERLA

K 
(397-408) 

54 MG-H R402 or 
R405 

1520.14 1440.86 SERLAKLNQLLR 
(403-414) 80 Argp. R405 

1724.02 1669.92 
LNQLLRIEEELG

DK 
(409-422) 

54 MG-H R414 

1741.92 1669.03 
IATAIEKKAADA

LLLK 
(330-345) 

72 CEL K336 or 
K337 

2010.19 1956.07 
LGANAILGVSM
AAARAAAAEK 

(105-125) 
54 MG-H R119 

2020.12 1965.99 TFAEAMRIGSEV
YHNLK (178-194) 54 MG-H R184 

2178.18 2124.05 SVYDSRGNPTV
EVELTTEK (9-27) 54 MG-H R14 

2354.32 2300.18 
GVFRSIVPSGAS
TGVHEALEMR 

(28-49) 
54 MG-H R31 

2403.42 2349.23 
SGETEDTFIADL
VVGLRTGQIK 

(375-396) 
54 MG-H R391 

In vitro 

2635.57 2581.42 
TAGIQIVADDLT
VTNPARIATAIE

K (312-336) 
54 MG-H R329 

1310.63 1256.71 
TGAPARSERLA

K 
(397-408) 

54 MG-H R402 or 
R405 

1520.23 1440.86 SERLAKLNQLLR 
(403-414) 80 Argp. R405 

1741.90 1669.03 
IATAIEKKAADA

LLLK 
(330-345) 

72 CEL K336 or 
K337 

2252.20 2171.20 

SKLGANAILGVS
MAAARAAAAE

K 
(103-125) 

54 MG-H R119 

1750.00‡ 1669.96 LNQLLRIEEELG
DK (409-422) 80 Argp. R414 

 
In vivo 

1654.83‡ 1600.84 AVSKVYARSVY
DSR (1-14) 54 MG-H R8 
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The same MAGE replacement was observed for R119 and R184 (Table IV.3). This 

molecular heterogeneity can be seen in a MALDI-TOF mass spectrum of in vitro 

glycated enolase, showing a large mass increase compared to the molecular mass of 

native enolase and peak broadening (Figure IV.2). These results are consistent with 

previous studies that point to hydroimidazolones as the most abundant modifications. The 

formation of different MAGE on the same amino acid residues also shows that glycation 

is not specific in vitro. 

 
 
 
Table IV.3. Identification and localization of MAGE in enolase glycated in vitro by methylglyoxal using 
ESI-FTMS. Glycated residues are shown in bold. Noticeably, the same glycated amino acid residue appears 
with different modifications. MG-H, hydroimidazolone; THP, tetrahydropirimidine. 
 

 

 

 

 

Observed 
m/z Charge [M+H]+ Peptide sequence 

Mass 
Increase 

(Da) 
MAGE Glycated 

residue 

742.388 +3 2225.207 
SKLGANAILGVS
MAAARAAAAE

K (103-125) 
54 MG-H R119 

1005.508 +2 2010.080 
LGANAILGVSM
AAARAAAAEK 

(105-125) 
54 MG-H R119 

772.375 +3 2315.239 
SKLGANAILGVS
MAAARAAAAE

K (103-125) 
144 THP R119 

1089.478 +2 2178.056 SVYDSRGNPTV
EVELTTEK (9-27) 54 MG-H R14 

726.67 +3 2178.056 SVYDSRGNPTV
EVELTTEK (9-27) 54 MG-H R14 

879.771 +3 2637.315 
SVYDSRGNPTVE
VELTTEKGVFR 

(9-31) 
54 MG-H R14 

756.68 +3 2268.088 SVYDSRGNPTV
EVELTTEK (9-27) 144 THP R14 

1010.459 +2 2019.996 TFAEAMRIGSEV
YHNLK (178-194) 54 MG-H R184 

1055.471 +2 2110.027 TFAEAMRIGSEV
YHNLK (178-194) 144 THP R184 

703.995 +3 2110.027 TFAEAMRIGSEV
YHNLK (178-194) 144 THP R184 
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A different scenario emerges when enolase is glycated in vivo. Only five arginine 

residues are modified: R402 or R405, R119 and R8 as hydroimidazolones and R405 and 

R414 as argpyrimidine (Table IV.2). Only one lysine residue was found to be modified as 

CEL, either K336 or K337. These modifications appear to be specific since no other 

MAGE were found at these positions. Molecular mass increase is negligible and no peak 

broadening was observed, consistent with a homogeneous distribution of enolase 

molecular species (Figure IV.2). Argpyrimidine appears to be as abundant as 

hydroimidazolones while THP was not observed. Considering that the reaction 

mechanism for the formation of argpyrimidine is very complex, involving two 

methylglyoxal molecules per arginine residue, reaction conditions for argpyrimidine 

formation appear to be more favourable in vivo. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure IV.2. Analysis of intact protein mass by linear mode MALDI-TOF of (A) native enolase, (B) in 
vitro glycated enolase and (C) in vivo glycated enolase. For all mass spectra, a peak with m/z similar to 
theoretical yeast enolase2 molecular mass (46 782 Da) was obtained. With glycation in vitro, a broadening 
of the peak is observed indicating higher sample heterogeneity.     
 

 

To get insights on the susceptibility of arginine residues towards 

methylglyoxal-derived glycation, we calculated its partial solvent exposure according to 

Gerstein (Gerstein, 1992) (Table IV.4). For arginine modifications, no obvious 

relationship exists between the partial solvent exposure of amino groups and the 

susceptibility towards glycation. It is quite interesting to notice that arginine residues with 

Enolase glycated in vivoNative enolase Enolase glycated in vitro
A B C
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no surface exposure of both side chain amino groups, like arginine 119, 391, 405 and 

414, are glycated. Meanwhile, the two arginine residues that show the highest surface 

exposure (R200 and R288) were not found to be glycated. By contrast, solvent exposure 

appears to be a determinant factor for glycation of lysine residues since K336 or K337 

shows the highest solvent exposure (data not shown). 

 

 
Table IV.4. Surface exposure of the amino groups of arginine side chain in yeast enolase. Glycated and 
non-glycated arginine residues are shown. The surface exposure was calculated according to Gerstein 
(Gerstein, 1992).    
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surface exposure Glycated arginine 

residues NH1 NH2 

R8 0.60 0 

R14 16.93 6.33 

R31 3.04 15.88 

R119 0 0 

R184 0 15.23 

R329 11.37 1.70 

R391 0 0 

R402 0.07 0 

R405 0 0 

R414 0 0 

Surface exposure Non-glycated 

arginine residues NH1 NH2 

R49 0 1.11 

R200 7.51 23.11 

R288 23.43 7.40 

R374 0 3.78 
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Glycation effects on enolase folding, structure and enzyme activity 

 

The effects of glycation on enolase structure were evaluated by far-UV circular 

dichroism spectroscopy after size-exclusion chromatography separation of each 

molecular forms of enolase in solution. Size-exclusion chromatograms clearly show two 

major peaks, one eluting at 20-25 min and the other at 35-40 min (Figure IV.3). The first 

peak corresponds to enzymatically active enolase dimer (90 kDa) with native secondary 

structure elements (Figure IV.4). The second peak immunoreacts with anti-yeast enolase 

antibody, but shows no CD signal and no enzyme activity, indicating the presence of 

unfolded, inactive enolase (Figure IV.4). Lack of absorption at 222 nm and 208 nm in the 

CD spectrum indicates a complete loss of regular secondary structural elements, 

consistent with the absence of enzyme activity. Similar results were obtained for folded 

and unfolded protein fractions of glycated enolase (data not shown). A comparison of the 

size-exclusion chromatograms shows that, when glycation occurs, a higher fraction of 

unfolded inactive enolase is observed relatively to the dimeric, folded enzyme (Figure 

IV.3). This feature is easily observable by comparing, within the same chromatogram, the 

fraction of folded active (fraction I) and unfolded inactive enolase (fraction II). For native 

enolase, the unfolded to folded area ratio is about 1 while a two-fold increase of this ratio 

is observed for in vivo glycated enolase. When enolase is glycated in vitro, an even higher 

amount of unfolded enolase is observed, a nine-fold increase relatively to the native 

enzyme (Figure IV.3).  

If glycation promotes protein dissociation and unfolding, both protein fractions 

should be glycated. To confirm this hypothesis, these fractions were separated by 

size-exclusion chromatography and analysed by reversed-phase HPLC with fluorescence 

detection at λex.320λem.385 (argpyrimidine) and by western blotting using an anti-MAGE 

antibody. Indeed, both protein fractions from enolase glycated in vivo and in vitro contain 

argpyrimidine and other MAGE (Figure IV.5). 

These results clearly show that enolase glycation causes protein unfolding and 

since glycation is an irreversible process, unfolded protein may not be refolded back to 

the active enzyme form. The effect is far more severe when the protein is glycated in 

vitro. 
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Figure IV.3. Size-exclusion chromatography of native enolase (A), glycated in vivo and (B) glycated in 
vitro (C). In the three chromatograms, two main peaks are observed. Upon glycation, an increase of the 
second peak with an elution time between 35 and 40 min is detected. 
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Figure IV.4. Characterization of the two main protein fractions separated by size-exclusion 
chromatography. (A) Far-UV CD spectrum of fraction I and fraction II collected from size-exclusion 
chromatography of native enolase. Contrary to fraction I, no CD signal was observed in fraction II, showing 
a complete loss of secondary structure elements. (B) Enolase activity assays of fraction I and II. Consistent 
with the lack of secondary structure, no enzyme activity was detected in fraction II. (C) Dot blot analysis of 
fraction I and II with anti-yeast enolase antibody. In all cases, positive signals confirm protein identity as 
yeast enolase. For clarity, only the results from fractions I and II of native enolase are shown in (A) and 
(B).    
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Figure IV.5. Glycation analysis 
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vivo by HPLC and dot blot. Both 
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around 6 min at wavelengths 
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results were obtained from 
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Once the different enolase molecular species were separated by size-exclusion 

chromatography, samples were analysed by far-UV CD spectroscopy. Striking 

differences were observed, particularly within the region of 195 nm, 208 nm and 222 nm 

(Figure IV.6). In native enolase, the α-helical content was 40%, the β-sheet was 20%, the 

turns were 21% and unordered structure was 19% (Table IV.5). This result is in 

agreement with the values of 37.6% for α-helix, 21% of β-sheet, 26% of turns and 15.4% 

unordered structures (Huang & Dong, 2003). X-Ray crystallography analysis of yeast 

enolase, estimated an α-helical content of 37.3% and 17.2% of β-sheet (Stec & Lebioda, 

1990). 

In vivo glycated enolase shows little or no secondary structure loss. A 

redistribution of secondary structure elements is evident, with an increase of unordered 

structure from 19% to 25% and a reduction of the α-helical content from 40% to 35%. β-

Sheet content remains unchanged (Table IV.5). When enolase is glycated in vitro, a 

distinct scenario emerges. There is a much higher loss of α-helix, from 40% to 17%, and 

a dramatic increase of β-sheet, from 20% to 32%, compared to the differences observed 

for in vivo glycated enolase (Table IV.5). Unordered structure elements also increase, 

from 19% to 32 %. 
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Figure IV.6. Far-UV CD spectra of native, in vivo glycated and in vitro glycated enolase. (A) CD spectra 
between 185 and 240 nm. Insets of the positive bands between 188 and 198 nm (B) and negative bands 
between 204 and 214 nm (C) and between 214 and 230 (D) are shown.     
 

 

To evaluate the glycation effects on the structural stability of enolase, thermal 

denaturation of the native, in vivo and in vitro glycated enolase was monitored by CD 

spectroscopy. Glycation shifts the thermal denaturation curve of enolase to higher 

temperatures, indicating an increased resistance to thermal unfolding (Figure IV.7). In 

fact, the Tm for native enolase is 53.6 ºC while in vivo glycated enolase shows a Tm of 

58.6 ºC and the in vitro glycated enolase an even higher Tm of 61.4 ºC. Enolase thermal 

denaturation is an irreversible process, as confirmed by occurrence of protein aggregation 

and lack of secondary structure when the temperature was returned to 25 ºC (data not 

shown), hence the determination of thermodynamic parameters could not be performed. 
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Table IV.5. Distribution of secondary structure elements for native, in vivo and in vitro glycated enolase, 
obtained by CD spectra deconvolution with the CDSSTR algorithm (dichroweb; 
http://www.cryst.bbk.ac.uk/cdweb/html/home.html). The NRMSD parameter is the normalized root mean 
square deviation.  
 

Structural elements α-Helix β-Sheet β-Turns Unordered 
structure NRMSD 

Native 0.40 0.20 0.21 0.19 0.011 

Glycated in vivo 0.35 0.20 0.20 0.25 0.017 

Glycated in vitro 0.17 0.32 0.19 0.32 0.026 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secondary structure changes are associated with protein function modifications. 

Therefore, glycation-induced conformational changes are likely to have pronounced 

effects on enolase activity. Indeed, we observed a marked decrease in enolase activity 

upon glycation (Table IV.6). In vivo glycated enolase shows a 65% activity loss 

compared to native enolase. When enolase is glycated in vitro an even more severe 

activity loss is observed (84%). As glycation causes enolase denaturation with a 

consequent enzyme inactivation, it could be argued that the loss of enzyme specific 

activity may be solely explained by the higher amount of unfolded inactive protein in the 

sample. This implies that, if the activity of glycated folded enolase remains the same, the 

specific activity would decrease. To test this possibility, folded and unfolded fractions 

Figure IV.7. Thermal denaturation of native, 
in vivo and in vitro glycated enolase. Upon 
glycation, a shift towards higher melting 
temperatures occurs. 
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from in vivo and in vitro glycated enolase were separated by size-exclusion 

chromatography and enzyme activity was determined for each individual fraction 

(fraction I being folded active and glycated enolase while fraction II is unfolded glycated 

enolase). In both cases, no enolase activity was detected in fraction II, which is consistent 

with the lack of secondary structure (Figure IV.4). In fraction I, enolase activity was 

detected, albeit the specific activity was again much lower than that of the native enzyme 

(Table IV.6).  
 
 
 
Table IV.6. Glycation effects on enolase activity. The activity determined for native enolase was 
considered to be 100%. Fraction I (I) indicates folded active enolase. Data shown are averages from three 
independent activity assay ± SD. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enolase 
Enzyme activity 

(µM. min-1.mg-1) 

Remaining 

activity (%) 

Native 200.5 ± 55.7 100 

Glycated in vivo 69.6 ± 12.1 34.7 

Glycated in vitro 31.3 ± 4.6 15.6 

Glycated in vivo (I) 78.9 ± 10.3 39.3 

Glycated in vitro (I) 41.1 ± 3.8 20.5 



Chapter IV 

123 

5. DISCUSSION 

 
Arginine residues have a probability of about 20% to be located in ligand and 

substrate binding sites of proteins (Gallet et al., 2000). Hence, methylglyoxal-derived 

arginine glycation is expected to have significant effects on protein structure and 

function, contributing to protein misfolding and changes in biological activity. Therefore, 

this post-translational modification has been the subject of a deeply research, where in 

vitro glycation of clinically relevant and model proteins are investigated. These AGE-

modified proteins were used to understand the consequences of glycation on protein 

structure and function. The major drawback of this approach lies on the dramatic 

differences between glycation conditions in vitro when compared to AGE formation in 

vivo. First, non-physiological concentrations of glycation agents are used, in millimolar 

and even in molar concentrations (Bakhti et al., 2007; Bouma et al., 2003; Luthra & 

Balasubramanian, 1993; Raabe et al., 1996; Seidler & Kowalewski, 2003). Additionally, 

protein interactions are not taken into account, which may limit the accessibility of 

reactive amino acid residues to the glycation agents or modify their reactivity. Also, the 

action of chaperones, some of which being activated upon glycation, is not considered 

(Gomes et al., 2006; Nagaraj et al., 2003; Oya-Ito et al., 2006). Furthermore, cells have 

the ability to recover or degrade damaged proteins and synthesize new molecules, and 

this protein turnover is absent from in vitro experiments. These differences highlight the 

importance of investigating protein glycation mechanisms and their biochemical effects 

in vivo. For this purpose, suitable research models are an absolute requirement. Our 

previous studies validated yeast as an ideal eukaryotic cell model to investigate protein 

glycation in vivo (Gomes et al., 2005a; Gomes et al., 2006). Glycation in yeast by 

methylglyoxal can be controlled, either by using mutant strains or varying D-glucose 

concentration (Gomes et al., 2005b). Moreover, well-defined protein glycation targets 

exist and glycation occurs in a time scale of a few hours to about a week, most suitable 

for laboratory investigations (Gomes et al., 2005b). Enolase, the major glycation target, 

endures a glycation-dependent activity loss, providing us an important model to study the 

glycation effects in vivo (Gomes et al., 2006). To get further insights into this issue, a 
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bottom-up mass spectrometry analysis was also performed for enolase glycated in vivo 

and in vitro.  

In agreement with our hypothesis that differences exist between in vivo and in 

vitro glycation, the results from mass spectrometry analysis indicate that enolase 

glycation in vivo seems to be a site-specific process, whereby only a few residues are 

consistently modified with the same MAGE. By contrast, glycation in vitro is a very 

heterogeneous process resulting in the formation of a complex population of enolase 

molecules with different glycation profiles. Far more arginine residues were modified in 

vitro (10 out of 14) when compared to in vivo glycation (5 out of 14). In vitro, different 

MAGE may be present in the same arginine residue, in different protein molecules. 

Although this may simply reflect the most favourable glycation conditions in vitro, it 

hints for a specificity of the glycation in vivo where hotspot arginine residues exist. In 

both cases, some arginine residues are resilient to glycation and do not appear to be 

modified. 

The specificity of glycation in vivo seems to be unrelated to the partial solvent 

exposure of each arginine residues since some glycated arginine residues show high 

solvent exposure whereas others less exposed are also modified. Moreover, arginine 

residues with a high solvent exposed were not found to be glycated. In a recent work we 

suggested that the arginine-rich deep crevice in enolase protein structure, accessible to the 

solvent and located at the dimer interface, may be a favourable hotspot for the occurrence 

of glycation reactions (Gomes et al., 2006). In fact, several glycated arginine residues 

identified after in vitro glycation and almost all glycated arginines in vivo are located in 

this cleft (Figure IV.8A and B). Interestingly, glycation was not detected in the two most 

exposed arginine residues (R200 and R288), which are not located in this cleft (Figure 

IV.8C).  

Consistent with the idea that glycation induces changes on protein structure, in 

vivo glycated enolase shows a rearrangement of secondary structure elements with an 

increase of unordered structure. α-Helical content decreases in comparison with native 

enolase and Tm increases with glycation, suggesting that glycated enolase may exist in a 

more compact and rigid conformation. Additional effects were observed when enolase is 

glycated in vitro. In this case, besides an enhanced increase of unordered structure and a 
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decrease of α-helix, a marked gain of β-sheet was also observed. The Tm increase is more 

pronounced, consistent with a more rigid structure, probably due to higher β-sheet 

content. Since an increase in β-sheet content is an important step towards 

amyloidogenesis, it is crucial to understand the differences between glycation in vivo and 

in vitro.  

 

 

 
 
 
Figure IV.8. Surface landscape of dimeric yeast enolase, showing the glycated (red) and non-glycated 
(yellow) arginine residues. For greater clarity, the surface of one of the subunits is shown in light gray. (A) 
Enolase glycated in vitro showing glycated arginine residue (red) in a cleft at the dimer interface (B). In 
vivo glycated enolase, showing four out of five glycated arginine residues in the cleft. (C) Enolase structure 
showing the highest solvent exposed arginine residues R200 and R288 that were not found to be glycated 
(yellow). Interestingly, these arginine residues are not located at the arginine-rich crevice located at the 
dimer interface.  

 

 

Glycation leads to enolase unfolding, probably related to the dimer dissociation 

and subsequent monomer unfolding. This is in agreement with our previous model of 

glycation-induced enolase inactivation in which the glycation of the critical arginine 

residue R414 disrupted an ionic pair formed with glutamate residue 20, essential for 

dimer stability (Gomes et al., 2006). A modification of R414 was observed in this study, 

both consequence of in vivo and in vitro glycation. Enolase unfolding might be related 

with Hsp26 activation under glycation conditions (Gomes et al., 2006). Hsp26 is involved 

in the recovery of misfolded proteins by rendering aggregates more accessible to the heat 

shock protein system composed by Hsp104/Hsp71/Hsp40 (Cashikar et al., 2005). 

A B C
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Therefore, by promoting protein unfolding, glycation increases unfolding stress and 

elicits a cellular response. Methylglyoxal modifies Hsp26 and the formation of specific 

MAGE may be involved on its activation. When enolase is glycated in vitro its unfolding 

is much more pronounced. This can be due to the higher glycation extent or, more likely, 

because the molecular chaperone pathway which is activated by glycation in vivo is 

absent from a test tube. 

The observed changes in protein structure and stability are related to the 

glycation-dependent activity loss. While a 65% inactivation occurs upon glycation in 

vivo, 85% of activity loss is observed after in vitro glycation. 

The results presented suggest that important differences exist between glycation 

in vivo and in vitro in the conditions used, which may be related to diverse glycation 

specificities. This observation highlights the importance of investigating protein glycation 

in vivo in a model system such as yeast, already validated in the research of amyloidotic 

neurodegenerative diseases (Outeiro & Lindquist, 2003).  
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1. SUMMARY 
 

FAP (familial amyloidotic polyneuropathy) is a systemic amyloid disease 

characterized by the formation of extracellular deposits of transthyretin. More than 80 

single point mutations are associated with amyloidogenic behaviour and the onset of this 

fatal disease. It is believed that mutant forms of transthyretin lead to a decreased stability 

of the tetramer which dissociates into monomers prone to unfolding and aggregation, 

latter forming β-fibrils in amyloid deposits. This theory does not explain the formation of 

β-fibrils nor why they are toxic to nearby cells. Age at disease onset may vary by 

decades for patients with the same mutation. Moreover, non-mutated transthyretin also 

forms the same deposits in SSA (senile systemic amyloidosis), suggesting that mutations 

may only accelerate this process, but are not the determinant factor in amyloid fibril 

formation and cell toxicity. We propose that glycation is involved in amyloidogenesis, 

since amyloid fibrils present several properties common to glycated proteins. It was 

shown recently that glycation causes the structural transition from the folded soluble 

form to β-fibrils in serum albumin.  

In this work, we identified for the first time a methylglyoxal-derived advanced 

glycation end-product, argpyrimidine [Nδ-(5-hydroxy-4,6-dimethylpyrimidine-2-yl)-L-

ornithine] in amyloid fibrils from FAP patients. Unequivocal argpyrimidine 

identification was achieved chromatographically by amino acid analysis using dabsyl (4-

dimethylaminoazobenzene-4’-sulphonyl) chloride. Argpyrimidine was found at a 

concentration of 162.40 ± 9.05 pmol/mg of protein in FAP patients, and it was not 

detected in control subjects. The presence of argpyrimidine in amyloid deposits from 

FAP patients supports the view that protein glycation is an important factor in amyloid 

diseases. 
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2. INTRODUCTION 
 

Familial amyloidotic polyneuropathy (FAP) is a systemic amyloid disease 

characterized by the extracellular deposition of transthyretin (TTR) in several tissues, 

particularly in the peripheral nervous system (Costa et al., 1978). The main clinical 

symptom is a progressive polyneuropathy affecting both the peripheral and autosomal 

nervous systems (Andrade, 1952). In all amyloidoses, including FAP, fibrils are 

insoluble, highly stable, resistant to enzymatic proteolysis and show an extensive β-sheet 

structure (Ghiso et al., 1994). Transthyretin is a homotetrameric protein of 55 kDa found 

in the plasma and cerebrospinal fluid, and is responsible for the transport of thyroxine and 

retinol, the latter by the association with the retinol-binding protein (Kanai et al., 1968; 

Raz et al., 1970). In certain forms of FAP, amyloid fibrils are mainly constituted by 

variants of transthyretin. In Portuguese-type FAP, substitution of methionine for valine at 

position 30 occurs (Saraiva et al., 1984). Although all FAP patients have identical 

concentrations of variant TTR in the plasma and cerebrospinal fluid, age at onset varies 

widely. Therefore, despite the identification of mutations in TTR associated with FAP, 

the process of fibril formation and their toxicity remain to be elucidated. The observation 

that non-mutated TTR also forms amyloid fibrils as in SSA (Benson, 1989; Westermark 

et al., 1990) implies that other factors besides genetic modifications must be considered 

in the pathogenesis of FAP. Since the first symptoms in FAP appear much earlier than in 

SSA, the point mutations in TTR seem to accelerate fibril formation by increasing the 

TTR amyloidogenicity. Moreover, different amyloidotic proteins with no sequence 

homology form similar amyloid fibrils (Ghiso et al., 1994). Besides amyloidogenesis, the 

mechanisms by which the extracellular deposits are toxic to cells are not well understood. 

One important observation is the presence of oxidative stress markers associated with 

amyloid fibrils, suggesting that interactions with specific receptors may occur (Sousa et 

al., 2001c).  

At the present, there is evidence that protein glycation is involved in the 

pathogenesis of several amyloid diseases, like Alzheimer’s disease (Du Yan et al., 1997a; 

Vitek et al., 1994; Yan et al., 1994a) and dialysis-related amyloidosis (Miyata et al., 

1994a). Protein glycation may be equivalent to a point mutation since amino acid side 
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chains are modified. In living cells, the effects of glycation are countered by high 

turnover and short half-life of most cellular proteins. In contrast, long-lived extracellular 

proteins accumulate glycation adducts with age (Ahmed et al., 1997; Frye et al., 1998; 

Riley & Harding, 1995). Like amyloid fibrils, glycated proteins are resistant to 

proteolysis in vivo and toxic to animal cells (Dyer et al., 1991; Iversen et al., 1995; 

Monnier & Cerami, 1981). The cellular effects of advanced glycation end-products 

(AGE) occur by interacting with specific cellular receptors, like the receptor for AGE 

(RAGE), the best characterized (Neeper et al., 1992; Schmidt et al., 1992). The 

AGE:RAGE interaction in vivo generates a significant cellular oxidative stress (Lander et 

al., 1995). 

One of the most powerful glycation agents in vivo is methylglyoxal formed in all 

living cells mainly from dyhidroxyacetone phosphate and D-glyceraldehyde 3-phosphate 

in glycolysis (Richard, 1993). Methylglyoxal irreversibly modifies lysine and arginine 

residues in proteins. However, methylglyoxal arginines AGE appear to be more relevant 

considering the existence of specific receptors for hydroimidazolones (Westwood et al., 

1997). Methylglyoxal also forms argpyrimidine [Nδ-(5-hydroxy-4,6-dimethylpyrimidine-

2-yl)-L-ornithine], a fluorescent product (Shipanova et al., 1997). Recently, 

argpyrimidine was found in spinal cord of familial sporadic amyotrophic lateral sclerosis 

(ALS) patients and mutant SOD-1 mice (Shibata et al., 2002). Methylglyoxal 

modification of arginine may contribute to the pathophysiologies associated with aging 

and other diseases (Oya et al., 1999; Shibata et al., 2002). 

In the present study, we unequivocally identified argpyrimidine, by 

chromatographic methods, in amyloid fibrils from Portuguese-type FAP patients. The 

formation of AGE in FAP may play an important role in the molecular mechanisms of 

amyloidogenesis either by promoting the pathway of amyloid fibril formation or 

increasing its toxicity to nerve cells. 

 

 

 

 

 



Argpyrimidine in familial amyloidotic polyneuropathy 
 

132 

3. MATERIAL AND METHODS 
 

Reagents and materials  

 

L-Amino acids, Nα-acetyl-arginine, thymol, pepsin, Pronase E (protease type 

XIV), aminopeptidase and dabsyl chloride were purchased from Sigma. Solid phase 

extraction columns (LiChrolut RP-18, 500mg) were obtained from Merck. All solvents 

were HPLC grade. HPLC analysis was performed in a Beckman Coulter with a high-

pressure binary gradient pump 126, a Beckman-Coulter 168-diode-array detector (1 nm 

resolution) and a fluorescence detector FP-2020 Plus (Jasco). In all assays, a Merck 

LichroCART 250-4 (250 x 4 mm) with stationary phase Lichrospher 100 RP-18, 5 µm, 

was used at a flow rate of 1 ml.min-1. Mass spectrometry analysis of Nα-acetyl-

argpyrimidine was performed in an ESI-MS (electrospray mass spectrometry) Thermo-

Finnigan LQC Duo and NMR analysis was performed in a Bruker Advance 400 [using a 

DQF (double-quantum-filtered)-COSY, HMQC (heteronuclear spin quantum correlation) 

and a HMBC (heteronuclear multiple bond correlation) NMR sequences].  

 

Human samples 

 

Adipose tissue samples from FAP patients (two males and one female; mean age 

30, range 26-33 years) were collected during the initial phase of liver transplantation. 

Non-FAP control (three males and two females; mean age 51, range 28-69 years) 

comprised patients receiving transplants following liver cirrhosis or autoimmune liver 

disease. One of the control subjects, suffering from pancreatic tumour, did not undergo 

liver transplantation. Adipose tissue samples were obtained during surgery. For all FAP 

and non-FAP subjects, blood D-glucose concentration was determined, in fasting and 

post-prandial conditions. Neither FAP patients nor control subjects were diabetic or had 

any carbohydrate-related disorders. There were no other exclusion criteria. Moreover, 

blood methylglyoxal concentration was determined in the same conditions and no 

significant differences between FAP and control subjects were found (data not shown). 
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All patients gave informed written consent, and the protocol was approved by the Curry 

Cabral Ethical Commission according to EEC approved protocols.  

 

Extraction of amyloid proteins from adipose tissue 

 

Amyloid proteins were extracted from samples of FAP patients and non-FAP 

subjects following a modified procedure based on the method developed by Kaplan et al. 

(Kaplan et al., 1994). Briefly, adipose tissue was dispersed in 5 ml of 0.154 M KCl and 

incubated for 1 h at room temperature. Samples were centrifuged for 10 min at 19000 g 

and the sediment was washed twice in the same solution. Lipid extraction was then 

performed with the addition of 5 ml of chloroform/methanol solution [2:1, (v/v)] and 

incubated for 5 min at room temperature. Samples were centrifuged for 10 min at 19000 

g and the sediment was suspended with aqueous 20% (v/v) acetonitrile containing 0.1% 

(v/v) TFA. Samples were incubated for 1 h at room temperature and the amyloid proteins 

extracted were collected in the supernatant after centrifugation for 10 min at 19000 g. 

Amyloid protein extraction was repeated once more. The extracted material was 

evaporated to dryness under a stream of N2 at 40 ºC and suspended in 500 µl of aqueous 

20% (v/v) acetonitrile with 0.1% (v/v) TFA. 

Protein concentration was determined using Coomassie Brilliant Blue dye as 

described (Cordeiro & Freire, 1994). Extracted proteins were analysed directly by HPLC 

using a binary gradient made of solvent A [water with 0.1% (v/v) TFA] and solvent B 

[acetonitrile with 0.1% (v/v) TFA]. The gradient program was: 0-20 min, 20-90% solvent 

B; 5 min isocratic at 90% solvent B; 25-30 min, 90-20% solvent B. The eluate was 

monitored at 220 and 260 nm (diode array detector) and by the fluorescence signal at 

λemission,max./λexcitation,max. of 320/385 nm (double-monochromator fluorescence detector). 

 

Preparation of argpyrimidine standard 

 

Argpyrimidine was prepared by the reaction of Nα-acetyl-L-arginine with 

methylglyoxal. Nα-Acetyl-L-arginine (100 mM) was incubated with 100 mM 

methylgyloxal in 100 mM sodium phosphate buffer (pH 7.4) at 70 ºC for 72 hours. 
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Methylglyoxal was prepared by acid hydrolysis of 1,1-dimethoxypropanone, as described 

previously (Kellum et al., 1978). The products obtained were analysed by HPLC using a 

binary gradient, solvent A [water with 0.1% (v/v) TFA] and solvent B [acetonitrile with 

0.1% (v/v) TFA]. The gradient program was: 0-8 min, 2-10% solvent B; 8-13 min, 10% 

solvent B isocratic; 13-23 min, 10-20% solvent B; 20% solvent B isocratic for 2 min; 25-

28 min, 20-2% solvent B. Nα-Acetyl-argpyrimidine was identified by its characteristic 

absorption spectra and characteristic fluorescence at excitation wavelength of 320 nm and 

emission wavelength of 385 nm. The resulting Nα-acetyl-argpyrimidine was purified in a 

RP-18 column (LiChrolut 500 mg). Purification was followed by HPLC analysis as 

described above; the fractions containing pure Nα-acetyl-argpyrimidine were combined 

and freeze-dried. The identity of Nα-acetyl-argpyrimidine was confirmed by mass 

spectrometry (molecular mass of 298.11 Da) and NMR spectroscopy analysis. To prepare 

the chromatographic argpyrimidine standard, the acetyl group was removed by enzymatic 

hydrolysis using leucine aminopeptidase for 2 days at 37 ºC. 

Argpyrimidine was quantified by HPLC using a calibration curve relating 

argpyrimidine concentration to the area of the corresponding peak (fluorescence 

detection). 

 

Amino acid analysis: chromatographic detection of argpyrimidine  

 

Before amino acids analysis, samples containing amyloid proteins extracted from 

FAP patients and samples containing proteins extracted from non-FAP patients were 

washed by ultrafiltration (5 kDa cut-off membrane) and subjected to enzymatic 

hydrolysis as described previously (Ahmed et al., 2002). Briefly, to 20 µl of sample 

(approximately 10-20 µg) 25 µl of 40 mM HCl, 5 µl of 2 mg.ml-1 thymol and 5 µl of 2 

mg.ml-1 of pepsin (both prepared in 20 mM HCl) were added and the samples were 

incubated at 37 ºC for 24 h. Samples were neutralized and buffered at pH 7.4 with the 

addition of 25 µl of 0.5 M potassium phosphate buffer, pH 7.4, and 5 µl of 260 mM 

KOH. Then 5 µl of Pronase E solution (2 mg.ml-1 in 10 mM phosphate buffer, pH 7.4) 

were added and the samples were incubated for 24 h at 37 ºC. Finally, 5 µl of leucine 

aminopeptidase and protease solutions (both prepared in 10 mM phosphate buffer, pH 
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7.4) were added and the mixture was incubated for 48 h at 37 ºC. This enzymatic 

hydrolysate (100 µl) was used for the argpyrimidine assay using dabsyl chloride as the 

derivatization reagent. An aliquot of the enzymatic hydrolysate (50 µl) was mixed with 

the same volume of 2 mM dabsyl chloride prepared in acetonitrile and incubated at 60 ºC 

for 10 min. The resulting sample was filtered and analysed by HPLC. A binary system of 

25 mM sodium acetate buffer, pH 6.5 (solvent A) and acetonitrile (solvent B) was used. 

The gradient program was: 0-30 min, 20-40% solvent B; 30-55 min, 40-90% solvent B; 5 

min isocratic with 90% solvent B; 60-65 min, 90-20% solvent B. The eluate was 

monitored at 452 nm and by the fluorescence signal at λemission,max./λexcitation,max. of 320/385 

nm. The argpyrimidine standard solution was submitted to the same treatment. 
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4. RESULTS AND DISCUSSION 
 

Extraction and characterization of amyloid deposits from FAP patients 

 

Amyloid proteins were extracted using a modified procedure based on the method 

developed by Kaplan et al. (Kaplan et al., 1994). In the present study, an additional step 

was added to extract lipids and phospholipids with a chloroform/methanol mixture before 

amyloid protein extraction. Since proteins are the main components of amyloid fibrils, 

protein concentration is a measure of the efficiency of both methods. With the modified 

procedure we obtained a higher ratio of protein amount per initial amount of tissue [(1.32 

± 0.198) x 10-03; n=3] in comparison with the Kaplan method [(6.9 ± 0.613) x 10-04; n=4]. 

Therefore the new lipid extraction step improves the efficiency of protein extraction from 

adipose tissue samples. Comparing the chromatograms obtained after an HPLC analysis 

of the extracted material with both methods for a representative FAP patient (Figure V.1), 

it is clear that more protein material is obtained with the modified method. This 

improvement in the extraction procedure is of extreme importance, since AGE are present 

in vestigial quantities. Therefore, it is of utmost importance to extract the highest amount 

of amyloid fibrils with the least amount of contaminants. Amyloid fibrils in FAP are 

associated with lipids, collagen and amyloid P, all of which interfere in X-ray diffraction 

studies. The removal of this contaminants does not affect the chemical and structural 

integrity of the amyloid fibrils (Damas et al., 1995). 

 

AGE in amyloid deposits from FAP patients 

 

One of the major consequences of protein glycation is the formation of fluorescent 

products with characteristic excitation and emission wavelengths (Dyer et al., 1991; 

Monnier & Cerami, 1981). The appearance of new fluorescence properties is a strong 

evidence for protein glycation. Methylglyoxal, a potent and ubiquitous glycation agent, 

forms stable adducts with arginine residues leading to non-tryptophan fluorescence 

(excitation, 320 nm; emission, 340-500 nm) (Riley & Harding, 1995). Shipanova and co-

workers identified a MAGE (argpyrimidine) as the major fluorescent product 
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(λemission,max./λexcitation,max, 320/385 nm) present in vivo (Shipanova et al., 1997). Recently, 

argpyrimidine was found in spinal cord of familial sporadic ALS patients and mutant 

SOD-1 mice (Shibata et al., 2002).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure V.1. Direct HPLC analysis of proteins extracted from a FAP patient with two different methods. 
Absorbance was monitored at 220 nm. Samples underwent ultrafiltration before analysis (5 kDa cut-off). 
The inset shows a magnification of the chromatogram between 5 and 25 min. Black, extraction by the 
modified procedure; blue, extraction by the method of Kaplan et al (Kaplan et al., 1994). mAU, milli-
absorbance units. 
 

 

Direct HPLC analysis with fluorescence detection at λemission,max./λexcitation,max. 

320/385 nm of the extracted material derived from Portuguese-type FAP patients and 

control subjects (Figure V.2) revealed that only the extracted amyloid fibrils from the 

FAP patients presented a significant fluorescence peak. Despite intensity differences of 

the fluorescence peak among different patients, it should be noted that protein 

concentration after extraction differs among samples, so fluorescence intensities are not 

directly comparable. In contrast, proteins extracted from non-FAP subjects have none or 

are barely modified. Comparing the chromatographic analysis with fluorescence 

detection of the controls, there were no significant differences between them. Only one 
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control sample showed a minor fluorescence peak in the same region of the 

chromatogram. All samples were purified by ultrafiltration (5 kDa cut-off membranes) 

prior to HPLC analysis, indicating that these samples are free from low molecular mass 

contaminants that could interfere with fluorescence analysis.  

The differences between fluorescent properties of the extracted material from the 

control subjects and FAP patients hint that amyloid proteins from FAP patients are 

glycated. Considering the excitation and emission wavelengths that produce a measurable 

signal in the fluorescence detector, argpyrimidine is likely to be present in the proteins 

extracted from FAP patients. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure V.2. Comparison of HPLC chromatograms with fluorescence detection λemission,max./λexcitation,max. 
320/385 nm, of the proteins extracted from FAP patients (black, FAP patient 1; red, FAP patient 2) and 
non-FAP subject (blue). All samples were submitted to the modified method of extraction. To simplify, just 
one non-FAP and two FAP samples were shown. 

 

Amino acid analysis may be used to identify AGE since these compounds are 

actually modified amino acids and therefore additional peaks will appear in the 

chromatogram (Ahmed et al., 2002). Dabsyl chloride was chosen as derivatizing reagent 

since it does not interfere with the fluorescence detection. Enzymatic hydrolysis of 

proteins is also essential, instead of the commonly used acid hydrolysis with 6 M HCl, 
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since argpyrimidine is acid-labile. A chromatogram of a standard amino acid mixture and 

a chromatogram from a representative FAP patient are presented in Figure V.3. The 

chromatogram of the amino acid analysis of the extracted material is substantially more 

complex with several new peaks appearing. These new peaks could be due to several 

AGE or caused by peptides resulting from incomplete protein hydrolysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using fluorescence detection, two major peaks were detected with retention times 

of 10 and 49 min (Figure V.4). The 10 min retention time peak, found in all samples, is 

due to the derivatization reagent, also observed in a control derivatization assay without 

the addition of enzymatic hydrolysates (Figure V.5A). In contrast, the fluorescence peak 

with a retention time of 49 min only appears in the amino acid analysis of the extracted 
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Figure V.3. HPLC amino acid 
analysis using dabsyl chloride of a 
standard amino acid mixture (A) 
and hydrolysed amyloid proteins 
extracted from a FAP patient by 
the modified extraction method 
(B). Absorvance was monitored at 
452 nm. mAU, milli-absorbance 
units 
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amyloid fibrils from FAP patients. A comparison between this chromatogram and the 

argpyrimidine chromatographic standard (Figure V.5B) clearly indicates that the 

fluorescence peak with a retention time of 49 min is argpyrimidine. Retention time and 

spectroscopic properties are identical. Moreover, possible interferents like pentosidine or 

oxidation products of aromatic amino acids have distinct retention times (Ahmed et al., 

2002). Chromatographic peaks were also analysed for symmetry and purity with spectral 

data with 1 nm resolution using the Beckman-Coulter 32Karat software (version 5.0). No 

shoulders are apparent and the peaks were judged to be pure. 

 

 

 
 
Figure V.4. HPLC amino acid analysis with fluorescence detection at λemission,max./λexcitation,max. 320/385 nm 
of the material extracted from FAP and non-FAP subjects. Black, FAP patient; red and blue, non-FAP 
individuals. The inset represents a magnification of the chromatogram between 44 and 58 min, showing 
marked differences between the FAP and non-FAP samples. A significant fluorescence peak with the 
retention time of 49 min appeared only on the FAP sample. A minor fluorescence peak, later quantified as 
less than 1% percent of the FAP patient’s values, was noted in a sample from just one control subject, who 
was undergoing surgery for a pancreatic tumor. 
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Figure V.5. Argpyrimidine in amyloid proteins extracted from adipose tissue samples of FAP patients. (A) 
HPLC analysis of a control derivatization assay, with no sample added (red), amino acid analysis of a FAP 
sample (black) and non-FAP sample (blue). A fluorescence peak with a retention time of 10 min appears in 
all three assays. (B) Argpyrimidine was detected by HPLC analysis with fluorescence detection at 
λemission,max./λexcitation,max. 320/385 nm. The argpyrimidine chromatographic standard was treated as the 
samples from FAP and non-FAP subjects. The amino acid analysis of the FAP sample reveals a 
fluorescence peak at 49 min (black and red) coincident with the argpyrimidine standard (blue). To simplify, 
just two of the three FAP samples are shown. 
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Our data clearly demonstrate the presence of AGE in amyloid deposits 

characteristic of FAP patients and the chromatographic methods allowed us to identify 

argpyrimidine in these deposits. In FAP patients, 152 pmol, 166.7 pmol and 168.5 pmol 

of argpyrimidine per milligram of protein were detected (162.40 ± 9.05 pmol/mg protein, 

n=3). By contrast, only 1 pmol of argpyrimidine per milligram of protein in just one of 

the five non-FAP patients analysed was measured. This subject, undergoing surgery for a 

pancreas tumour, was the oldest individual analysed. The amount of argpyrimidine 

quantified in the present study is similar to recent results obtained by others: using a LC-

MS based method, Ahmed and co-workers (Ahmed et al., 2003) obtained 205 ± 19 pmol 

of argpyrimidine/mg of protein in human lens proteins, which are known to accumulate 

high levels of AGE. 

 

The Maillard reaction in FAP 

 

Increased AGE formation has been linked to the development of cataracts (Lyons 

et al., 1991), clinical complications of diabetes mellitus (Tanaka et al., 2000), uraemia 

(Miyata et al., 1999), atherosclerosis (Kume et al., 1995) and age-related disorders 

(Brownlee, 1995). In amyloid diseases, the formation of AGE is relevant in Alzheimer’s 

disease (Du Yan et al., 1997a; Vitek et al., 1994; Yan et al., 1994a), Parkinson’s disease 

(Castellani et al., 1996) and dialysis-related amyloidosis (Miyata et al., 1994a). In 

Alzheimer’s disease, glycation of β-amyloid peptide promotes the nucleation and 

precipitation of this peptide, suggesting an additional mechanism by which the Maillard 

reaction may accelerate the progression of Alzheimer’s disease (Vitek et al., 1994). 

In FAP, the mechanisms involved in amyloid deposit formation and toxicity are 

largely unknown. Concerning amyloidogenesis, it has been shown that TTR tetramer 

dissociates to non-native monomeric species at physiological conditions (Quintas et al., 

1999). These non-native monomeric species lead to the formation of partially unfolded 

monomeric species and high molecular mass soluble aggregates (the so-called proto-

fibrils). These soluble aggregates will lead to amyloid fibrils by an unknown mechanism. 

Based on our data and the FAP amyloidogenic model discussed below, we propose that 

protein glycation could be involved in amyloid fibril formation from these soluble 
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aggregates. Indeed, the formation of high molecular mass soluble aggregates precedes 

amyloid fibril formation by several years in FAP patients. Transthyretin can be detected 

by immunohistochemical methods in different tissues, years before amyloid fibrils are 

formed (Sousa et al., 2001a). Similar results, on a different time scale, were obtained with 

a transgenic rat model overexpressing a particularly aggressive transthyretin mutation 

(Sousa et al., 2002). The missing link in amyloidosis models lies in the mechanisms that 

cause the structural transition from soluble aggregates of partially unfolded proteins to 

insoluble fibrils. Recent research suggests that glycation of albumin is involved in 

conformational transitions, inducing partially unfold intermediary formation which in 

turn leads to the aggregation and fibril formation of albumin. A native all-α-motif protein 

turns into a cross-β structure characteristic of amyloid fibrils, as shown by Congo red, 

thioflavin T assays and by transmission electron microscopy (Bouma et al., 2003).  

Moreover, glycation of soluble protein aggregates can be seen as a fixative 

process since, after glycation, it is impossible to reverse the process of amyloid fibril 

formation. In contrast, the formation of soluble aggregates can be reversed (Quintas et al., 

2001). Therefore extensive glycation could mark the difference between soluble 

aggregates and toxic amyloid deposits. The current understanding of amyloid diseases 

indicates that all forms of amyloid share biophysical and biochemical features (most 

important is the similar structure with an extensive β-sheet), despite the lack of any 

relevant homology between the different amyloid precursor proteins. This observation 

suggests that the same process may be involved in amyloidogenesis of different types of 

amyloid and that this process is common to all forms of amyloidosis. The involvement of 

protein glycation also explains the formation of amyloid deposits derived from 

non-mutated TTR, as in SSA.  

Amyloid deposits are thought to be the direct cause of cell toxicity in different 

forms of amyloidosis, as they are present in areas of neurodegeneration. An important 

observation is the presence of oxidative stress markers co-localizing with amyloid 

deposits (Beckmann et al., 1994; Kume et al., 1995; Sousa et al., 2001c). In Alzheimer’s 

diseases and in FAP, lesions have been correlated with lipid membrane peroxidation 

indicative of oxidative stress. Moreover, toxicity could be blocked in vitro by catalase 

indicating a free-radical-dependent mechanism (Andersson et al., 2002). Studies 
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concerning Alzheimer’s diseases reveal an apoptotic induction by the amyloid deposits in 

vivo and in vitro through a mechanism involving the generation of free radicals (Dickson, 

2004). The formation of AGE in FAP amyloid deposits can also contribute to cell toxicity 

and neurodegeneration via oxidative stress. In agreement to this hypothesis, glycated 

proteins may generate oxidative stress themselves (Yim et al., 1995) or by the interaction 

with RAGE (Huttunen et al., 1999; Yan et al., 1994a). Moreover, AGE-modified proteins 

are toxic to animal cells (Iversen et al., 1995). So, protein glycation induces cell toxicity 

due to the production of local oxidative stress. This local oxidative stress formed upon 

interaction between AGE and RAGE is responsible for the activation of important 

transcriptional factors like NFκB and TNF-α that could trigger a neuronal inflammatory 

and apoptotic pathway that is important in FAP neurodegeneration (Huttunen et al., 1999; 

Sousa et al., 2001c). Several studies demonstrated that the tissue targeting of amyloid-

induced toxicity is not cell-type-specific and it was proposed that local factors might 

facilitate conformational change of mutated TTR, leading to toxic aggregates (Andersson 

et al., 2002). We propose that these “local factors” might modulate the glycation of the 

proteins in amyloid fibrils or proto-fibrils.  

The present work provides new insights into the role of glycation in amyloid 

deposits formation since argpyrimidine was identified unequivocally and quantified for 

the first time in extracted fibrils from FAP patients, using chromatographic methods. 

Since argpyrimidine is not one of the major AGE found in vivo, we expect that other 

AGE might be present in higher quantities in these deposits. Nyhlin and co-workers 

(Nyhlin et al., 2000) found AGE immunoreactivity in tissue samples rich in amyloid 

deposits from FAP patients. No particular AGE were identified or quantified, but the 

results present here show that AGE are indeed present in amyloid deposits in FAP. 

So far, the major research in this area was directed to in vitro studies, with the 

production of the fibrils in vitro, and mainly concerned structural changes in TTR 

induced by amyloidogenic mutations (Hamilton et al., 1993; Redondo et al., 2000; 

Sebastiao et al., 1998). In contrast, in the present study we used samples from FAP 

patients and studied directly amyloid deposits found in vivo.  

 Despite the genetic origin of the disease, glycation should be seriously considered 

as an additional factor in FAP. 
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1. SUMMARY 

 
 The hallmark of familial amyloidotic polyneuropathy (FAP), a neurodegenerative 

disorder that primarily affects the peripheral nervous system, is the deposition of 

transthyretin (TTR), which assumes a β-sheet fibril structure forming amyloid deposits. 

This is a fatal disease for which no therapy is currently available, except liver 

transplantation, a stressing and debilitating procedure. The processes that lead to the 

transition from a functional innocuous protein into toxic structures are not fully 

understood. Although more than eighty TTR point mutations were associated with FAP, 

the existence of sporadic cases like senile systemic amyloidosis (SSA), derived from 

non-mutated TTR, and the wide variation of disease onset for patients bearing the same 

mutation, point to the involvement of non-genetic factors. Protein glycation might just be 

one of those factors, given its occurrence in all amyloid deposits in neurodegenerative 

diseases. To address this issue, we investigated TTR amyloid fibril formation in S. 

cerevisiae. Yeast is an ideal model since it is highly susceptible to protein glycation and 

the occurrence of glycation can be controlled. For this purpose, TTR variants with 

different amyloidogenic potentials were expressed in yeast and the formation of amyloid 

deposits was monitored by fluorescence microscopy after thioflavin-S staining. In 

non-glycation conditions, TTR-amyloid fibrils were detected only in cells expressing the 

highly amyloidogenic synthetic TTRd-D variant. No amyloid deposits were observed 

with TTR-wt and TTR-L55P. In glycation conditions (non-growing yeast cells challenged 

with 250 mM of D-glucose), TTR amyloid aggregates are observed in cells expressing the 

amyloidogenic TTR-L55P variant. Moreover, TTR glycation in vivo by methylglyoxal 

was observed by western blot analysis. These results provide the first experimental 

evidence that protein glycation promotes the formation of TTR-amyloid deposits in vivo.   
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2. INTRODUCTION 

 
 Transthyretin (TTR), also referred in older scientific literature as pre-albumin, is 

the main component of amyloid deposits preferentially found associated to the peripheral 

nervous system, characteristic of familial amyloidotic polyneurophaty (FAP) (Andrade, 

1952; Costa et al., 1978). FAP was first described in a group of Portuguese patients who 

had a fatal hereditary amyloidosis, inherited in an autossomal dominant pattern. This 

disease is characterized by a sensorimotor peripheral polyneurophaty and autonomic 

dysfunction (Andrade, 1952).  

 Like all amyloidogenic proteins, TTR is normally an innocuous protein found in 

the plasma and cerebrospinal fluid (Soprano et al., 1985). Its physiological role is the 

transport of thyroxine hormone and retinol, the latter in association with the complex 

formed between retinol and retinol binding protein (RBP) (Kanai et al., 1968; Peterson, 

1971; Robbins & Rall, 1960). Native TTR is a homotetramer with two identical 

thyroxine-binding sites located in a channel at the core of the molecule (Blake et al., 

1978) and four RBP binding sites at the surface (Monaco et al., 1995). The monomer has 

a high β-sheet content with eight β-strands (A to H) and a short helix between strands E 

and F (Blake et al., 1978). Two TTR monomers join edge-to-edge to form a dimer and 

the tetramer results from the association of two dimers (Blake et al., 1978; Hamilton et 

al., 1993). 

Under certain conditions, TTR undergoes massive structural changes to produce 

β-amyloid fibrils, by mechanisms far from being fully understood. TTR variants with 

single amino acid replacements as a consequence of single point mutations were 

associated with several clinical forms of FAP (Saraiva et al., 1984). Over eighty different 

amyloidogenic point mutations have been reported (Saraiva, 2001). Among them, 

TTR-V30M (substitution of methionine for a valine at position 30) is the most common, 

being detected in many kindred around the world, including Portugal, Sweden and Japan 

(Connors et al., 2003). In an aggressive form of FAP the amyloid fibrils are composed 

predominantly by a new TTR variant, L55P (substitution of a proline for a leucine at 

position 55) (Jacobson et al., 1992). Age at disease onset for TTR-L55P carriers was 

reported in the second decade of life, much earlier than for TTR-V30M variant carriers 
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(normally between the fourth to fifth decades of life) (Ando et al., 1993; Araki, 1995; 

Nakazato et al., 1992). Since TTR-L55P is highly amyloidogenic, it is likely that amyloid 

fibril formation is directly related to disease onset and progression. Besides these 

naturally occurring mutations, the deletion or multiple substitutions in the D β-strand 

increases the amyloidogenic behaviour of TTR (Goldsteins et al., 1997; Goldsteins et al., 

1999). With the discovery of TTR point mutations associated with the disease, it was 

believed that as a result of amino acid substitutions, structural and stability changes 

occur, ultimately leading to tetramer dissociation and amyloid fibril formation. 

Considerable research efforts were directed towards comparative structural studies of 

TTR mutants. For most cases, only small structure differences were observed and a clear 

association between the structural changes induced by point mutations and 

amyloidogenesis is not perceived (Lei et al., 2004).  

TTR amyloid formation and its amyloidogenic properties were extensively 

investigated in vitro, leading to one of the best established models for amyloid TTR fibril 

formation (Quintas et al., 1997; Quintas et al., 1999; Quintas et al., 2001). In 

physiological conditions, the TTR tetramer may dissociate into partially unfolding 

monomers that associate into high molecular mass soluble aggregates that will evolve 

into insoluble amyloid β-fibril deposits (Quintas et al., 1997; Quintas et al., 1999). In 

strong agreement with this model, a correlation between the thermodynamic stability of 

TTR variants and their potential to form partially unfolded monomers and soluble 

aggregates was found. The TTR-L55P shows the lowest thermodynamic stability, being 

the less stable TTR variant (Quintas et al., 2001). However, this model does not explain 

the transition from soluble, partially unfolded protein aggregates to highly insoluble, 

protease resistant and structurally well-defined β-amyloid fibrils. More importantly, it 

fails to explain the wide differences on disease onset between patients carrying the same 

amyloidogenic mutation. These doubts hint at the existence of others factors that must be 

considered in the pathogenesis and progression of this neurodegenerative disorder. 

Consistent with this idea, non-mutated TTR also form amyloid fibrils in patients with 

senile systemic amyloidosis (SSA), a widespread geriatric disease that affects 

approximately 25% of the population aged above 80 years (Westermark et al., 1990). 

Thus, TTR has an intrinsic amyloidogenic behavior that is enhanced by specific point 
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mutations. Moreover, different amyloidogenic proteins without any homology form 

amyloid fibrils with virtually identical structures, suggesting that similar processes might 

be involved in amyloid fibril formation in different amyloidosis.        

 One likely non-genetic factor towards amyloidogenic behaviour is protein 

glycation. This non-enzymatic post-translational modification occurs in most amyloid 

disorders like Alzheimer’s (Vitek et al., 1994; Yan et al., 1994a) and Parkinson’s 

diseases (Castellani et al., 1996; Munch et al., 2000) and DRA (Miyata et al., 1993). FAP 

is no exception, with argpyrimidine being detected in amyloid deposits extracted from 

FAP patients (Gomes et al., 2005a). To address the involvement of protein glycation in 

TTR amyloid fibril formation, we used yeast cells as a eukaryotic cell model to host 

human recombinant TTR variants. In yeast, glycation phenotypes can be controlled 

through growth conditions and by deletion of genes coding for methylglyoxal catabolic 

enzymes (Gomes et al., 2005b). Thus, different TTR variants with distinct 

amyloidogenicity (TTR-wt, TTR-L55P and TTRd-D) were expressed in yeast and the 

effects of protein glycation on TTR amyloid formation in vivo were investigated.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter VI 

153 

3. MATERIAL AND METHODS 

 
Reagents and Materials  

 

Peptone, yeast extract, agar and yeast nitrogen base (YNB) were obtained from 

Difco while D-glucose (microbiology grade) was obtained from Merck. Tryptone, NaCl, 

ampicilin, L-methionine, L-histidine, L-leucine, dithiothreitol, iodoacetamide and 

trifluoroacetic acid (TFA), sequence grade modified trypsin, K2HPO4, Coomassie 

Brilliant Blue G, Ponceau S, PMSF, glass beads (452-600 microns), sorbitol, 

thioflavin-S, formaldehyde, β-mercaptoethanol, agarose, lithium acetate, lyticase, 

gelatine G-9382, tween-20 and DAPI (4',6-diamidino-2-phenylindole) were purchased 

from Sigma. Tris, SDS 20% (w/v), acrylamide/BIS [40% (w/v)] and glycine were 

purchased from BioRad. EDTA was obtained from BDH chemicals LTD while MES, 

bromophenol blue, triton X-100, 2,5 dihydroxybenzoic acid (DHB) were obtained from 

Fluka. VectaShield® was from Vector Labs.  

PerfectPure C-18 tips were obtained from Eppendorf; HPLC gradient grade 

acetonitrile was from Merck; ultrapure water was produced in a Millipore Milli-Q 

system. 

 

Bacteria, yeast strains and culture conditions 

 

 Escherichia coli strain used (DH5α, F-; recA1; endA1; thi-1; gyrA96; hsdR17; 

supE44; relA1;φ89d; lacZ; DM15 λ-) was cultured in LB medium [1% (w/v)  NaCl, 1% 

(w/v) tryptone, 0.5% (w/v) yeast extract] at 37 ºC. Solid LB medium contained 2% (w/v) 

agar. Transformed strains, carrying the plasmids, grew in LB medium supplemented with 

0.1 mg.ml-1 ampicillin. 

Saccharomyces cerevisiae strain used was the BY4741 (genotype BY4741 MATa; 

his3∆1; leu2∆0; met15∆0; ura3∆0) from Euroscarf collection (Frankfurt, Germany). 

Strain was kept in YPGlu [0.5% (w/v) yeast extract, 1% (w/v) peptone and 2% (w/v) D-

glucose agar slopes 2% (w/v) agar] at 4 ºC and cultured in liquid YPGlu medium at 30 

ºC. BY4741 strain expressing the plasmids containing TTR variants was cultured in YNB 
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minimal medium without uracil [0.67% (w/v) yeast nitrogen base, 2% (w/v) D-glucose 

and 0.025% (w/v) L-methionine, L-histidine, L-leucine].    

 

Plasmids and yeast transformation 

 

 Plasmids carrying the different TTR genes (TTR-wt, TTR-L55P and TTRd-D) 

were constructed by Dr. Tiago Outeiro (Massachusetts General Hospital, Harvard 

Medical School, USA) who kindly provided the transformed DH5α E. coli strains. 

Human TTR genes were cloned using BamHI and XhoI sites into the expression vector 

p426GPD, which contains a 2-micron origin of replication, a glyceraldehyde 3-phosphate 

dehydrogenase promoter, and a uracil (Ura) selection marker (Mumberg et al., 1995).   

 E. coli cells were grown in liquid LB medium supplemented with ampicillin (as 

referred), and plasmid DNA extraction was performed using the Wizard® Plus SV 

Minipreps DNA Purification System (Promega), following manufacturer’s instructions. 

DNA concentration was evaluated spectrophotometrically at 260 nm and purity was 

assessed by the absorbance ratio 260/280 nm and by electrophoretic analysis in 0.8% 

(w/v) agarose gel in 1x TAE (Tris/acetate/EDTA buffer), according to standard 

procedures (Ausubel et al., 1990).  

Plasmids carrying different TTR genes were used to transform BY4741 yeast 

strain using the lithium acetate method and transformants were selected on minimal agar 

plates deficient in uracil, following the procedure described in the Yeast Protocols 

Handbook (“Small-scale LiAc Yeast Transformation Procedure”, from Clontech). The 

same yeast strain was also transformed with the p426GPD vector without the gene, as a 

control. For protein expression, transformants were grown in YNB minimal medium 

without uracil. 

 

Yeast growth curves 

 

 Yeast growth assays were performed using a method described by Sainhas and 

co-workers (Sainhas et al., 1998). The cultures were diluted into fresh medium to an 

initial absorbance at 640 nm of 0.25. Cells were then grown at 30 ºC in a water bath (with 
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magnetic stirring in the flask) and the growth was followed at 640 nm, for 24 hours in a 

Beckman DU-7400 diode array spectrophotometer, with temperature control and 

magnetic stirring in the cuvette, essential to maintain isotropic conditions. A continuous 

circulation system using a multichannel peristaltic pump from the cuvette to the culture 

flask was designed for continuous monitoring of the cell concentration.       

 

Glycation experiments 

 

Cells were harvested at the end of the exponential phase of growth, washed twice 

in type II water, suspended at a concentration of 5.2x108 in 0.1 M MES/NaOH pH 6.5 

with 250 mM D-glucose and incubated at 160 r.p.m, 30 ºC, in a orbital shaker (Infors 

HT). Samples were collected at defined times for protein glycation, TTR analysis and 

detection of TTR-amyloid deposits. 

 

Immunoblot analysis of transthyretin expression and protein glycation 

 

 Total yeast protein extraction was performed by glass bead lysis as described 

(Ausubel et al., 1990; Gomes et al., 2005b). Proteins (30 µg per lane) were separated by 

SDS-PAGE in a Mini-protean 3 (Bio-Rad) using a 12% polyacrilamide separation gel 

and a 6% polyacrylamide stacking gel. Proteins were transferred to PVDF membranes 

(Hybond-P, Amersham Pharmacia Biotech) using the Mini Trans-Blot system (Bio-

Rad) with transfer buffer 39 mM glycine, 48 mM Tris, 0.0375% (w/v) SDS, and 20% 

(v/v) methanol. Pre-stained standard proteins (Bio-Rad) were also loaded on the gel. The 

membrane was stained with Ponceau S solution [0.5% (w/v) Ponceau S in 1% (v/v) 

glacial acetic acid] to confirm protein transfer and blocked overnight at 4 ºC in 1% (v/v) 

blocking solution in TBS (50 mM Tris and 150 mM NaCl, pH 7.5). For argpyrimidine 

detection, blots were probed with anti-argpyrimidine monoclonal antibody, a kind gift 

from Dr. K. Uchida (Laboratory of Food and Biodynamics, Nagoya University Graduate 

School of Bioagricultural Sciences, Japan), diluted 1:2000 in blocking solution. An anti-

human-TTR antibody (a gift from Dr. Fiona Campbell, University of Glasgow UK), 

diluted 1:350 in blocking solution, was used to detect this protein in membranes. 
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Washes, secondary antibody and detection procedures were performed using the BM 

Chemiluminescence Western Blotting Kit (Roche) following manufacturer’s 

instructions. Each immunoblot was repeated at least two times from independent 

experiments. 

  

Transthyretin analysis by mass spectrometry 

 

 Proteins (30 µg per lane) were separated by SDS-PAGE, as previously referred, 

and the gel was stained with Coomassie Brilliant Blue. Protein bands (corresponding to 

the 14 kDa TTR) were excised and subjected to reduction, alkylation and digestion with 

sequencing-grade modified trypsin in gel, according to Pandey and co-workers (Pandey 

et al., 2000). The peptide mixture was purified and concentrated in PerfectPure C-18 tips 

microcolumns, following manufacturer’s instructions and eluted directly to the MALDI 

plate (Anchorchip MALDI target from Brucker) with 0.8 µl of DHB matrix (10 mg.ml-1) 

prepared in 70% (v/v) acetonitrile with 0.1% (v/v) TFA. The samples were air dried. 

Peptide mixture was analysed by MALDI-FTMS in a Bruker Apex Ultra with a 7 Tesla 

magnet. Monoisotopic peptide masses, determined by the Snap 2 algorithm in Data 

analysis 3.4 software, were used to search for homologies with theoretical TTR tryptic 

digestion using Brucker Daltonics BioTools 3.1 software. A mass accuracy of at least 5 

ppm was considered; Cys carbamidomethylation and Met oxidation were taken into 

account as fixed and variable amino acid modifications, respectively.  

 

Detection of amyloid deposits in vivo by thioflavin-S staining 

 

 Thioflavin-S staining was performed as described (Kimura et al., 2002; Zabrocki 

et al., 2005), with some modifications. Cells from late-exponential phase (absorbance at 

640 nm between 1.5 and 2.0) were collected, diluted to 3x107 cells and harvested by 

centrifugation (1700 g for 4 min at 4 ºC). Cells were then washed twice with potassium 

phosphate buffer 0.1 M pH 6.5, before fixation with 4% (w/v) formaldehyde in PBS (0.02 

M sodium phosphate buffer with 0.15 M NaCl, pH 7.4) for 20 min at room temperature. 

Cells were washed twice with 0.1 M phosphate buffer pH 6.5 containing 1.2 M sorbitol 
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(S-buffer), suspended in 1 ml S-buffer and pre-treated with 0.002% (v/v) β-

mercaptoethanol for 45 min at 30 ºC and 160 r.p.m. in an orbital shaker. Spheroblasts 

were then prepared by incubation with 50 µg lyticase per ml of cell suspension for 60 

min at 160 r.p.m. and 30 ºC. Spheroblasts were washed once more in S-buffer 

(centrifuging at 700 g, 4ºC for 5 min) and permeabilized with 10% (v/v) triton X-100 (20 

µl / ml cells) for 10 min at room temperature. Spheroblasts were stained with thioflavin-

S. A 1% (w/v) thioflavin-S solution was freshly prepared in water and centrifuged before 

use to remove any undissolved material. Spheroblasts were then incubated for 15 min 

with 0.001% (v/v) thioflavin-S and washed three times with 0.1 M phosphate buffer pH 

6.5 containing 1% (w/v) gelatin, 0.12 M NaCl and 0.1% (v/v) Tween 20. Finally, cells 

were suspended in VectaShield® mounting medium and DAPI (2 mg.ml-1) was added for 

fluorescence DNA labelling. Cells were placed on microscope slides for observation 

using fluorescence microscopy.  

 

Fluorescence microscopy 

 

The imaging setup consists of an Olympus IX-50 inverted microscope, Ludl 

BioPoint filter wheels and a 12-bit PCO Sensicam cool CCD. Integrated control of filter 

wheel and image acquisition is achieved by Image-Pro Plus 5.0 and Scope-Pro 3.1 

(Media Cybernetics). The settings for image acquisition (camera exposure time, filters, 

time interval, and storing modes) were determined by custom-made macros. The images 

were collected with Olympus 40 or 100 plan apo objectives (numerical apertures 0.95 and 

1.4, respectively). Once defined, the settings were kept constant throughout the data 

collection. Fluorescence analysis was performed with the software package Image-Pro 

Plus 5.0 (Media Cybernetics). The following filter configurations were used: thioflavin S, 

excitation 436 nm, emission > 455 nm; DAPI, excitation 358 nm, emission 463 nm. 
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4. RESULTS  

 
TTR expression in yeast cells 

 

To study the molecular mechanisms underlying TTR-amyloid formation and its 

relationship to protein glycation, yeast cells were used as a well-defined cellular model 

system for which different glycation phenotypes exist (Gomes et al., 2006; Gomes et al., 

2005b). Three TTR variants with different amyloidogenic behaviour were expressed in 

the reference yeast strain BY4741: the wild-type TTR (TTR-wt), the highly aggressive 

variant TTR-L55P and the synthetic extremely amyloidogenic TTR variant with deletion 

of the β-strand D (TTRd-D).  

BY4741 cells at the end of the exponential phase of growth show similar 

expression levels of the different TTR variants, as shown by western blot analysis with 

anti-human TTR antibody (Figure VI.1A). A protein band with an apparent molecular 

weight of 14 kDa, corresponding to monomeric TTR, is clearly observed. Furthermore, 

another immunoreactive protein was also detected at 32 kDa indicating the presence of 

TTR dimers. Similar observations, showing the presence of monomeric and dimeric TTR 

in a western blot analysis, were reported (Purkey et al., 2001; Wilce et al., 2001). In 

dimeric TTR, the strong interaction between monomers may prevent the dissociation of 

all TTR molecules in the denaturating conditions of SDS-PAGE electrophoresis (Chang 

et al., 1999). Since TTR is a homotetrameric protein produced by the interaction between 

two dimers, the observation of dimeric TTR hints that, when expressed in yeast, TTR 

acquires its native tetrameric folded structure. No positive signal was observed for yeast 

cells carrying the plasmid without insert, confirming the specificity of the TTR 

immunoreactive signal (Figure VI.1A, control). To further confirm the presence of TTR, 

the protein at 14 kDa was excised from the gel and subjected to in gel trypsin hydrolysis 

with the resulting peptide mixture analysed by MALDI-FTMS. Four peptides derived 

from human TTR sequence, without the first 20 amino acids that correspond to the signal 

peptide, were identified providing a sequence coverage of 21.3% (Table VI.1). The low 

number of TTR peptides observed is due to the intrinsic sequence of the protein. With 

trypsin digestion, the vast majority of the resulting peptides show an m/z greater than 
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2000, hampering their detection by MALDI-FTMS. Nevertheless, the four TTR peptides 

were detected with a very high mass accuracy, below 3 ppm, and covered more than 20% 

of the protein sequence, rendering the identification unambiguous (Table VI.1).     

 Even though highly aggressive amyloidogenic TTR variants (such as the synthetic 

mutant lacking the β-strand D) were expressed in yeast, no effects on cell growth were 

observed (Figure VI.1B). Likewise, no growth changes were observed in yeast expressing 

a single copy of another amyloidogenic protein, the α-synuclein (wild-type and 

amyloidogenic variants) (Outeiro & Lindquist, 2003). However, doubling α-synuclein 

expression leads to inclusion body formation and strongly inhibits growth (Outeiro & 

Lindquist, 2003). This indicates that the toxic effects are directly related to the expression 

levels of the amyloidogenic protein, an interesting observation since aggregation and 

amyloid fibril formation are two concentration-dependent phenomena. 

 

 

 
 

Figure VI.1. Expression of wild-type transthyretin and amyloidogenic variants in yeast. (A) Western blot 
analysis with anti-human TTR antibody of total protein extracts from BY4741 yeast strain carrying the 
empty plasmid (control, lane 1) and expressing wild-type TTR (TTR-wt) and variants TTR-L55P and 
TTRd-D. TTR monomer and dimer are observed with a molecular weight of approximately 14 and 32 kDa, 
only in cells expressing transthyretin. Similar expression levels were obtained for each TTR variant. (B) 
Growth curves of BY4741 strain expressing different TTR variants. Although some highly amyloidogenic 
TTR variants were used, no noticeable change in BY4741 strain growth was observed.  
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Table VI.1. MALDI-FTMS analysis of in gel tryptic digests of TTR monomer. 

 

Observed mass 
(Da) 

Theoretical mass 
(Da) Peptide sequence* Deviation 

(ppm) 

1366.7592 1366.7589 GSPAINVAVHVFR 
(42-54) 0.220 

1394.6216 1394.6222 AADDTWEPFASGK 
(56-68) 0.712 

1494.8544 1494.8539 GSPAINVAVHVFRK 
(42-55) 0.041 

1522.7218 1522.7172 KAADDTWEPFASGK 
(55-68) 2.617 

* numbering considers the first 20 amino acids of the signal peptide 

 

 

Formation of TTR amyloid aggregates in yeast 

 

 The formation of TTR-amyloid aggregates in yeast was investigated in cells 

expressing different TTR variants by thioflavin-S staining. Thioflavin-S is a methylated, 

sulfonated polymerized primulin mixture that specifically binds to amyloid fibrils like 

amyloid-β (Westermark et al., 1999). 

In cells expressing TTR-wt and the aggressive amyloidogenic TTR-L55P, no 

thioflavin-S staining was observed, indicating the absence of TTR-amyloid aggregates 

(Figure VI.2B and C). As expected, in cells expressing the empty expression vector no 

thioflavin-S staining was detected (Figure VI.2A). On the other hand, foci stained with 

thioflavin-S were detected in cells expressing the synthetic amyloidogenic variant 

TTRd-D, indicating the presence of TTR amyloid deposits (Figure VI.2D1 and D2). 

These β-sheeted aggregates do not co-localize with the nucleus, observed by DAPI 

staining (Figure VI.2D2 and D3). The thioflavin-S staining morphology is similar to the 

observed positive staining in yeast prions aggregation in vivo (Kimura et al., 2003; 

Kimura et al., 2002). It was already observed that the deletion of β-strand D yields TTR 

molecules that rapidly form aggregates, with a typical crossed β-pattern in X-ray 

diffraction studies and a positive signal after staining with Congo red or thioflavin-T 

(Goldsteins et al., 1997; Goldsteins et al., 1999). These results validate yeast as a model 

to study TTR dynamics and aggregation in living cells and to investigate the role of 

protein glycation in the process. 
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Figure VI.2. Formation of TTR amyloid aggregates in vivo probed by thioflavin-S staining. BY4741 yeast 
strain with the empty plasmid (A) and expressing TTR-wt (B), TTR-L55P (C) and TTRd-D (D) were used. 
In these experimental conditions, intracellular amyloid aggregates were detected only in yeast cells 
expressing the synthetic amyloidogenic TTR variant TTRd-D. The β-sheeted aggregates, observed in 2 do 
not co-localize with the nucleus, observed by DAPI staining, shown in 1. No amyloid deposits derived from 
the highly amyloidogenic TTR-L55P variant and wild-type TTR were observed. X1000. 
 

 

 

Glycation conditions induces TTR glycation and TTR amyloid-aggregation in yeast 

 

 When non-growing yeast cells are exposed to 250 mM of D-glucose, the increased 

intracellular methylglyoxal concentration leads to the formation of MAGE-modified 

intracellular proteins (Gomes et al., 2006; Gomes et al., 2005b). Taking advantage of this 

finding, we first analysed intracellular protein glycation in yeast cells expressing different 

TTR variants challenged by glycation conditions. Consistent with our earlier findings 

(Gomes et al., 2006; Gomes et al., 2005b), four main argpyrimidine-modified proteins 
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were observed (Figure VI.3A), previously identified as enolase2, aldolase, 

phosphoglycerate mutase/Hsp26 and Hsp71/72 (Gomes et al., 2006). After 5 hours 

incubation, a new argpyrimidine-modified protein was also detected with a molecular 

weight of approximately 14 kDa only in cells expressing TTR variants. This 

immunoreactive signal was not previously observed and is also absent from the control 

BY4741 immunoblot (Figure VI.3A). These observations show that monomeric TTR 

expressed in yeast is glycated in vivo by methylglyoxal. In fact, when the same blot was 

probed with anti-human-TTR antibody, monomeric TTR detection coincided with the 

novel MAGE-modified protein (Figure VI.3B). Interestingly, TTR glycation is only 

observed after 5 hours while naturally-occurring protein glycation targets in yeast are 

present after just 1 hour. TTR glycation levels of the variants used, TTR-wt, TTR-L55P 

and TTRd-D, are similar (data not shown).  

 

 

 

  

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure VI.3. In vivo glycation of TTR expressed in yeast. (A) Western blot analysis of 
argpyrimidine-modified intracellular proteins in glycation conditions of BY4741 yeast strain carrying the 
empty plasmid and TTR-wt. Besides the detection of the yeast glycation targets (Gomes et al., 2006), an 
additional imunoreactive signal at approximately 14 kDa emerges in cells expressing TTR after 5 hours of 
D-glucose incubation (indicated by the arrow). (B) This additional protein corresponds to the TTR 
monomer, as probed by western blot with anti-TTR antibody.    
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This observation led us to investigate the hypothesis that increased protein 

glycation (including in recombinant TTR) caused by carbonyl stress could trigger 

TTR-amyloid formation in vivo. Therefore, TTR-amyloid aggregates were analysed by 

thioflavin-S staining in cells exposed to glycation conditions. Like our previous 

observations, thioflavin-S stained citoplasmatic inclusions derived from TTRd-D variant 

at time zero and after 5 hours incubation (data not shown). With TTR-wt no differences 

were observed compared to non-glycating conditions, indicating that no amyloid deposits 

derived from TTR-wt were produced in either experimental condition (Figure VI.4A). On 

the contrary, glycation seems to induce a noticeable difference in the highly 

amyloidogenic TTR-L55P-aggregation. Albeit no thioflavin-S staining was observed in 

cells at the end of exponential phase of growth, after 5 hours incubation with D-glucose, 

cells expressing TTR-L55P variant show thioflavin-S stained citoplasmatic inclusions 

(Figure VI.4B). This result indicates that protein glycation directly causes the formation 

of TTR-amyloid deposits in vivo. Noteworthy, no changes on TTR-L55P and TTR-wt 

expression were detected by western blot (Figure VI.4C).  
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Figure VI.4. Protein glycation induces amyloid fibril formation in yeast expressing TTR-L55P. Yeast cells 
expressing TTR-wt (A) and TTR-L55P (B) variant were challenged with glycation conditions and analysed 
before (time zero) and after 5 hours incubation. After exposure to glycation conditions, intracellular 
amyloid aggregates become visible in cells expressing the amyloidogenic TTR-L55P. No amyloid 
aggregates become noticeable in cells expressing TTR-wt. X1000. (C) Western blot analysis of TTR 
expression. Similar TTR levels are obtained after five hours D-glucose incubation suggesting that the 
formation of TTR-L55P-amyloid deposits is not due to an increase on TTR expression.  
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5. DISCUSSION  

 

The aberrant TTR aggregation and amyloid β-sheets structures are the 

pathological hallmark of amyloid disorders such as FAP and SSA (Costa et al., 1978; 

Westermark et al., 1990). Point mutations are believed to trigger the process of amyloid 

formation (Saraiva, 2001). Despite the high amount of research work in this area, the 

mechanism(s) by which an innocuous protein like TTR forms amyloid deposits with the 

consequent cell toxicity is not understood. The existence of sporadic cases like SSA in 

which non-mutated TTR forms amyloid fibrils (Westermark et al., 1990) and the 

variation of disease onset time for patients bearing the same mutation (Ando et al., 1993; 

Araki, 1995; Nakazato et al., 1992) suggest that non-genetic factors like 

post-translational modifications are involved in protein misfolding in vivo. Protein 

glycation has been implied in amyloid disorders based on the detection of AGE-modified 

amyloidogenic protein components of amyloid deposits (Castellani et al., 1996; Gomes et 

al., 2005a; Miyata et al., 1993; Vitek et al., 1994; Yan et al., 1994a). In vitro, protein 

glycation causes aggregation and amyloid fibril formation (Bouma et al., 2003). 

However, it is still unclear whether glycation is directly involved in amyloid formation in 

vivo or is merely a result of the accumulation of amyloid fibrils which, due to their 

extreme insolubility and protease resistance, persist for a long period of time. 

This study provides direct evidence that protein glycation by methylglyoxal 

increases TTR-amyloid fibril formation in vivo. Glycation conditions induce the 

formation of argpyrimidine-modified TTR in vivo and promote TTR-amyloid fibril 

formation in yeast cells expressing the amyloidogenic TTR-L55P variant. By contrast, 

although TTR glycation was also observed in TTR-wt, no amyloid fibrils were observed 

after exposure to glycation conditions. Interestingly, TTR glycation extent is quite similar 

between different TTR variants indicating that the presence of these mutations does not 

change TTR glycation susceptibility in vivo. These results show that glycation acts 

synergistically with amyloidogenic mutations, accelerating fibril formation. Glycation 

may cause an additional conformational change that, together with the destabilizing 

effects of the amyloidogenic mutations, could enhance β-amyloid deposit formation. In 

this context, the conformational changes imposed by glycation on TTR variants with 
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amyloidogenic potential that have a lower tetramer and non-native monomer stability 

might be sufficient to promote tetramer dissociation and amyloid fibril formation. Indeed, 

it was shown that conformational perturbation of the β-strands C and D give rise to an 

intermediate prone to self-assembly (Serag et al., 2002). Non-specific post-translational 

modifications like glutathionylation and cysteinylation on Cys10 destabilize the 

tetrameric form of TTR and promote amyloidogenesis (Takaoka et al., 2004; Zhang & 

Kelly, 2003).   

Another interesting possibility is the involvement of glycation in the latter steps of 

amyloid formation: production of soluble aggregates or the transition to amyloid fibrils. 

Glycation could promote the formation of soluble aggregates and amyloid fibrils from the 

non-native monomers that result from TTR tetramer dissociation, which is known to 

occur in high extent when amyloidogenic mutations like L55P are present (Quintas et al., 

1999; Quintas et al., 2001). Glycation may also act on soluble aggregates promoting the 

subsequent irreversible formation of insoluble amyloid fibrils. This is a very important 

issue that needs to be further investigated since it is becoming clear that the monomeric 

and small oligomers are the most toxic species (Reixach et al., 2004) and that the 

formation of amyloid fibrils may be a protective mechanism to cope with those species 

(Ross & Poirier, 2004). Indeed, it was recently reported that 5-[4-(4-chlorobenzoyl)-1-

piperazinyl]-8-nitroquinoline reduced toxicity in Huntington’s and Parkinson’s disease by 

promoting aggregation (Bodner et al., 2006).  

 The discussed hypotheses imply that the modification of TTR by glycation 

induces amyloid formation, in agreement with the observation that TTR is glycated in 

vivo. However, protein glycation of other cellular proteins may lead to misfolding stress 

decreasing the cell quality control capacity, essential to avoid the harmful TTR 

misfolding pathways. Actually, one hypothesis to explain the late onset of several 

misfolding disorders is its occurrence with aging when the protein quality control system 

capacity to cope with accumulating misfolded proteins is exceeded (Outeiro et al., 2006). 

Consistently, it was shown that cellular misfolding stress exists when yeast cells are 

exposed to methylglyoxal glycation conditions (Gomes et al., 2006).  

The mechanism(s) by which glycation induces TTR-fibril formation, either due to 

TTR glycation that may interfere with amyloid formation pathway and/or diminishing the 
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cellular quality control system due to misfolding stress, it is currently unknown. 

Nevertheless, we show that carbonyl stress increase, associated with methylglyoxal-

protein glycation, promotes amyloid β-sheet aggregation in yeast cells expressing 

amyloidogenic TTR variants. This observation together with several evidences showing 

that glycation is involved in cellular toxicity associated with amyloid diseases, suggests 

that protein glycation must be accounted in the quest of effective therapeutic strategies 

for this multifactor disorder. The presented yeast model is certainly useful to increase our 

knowledge about protein misfolding, abnormal aggregation and cellular responses.  
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CHAPTER VII – CONCLUDING REMARKS 
 

Protein glycation has gained particular attention in the context of several human 

pathologies, such as age-related disorders and neurodegenerative diseases of amyloid 

type, from the earlier observations that glycated haemoglobin increases as a function of 

glycaemia in diabetic patients. Glycated proteins are characterized by modified 

biochemical features often associated with neurophatological amyloid lesions like high 

insolubility, protease resistance, cross-link structures and, in some cases, fluorescence 

and brown-colour (Colaco & Harrington, 1994; Harrington & Colaco, 1994). These 

modified proteins endure changes in their structure, with consequent function loss, and 

become toxic to cells. Therefore, extensive investigations were focused on finding novel 

therapeutic strategies capable to inhibit protein glycation and minimize its deleterious 

physiological effects. Nevertheless, the success has been quite limited. The best example 

of a Maillard reaction inhibitor is aminoguanidine, a hydrazine compound highly reactive 

towards dicarbonyl molecules (Brownlee et al., 1986). However, there is still 

considerable controversy about its mechanism of action in vivo. Aminoguanidine is 

pharmacologically effective at low plasma concentration compared to the much higher 

doses typically required for inhibiting the Maillard reaction in vitro (Thorpe & Baynes, 

1996). This hydrazine compound is a strong inhibitor of amine oxidases and nitric oxide 

synthase, affecting the vascular tone (Tilton et al., 1993), and it also inhibits lipid 

peroxidation (Picard et al., 1992). Therefore, this compound may be effective in the 

context of several human diseases, like diabetes mellitus, for reasons other than the 

inhibition of glycation reactions. This emphasizes the complexity of protein glycation and 

also our limited knowledge about the mechanisms, biochemical effects and cellular 

responses to this post-translational modification. Not surprisingly, the role of protein 

glycation in the development of pathological conditions is far from being understood.  

Protein glycation has been mainly investigated in vitro, in which clinical relevant 

or model proteins are glycated under non-physiological conditions. Several examples 

may be found in the literature in which glycation agents were used in millimolar to molar 

concentrations for extended periods of time, from days to years (Bakhti et al., 2007; 

Bouma et al., 2003; Kang, 2003; Luthra & Balasubramanian, 1993; Raabe et al., 1996). 
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In addition, protein interactions, which may influence glycation reactions, and the cellular 

responses to the detrimental effects of protein glycation, are not present in vitro. 

Importantly, cells have the ability to recover or degrade damaged proteins and synthesize 

new protein molecules in a continuous fashion thereby avoiding the deleterious effects of 

having a non-functional altered protein. Protein turnover is also absent from test tube 

experiments. Another important issue is the glycation agents’ metabolism. Since AGE 

formation is a non-enzymatic process, the knowledge of the reactivity and metabolism of 

glycation agents in vivo is of utmost importance. The metabolism of methylglyoxal, the 

most relevant glycation agent in vivo, was studied in model systems but this is still an 

obscure area, where multiple catabolic pathways, of unknown relative importance, were 

described. The glutathione-dependent glyoxalase system is commonly accepted as the 

main catabolic pathway (Thornalley, 1990; Thornalley, 1996), but the existence of a few 

other enzymes capable of using methylglyoxal as substrate casts some doubts on this 

matter. All these observations highlight the importance of investigating protein glycation 

in vivo using cellular models. 

 In this work, we investigated protein glycation by methylglyoxal in S. cerevisiae, 

an outstanding cellular model for metabolic regulation studies, being easy to manipulate 

genetically. It is an extremely well-characterized eukaryotic cell with a wide collection of 

gene deletion mutants readily available, allowing global screens for induced phenotypes. 

Common to all eukaryotic cells, yeast has protein quality control systems, including 

degradation and folding pathways. It has been successfully used as a model organism to 

investigate protein misfolding in the context of conformational disorders (Outeiro & 

Lindquist, 2003; Outeiro & Muchowski, 2004). Prion transmission and the effects of α-

synuclein aggregation were also investigated in yeast (Krishnan & Lindquist, 2005; 

Outeiro & Lindquist, 2003).  

 The first issue addressed was the occurrence of protein glycation in yeast. By 

choosing a set of gene deletion mutants in methylglyoxal catabolism and associated 

processes, protein glycation by methylglyoxal was found to occur when cells reached the 

steady-state stage of growth. This was the first observation that glycation occurs in a 

microrganism. Despite the association of protein glycation to complex organisms and 
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long-lived proteins, this post-translational modification also occurs in yeast in a short 

time-scale. 

Contrary to the common belief that the glyoxalase system is the main 

methylglyoxal detoxification pathway in vivo, aldose reductase emerged as an equally 

important enzyme. This is in agreement with the observation that aldose reductase 

overexpression increases methylglyoxal tolerance and complements glyoxalase I 

deficiency in a ∆GLO1 strain (Aguilera & Prieto, 2001; Aguilera & Prieto, 2004). A 

sensitivity analysis of the kinetic model of methylglyoxal metabolism in yeast showed 

that aldose reductase and glyoxalase I are equally relevant in maintaining a low 

steady-state methylglyoxal concentration. The glutathione concentration also showed 

marked effects on methylglyoxal steady-state concentration, suggesting that oxidative 

stress, which leads to GSH depletion, methylglyoxal concentration and consequently 

MAGE formation, are linked processes (Figure VII.1). A higher methylglyoxal formation 

rate and/or a reduction in GSH concentration may impair methylglyoxal catabolism 

leading to its accumulation. Moreover, the reduction of oxidized glutathione (GSSG) 

requires NADPH, the cofactor for the aldose reductase-catalysed reaction. Noteworthy, 

methylglyoxal appears to be directly involved in the cellular response to oxidative stress 

in S. cerevisiae. Under these stressful conditions, several anti-oxidant coding genes are 

up-regulated upon the activation of transcriptional factors. In yeast, several genes 

responsible for glutathione metabolism, such as those involved in glutathione synthesis 

(GHS1) and glutathione-dependent antioxidant systems (GPX2, glutathione peroxidase, 

and GLR1, glutathione oxidoreductase), are up-regulated by YAP1, a functional 

homologue of the mammalian AP-1 (Grant et al., 1996; Inoue et al., 1999; Sugiyama et 

al., 2000; Wu & Moye-Rowley, 1994). Importantly, the activity of YAP1 is reversibly 

modulated by methylglyoxal (Maeta et al., 2004), indicating that YAP1 could therefore 

act as an intracellular sensor for methylglyoxal. In addition, YAP1 activation leads to an 

increase in GSH concentration, essential to methylglyoxal catabolism. In fact, we show 

that a yeast strain lacking YAP1 is susceptible to protein glycation. Methylglyoxal also 

functions as a signal initiator of the HOG-MAP kinase pathway, which induces 

glyoxalase I expression (Inoue et al., 1998; Maeta et al., 2005a). 
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Figure VII.1. Model of the oxidative-carbonylic cycles. The model links the glutathione redox cycle, 
NADPH oxidation-reduction and methylglyoxal catabolism. Reduction of GSH concentration and/or an 
increase of methylglyoxal formation rate may impair methylglyoxal catabolism. In addition, NADPH, the 
cofactor of aldose reductase enzyme, is needed for the reduction of oxidized GSH (GSSG). In this 
conditions, methylglyoxal concentration increases and the formation of MAGE-modified proteins is 
enhanced. The pentose phosphate pathway (PPP) is the main route of NADPH formation. Interestingly, an 
increase in the methylglyoxal concentration triggers a cellular response with the activation of YAP1, 
responsible for the up-regulation of genes involved in GSH metabolism, and the activation of the HOG-
MAP kinase pathway that induces glyoxalase I gene expression.    
 

 

Parameter scanning with the model of methylglyoxal metabolism in yeast also 

revealed the extreme importance of its formation rate. The kinetic model predicts a linear 

increase of methylglyoxal concentration, suggesting that glycation would be more 

pronounced when methylglyoxal formation is increased. In fact, protein glycation was 

observed in the reference strain, despite all enzymatic defenses against methylglyoxal, 

after challenging non-growing yeast cells with a high D-glucose concentration. Thus, 

when key anti-glycation defenses are overcome, like in the ∆GLO1 and ∆GRE3 mutant 
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strains, or when methylglyoxal formation rate is increased, MAGE-modified proteins 

accumulate.  

Different glycation levels can be obtained by different experimental conditions or 

mutant yeast strains, emphasizing the use of yeast as an excellent cellular model to 

investigate protein glycation in vivo. An important finding, again in sharp contrast with 

the current knowledge, is the existence of specific glycation protein targets, suggesting 

that glycation in yeast is a non-random process. All proteins are putative glycation 

targets, but only a few are modified in vivo. By peptide mass fingerprinting, three 

glycolytic enzymes (enolase2, aldolase and phosphoglycerate mutase) and the heat shock 

proteins Hsp71/72 and Hsp26 were identified.  

The glycolytic enzyme enolase is the main glycation target, enduring a glycation-

dependent activity loss with dimer dissociation and protein unfolding. Based on the 

knowledge of the molecular location of modified amino acid residues, using the hidden 

information of peptide mass fingerprint, an explanation for the observed effects was 

proposed (Figure VII.2). Glycation occurs at a critical arginine residue (R414) essential 

for dimer stabilization through an ionic pair formed with a glutamate residue from the 

other monomer (E20). The irreversible modification of R414 side chain with the 

formation of a hydroimidazolone would disrupt the electrostatic interactions that 

stabilized the dimer. Dimer dissociation into inactive monomers would then occur, 

followed by protein unfolding. Analysis by circular dichroism of purified enolase 

glycated in vivo showed secondary structure changes, with an increase of random 

structures and α-helix content decrease, and the presence of unfolded, inactive protein 

was confirmed by size-exclusion chromatography. If purified enolase is glycated in vitro, 

under conditions often described in the literature, these effects are enhanced. However, 

there are critical differences between these two glycation conditions, casting some doubts 

about in vitro glycation studies. In the latter, β-sheet content is increased and there is a 

considerable molecular heterogeneity of glycation. While in vivo the same amino acid 

residues appears to be consistently glycated forming the same MAGE, in vitro different 

MAGE were found on the same amino acid residue in different enolase molecules.  

Considering the non-enzymatic nature of glycation, we found intriguing why 

enolase is the main glycation target. With the identification of the molecular location of 



Concluding remarks 

176 

MAGE in enolase we propose that the arginine-rich cage located at the dimer interface 

could provide a favourable glycation environment for MAGE formation. In fact, 

reactivity of arginine residues towards glycation was shown to depend on their chemical 

environment (Ahmed et al., 2005; Speer et al., 2003). This enolase arginine-rich cave 

could be a trap for free methylglyoxal that evaded its catabolic routes, preventing 

modifications of other cellular proteins. Thus, enolase could function as a methylglyoxal 

scavenger. Remarkably, enolase interacts with some other vital proteins related to protein 

degradation via ubiquitin-dependent proteasome, transcriptional regulation, protein 

import/export and RNA export (Gavin et al., 2006; Gavin et al., 2002). Being merely 

quoted as a glycolytic enzyme, this observation is quite unexpected. As for the other two 

glycolytic enzymes, their role as minor glycation targets requires further investigation.  

Protein unfolding as a consequence of glycation may be connected to specific 

cellular responses like the refolding chaperone pathway, and possibly the ubiquitin-

mediated protein degradation. These two major components of cellular protein quality 

control system are specialized to deal with misfolded and/or aggregated proteins (Bukau 

et al., 2006; Outeiro & Tetzlaff, 2007). Our results showed that under glycation 

conditions, a cellular response involving the activation of Hsp26 is triggered. Hsp26 

functions as a captor of misfolded proteins, being involved in the refolding processes 

(Cashikar et al., 2005; Ehrnsperger et al., 1997; Haslbeck, 2002). Proteins that cannot be 

refolded will follow a degradation pathway where the role of small Hsps, like Hsp26, is 

poorly understood (Cashikar et al., 2005; Han et al., 2005; Park et al., 2007). Therefore, 

active Hsp26p may sequester denatured enolase to be refolded or, more likely, degraded, 

thereby avoiding its aggregation.  
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Figure VII.2. Model of protein glycation in vivo, unfolding stress and cellular responses. Methylglyoxal is 
mainly catabolised by the GSH-dependent glyoxalase system and the NADPH-dependent aldose reductase. 
Nevertheless, protein glycation by methylglyoxal still occurs and causes structural changes leading to 
protein unfolding. Extensive protein unfold could results in the formation of protein aggregates. Cellular 
responses include the activation of the refolding chaperone pathway, the deployment of methylglyoxal-
protein scavengers and protein degradation pathways. These responses will counteract the harmful effects 
of protein misfolding induced by protein glycation. 
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The mechanisms underlying the observed Hsp26 activation are not yet perceived. 

Is specific methylglyoxal glycation required for the activation of heat shock proteins and 

other components of the cellular quality control system? If so, do cells “sense” 

methylglyoxal concentration through this mechanism and immediately activate cellular 

defenses to counteract its harmful effects? Our discoveries hint that specific 

methylglyoxal modifications through the Maillard reaction may regulate the activity of 

Hsp26. In this context, post-translational modifications by methylglyoxal may play an 

important role in the regulation of several cellular proteins. In fact, argpyrimidine-

modified proteins were constitutively detected in several human cancer cell lines and the 

main glycation target was identified as Hsp27 (Padival et al., 2003; Sakamoto et al., 

2002; Schalkwijk et al., 2006). Argpyrimidine modification of Hsp27 specifically occurs 

on R188 at the C-terminal and is essential to the anti-apoptotic activity of this protein 

(Sakamoto et al., 2002). Hsp27 and α-crystallins enhance their chaperone activity upon 

glycation by methylglyoxal (Nagaraj et al., 2003; Oya-Ito et al., 2006). This may link 

methylglyoxal to protein unfolding stress, associated with several conformational 

pathologies. Moreover, it raises the possibility that methylglyoxal-derived glycation of 

Hsp71/72 and Hsp26 lead to their activation and/or improved chaperone properties, being 

involved in the cellular response to glycation. This is a fundamental point that needs to be 

addressed in the future.  

The described biochemical effects and cellular responses to methylglyoxal-

derived protein glycation may also be associated with the role of this post-translational 

modification in amyloid fibril formation. The mechanisms of protein misfolding and 

aggregation have been investigated in yeast cells, which display most properties of 

eukaryotic cells regarding protein synthesis and quality control systems (Outeiro & 

Muchowski, 2004). The link between protein glycation and amyloid diseases was 

addressed in yeast, taking advantage of the known biochemical effects of protein 

glycation in vivo. Transthyretin, involved in familial amyloidotic polyneuropathy, is one 

of the most extensively investigated and characterized amyloidogenic proteins, and 

different point mutations with distinct amyloidogenic potential are known (Goldsteins et 

al., 1997; Jacobson et al., 1992; Saraiva, 2001; Saraiva et al., 1984). We showed that 

amyloid deposits from FAP patients also contain MAGE modifications, suggesting that 
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glycation may be involved in this neurodegenerative disorder. However, little is known 

about the role of protein glycation regarding the genesis, progression or toxicity in this 

disorder. Thus, different TTR variants were expressed in yeast and the effects of 

glycation on the formation of TTR-amyloid aggregates in vivo was investigated. This is a 

relevant breakthrough on TTR misfolding and aggregation research since most previous 

efforts were directed towards the investigation of the structural and stability effects of 

point mutations on amyloidogenesis in vitro. 

With these studies, we observed that TTR is glycated by methylglyoxal in vivo 

and that under glycation conditions TTR amyloid fibril formation is enhanced. This 

provides an opportunity to investigate the role of TTR glycation in vivo in amyloid fibril 

formation. Are the conformational changes imposed by glycation, together with 

amyloidogenic mutations, the trigger for the initial unfolding and aggregation? Or, are the 

soluble aggregates susceptible to glycation leading to the irreversible formation of 

amyloid structures? These issues remain in discussion. On the other hand, protein 

glycation appears to induce misfolding stress with the activation of the refolding 

chaperone pathway. It is still unknown whether, in these conditions, the cell quality 

control system is able to cope with the TTR misfolding and subsequent aggregation. 

Under certain conditions, yet unknown, cellular defenses including molecular chaperones 

and degrading pathways are exceeded and extensive protein misfolding and aggregation 

occurs leading to severe pathological conditions. In fact, a less effective protein quality 

control system has been implicated in neurodegenerative disorders (Outeiro & Tetzlaff, 

2007; Ross & Poirier, 2004). 

Since transthyretin is an extracellular protein, another possibility is that protein 

glycation interferes with its synthesis, translocation and secretion. This can also be 

investigated in yeast since it displays most of the properties of eukaryotic cells 

concerning protein synthesis, folding and maturation of extracellular proteins. 

  

 The investigation of protein glycation in vivo with this model organism and its 

relationship with amyloid fibril formation represents a step-forward in our understanding 

of the role of glycation in the development of several human disorders such as FAP. It is 

quite noticeable however, that many open questions need be addressed. Fortunately, the 
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model described here will be useful and further research work will provide new essential 

information and more detailed insights into the mechanisms of protein glycation in vivo, 

as well as its role on several human pathologies such as misfolding disorders. This 

increased knowledge will certainly be useful to develop new or improved therapeutic 

strategies to inhibit protein glycation and neutralize its harmful effects, thus improving 

the prognosis for a broad range of human disorders. 
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