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ABSTRACT

Maarit Laaksonen. Population Attributable Fraction (PAF) in epidemiologic follow-
up studies. National Institute for Health and Welfare (THL), Research 34, 150 Pages. 
Helsinki, Finland 2010. 
ISBN 978-952-245-303-7 (printed); ISBN 978-952-254-304-4 (pdf)

Quantification of the impact of exposure to different risk factors on mortality or morbidity 
at the population level is a fundamental issue in epidemiologic research. Population 
Attributable Fraction (PAF) is a statistical concept that can be used to quantify this 
impact. PAF assesses the proportion of outcome that could be avoided if the current 
exposure distribution was replaced by a hypothetical, presumably preferable exposure 
distribution. So far, the methods for the estimation of PAF have been developed for and 
applied in case-control and cross-sectional studies. The development of methods for 
the estimation of PAF from cohort studies, which properly take into account the time 
perspective, has started only recently. In the estimation of PAF for a certain follow-
up time interval, the type of outcome of interest (mortality vs. morbidity) has not, 
however, been taken into account. In this study, the statistical methodology for the 
estimation of PAF in cohort studies will be extended to cover both the estimation of 
PAF for total mortality and disease incidence. 

The PAF for total mortality or disease incidence was defined as the proportion of 
mortality or disease incidence, respectively, that could be avoided during a follow-
up time interval (0, t] if their risk factors were modified. A parametric proportional 
hazards model, with a piecewise constant baseline hazard function for death and 
disease occurrences, was assumed. Potential confounding factors were adjusted for 
and potential effect modifying factors accounted for in the model. The estimation of 
PAF and its asymptotic variance based on the delta method was demonstrated. The 
complementary logarithmic transformation in the calculation of the confidence interval 
of PAF was used. In the estimation of PAF for total mortality, only censoring due to 
loss to follow-up was taken into account, whereas in the estimation of PAF for disease 
incidence censoring due to death was also considered. Furthermore, the meta-analysis 
techniques developed for pooling of relative risks were extended for the pooling of PAF 
estimates. In the data examples of this study, the PAF estimates for total mortality and 
disease incidence were demonstrated to decrease as the follow-up time increased. In the 
simulated data sets, taking censoring due to death into account in the estimation of PAF 
for disease incidence was shown to decrease the point estimates of PAF significantly 
in comparison to when censoring due to death was ignored. Ignoring censoring due to 



7Research 34/2010
National Institute for Health and Welfare

Population Attributable Fraction (PAF) in 
Epidemiologic Follow-up Studies

death increased the overestimation of PAF, especially when the impact of risk factors 
on mortality was strong and the follow-up time long.

A new program for the estimation of PAF both for total mortality and disease 
incidence, implementing the new methods, was developed using SAS/IML language. 
This program was shown to be flexible and fast. An application of PAF to evaluate 
the relative importance of the risk factors of type 2 diabetes and the potential effect-
modifying role of metabolic syndrome or its components in a meta-analysis of two 
representative Finnish cohorts was carried out using this program. As a result, the 
use of PAF provided further evidence of weight control being the primary diabetes 
prevention method. The pooling of the PAF estimates increased the power to detect 
associations in smaller subpopulations defined by the metabolic syndrome or its 
components, establishing new evidence on the importance of early lifestyle changes in 
the prevention of type 2 diabetes. 

In conclusion, it is essential to take time perspective into account in the estimation 
of PAF. Different estimators of PAF for a certain time interval, taking into account 
different sources of censoring, are needed, depending on the outcome of interest. PAF 
is a useful measure in cohort studies for providing population-level information on the 
effects of predictor modifications on the outcome in time and has wide applications in 
many different fields of research.

Keywords: Population Attributable Fraction, cohort studies, risk factor, mortality, 
disease incidence, piecewise constant hazards model, censoring, effect modification, 
meta-analysis, SAS macro, type 2 diabetes, lifestyle, metabolic syndrome
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Eri riskitekijöiden vai�������������������������������������������������������������kutuksen määrittäminen suhteessa kuolleisuuteen tai sairastu-
vuuteen väestötasolla on keskeistä epidemiologisessa tutkimuksessa. Väestösyyosuus 
on tilastollinen tunnusluku, jolla voidaan arvioida eri riskitekijöiden selittämää osuut-
ta kuolleisuudesta tai sairastuvuudesta. Väestösyysosuus kuvaa, miten suuri osuus 
tapahtumista voitaisiin välttää, jos yksi tai useampi riskitekijä voitaisiin poistaa tai 
sen arvoja parantaa. Menetelmiä väestösyyosuuden arviointiin on tähän asti lähinnä 
kehitetty ja sovellettu tapaus-verrokki- ja poikkileikkaustutkimuksissa. Menetelmiä 
väestösyyosuuden arviointiin kohorttitutkimuksista, joissa seurataan tutkitun väestö-
ryhmän kuolleisuutta tai sairastuvuutta, on puolestaan ryhdytty kehittämään vasta vii-
me vuosina. Arvioitaessa riskitekijöiden selittämää osuutta vasteen ilmaantumisesta 
tietyllä aikavälillä, vasteen tyyppiä (kuolleisuus vs. sairastuvuus) ei ole kuitenkaan 
toistaiseksi huomioitu. Tässä työssä kehitetään tilastollisia menetelmiä riskitekijöiden 
sekä kokonaiskuolleisuudesta että sairastuvuudesta selittämän väestösyyosuuden ar-
viointiin kohorttitutkimuksista.

Riskitekijöiden selittämä väestösyyosuus määriteltiin osuudeksi kokonaiskuolleisuu-
desta tai sairastuvuudesta, joka voitaisiin välttää aikavälillä (0, t], jos niiden riskite-
kijöitä kyettäisiin muuttamaan. Kuolleisuuden ja sairauden ilmaantuvuuden oletettiin 
noudattavan parametrista suhteellisten hasardien mallia. Potentiaaliset sekoittavat 
tekijät vakioitiin ja potentiaaliset vaikutusta muokkaavat tekijät huomioitiin malli-
tuksessa. Välikohtaisesti tasaisen hasardin mallin mukaisesti perushasardin annet-
tiin vaihdella seuranta-aikavälien mukaan. Väestösyyosuuden piste-estimaatin ja sen 
asymptoottisen varianssin laskenta delta-menetelmään nojautuen esitettiin. Luotta-
musvälin laskennassa käytettiin kääntäen logaritmista muunnosta. Riskitekijöiden 
kokonaiskuolleisuudesta selittämän väestösyyosuuden estimoinnissa huomioitiin seu-
rannan päättymisestä johtuva havaintojen oikealta sensuroituminen, kun taas niiden 
selittämää väestösyyosuutta sairastuvuudesta estimoitaessa huomioitiin myös kuol-
leisuudesta johtuva sensuroituminen. Lisäksi tässä työssä laajennettiin eri aineistois-
ta laskettujen suhteellisten riskien yhdistämiseen kehitetyt meta-analyysimenetelmät 
myös eri aineistoista laskettujen väestösyyosuusestimaattien yhdistämiseen. Sovellet-
taessa uusia menetelmiä eri aineistoihin osoittautui, että kokonaiskuolleisuuden ja sai-
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rastuvuuden riskitekijöille saadut väestösyyosuusestimaatit pienenevät seuranta-ajan 
pidentyessä. Kuolinsensuroinnin huomioiminen riskitekijöiden sairastuvuudesta se-
littämää väestösyyosuutta laskettaessa pienensi väestösyyosuusestimaatteja merkittä-
västi. Kuolinsensuroinnin huomiotta jättämisestä aiheutuva väestösyyosuuden yliesti-
mointi oli sitä merkittävämpää mitä voimakkaampi tutkittavien riskitekijöiden yhteys 
kuolleisuuteen oli ja mitä pidempi seuranta-aika oli.

Tässä työssä kehitettiin uusi, edellä kuvattuihin tilastollisiin menetelmiin pohjautuva, 
ohjelma sekä riskitekijöiden kokonaiskuolleisuudesta että sairastuvuudesta selittämän 
väestösyyosuuden estimointiin. Tämä uusi, SAS/IML-kieleen pohjautuva ohjelma, 
osoittautui joustavaksi ja nopeaksi. Tätä ohjelmaa käyttäen tutkittiin tyypin 2 diabe-
teksen riskitekijöiden suhteellista merkitystä väestötasolla kyseisen sairauden aiheut-
tajina kahta suomalaista väestöä edustavan otoksen meta-analyysiin pohjautuen. Li-
säksi selvitettiin metabolisen oireyhtymän merkitystä näiden riskitekijöiden ja tyypin 
2 diabeteksen välistä yhteyttä mahdollisesti muokkaavana tekijänä. Tämä sovellus toi 
lisää näyttöä painonhallinnan merkityksestä tyypin 2 diabeteksen tärkeimpänä ehkäi-
sykeinona. Näiden kahden aineiston väestösyyosuusestimaattien yhdistämisellä saa-
tiin lisää tilastollista voimaa riskitekijöiden ja sairauden välisen yhteyden tutkimiseen 
mahdollisena vaikutusta muokkaavana tekijänä analysoidun metabolisen oireyhtymän 
tai sen osakomponenttien arvojen perusteella muodostetuissa osa-aineistoissa. Tällä 
tavalla kyettiin tuottamaan uutta tietoa varhaisten elintapatekijöiden muutosten ilmei-
sestä merkityksestä tyypin 2 diabeteksen ehkäisyssä.

Ajallisen ulottuvuuden huomioiminen väestösyyosuuksia estimoitaessa osoittautui 
keskeiseksi. Riippuen kiinnostuksen kohteena olevasta tapahtumasta tarvitaan erilai-
sia väestösyyosuustunnuslukuja, joissa huomioidaan mahdollinen eri syistä johtuva 
sensuroituminen tarkasteltavalla aikavälillä. Väestösyyosuus on hyödyllinen mittari, 
jolla voidaan tuottaa väestötasoista tietoa erilaisten ennustekijöiden vaikutuksesta eri-
laisiin vasteisiin ja jolla on laajoja käyttömahdollisuuksia monilla eri tutkimusalueil-
la.

Asiasanat: väestösyyosuus, kohorttitutkimukset, riskitekijä, kuolleisuus, sairastuvuus, 
välikohtaisesti tasaisen hasardin malli, sensuroituminen, vaikutusta muokkaavat 
tekijät, meta-analyysi, SAS makro, tyypin 2 diabetes, elämäntapa, metabolinen 
oireyhtymä
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1	 INTRODUCTION 

Quantification of the impact of exposure to modifiable risk factors on different types of 
outcome, mortality or a certain disease, at the population level is a fundamental public 
health issue. In epidemiologic studies, the strength of association between risk factors 
and an outcome are often reported as relative risks (RR) or odds ratios (OR). These 
measures do not, however, consider the importance of the risk factor at the population 
level, as its prevalence is not taken into account. An integrated measure that takes into 
account both the strength of association between the risk factor and the outcome and 
the prevalence of the risk factor in the population is needed to provide estimates of the 
public health importance of the risk factors. Population Attributable Fraction (PAF), 
which assesses the proportion of outcome in a population attributable to an exposure 
to one or several risk factors, is this kind of a measure.

The basic idea of PAF is to estimate the proportion of outcome in a given population 
that would theoretically not have occurred if none of the individuals had been 
exposed to the risk factor. Since its introduction (Levin 1953), a variety of names and 
definitions for this concept have been proposed (Uter and Pfahlberg 2001). Despite 
of this confusion, PAF has gradually become a more widely used measure and the 
estimation of PAF has been applied in different settings and designs. Originally, 
PAF was formulated for a single dichotomous risk factor (Levin 1953) and was later 
extended for multiple, polytomous or continuous risk factors (Miettinen 1974, Walter 
1976, Deubner et al. 1980). Initially, PAF estimates ignored confounding factors and 
were thus generally biased (Levin 1953, MacMahon and Pugh 1970, Miettinen 1974). 
Later, the different statistical strategies for the adjustment of potential confounding 
factors in the estimation of PAF, mainly stratification and modeling, have, however, 
been well covered in the literature (Walter 1976, Bruzzi et al. 1985, Benichou 2001). 
Modeling has generally been regarded as the most flexible way of adjusting PAF. There 
is a large body of literature on formulas for the estimation of PAF in case-control and 
cross-sectional studies, as well as in cohort studies with a fixed follow-up time (Walter 
1976, Benichou 2001). The literature on the estimation of PAF in cohort studies with 
censored time-to-event data, which properly takes into account the follow-up time, is, 
however, scarce (Chen et al. 2006, Samuelsen and Eide 2008, Cox et al. 2009). 

In the existing literature on cohort studies, the type of outcome of interest and its 
influence on the estimation of PAF has received little attention (Schumacher et al. 2007). 
So far, mainly censoring due to loss to follow-up has been considered in the estimation 
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of PAF. This is sufficient if the outcome is death, whereas in the case of disease 
incidence censoring due to death should also be taken into account. So far, censoring 
due to death in the estimation of PAF for disease incidence has only been considered 
in single studies (Silverberg et al. 2004, Samuelsen and Eide 2008). If the risk factors 
of the disease of interest are similarly related to mortality, their modification is likely 
to delay not only the occurrence of the disease but also death. Therefore, the impact of 
the risk factor modification not only on disease incidence but also on mortality should 
be taken into account in the estimation of PAF for disease. Thus, two different sets of 
formulas for the estimation of PAF depending on the outcome of interest are needed in 
order to obtain accurate and interpretable results. Furthermore, in the existing literature 
on the estimation of PAF for a certain time interval, the estimation has mainly been 
based on using the semi-parametric Cox proportional hazards model with the Breslow 
estimator for the cumulative baseline hazard (Breslow 1974). The variance of PAF 
has been estimated using asymptotic variance estimation (Chen et al. 2006) or time-
consuming resampling-based methods, such as bootstrapping (Samuelsen and Eide 
2008). An analytic variance estimate for a fully parametrized model based on the delta 
method is still missing. In addition, to be able to analyze the impact of some potential 
effect modifying factor on the relationship between the risk factor and the outcome 
of interest at the population level, we need to be able to calculate PAF estimates in 
the different subpopulations defined by categories of the effect modifying factor and 
study the statistical significance of their differences. Adequate methods for doing this 
in cohort studies are, however, still missing. As the pooling of different cohorts has 
become more popular, a need for the estimation of PAF in a pooled cohort study design 
has arisen. No methodology for their estimation has, however, yet been presented. 
Presently, there are no publicly available programs for the estimation of PAF in cohort 
studies for a certain time interval. In order to promote the estimation and the correct 
use of PAF in public health research, a publicly available program, applicable also for 
the estimation of PAF for disease occurrence, would thus be needed.

In this study, methods for the estimation of model-based adjusted PAF and its asymptotic 
variance in a cohort study design both for total mortality and for disease occurrence, 
which takes into account censoring due to death, will be developed. The analysis of 
PAF in the presence of potential effect modification is also presented. The use of these 
methods in a pooled cohort study design will also be demonstrated. Furthermore, a 
program for the estimation of PAF will be presented. Finally, these methods and the 
new program are applied to explore the relative importance of potential modifiable risk 
factors of type 2 diabetes in a pooled data of two cohorts.
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2	 REVIEW OF THE LITERATURE 

2.1	 Definition of Population Attributable Fraction (PAF) 

Once it has been established that there is a causal association between a risk factor 
and an outcome, we may wish to ascertain what proportion of the outcome is due 
to the exposure to the risk factor. Let us consider a binary outcome variable D and 
a dichotomous risk factor E. Let us denote D2 for the presence (D1 for the absence) 
of the outcome, and E2 for the presence (E1 for the absence) of exposure to the risk 
factor. Let 2P(E )  and 2P(D )  then denote the exposure prevalence and the outcome 
occurrence within the entire population, respectively. Furthermore, let 2 2 2R = P(D | E ) 
and 1 2 1R = P(D | E )  represent the outcome occurrence in the exposed and unexposed 
individuals, and 2 1RR = R R   the relative risk between the exposed and unexposed 
individuals. Then, the proportion of the outcomes occurring among the exposed 
individuals, which is in excess in comparison to the unexposed individuals, can be 
calculated by dividing the risk difference between the exposed and the unexposed 
individuals by the risk in the exposed individuals:

(2.1)	 2 2 2 1 2 1

2 2 2

P(D | E ) P(D | E ) R R RR 1AF
P(D | E ) R RR

− − −= = = .

This quantity is here referred to as the Attributable Fraction (AF), i.e. the proportion of 
the outcome among the exposed individuals attributable to the given exposure. In the 
literature, it has also been referred to as attributable risk (MacMahon and Pugh 1970), 
attributable risk percent (Cole and MacMahon 1971) and etiologic fraction (Miettinen 
1974). Miettinen (1974) distinguished between etiologic fraction attributable to or 
related to a given risk factor depending on whether all or just some confounding 
by extraneous factors was under control. Greenland and Robins (1988) further 
distinguished between etiologic fraction and excess fraction depending on whether 
a case attributable to exposure to a risk factor was defined as a case for which the 
exposure played an etiologic role, thus making it occur earlier, or a case that would 
not have occurred had exposure never occurred. The definitions behind the algebraic 
formulations may thus affect the estimates obtained.

The AF can be generalized to the total population of exposed and unexposed 
individuals in order to quantify the importance of the exposure at the population level. 
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The total outcome occurrence within the total population is given by 2P(D )  and the 
excess outcome occurrence among the exposed individuals in the total population 
by 2 2 1P(D ) P(D | E )− . Then, the proportion of the outcome occurring in the total 
population of exposed and unexposed individuals attributable to the given exposure 
can be calculated as

(2.2)	 2 2 1

2

P(D ) P(D | E )PAF
P(D )
−= .

Since 2 2 2 2 1P(D ) = P(E )R +(1-P(E ))R , if 2P(D )  in formula (2.2) is substituted with this 
formulation and the nominator and denominator are divided by R1, the formula (2.2) 
can also be expressed as

(2.3)	 2

2

P(E )(RR-1)PAF
1+ P(E )(RR-1)

= .

This quantity is here referred to as the Population Attributable Fraction (PAF) and 
it was first presented in the literature by Levin (1953) using formula (2.3), whereas 
currently the most often used formula (2.2) was given by MacMahon and Pugh in 1970. 
Their equivalence was first demonstrated by Leviton in 1973. Yet, another algebraically 
equivalent formula for PAF was given by Miettinen (1974):

(2.4)	 2 2 2 2
RR-1PAF P(E | D ) P(E | D ) AF
RR

= = ,

which relates PAF and AF (2.1) to one another. This can also be obtained from formula 
(2.2) by applying Bayes’ theorem. Later, even more alternative, algebraically equivalent 
formulations for PAF have been given (Deubner et al. 1975, Fleiss 1979). Although 
these algebraic formulations provided for PAF are equivalent, similarly as in case of 
AF, the definitions for attributability to exposure may, however, differ, thus leading to 
different concepts of PAF (Greenland and Robins 1988).

Similarly as there are several formulations and definitions for PAF, depending on which 
aspect of the measure has been emphasized, there are also several names for it (Gefeller 
1995, Uter and Pfahlberg 1999, Uter and Pfahlberg 2001). The terms most often used 
for this measure are attributable risk (Walter 1975) and population attributable risk 
(MacMahon and Pugh 1970). Since the quantity itself is not a risk but a proportion, 
another tradition using terms which include words such as “proportion”, “fraction”, 
or “percentage” and which are often expressed in terms of percentages has arisen. 
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Popular terms within this tradition include: attributable proportion (Levin 1953), 
attributable fraction (Ouellet et al. 1979), population attributable fraction (Deubner et 
al. 1975), etiologic fraction (Miettinen 1974), excess fraction (Greenland and Robins 
1988), attributable risk percentage (Sturmans et al. 1977), and population attributable 
risk percent (Cole and MacMahon 1971). The fact that some of these terms, such as 
attributable risk, attributable fraction and attributable risk percent have also been 
used to refer to attributable fraction among exposed individuals (2.1) and that some 
authors have used more than one term for this measure illustrates the ambiguity in the 
terminology. Throughout this dissertation the term Population Attributable Fraction 
(PAF), which is becoming increasingly popular in the literature, will be used.

Despite the confusion regarding the formulas, definitions and names of PAF, the use of 
PAF has gradually increased and the estimation of PAF has been studied in different 
epidemiological study designs – cross-sectional, case-control, and cohort. The cross-
sectional study involves a design in which a study population is selected from a single 
target population, and after this selection the outcome status 1 2(D or D ) and exposure 
to a risk factor 1 2(E  or E )  are ascertained simultaneously, and the prevalence of the 
outcome according to the exposure status is compared (Rothman et al. 2008). The 
case-control study involves a design that compares groups of identified cases 2(D )
and non-cases, i.e. controls 1(D ), sampled independently of their exposure status 
from the entire source population that gave rise to the cases, with respect to a current 
or previous exposure to a risk factor 1 2(E  or E ) . The cohort study involves a design 
in which information about the exposure to a risk factor 1 2(E  or E ) is known at the 
beginning of the follow-up, and then the chosen study population at risk of developing 
the outcome is followed for a given period of time during or after which new cases 2(D )  
are identified, and their incidence according to the exposure status is compared. In the 
estimation of PAF, the risk factors are assumed to precede and be causally related to 
the outcome. The concept and application of PAF can thus be considered more realistic 
in cohort studies and less realistic in cross-sectional studies. Traditionally, however, 
PAF has been most often estimated from cross-sectional and case-control studies and 
less from cohort studies, where issues such as length of follow-up and censoring need 
to be dealt with as well. 

Whereas AF restricts attention to the exposed cases and only depends on the strength 
of the association between the risk factor and the outcome through RR, PAF focuses 
on the entire population and depends also on the prevalence of the exposure to the risk 
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factor in the population. Thus, a risk factor with a moderate RR but a high prevalence 
can play a significant role in promoting the outcome within the population. Hence, 
whereas RR and odds ratio (OR) are mainly used to establish an association between 
a risk factor and an outcome, PAF can be used as a measure of the potential benefit 
of an intervention, indicating what proportion of the outcome could be avoided if 
it were possible to remove the exposure to the risk factor from the population. As 
mentioned before, in the definition of PAF a causal relationship between the risk factor 
and outcome is assumed and the exposure to the risk factor, as the name suggests, is 
assumed to have a harmful effect on the outcome. Thus, in case of a dichotomous risk 
factor, the outcome occurrence is assumed to be greatest in the exposed group and RR 
> 1. In that case, the PAF varies within [0,1]  and is usually expressed as a percentage. 
However, if the exposure was protective, the outcome occurrence would be greatest in 
the unexposed group and RR < 1. In that case, the PAF would become negative. The 
analogous measure to PAF proposed for this situation is the Prevented Fraction (PF), 
which is the proportion of outcome that could be avoided if it were possible to expose 
everyone to this protective factor (Miettinen 1974, Benichou 2001):

(2.5)	 2 1 2

2 1

P(D | E )-P(D )PF = 
P(D | E )

,

which varies within [0,1] . Using Bayes’ theorem, PF in (2.5) can be rewritten as 

2PF P(E )(1 RR)= − . The relationship between PAF and PF was presented by Walter 
(1976) as

	
11-PF = 

1-PAF
.

PAF for a protective factor can be made positive by reversing the coding of exposure so 
that the exposed (protective) level is relabeled as the reference level and the unexposed 
level as the exposed level. 

The basic formulas for PAF presented so far, (2.2), (2.3) and (2.4), only include one 
dichotomous risk factor. In a more realistic situation, however, there are usually risk 
factors with several levels of exposure or several risk factors. Miettinen (1974) was the 
first to generalize the formula (2.4) from the dichotomous setting to a multifactorial 
setting with several polytomous risk factors: 
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(2.6)	 2
2

1 1

RR -1 P(E | D )PAF P(E | D ) 1
RR RR

S S
s s

s
s ss s= =

= = −∑ ∑ ,

where 1,...,s S=  denotes the exposure levels, i.e. all the different combinations of the 
risk factor values, 2P(E | D )s  the prevalence of the sth exposure level among those 
with a positive outcome and 2 2 1 1RR =P(D | E ) P(D | E )=R Rs s s  the relative risk at 
the sth exposure level in comparison with the reference level labeled 1 with the lowest 
risk. A generalization by Walter (1976), based on the Levin’s (1953) formula (2.3) and 
equivalent to formula (2.6), has been more often referred to, however:

(2.7)	 11 1

1 1

P(E )(RR 1) P(E )(R R )
PAF

1 P(E )(RR 1) P(E )R

S S
s s s ss s

S S
s s s ss s

= =

= =

− −
= =

+ −
∑ ∑
∑ ∑  

.

Until now, in the estimation of PAF it has been assumed that all the values of the risk 
factors of interest will be modified to the reference level with the lowest risk. Thus, 
the estimates obtained quantify the expected proportional reduction in the outcome 
incidence if all the risk factors of interest were simultaneously eliminated from the 
target population. Usually, however, it is not necessary, nor realistic in practice, to 
remove all the risk factors to have some effect on the outcome. The outcome occurrence 
may fall if, for example, only the exposure levels with the highest risk were modified 
to the exposure levels with a lower risk. The PAF for selected levels of multilevel 
exposure can be presented as a modification of the formula (2.7) 

(2.8)	 1

1

P(E )(R R )
PAF

P(E )R
s ss T

S
s ss

∈

=

−
= ∑

∑
,

where { }2,...,T S⊂  denotes the group of exposure levels that will be eliminated and  
R1 the target level chosen.
 
When estimating PAF in a uni- or multifactorial setting, the interest is on the evaluation 
of the expected proportional reduction in outcome attributable to the modification of 
the risk factors of interest and not due to any other factors, which may confound the 
relationship between the risk factors of interest and outcome (Walter 1976, Walter 
1980). The formulas presented so far do not, however, adjust for these confounding 
factors, and therefore the PAF estimates obtained based on them are called crude 
or unadjusted and are generally biased. Thus, to obtain reliable PAF estimates, the 
formulas presented so far need to be generalized to adjust for potential confounding. 
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2.2	 Generalization of PAF to account for confounding

The two main approaches for the adjustment of confounding factors in the estimation of 
PAF are stratification and modeling. In stratification, the data are divided according to 
the different combinations of the confounding factor (C) values to 1,...,j J=  adjustment 
levels and the effect of the different exposure levels on the outcome within them is 
assessed, after which a summary estimate over all the adjustment levels is provided. 
The formulas (2.2), (2.7) and (2.6) can be generalized to account for confounding 
(Whittemore 1983, Bruzzi et al. 1985) in the following way: 

(2.9) 

	

2 2 1 1=1 1 1 2

1 12 1 1

P(D )- P(C )P(D | E ,C ) P(E | C )(R R ) P(E ,C | D )
PAF 1

P(D ) RRP(E | C )R

J J S
J Sj j s j sj jj j s s j

J S
J s sjs j sjj s

= =

= =
= =

−
= = = −

∑ ∑ ∑ ∑∑
∑ ∑

	         
2 2 1 1=1 1 1 2

1 12 1 1

P(D )- P(C )P(D | E ,C ) P(E | C )(R R ) P(E ,C | D )
PAF 1

P(D ) RRP(E | C )R

J J S
J Sj j s j sj jj j s s j

J S
J s sjs j sjj s

= =

= =
= =

−
= = = −

∑ ∑ ∑ ∑∑
∑ ∑

,

where 1,...,j J=  denotes the adjustment levels, Rsj= 2P(D | E ,C )s j  and R1j  = 2 1P(D | E ,C )j  
the risks at the sth exposure level and at the reference level conditional on the jth 
adjustment level, and 1RR = R  Rsj sj j  their relative risk. The two most popular strategies 
for estimating the adjusted PAF based on stratification are the Mantel-Haenszel 
approach and the weighted-sum approach. The Mantel-Haenszel approach, proposed 
by Kuritz and Landis (1988a, 1988b) and Greenland (1987), is based on estimating 
a common adjusted RR in cross-sectional studies (or OR in case-control studies) 
for all J adjustment levels and plugging in this estimate together with an estimate 
of the prevalence of exposure among those with positive outcome in formula (2.4). 
The weighted-sum approach, suggested by Walter (1976) and studied by Whittemore 
(1982, 1983), is based on weighting the stratum-specific PAF estimates, so that 

1
PAF PAFJ

j jj
w

=
=∑ , where wj is the stratum-specific weight based on the proportion 

of outcome at the jth level. Comprehensive overviews of point and variance estimation 
of PAF based on these methods, as well as on other stratification-based adjustment 
methods, and their limitations have been given in the literature (Benichou 1991, 
Gefeller 1992, Coughlin et al. 1994, Benichou 2001). 

The use of stratification-based adjustment methods in the estimation of PAF is 
appealing because of the straightforward manner by which control is achieved and 
computations made and the relatively few statistical assumptions needed for making 
the inferences. However, as the number of adjustment and exposure levels increases, 
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computations become burdensome to perform and obtaining a reasonable number of 
subjects for all strata difficult to guarantee (Breslow and Day 1980). Furthermore, 
stratification requires that both the risk factors of interest and the confounding factors 
be categorical, which may result in loss of information. To avoid these problems, 
alternative adjustment strategies based on modeling have been developed. In modeling, 
the relationships between risk factors and the outcome are expressed as a mathematical 
function, and risk attributable to exposure to a risk factor is represented by the change 
in risk predicted by the model when the exposure level is changed form one value to 
another. The use of regression models allows flexible and efficient estimation of the 
adjusted PAF, as several categorical or continuous risk factors or confounding factors 
with or without their interactions, allowing also for the analysis of potential effect 
modification, can be included in the models. Furthermore, regression models yield 
maximum likelihood estimators that have favorable asymptotic properties. Of course, 
the correctness of the assumptions inherent in the models chosen need to be tested 
when applying them to different datasets. 

The idea of applying regression models to the estimation of PAF was first suggested by 
Walter (1976), Sturmans et al. (1977) and Fleiss (1979). Greenland (1987) proposed a 
modification of the previously mentioned Mantel-Haenszel approach for case-control 
studies, in which a maximum likelihood estimate of OR from conditional logistic 
regression was used in the PAF formula (2.4) and provided also the corresponding 
variance estimate. Bruzzi et al. (1985) were, however, the first to fully exploit the 
flexibility of the regression models in the estimation of the adjusted PAF from case-
control studies. They used the last formulation of the PAF formula (2.9), estimated 
the prevalences 2= P(E ,C | D )sj s jp  from the observed distribution of the cases, and 
showed how the logistic model could be used to estimate the risk of outcome at different 
adjustment levels (Rsj ). According to the logistic regression model

(2.10)	 2

2

P(D | )log
1 P(D | )

TX X
X

β=
−

,

where 1( ,..., )TmX X X=  is the vector of all factors considered relevant (risk factors and 
confounding factors) and 1( ,..., )Tmβ β β=  the regression coefficients corresponding to 
them. Thus, the risk of a positive outcome is given by
	

	
2

exp( )R = P(D | )
1 exp( )

T

T

XX
X

β
β

=
+ .
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The RR in formula (2.9) can then be replaced by using the OR estimated through 
logistic regression. Variance estimators for all types of case-control studies were later 
developed by Benichou and Gail (1990) by applying the delta method (Benichou and 
Gail 1989). Greenland and Drescher (1993) further generalized the PAF estimator 
provided by Bruzzi et al. (1985) by using a model-based estimate also for the quantities 
psj. The model-based approach proposed by Bruzzi et al. (1985) can also be applied to 
cross-sectional studies; subsequently Basu and Landis (1995) extended the methodology 
regarding the variance estimation in this design.

Most of the literature on the model-based estimation of PAF has thus focused on case-
control and cross-sectional studies, and the point and interval estimation of model-
adjusted PAF from these designs has been quite thoroughly discussed and applied 
in the literature (Benichou 1991, Coughlin et al. 1994, Benichou 2001). The model-
adjusted estimation of PAF in cohort studies has been dealt with to a lesser extent, 
however. An approximative approach for the estimation of PAF in cohort studies, 
in which only the occurrence of the event of interest by a certain follow-up time is 
observed (i.e. a binary outcome variable), whereas the timing of the event is ignored, 
has been proposed in the literature (Deubner et al. 1980, Basu and Landis 1995). In 
this case, the only difference in comparison to the cross-sectional study is that the 
outcome is not observed simultaneously with the risk factors but after a fixed follow-up 
time, and thus the same methods, i.e. the logistic model described in (2.10), as for the 
estimation of PAF and its confidence interval in cross-sectional studies can be applied. 
This approach, however, may lose information and produces reliable estimates only 
in cases in which there is no censoring during follow-up. Later on, the model-based 
approach for the estimation of PAF proposed by Bruzzi et al. (1985) has also been 
extended to cohort studies by using the relative risk estimate obtained from Poisson or 
pooled logistic regression models (Spiegelman et al. 2007).

Thus far, it has been typical not to take into account the time perspective in the 
estimation of PAF, which results in static PAF estimates. In cohort studies with time-
to-event data, dynamic, time-varying PAF estimates are, however, needed. Although 
attempts to define and calculate dynamic PAFs in cohort studies have been made 
(Silverberg et al. 2004, Chen et al. 2006, Samuelsen and Eide 2008, Cox et al. 2009), 
further development is still required.
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2.3	 Model-based estimation of PAF in a cohort study design 

Let T be a non-negative continuous random variable representing the length of follow-
up in cohort studies, determined as the time from the baseline to the occurrence of the 
event of interest or censoring (either due to loss to follow-up, death unrelated to the 
event of interest (if other than death) or end of follow-up), whichever comes first. We 
denote the underlying continuous failure time distribution by ( )f t . The cumulative 
distribution function 

0
( ) P( ) ( )

t
F t T t f u du= ≤ = ∫  then gives the probability that the 

event has occurred by time t. The survival function ( ) P( ) 1 ( )S t T t F t= > = −  is defined 
as the probability that the event has not occurred by time t. The probability distribution 
of T can be specified using the hazard function h( t ). The product ( )h t tΔ  approximates 
the probability of the event occurrence within a short time interval [ , ]t t t+ Δ , conditional 
upon survival without the event occurrence up to time t. The hazard function h( t ) is 
defined as 

	 0

P( | ) ( )( ) lim
( )t

t T t t T t f th t
t S tΔ →

≤ ≤ + Δ >= =
Δ

. 

In a simple situation, in which the effect of only one dichotomous risk factor, to which 
all the individuals in the population are either exposed 2(E )  or unexposed 1(E ), on the 
outcome occurrence is followed, the proportion of outcome by time t can be denoted 
by 
	 2 2 2 1 2 1( ) P(E )P( | E ) (1 P(E ))P( | E ) ( ) (1 ) ( )F t T t T t pF t p F t= ≤ + − ≤ = + − ,

where 2P(E )p =  is the proportion exposed. In survival analysis, however, often the 
corresponding survival function 2 1( ) ( ) (1 ) ( )S t pS t p S t= + − , indicating the proportion 
of survival, is used. Similarly, the overall population hazard function is 

	 2 1
2 1

2 1

( ) (1 ) ( )( ) ( ) ( ) (1 ( )) ( )
( ) (1 ) ( )

pf t p f th t p t h t p t h t
pS t p S t

+ −= = + −
+ − , 

where 

	 2 2

2 1

( ) ( )( )
( ) (1 ) ( ) ( )
pS t pS tp t

pS t p S t S t
= =

+ −

is the proportion exposed at time t.

Two main PAF definitions for cohort studies with censored time-to-event data have 
been proposed. In the first definition of Population Attributable Hazard Fraction 
(PAHF), the effect of the hypothetical risk factor modification to the low-risk level is 
estimated at the instantaneous time point t: 
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(2.11)	 1 2 1
t

1 2 1

( ) ( ) ( )( ( ) ( )) ( )(HR( ) 1)PAHF
( ) ( ) ( )( ( ) ( )) 1 ( )(HR( ) 1)

h t h t p t h t h t p t t
h t h t p t h t h t p t t
− − −= = =

+ − + −
,

where 2 1HR( ) ( ) ( )t h t h t=  denotes instantaneous hazard ratio at time t (Chen et al. 2006, 
Samuelsen and Eide 2008). This measure thus describes the approximate proportion 
of events that could be avoided by the risk factor modification in a short time interval 
[ , ]t t t+ Δ , where 0tΔ → . Some authors (Silverberg et al. 2004, Samuelsen and Eide 
2008) have used the proportion exposed at baseline, (0)p p= , in the calculation of the 
Population Attributable Hazard Fraction (2.11), instead of the proportion exposed at 
time t, ( )p t :

(2.12)	 1 2 1
t

1 2 1

( ) ( ) ( ( ) ( )) (HR( ) 1)PAHF
( ) ( ) ( ( ) ( )) 1 (HR( ) 1)

h t h t p h t h t p t
h t h t p h t h t p t
− − −= = =

+ − + −
.

This formula corresponds to the traditional PAF formula (2.3), where RR is replaced 
by HR( )t  obtained from survival models. Nonetheless, it is considered to be a naive 
parameter as it does not consider how the prevalence of exposed individuals changes 
during the follow-up (Samuelsen and Eide 2008).

The most popular model used to analyze survival data is the proportional hazards model 
presented by Cox (1972). According to the Cox model, 0( ; ) ( ) exp( )Th t X t Xλ β= , where 

0 ( )tλ  denotes the baseline hazard, 1( ,..., )TmX X X=  the risk factors and 1( ,..., )Tmβ β β=
the regression coefficients corresponding to them. In the proportional hazards model, 
the covariates are thus assumed to affect the hazard function in a multiplicative time-
independent way. The Cox model is also the most popular model used for the estimation 
of PAF in cohort studies. Chen et al. (2006) used the Cox model to obtain an estimate 
for HR( )t  in (2.11) in case of a dichotomous risk factor { }0,1X ∈ :

	
0

0

( ) exp( )( ; 1)HR( ; ) exp( )
( ; 0) ( )

th t Xt X
h t X t

λ β β
λ

== = =
= .

Similarly, the formula (2.11) can be generalized to a multifactorial setting, in the 
presence of potential confounding, by denoting 

	
*0

* *
0

( ) exp( )( ; )HR( ; ) exp(( ) )
( ; ) ( ) exp( )

T
T T

T

t Xh t Xt X X X
h t X t X

λ β β
λ β

= = = − ,

where X is the vector of all factors considered relevant (risk factors and confounding 
factors), of which only the modifiable risk factors whose effect we wish to measure 
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in the calculation of PAF will have a different value in X *, while the rest of the 
factors retain their values (Samuelsen and Eide 2008). The risk factors included in X 
can be categorical, continuous or their interactions. The semiparametric Cox model 
thus enables the elimination of the unspecified underlying baseline hazard from the 
instantaneous hazard ratio HR( ; )t X , making it time-independent. Also, all factors 
other than the risk factors of interest which are modified are canceled out in the 
calculation of *exp(( ) )T TX X β− . In case the Cox model were also used to estimate 
HR( ; )t X  in formula (2.12), in which the proportion exposed at baseline is used in 
the calculation of Population Attributable Hazard Fraction, the entire function would 
become time-independent. 

According to the second definition of PAF for cohort studies with censored time-to-
event data, the proportion of events during a follow-up time interval (0, ]t  which could 
be avoided by the risk factor modification is estimated as (Chen et al. 2006, Samuelsen 
and Eide 2008, Cox et al. 2009):

(2.13)	 1 1 1 2
(0, ]

1 1 2

( ) ( ) ( ) ( ) ( ( ) ( ))PAF
( ) 1 ( ) 1 ( ) ( ( ) ( ))t

F t F t S t S t p S t S t
F t S t S t p S t S t

− − −= = =
− − + −

.

This formula corresponds to the traditional PAF formula (2.2) when a particular time 
point is fixed (t = t’), P(D2 ) = F(t’). An alternative measure, Population Attributable 
Survival Fraction (PASF), in which the proportion of survival due to the hypothetical 
risk factor modification, 1( ) ( )S t S t− , is calculated, has also been proposed by Cox et 
al. (2009):

(2.14)  	 1
(0, ]

1

( ) ( )PASF
( )t

S t S t
S t

−= .

The PASF thus estimates the gain in survival rather than the decrease in risk as (2.13). 
The formulas (2.13) and (2.14) can be generalized to a multifactorial setting, in the 
presence of potential confounding, by replacing ( )S t  by

 0
( ; ) exp ( ; )

t
S t X h u X du⎡ ⎤= −⎢ ⎥⎣ ⎦∫  

and ( )1S t  by * *

0
( ; ) exp ( ; )

t
S t X h u X du⎡ ⎤= −⎢ ⎥⎣ ⎦∫ , where X once again denotes the vector of 

all relevant factors, which can be categorical, continuous or their interactions, of which 
only the modifiable risk factors of interest have a different value in X *.

When the Cox model with the proportional hazards assumption is used in the 
estimation of PAF, as was done by Chen et al. (2006) and Samuelsen and Eide (2008), 
the survival function in (2.13) and (2.14) is given by 00

( ) exp ( ) exp( )
t TS t u X duλ β⎡ ⎤= −⎢ ⎥⎣ ⎦∫ . 

In this case, the unspecified underlying cumulative time-dependent baseline hazard, 
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0 00
( ) ( )

t
t u duλΛ = ∫ , cannot be eliminated as in formulas (2.11) and (2.12), and 

thus to calculate PAF it needs to be estimated. One possibly way of doing this is 
to use the Breslow estimator (Breslow 1974, Lin 2007) as proposed by Chen et al. 
(2006) and Samuelsen and Eide (2008). Alternatively, the baseline hazard may be 
specified parametrically, 0 0( ) ( ; )t tλ λ θ=  and ( , )T Tβ θ  be estimated by the maximum 
likelihood  method (Samuelsen and Eide 2008). If the proportionality assumption in 
the Cox proportional hazards model is questionable, a stratified Cox model may be 
used (Therneau and Grambsch 2000). It allows the form of the underlying hazard 
function to vary across k levels of the stratification variables which did not satisfy 
the proportionality assumption: 0( ; ) ( ) exp( )T

kh t X t Xλ β= . Alternative modeling 
methods, such as parametric accelerated failure time models or additive models, 
may also be applied (Samuelsen and Eide 2008). Parametric accelerated failure 
time models assume that covariates act multiplicatively on the predicted event 
time by some constant, 0 1 1log ... m mT X Xβ β β σε= + + + + , where 0β  and  σ  are 
the intercept and scale parameters and ε  the random disturbance term (Kay and 
Kinnersley 2002), whereas additive models assume that covariates, which are allowed 
to be time-varying, act in an additive manner on an unknown baseline hazard, 

0 1 1( ; ) ( ) ( ) ( ) ... ( ) ( )m mh t X t X t t X t tλ β β= + + + , and may be fitted by non-parametric, 
semiparametric or parametric methods (Aalen 1989, Lim and Zhang 2009).

Usually, it is more useful to demonstrate the effect of the risk factor modification during 
a certain time interval, instead of at some particular time point t, as is done in (2.11) and 
(2.12). For example, in case of an event that is inevitable, such as death, the event can 
only be delayed and, thus, it is useful to calculate PAF estimates during time intervals 
of different lengths in order to demonstrate the effect of the risk factor modification 
in different time scenarios. Furthermore, due to the inevitability of death, the PAF 
will eventually approach zero as time goes to infinity and thus become meaningless, 
further emphasizing the importance of specifying a certain time interval. Comparison 
of the PAF estimates calculated in cohort studies with different lengths of follow-up is 
also questionable for these same reasons.  

So far, point estimation of the dynamic PAF based on different definitions, (2.11), 
(2.12), (2.13), and (2.14), has been presented. There are also different approaches 
to estimating the variance of the PAF estimates: analytical variance estimation or 
resampling-based methods, such as bootstrap. Variance estimation of point estimates 
of PAF obtained using (2.12) and (2.13), based on the Cox model with the Breslow 
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estimator for the cumulative baseline hazard using non-parametric bootstrapping, was 
carried out by Samuelsen and Eide (2008), which also enabled a comparison of the 
results. Resampling-based variance estimation is, however, more computer intensive 
than analytical variance estimation. Asymptotic variance estimation for (2.13), based 
on the Cox model with the Breslow estimator for the cumulative baseline hazard, 
was demonstrated by Chen et al. (2006). Although asymptotic variance estimation 
applying the delta method for fully parametrized models has been suggested, it has 
not yet been demonstrated in the literature. Various methods for the calculation of 
confidence intervals for PAF can also be applied once the point and variances estimates 
of PAF have been obtained. The regular confidence interval based on PAF and its 
estimated standard error is based on the asymptotic normality of PAF. This normal 
approximation is not accurate when the sample size is small and, thus, to improve the 
normal approximation confidence intervals based on complementary log-transformed, 
log(1 PAF)− , (Walter 1975) and logit-transformed, log (PAF (1 PAF))− , (Leung and 
Kupper 1981) PAF estimates have been proposed and compared (Whittemore 1982). 
The complementary logarithmic transformation guarantees that the retransformed PAF 
estimates remain in their natural range from −∞  to 1, whereas logit-transformation 
forces the estimates within (0, 1) (Greenland and Drescher 1993).

When estimating PAF from cohort studies with time-to-event data, censoring is 
involved and needs to be considered in the estimation of PAF. There may also be 
censoring from different sources depending on the event of interest (Andersen et al. 
1993, Rothman et al. 2008, Gail and Pfeiffer 2005, Schumacher et al. 2007, Samuelsen 
and Eide 2008). If the event of interest is inevitable, such as death from all causes, 
i.e. total mortality, censoring due to end of follow-up or loss to follow-up needs to be 
considered. If the event of interest is, however, not inevitable, such as disease incidence, 
also censoring due to competing risks, events that compete with the event of interest to 
remove persons from the population at risk, such as death due to reasons other than the 
event of interest, may occur before occurrence of the event of interest and needs to be 
considered. Note that although both loss to follow-up and loss to competing risks are 
here treated as two forms of censoring, they are very different phenomena (Rothman 
et al. 2008). After censoring due to loss to follow-up the outcome may still occur, 
whereas censoring due to competing risks such as death inhibits the outcome from 
occurring. Furthermore, losses to follow-up are not usually expected to be related to 
the risk factors of interest, whereas losses to competing risks may be. If for example the 
risk factors that are related to the incidence of the disease are also related to mortality, 
the modification of these risk factors is likely to affect the risk of the disease and the 
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risk of death, differently depending on the direction and magnitude of the relationship 
between the risk factors and the outcome. Thus, in the estimation of PAF for disease 
incidence, in addition to the censoring due to follow-up, censoring due to death needs 
to be taken into account as well. Ignoring censoring due to death when estimating 
PAF for disease incidence means that the estimates obtained only apply under the 
assumption that no one dies during the follow-up during which the incidence of disease 
is estimated. Thus, we need different estimators of PAF depending on the event of 
interest in order to obtain accurate results. Samuelsen and Eide (2008) have discussed 
this issue with respect to the context of a specific study, but as far as I know PAF 
formulas have not been generalized to account for censoring due to competing risks. 

The pooling of cohort studies using meta-analysis techniques is becoming increasingly 
popular, as it increases the power to detect the associations between risk factors and the 
outcome. Thus, pooling becomes especially useful when the estimation of the strength 
of association is carried out in smaller subpopulations: for example, in categories of 
potential effect modifying factors. Although methodology for the pooling of relative 
risks has been applied in many studies (for example in Knekt et al. 2004 and Smith-
Warner et al. 2006), as far as the author of this dissertation knows this methodology 
has not yet been generalized to pooling of the PAF estimates. Neither has the analysis 
of the impact of potential effect modification in the calculation of the dynamic PAF yet 
been considered. 

Finally, although the estimation of PAF has been increasingly dealt with in 
methodological research since its introduction in 1953 (Levin 1953), relatively few 
publicly available programs implementing the developed estimation methods have 
been presented. Before the 1990s, there seemed to be no publicly available programs 
for estimating PAF from any study designs. Since then, programs for estimating PAF 
from case-control and cross-sectional studies in different programming languages 
(SAS, Stata, R/S+) have become available (Mezzetti et al. 1996, Brady 1998, Kahn et 
al. 1998, Grömping and Weimann 2004, Eide 2006, Lehnert-Batar 2006, Rückinger et 
al. 2009, Rämsch et al. 2009). However, as far as the author of this dissertation knows 
only one publicly available program for the estimation of static PAF in cohort studies 
has been provided (Spiegelman et al. 2007). Thus, it seems that no publicly available 
programs for estimating dynamic PAF during a certain time interval (0, ]t  (2.13) yet 
exist. To promote the estimation of PAF for follow-ups of different lengths in both 
single and pooled cohort studies, a publicly available and flexible program, which takes 
into account censoring from different sources, is urgently needed.



30 Research 34/2010
National Institute for Health and Welfare

Population Attributable Fraction (PAF) in 
Epidemiologic Follow-up Studies

3	 AIMS OF THE STUDY 

The main objective of this study was to derive formulas for the calculation of 
Population Attributable Fraction (PAF) and its variance both for total mortality and 
disease incidence in a cohort study design. These formulas cover both the main effects 
and interactions. Also, pooling of the PAF estimates and their variances from several 
single cohorts was demonstrated. In addition, a program consisting of SAS macros 
based on these formulas was developed. Finally, the application of these new formulas 
and the program was illustrated in a data example on risk factors of type 2 diabetes. 

The specific aims of the study were: 

1.	 to derive formulas for the estimation of PAF and its variance for total mortality 
in a cohort study design using a piecewise constant hazards model (Original 
publication I); 

2.	 to derive formulas for the estimation of PAF and its variance for disease incidence 
in a cohort study design using a piecewise constant hazards model and taking into 
account censoring due to death (Original publication II);

3.	 to develop a program based on SAS macros for the calculation of PAF both for 
total mortality and disease incidence in a cohort study design using a piecewise 
constant hazards model (Original publication III); and

4.	 to apply the new formulas and program for the estimation of PAF for disease 
incidence to evaluate the relative importance of modifiable potential risk factors 
of type 2 diabetes as well as their potential effect modifying factors in a pooled 
cohort study design consisting of two representative Finnish cohorts (Original 
publication IV).
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4	 STATISTICAL METHOD FOR THE ESTIMATION OF PAF IN A 
COHORT STUDY DESIGN 

4.1	 Definition of PAF in a cohort study design 

4.1.1	 General definition of PAF

Suppose that at baseline (t = 0) the study population consists of n individuals who are free 
of the outcome of interest (A). Each individual’s m risk factor values 1( ,..., )Ti i imX X X= , 
where i = 1,...,n , are known. The risk factors measured at baseline are assumed to 
be fixed and causally related to the outcome. The study population is subsequently 
followed for a given period of time, with the length of follow-up for each individual 
( Ti  ) determined as the time from baseline to the date of the outcome of interest or 
censoring, whichever comes first. Population Attributable Fraction (PAF) assesses the 
proportion of the outcome occurrence that could be avoided during a follow-up time 
interval (0, t] if it was possible to change some risk factor values to their chosen target 
values, 1( ,..., )Ti i imX X X=  → * * *

1( ,..., )Ti i imX X X= . In this notation, iX  is the vector of all 
risk factors and confounding factors of the ith individual, and thus only the modifiable 
risk factors whose effect we are interested in measuring may have a different value in 

*
iX  while the rest of the factors retain their values. The PAF is thus defined as

(4.1)	
* *

1 1 1

1 1

{ | } { | } { | }
PAF( ) 1

{ | } { | }

n n n
i i i i i ii i i

n n
i i i ii i

A X A X A X
A

A X A X
= = =

= =

Ρ − Ρ Ρ
= = −

Ρ Ρ
∑ ∑ ∑

∑ ∑
,

where { | }i iA XΡ  is the model-based probability of the outcome occurrence during the 
risk period (0, t] for the ith individual given the risk factors iX .

4.1.2	 Definition of PAF for total mortality 

If the outcome of interest is death, PAF is defined as the proportion of mortality that 
could theoretically be delayed during a follow-up time interval (0, t] if its risk factors 
were modified. Let MT  denote the time of death. Then the expected excess mortality 
during follow-up time t due to certain modifiable risk factors in iX  is given by (4.1) 
as

(4.2)	 PAF( )MT t≤  = 
*

1

1

{ | }
1

{ | }

n M
i ii

n M
i ii

T t X

T t X
=

=

Ρ ≤
−

Ρ ≤
∑
∑

.
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The expected excess mortality at any chosen interval ( , ]t t t+ Δ  can be calculated 
similarly by using the probabilities { | }M

i iP t T t t X< ≤ + Δ .

4.1.3	 Definition of PAF for disease incidence 

If the outcome of interest is the incidence of disease, PAF is defined as the proportion 
of disease cases that could theoretically be avoided during a follow-up time interval 
(0, t] if its risk factors were modified. In this case, mortality due to reasons other than 
the disease of interest causes selection of patients during follow-up. If the risk factors 
that are related to the incidence of the disease of interest are also related to mortality, 
the modification of these risk factors is likely to affect both the risk of the disease and 
the risk of death. Thus, in addition to censoring due to follow-up, which needs to be 
taken into account when estimating PAF for total mortality, censoring due to death 
also needs to be taken into account when estimating PAF for disease incidence (Figure 
1). Each individual is thus followed until the time of the occurrence of the disease 
( T D  ), death ( MT ) or censoring due to loss to follow-up or end of follow-up. Then the 
expected excess disease incidence during follow-up time t due to certain modifiable 
risk factors in X i is given by (4.1) as

(4.3)	 PAF( min( , ))D MT T t≤  = 
*

1

1

{ min( , ) | }
1

{ min( , ) | }

n D M
i i ii

n D M
i i ii

T T t X

T T t X
=

=

Ρ ≤
−

Ρ ≤
∑
∑

.

Diseased (D)

Dead (M)

h
D

h M

Healthy

hD
 Hazard for disease incidence

hM
Hazard for mortality 

1

Figure 1. 	 Illness-death model for the disease of interest and corresponding hazards.
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It is not, however, self-evident that if certain risk factor values, related both to the 
occurrence of the disease and death, were modified, the probability of the disease 
occurrence during follow-up would decrease. Although it is probable that the person 
would contract the disease later, he or she would probably also live longer, and thus 
still contract the disease before dying. The PAF could thus turn out to be negative. 
One way of reducing the likelihood of this would be to estimate the excess disease 
incidence up to a certain age. 

4.2	 General model assumptions 

The following assumptions in the calculation of PAF for total mortality or for 
disease incidence from the cohort study design are made in this study. Proportional 
hazards models are applied. The hazard of death is ( )Mh t  and the hazard of disease 
incidence ( )Dh t . The corresponding cumulative hazard functions are then ( )MH t  = 

0
( )

t Mh u du∫  and ( )DH t  = 
0

( )
t Dh u du∫ . We will also define short-hand notations ( )MS t  

= exp ( )MH t⎡ ⎤−⎣ ⎦  and ( )DS t  = exp ( )DH t⎡ ⎤−⎣ ⎦ , which will not, however, have survival 
function interpretations in the situation with competing risks. For each individual, 
the hazard functions are assumed to depend on the X vector of observed risk factors: 

( ; )Mh t X  and ( ; )Dh t X . The time of death T M and the time of the occurrence of the 
disease T D  are assumed to be conditionally independent given X, which is assumed to 
include all relevant risk factors for both mortality and disease incidence. The hazard 
function corresponding to disease-free survival, min(T M ,T D), is thus assumed to be 

( ; ) ( ; )D Mh t X h t X+ . Then, the probability that the first event occurring at a given time 
point t is the disease is 

	
{ } ( ; )min( , ) min( , )

( ; ) ( ; )

D
M D D M D

D M

h t XT T T T T t
h t X h t X

Ρ = = =
+

. 

There may still be right-censoring by T C, which is assumed to be conditionally 
independent of T M  and T D  given X. If the outcome of interest is death, we then observe 
for each individual T C = min(T C, T M) in case of right-censoring or T M = min(T C, T M) in 
case of death. If the outcome of interest is incidence of disease, we observe T C = min(T C, 

T M, T D), T M = min(T C, T M, T D), T D < T C = min(T C, T M) or T D < T M  = min(T C < T M ). It is 
important to note, that the definition of PAF does not depend on T C. 
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4.2.1	 Piecewise constant hazards model 

In the calculation of PAF, the waiting times T M  and  T D are assumed to be independent 
and to follow a proportional hazards model with piecewise constant baseline hazard 
functions, given X. In a parametric piecewise constant hazards model, the follow-up 
time is partitioned into J-1 intervals 1 2 2 3 1 1(0 , ], ( , ], , ( , ], , ( , ]j j J Ja a a a a a a a− −= … … , 
where 1j ja a− <  for all j and the hazard for the ith individual

(4.4)	 ( ; )ih t X  =
 

11{ }
0

1

exp( ) j j
J

a t aT
i j

j

X β λ − < ≤

=
∏

is allowed to depend on time by letting the value of the baseline hazard 0 jλ  change  at 
times a j  (Friedman 1982). A log-linear function between the risk factors and the hazard 
function is thus assumed. The effect of age can be taken into account by dividing the 
range of individual dates of birth into B-1 birth cohorts 1 2 1 1( , ],..., ( , ],..., ( , ]b b B Bv v v v v v− −  
and then further stratifying the baseline hazard by them ( 0 ijb

λ ) (Korn et al. 1997) . Let 
us thus denote the hazard of death at time t for the ith individual given the birth cohort  
bi  and risk factors iX  = 1( ,..., )Ti imX X as in (4.4)

(4.5) 	 ( ; , )M
i ih t b X  =

 

11{ }

1

( ) j j
J

a t aM
ij

j

λ − < ≤

=
∏ ,

the hazard of disease incidence as

(4.6)	 ( ; , )D
i ih t b X  = 11{ }

1

( ) j j
J

a t aD
ij

j

λ − < ≤

=
∏ ,

where 

(4.7)	 0 exp( ) exp( ) exp( )
i i

M M T M M T M M
ij jb i jb i ijX X Zλ λ β α β γ= = + =

and

(4.8)	 0 exp( ) exp( ) exp( )
i i

D D T D D T D D
ij jb i jb i ijX X Zλ λ β α β γ= = + = .

In this notation, 0log
i i

M M
jb jbα λ=  is the logarithm of the baseline hazard of death 0( )

i

M
jbλ  

and 0log
i i

D D
jb jbα λ=  the logarithm of the baseline hazard of disease incidence 0( )

i

D
jbλ . 

Virtually any baseline hazard can be well approximated by choosing closely-spaced cut-
points for the intervals. Similarly, Mβ  and Dβ  are the vectors of regression coefficients 
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for death and disease incidence, respectively, for the covariates Xi , which can be either 
categorical, continuous or their interactions. Furthermore, Zij is the vector with length 
JB+m, including JB indicators of time interval and birth cohort and the covariates 

iX   corresponding to the regression coefficients  11 1( , ..., , , ..., )M M M M M T
JB mγ α α β β=  and 

11 1( , ..., , , ..., )D D D D D T
JB mγ α α β β= . The *M

ijλ and *D
ijλ  follow similarly by replacing iX  by 

*
iX  in (4.7) and (4.8).

4.3	 Model-based calculation of PAF in a cohort study design 

4.3.1	 Calculation of PAF for total mortality 

The probability of death during follow-up time interval (0, t] for the ith individual, 
given the birth cohort bi and the risk factors Xi , in (4.2) is calculated as

	 { | , }M
i i iT t b XΡ ≤  = 1 ( ; , )M

i iS t b X− ,  

where the survival function using (4.5) is given by

	
1

( ; , ) exp ( )
J

M M
i i ij j

j
S t b X tλ δ

=

⎡ ⎤
−⎢ ⎥
⎣ ⎦
∑ = ,

where ( )j tδ  defines the length of follow-up time in the jth interval 

(4.9) 	
1

1 1

1
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−
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−
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.

The PAF for total mortality during the follow-up time interval (0, t] can then be 
calculated as in (4.2)

(4.10)	
{ }
{ }

*
1 1

(0, ]

1 1

1 exp ( )
PAF( ) PAF 1

1 exp ( )

n J M
ij ji jM M

t n J M
ij ji j

t
T t

t

λ δ

λ δ

= =

= =

⎡ ⎤− −⎣ ⎦≤ = = −
⎡ ⎤− −⎣ ⎦

∑ ∑
∑ ∑

,

where M
ijλ  is given by (4.7) and *M

ijλ  follows similarly by replacing iX  by *
iX  in these 

formulas.
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4.3.2	 Calculation of PAF for disease incidence

The crude probability of disease occurrence is defined as the probability that an 
individual who is free of a disease at a specific time, 1ja − , will develop that disease 
in a subsequent time interval, 1( , ]j ja a−  (Gail and Pfeiffer 2005). This probability is, 
however, affected by mortality due to other causes. Thus, in order to calculate PAF for 
the incidence of disease (4.3), we need to estimate the probability of disease occurrence 
when the time of death is also taken into account. The probability of occurrence of a 
certain disease, given the birth cohort bi  and the risk factors Xi in (4.3), using (4.6) is 
then 

{ min( , ) | , }D M
i i i iT T t b XΡ ≤ = 1 11

{ , , } { , }J D
i j j i i j j i ij

T T a T a b X a T a b X− −=
Ρ = < ≤ Ρ < ≤∑

	                               = , 11
( )

D
J ij

i j ijD Mj
ij ij

S S
λ

λ λ −=
−

+∑ ,

where t is chosen to be aj , min( , )D MT T T=  and 

	
	

11
exp ( )( )jD M D M

ij ij ij ik ik k kk
S S S a aλ λ −=

⎡ ⎤= = − + −⎣ ⎦∑
	

 
is the disease-free survival up to time aj. Thus, according to (4.3) the PAF for the 
incidence of disease is given by

(4.11)	 PAF( min( , ))D MT T t≤  =	 

*
* *
, 1* *1 1

, 11 1

( )
1

( )

D
n J ij

i j ijD Mi j
ij ij

D
n J ij

i j ijD Mi j
ij ij

S S

S S

λ
λ λ

λ
λ λ

−= =

−= =

−
+

−
−

+

∑ ∑

∑ ∑
,

where M
ijλ is given by (4.7) and D

ijλ  by (4.8) and *M
ijλ and *D

ijλ  follow similarly by 
replacing iX  by *

iX  in these formulas.

4.4	 Estimation of PAF in a cohort study design 

4.4.1	 Estimation of PAF for total mortality 

Estimation of parameters 
For estimating the PAF for total mortality (4.10), we first need to estimate the parameters 
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11 1( ,..., , ,..., )M M M M M T
JB mγ α α β β= . Note that in some applications the parameters might 

be estimated in one population and the PAF be calculated in another (standard) 
population. The maximum likelihood estimates of Mγ  can be obtained by maximizing 
the overall likelihood function given by

	 ( )ML γ  =
1 1

( ) exp ( )
M
ij

n J
dM M

ij ij j i
i j

tλ λ δ
= =

⎡ ⎤−⎣ ⎦∏∏   

	             
= { }

1 1

exp( ) exp exp( ) ( )
n J

M M M
ij ij ij j i
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=

1 1 1 1
exp exp exp( ) ( )

n J n J
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i j i j
d Z Z tγ γ δ
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−⎢ ⎥⎜ ⎟ ⎢ ⎥

⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
∑∑ ∑∑

or the logarithm of the likelihood function given by 

	 1 1 1 1
( ) log ( ) exp( ) ( )

n J n J
M M M M M

ij ij ij j i
i j i j

l L d Z Z tγ γ γ γ δ
= = = =

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∑∑ ∑∑ .

In this notation, M
ijd  is the indicator which indicates at which interval j the event takes 

place and thus obtains a value of 1 at that interval; otherwise its value is 0:

(4.12) 	 M
ijd  = 11, 0 ( ) min( , )

,
0, otherwise

j i i j jt t a aδ −< < −⎧
⎨
⎩

where ( )j tδ  defines the length of follow-up time in the jth interval (4.9). The log-
likelihood function will be maximized where the score function ( )MS γ , which is a 
(JB+m) × 1 vector of the first order partial derivatives of the log-likelihood function 
with respect to each of the JB+m individual elements of Mγ , equals zero: 

	 1 1 1 1

( )( ) exp( ) ( ) 0
M n J n J

M M M
ij ij ij ij j iM

i j i j

lS d Z Z Z tγγ γ δ
γ = = = =

∂= = − =
∂ ∑∑ ∑∑ .

The asymptotic variance for the estimates ˆMγ  can be obtained using the inverse of the 
Fisher information matrix ( )I γ , which can be obtained as minus of the expected value 
of the Hessian matrix, which is a (JB+m) × (JB+m) matrix of the second order partial 
derivatives of the log-likelihood function with respect to all possible combinations of 
the JB+m individual elements of Mγ : 
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2

1 1

( )( )  exp( ) ( )
( )

M n J
M M T

ij ij ij j iM M T
i j

lH Z Z Z tγγ γ δ
γ γ = =

∂= = −
∂ ∂ ∑∑ .

Since the score function cannot, however, be solved in closed form, maximum 
likelihood estimation with iterative methods, such as Newton-Raphson or Fisher 
Scoring, are required to obtain the parameter estimates 11 1̂

ˆˆ ˆ ˆ( ,..., , ,..., )M M M M M T
JB mγ α α β β=  

and their estimated covariance matrix 
M

∑  (Bickel and Doksum 2001). The SAS 
procedure LIFEREG was used for this purpose (SAS Institute Inc. 2007). 

Estimation of PAF
In this section, the PAF for total mortality, (0, ]PAFM

t , is written in brief as PAF. The 
point estimate of PAF can be obtained by replacing the unknown parameter values Mγ  
in (4.10) by their point estimates ˆMγ . The variance estimate of PAF can be obtained 
using the delta method, according to which

(4.13)	 2
PAF(PAF PAF) (0, )Dn N σ− ⎯⎯→ ,

where the limiting variance of PAF can be consistently estimated by

(4.14)	 2
PAFσ̂  = PAF PAF

ˆ

T
M

M MM M γ γγ γ
⎛ ⎞ ⎛ ⎞∂ ∂

∑⎜ ⎟ ⎜ ⎟ =∂ ∂⎝ ⎠ ⎝ ⎠
.

The approximate 95% confidence interval of PAF  is then obtained by 

(4.15)	 PAF +1.96 2
PAFσ̂× .

This normal approximation for the sampling distribution of PAF  is not accurate when 
the sample size is small and the distribution of PAF  is skewed, especially when it 
is skewed towards high values for PAF. In that case, some symmetrizing monotone 
strictly increasing transformation of PAF, g(PAF), such as the complementary 
logarithmic transformation, g(PAF) = log(1–PAF), should be used. Then, the PAF in 
formulas (4.13), (4.14) and (4.15) is replaced by g(PAF) and, finally, the 95% confidence 
interval of (PAF)g  is transformed back to the original scale by using the inverse of the 
complementary logarithmic transformation given by

(4.16)  	 1 2
(PAF)ˆ(PAF) 1.96 gg g σ− ⎡ ⎤± ×⎣ ⎦ .
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4.4.2	 Estimation of PAF for disease incidence 

Estimation of parameters
For estimating PAF for incidence of disease (4.11), we first need to estimate the 
parameters Dγ  for disease incidence and Mγ  for death. Estimation of the parameters 
Dγ  and Mγ  is based on the data of the individual follow-up times until the occurrence of 

the disease of interest, death or censoring, whichever comes first: Ti = min( , , )D M C
i i iT T T . 

As the right-censoring is assumed to be independent and noninformative (Andersen 
et al. 1993), we have two events of interest here for which we define corresponding 
indicator variables for each individual i and interval 1( , ]j ja a− : disease incidence ( D

ijd ) 
and death ( M

ijd ). The indicator ijd  indicates at which interval j the event takes place 
and thus obtains a value of 1 at that interval; otherwise its value is 0 (4.12).

The overall likelihood function can thus be expressed as: 

	 ( , )D ML γ γ  = 
1 1

( ) ( ) exp ( ) ( )
M D
ij ij

n J
d dM D D M

ij ij ij ij j i
i j

tλ λ λ λ δ
= =

⎡ ⎤− +⎣ ⎦∏∏ ,

where min( , )D M
i i it t t=  is the event time of the first event and

( )j tδ  = 1max(min( , ) ,0)j jt a a −− , as given in equation (4.9), denotes the length of follow-
up time at each interval until the time of the event. The overall likelihood function 
can be rewritten so that the parts related to disease incidence and death are grouped 
together so that

	 ( , )D ML γ γ = ( ) ( )D ML Lγ γ ,

where

	 ( )DL γ  = 
1 1

( ) exp ( )
D
ij

n J
dD D

ij ij j i
i j

tλ λ δ
= =

⎡ ⎤−⎣ ⎦∏∏
and

	 ( )ML γ  = 
1 1

( ) exp ( )
M
ij

n J
dM M

ij ij j i
i j

tλ λ δ
= =

⎡ ⎤−⎣ ⎦∏∏ .

The log-likelihood function is the sum of the separate log-likelihood functions for Dγ  
and Mγ . The maximization can thus be made separately for each parameter vector using 
standard likelihood theory for a piecewise constant hazards model. As both likelihood 
functions are based on independent observations from exponential distributions, the 
two sets of maximum likelihood estimates ˆDγ  and ˆMγ  are known to be asymptotically 
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multivariate normal. They are also asymptotically independent (the Fisher information 
matrix is block-diagonal). In this study, the SAS procedure LIFEREG was used to 
compute the estimates ˆDγ  and ˆMγ  and their estimated covariance matrices ˆ D∑  and 
ˆ M∑  (SAS Institute Inc. 2007). The approximate sampling distribution of

	

ˆ
ˆ

D D

M Mn
γ γ
γ γ
⎛ ⎞−
⎜ ⎟−⎝ ⎠

  is then  
0 0
,

0 0

D

M
N
⎛ ⎞⎛ ⎞∑⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ∑⎝ ⎠⎝ ⎠

.

Estimation of PAF 
In this section, the PAF for disease incidence, (0, ]PAFD

t , is written in brief as PAF. 
The point estimate of PAF for the incidence of disease is obtained by replacing the 
unknown parameter values Dγ  and Mγ  in (4.11) by their point estimates ˆDγ  and ˆMγ . A 
symmetrizing complementary logarithmic transformation of PAF, g(PAF) = log(1–PAF) 
is used to estimate the confidence interval of PAF . The variance estimate of g(PAF)  
can be obtained using the delta method (4.13), where the limiting variance of PAF for 
the incidence of disease can be consistently estimated by

(4.17)	
2
PAFσ̂   = 

PAF PAF
ˆ

T
D

D DD D γ γγ γ
⎛ ⎞ ⎛ ⎞∂ ∂

∑⎜ ⎟ ⎜ ⎟ =∂ ∂⎝ ⎠ ⎝ ⎠
 + 

	                
1 1

PAF PAF
ˆ

T
M

M MM M γ γγ γ
⎛ ⎞ ⎛ ⎞∂ ∂

∑⎜ ⎟ ⎜ ⎟ =∂ ∂⎝ ⎠ ⎝ ⎠
.

 

The approximate 95% confidence interval of (PAF)g  is then obtained using (4.15) and 
is finally transformed back to the original scale using (4.16).

4.5	 Estimation of PAF in a cohort study design in the presence of potential 
effect modification 

In the calculation of PAF, we may want to consider the potential effect modification, 
i.e. whether the relationship between the risk factor and the outcome of interest, and 
thus potentially also PAF, varies according to the values of a potential effect modifying 
factor. To analyze the impact of the potential effect modifying factor, an interaction 
term between the risk factor and the potential effect modifying factor is included in 
the model, which gives separate parameter estimates for the risk factor in the different 
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categories of the potential effect modifying factor. Separate PAF estimates are then 
calculated in the subpopulations defined by the categories of the potential effect 
modifying factor. The statistical significance of effect modification can be assessed by 
calculating the confidence intervals for the differences between these PAF estimates. 
In case of an effect modifying factor with two categories, for example, we estimate the 
PAF difference 1 2PAF PAF−  and its 95% confidence interval

(4.18)	 1 2(PAF PAF )− + 1.96
1 2

2
PAF PAFσ̂ −× ,

where PAF is used to denote either PAF for mortality (4.10) or PAF for disease 
incidence (4.11). The variance of the PAF difference is obtained using the delta method 
(4.13), where PAF is replaced by 1 2PAF PAF− , and where the limiting variance of 

1 2PAF PAF− , 
1 2

2
PAF PAFσ̂ − , can be consistently estimated using (4.14) in case of total 

mortality and using (4.17) in case of incidence of disease.

It is important to note that since both the prevalence of the risk factors and the strength 
of the association between the risk factors and the outcome affect PAF, the effect 
modification may be due to either of these components. 

4.6	 Estimation of PAF in a pooled cohort study design 

In a pooled cohort study design, the results from several single cohort studies are 
summarized using a specific methodology (Knekt et al. 2004, Smith-Warner et al. 
2006). To estimate PAF in a pooled cohort study design, the study-specific PAFs are 
combined, weighting them by the inverse of their variance, in a random-effects model 
(DerSimonian and Laird 1986):

(4.19)	
1

PAF PAF
S

s
s

sw
=

=∑ ,

where

 (4.20)	
2 1
PAF

2 1
PAF1

ˆ( )

ˆ( )
s

s

s S

s

w
σ

σ

−

−
=

=
∑

, 

where PAF s  denotes  the PAF estimate either for mortality (4.10) or for disease 
incidence (4.11) from the sth study, ws the weight of the sth study and 2

PAFˆ
s

σ  the variance 
of the PAF s , where s = 1,…, S is the study number. The statistical significance of the 
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heterogeneity between the study-specific PAFs can be tested by applying the asymptotic 
DerSimonian and Laird Q statistic (DerSimonian and Laird 1986), thus given by

(4.21)	 * 2

1
(PAF PAF)

S

s
s

sQ w
=

= −∑ ,

where * 2 1
PAFˆ( )

ssw σ −= . The Q test statistic follows under the null hypothesis of a 
homogeneous PAF an approximate 2

1sχ −  distribution. The potential heterogeneity 
due to potential effect modifying factors can be tested using the Wald test (Stram 
1996). Similarly, if the complementary logarithmic transformation of PAF, 

(PAF) log(1 PAF)g = − , is used, the PAF in formulas (4.19), (4.20), and (4.21) is replaced 
by g(PAF). Finally, the pooled point estimate (PAF)g  and its confidence interval are 
transformed back to the original scale by using the inverse of the complementary 
logarithmic transformation, as in (4.16). 
 
Before pooling of estimates from individual studies it is important to determine 
whether all these studies can be combined for a single effect estimate representative 
of the phenomenon we are interested to study. To do this, the comparability of the 
studies with respect to their design, representativeness, distribution of background 
variables and risk factors, exposure assessment, adjustment for confounding factors, 
and quality and nature of statistical methods used should be explored and sufficient 
similarity ascertained. This is usually done to the extent possible through a priori 
specified inclusion criteria for acceptable studies and through standardisation of 
all relevant variables between the individual studies and use of the same statistical 
methods in them whenever possible. Furthermore, when pooling the estimates of 
the selected studies, homogeneity among them should be tested. If the hypothesis of 
homogeneity is rejected, the average estimate is unrepresentative, and thus the sources 
of observed heterogeneity should be explored and the analyses and reporting limited 
to homogeneous subgroups. In the pooling of PAF estimates in particular, it should 
be noted that both the strength of the association between the risk factor and the 
outcome and the prevalence of the risk factor in different studies may influence the 
heterogeneity. 
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COHORT STUDY DESIGN 

5.1	 Background and objectives

As summarized in the review of the literature in Chapter 2, there are no publicly 
available programs for estimating the dynamic PAF in cohort studies during a certain 
time interval (0, t]. In this chapter, a program, consisting of separate SAS macros, for the 
estimation of PAF during a time interval (0, t] and its asymptotic variance both for total 
mortality and disease incidence will be presented. This program is implemented using 
the statistical methods described in Chapter 4. Accordingly, censoring due to death in 
the estimation of PAF for disease incidence will be taken into account. The program is 
flexible in that several categorical or continuous risk factors and confounding factors, 
as well as interactions which also allow for the analysis of potential effect modification, 
can be included in the model. In the estimation, the times until the occurrence of death 
or disease are assumed to follow a proportional hazards model with piecewise constant 
baseline hazard functions. The baseline hazard is allowed to change according to the 
follow-up time interval and birth cohort and the cut-points for these can be chosen as 
closely-spaced as considered necessary to well approximate the hazard, as long as the 
iterative estimation algorithm still converges. 

In this chapter, the functioning of the new program, and the SAS macros it is based 
on, is explained. Also, an illustration of the application of this program, based on 
simulated data, is provided. In this application, it is demonstrated how consideration 
of censoring due to death in the estimation of PAF for disease incidence changes the 
estimated PAF and its confidence interval.

5.2	 Functioning of the program

The estimation of PAF is organized as a sequence of SAS macros. These macros 
require SAS version 9.2 and the procedures LIFEREG, LOGISTIC, TRANSPOSE, 
SQL, and IML. 

First, an input data matrix needs to be prepared, in which there are as many rows for 
each individual as there are follow-up time intervals (depending on the choice of the cut-
points in the piecewise constant hazards model), after the total follow-up time has been 
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divided to these intervals (see Original publication III for more detailed instructions 
for the data preparation). If the outcome of interest is a disease incidence, two separate 
input data matrices for disease and death must be formed and the follow-up time 
intervals in them must be of the same length. The columns of the input data matrices 
should include the relevant information related to the individuals: an identification 
number, a binary variable indicating whether the person died (developed the disease) 
during the follow-up or not, the time to death (disease) or censoring, their birth cohort 
(if used in the stratification of the baseline hazard), and the risk factors of interest and 
confounding factors, which can be categorical or continuous. 

Then, when the input data matrices have been prepared, the PAF for total mortality, 
using the SAS macro PAF_M, or PAF for disease incidence, using the SAS macro 
PAF_D, can be calculated (see Figure 2). This is done in three steps (see Original 
publication III for a more detailed description of the functioning of the macros used in 
the PAF analysis):

1.	 The design matrices (Z and Z* in formulas (4.7) and (4.8)) are prepared, and 
estimates of the parameters ( Mγ  in formula (4.7) or Dγ  in formula (4.8)) together 
with their estimated covariances ( ˆ M∑  in formula (4.14) or ˆ M∑  and ˆ D∑  in formula 
(4.17)) are produced using the Fisher Scoring method in the SAS procedure 
LIFEREG. To do this, the main macros PAF_M or PAF_D call the macro EST_
MATRIX.

2.	 The PAF estimates, either for total mortality or disease incidence, their standard 
errors and 95% confidence intervals are calculated using the formulas provided 
in subsections 4.4.1. and 4.4.2 (the SAS code implementing these formulas is 
given in Appendices 1 and 2). To do this, either the main macro PAF_M calls the 
macro EST_PAF_M (total mortality) or the main macro PAF_D calls the macro 
EST_PAF_D (disease incidence).

3.	 The relative risks and PAFs, either for total mortality or disease incidence, 
together with their 95% confidence intervals for the risk factors of interest are 
printed out (and can be also be found in work directory). A more comprehensive 
output from the LIFEREG procedure is optional.
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ORIGINAL DATA
       MATRIX

PREPARATION

DATASET_M

DATASET_D

EST_MATRIX

EST_PAF_M

EST_PAF_D

PAF_M \ PAF_D

1.

2. 3.
γ̂M , Σ̂M

γ̂M , Σ̂M

γ̂D, Σ̂D

Z, Z∗
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�PAF
M
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�PAF
D

, σ̂PAFD

2

Figure 2. 	 PAF analysis.

In case potential effect modification is analyzed, the design matrices *( , )Z Z created 
in Step 1 are divided into separate design matrices * *

1 1( , ,..., , )K KZ Z Z Z  according to 
the K categories of this potential effect modifying factor. Then, PAF estimates at 
Step 2 are calculated separately in all subpopulations defined by the categories of 
the effect modifying factor (by calling the macros K times). Finally, the differences 
between these subpopulation-specific PAF estimates and their statistical significance 
are analyzed using the formulas given in subsection 4.5 (by calling yet another macro 
EST_PAF_DIFF_M (total mortality) or EST_PAF_DIFF_D (disease incidence)).

5.3	 Data example based on simulated data 

5.3.1	 Simulation design 

In this simulation study, the importance of considering censoring due to death in the 
estimation of PAF for disease incidence under different circumstances is demonstrated. 
Both the impact of the strength of the association between the risk factor of interest 
and disease occurrence or death and different follow-up time periods was considered. 
Times to disease occurrence ( )DiT or death ( )M

iT  were simulated from the family of 
Weibull distributions Weibull(k, iλ ) with the hazard function

	

1
1( ; , )

k
k

k

k t kh t k tλ
λ λ λ

−
−⎛ ⎞= =⎜ ⎟

⎝ ⎠
, 

where k is the shape parameter and λ  the scale parameter. It was assumed that the scale 
depends on the explaining variables through 1 exp( )T

i iXλ β− = . The shape parameter for 
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disease and death was allowed to be different. In this study, we consider one dichotomous 
risk factor X with RR = exp( )β . The values of 2 and 4 were chosen to represent 
relatively low and relatively high RRs, respectively, for both disease occurrence and 
death and all four relative risk combinations were studied. Datasets of n = 50 000 
observations for the four different combinations of RRs were then simulated using the 
following scheme:

1.	 Draw X i ~ Bin(1, 0.5) and Age i ~ Uniform(40, 79) and round age to the nearest 
integer.

2.	 Fix the Weibull shape parameter to be kM = 2.1 for mortality and kD = 2.5 for 
disease occurrence. Determine the Weibull scale parameter as a function of age, 

iM
λ = 45 + (Age i − 40)(−1) for mortality and 

iD
λ = 100 + (Age i − 40)(−1.5) for 

disease occurrence, to represent realistic baseline hazards for death and disease 
occurrence from 40 years on.

3.	 Simulate 

	
( )1log *

Weibull , i

M
M i

MM
i M kRR X
T k

e

λ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∼  and 
( )1log *

Weibull , i

D
D i

DD
i D kRR X
T k

e

λ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∼ ,

where RRM and RRD represent the RRs for mortality and disease occurrence when  
Xi = 1 in comparison to Xi = 0.

The follow-up time period was restricted to either 5, 10 or 20 years and the corresponding 
outcome variables for disease occurrence and death, indicating whether these events 
took place during those follow-up periods, were formed. 

5.3.2	 PAF analysis 

After the four simulated datasets of n = 50 000 follow-up times until disease incidence 
or death, with the relative risk of the outcome being either 2 or 4, were prepared and 
the outcome variables, indicating whether disease or death occurred during the 5-, 10- 
or 20-year follow-up periods chosen, were formed, the PAF analysis could be carried 
out. First, the simulated data sets, which also included identification numbers for each 
observation, the binary risk factor, age, and the calculated birth year (assuming that 
this study was carried out in the year 2000), were prepared to fit the form required by 
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the PAF program, described in subsection 5.2. In preparing the data, 5-year follow-
up time intervals and 10-year birth cohorts were used. Second, the point estimates of 
PAF, together with their 95% confidence intervals (CI) were calculated, using both 
the formulas for the estimation of PAF for disease incidence D

(0, ](PAF )t , which account 
for the censoring due to death, and the formulas for the estimation of PAF for total 
mortality M

(0, ](PAF )t , which ignore censoring due to death if outcomes other than 
death are used in them. It should be noted, however, that the hazard of the Weibull 
distribution, from which the follow-up times were drawn, is not piecewise constant as 
in the piecewise constant hazards model which was used in the estimation of M

(0, ]PAF t  
and D

(0, ]PAF t  in Chapter 4. Finally, the PAF estimates obtained when either considering 
or ignoring censoring due to death for a certain follow-up t (here 5, 10, and 20 years) 
were compared. 

5.3.3	 Results 

The differences in the results obtained using the two different PAF methods, one 
accounting for and one ignoring censoring due to death in the estimation of PAF 
for disease incidence, under different relative risks and follow-up time periods are 
substantial (Table 1). In general, the longer the follow-up time, and thus the greater 
the mortality, the more significant the effect of censoring due to death on the PAF 
estimates becomes. If the relative risk for mortality is small (RR=2), while the relative 
risk for disease incidence is equal or higher (RR=2 or RR=4), the consideration of 
censoring due to death results in significantly lower PAF estimates only when the 
follow-up time is long (t=20). If, on the other hand, the relative risk for mortality is 
high (RR=4), while the relative risk for disease incidence is equal or smaller (RR=4 
or RR=2), the differences between the PAF estimates are already realized in a shorter 
follow-up time (t=10). If the risk factor has a stronger impact on death (RR=4) than on 
disease incidence (RR=2), the PAF estimates may even become negative (PAF = –5%, 
CI: –8%, –2%) when censoring due to death is taken into account. If censoring is not 
accounted for, the PAF equals 30% (CI: 28%, 33%). In summary, ignoring censoring 
due to death in the estimation of PAF for disease incidence leads to an overestimation 
of the proportion of preventable disease cases and thus to biased conclusions.
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Table 1. 	 Comparison of the estimates of PAF for disease incidence (95% confidence 
intervals (CI)) accounting D

(0, ](PAF )t  and not accounting (0, ](PAF )M
t  for censoring 

due to death in a simulated data for 50 000 individuals according to relative 
risk (RR) of the modified binary risk factor for disease and death and length of 
follow-up.

RR for 
disease

RR for 
death

Follow-up

5 years 10 years 20 years

D
(0, 5]PAF M

(0, 5]PAF D
(0, 10]PAF M

(0, 10]PAF D
(0, 20]PAF M

(0, 20]PAF

2 2 0.38 0.41 0.30 0.38 0.17 0.30
(0.20, 0.53) (0.22, 0.55) (0.22, 0.37) (0.31, 0.44) (0.14, 0.20) (0.28, 0.33)

2 4 0.35 0.41 0.18 0.38 -0.05 0.30
(0.15, 0.50) (0.22, 0.55) (0.11, 0.26) (0.31, 0.44) (-0.08, -0.02) (0.28, 0.33)

4 2 0.64 0.66 0.55 0.61 0.47 0.57
(0.52, 0.73) (0.54, 0.75) (0.50, 0.60) (0.56, 0.65) (0.44, 0.49) (0.55, 0.59)

4 4 0.62 0.66 0.46 0.61 0.28 0.57
(0.49, 0.71) (0.54, 0.75) (0.40, 0.51) (0.56, 0.65) (0.25, 0.31) (0.55, 0.59)
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6	 RELATIVE IMPORTANCE OF THE MODIFIABLE RISK 
FACTORS OF TYPE 2 DIABETES – AN APPLICATION OF PAF 

The occurrence of type 2 diabetes is, mainly due to the ongoing obesity epidemic, 

continuously growing worldwide (Wild et al. 2004). Besides obesity, other lifestyle 
factors, such as exercise, smoking, alcohol consumption, and some dietary habits (van 
Dam 2003), and combinations of these (Hu et al. 2001, Schulze et al. 2007, Mozaffarian 
et al. 2009) have also been shown to predict the occurrence of this disease. Recently 
it has been suggested that a low serum vitamin D concentration, related to lifestyle 
both through the diet (e.g. fish consumption) and outdoor activity (sunlight), may also 
predict the occurrence of type 2 diabetes (Pittas et al. 2006, Knekt et al. 2008). 

Criteria of metabolic syndrome help to identify individuals at high risk for type 2 
diabetes: the definition provided by the International Diabetes Federation (IDF) being 
the most recent (Alberti et al. 2006). Although the prediction of individual components 
of metabolic syndrome in this definition (i.e. waist circumference, blood pressure, 
serum HDL cholesterol, serum triglycerides and fasting glucose) on type 2 diabetes 
is well known (Hanson et al. 2002, Stern et al. 2002, Cheung et al. 2007), the risk 
attributable to the syndrome as a whole in a representative population sample has not 
been well described (Cheung et al. 2007, Cameron et al. 2008, Ford et al. 2008). In 
addition, a variety of risk scores combining factors related to lifestyle and metabolic 
syndrome have been proposed for identifying high-risk individuals (Stern et al. 2002, 
Lindstrom and Tuomilehto 2003, McNeely et al. 2003, Kanaya et al. 2005, Schmidt et 
al. 2005, Norberg et al. 2006).

It has been suggested that the role of lifestyle modification in reducing the incidence 
of type 2 diabetes is especially important in persons at high risk (Narayan et al. 2003, 
Schulze et al. 2007). Many intervention studies have also shown that positive changes 
in lifestyle, i.e. weight loss, increased exercise and improved diet, reduce the incidence 
of type 2 diabetes in high-risk individuals (Hu et al. 2006, Liberopoulos et al. 2006). 
However, a prediction of the modifiable lifestyle factors on the incidence of diabetes in 
individuals with and without metabolic syndrome has not yet been compared (Taslim 
and Tai 2009), and it is thus not known whether the effect of lifestyle modifications 
actually differs in high- and low-risk individuals. 
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This study presents Population Attributable Fraction (PAF) estimates for modifiable 
lifestyle factors and components of the metabolic syndrome, and compares the expected 
importance of the lifestyle modification in persons with and without metabolic 
syndrome in a pooled sample of two representative Finnish cohorts.

6.1	 Populations and measurement methods 

6.1.1	 Study populations

The data in this study were based on two cohorts, the Mini-Finland Health Survey 
(MFH) carried out in 1978–1980 (Aromaa et al. 1989) and the Health 2000 Survey 
(Health 2000) carried out in 2000–2001 (Aromaa and Koskinen 2004). Both samples 
were stratified two-stage cluster samples, representative of the Finnish adult population 
aged 30 years and over. The MFH sample comprised 8,000 individuals from 40 
geographical areas, and the Health 2000 sample 8,028 individuals from 80 areas. A 
total of 7,217 subjects (90% of the sample) in the MFH sample and 6,771 subjects (84% 
of the sample) in the Health 2000 sample participated in a health examination. Persons 
aged 40–79 years and free of type 2 diabetes and cardiovascular diseases at baseline 
were included in this study. The final data comprised a total of 4,517 individuals (2,004 
men and 2,513 women) from the MFH sample and 4,110 individuals (1,850 men and 
2,260 women) from Health 2000 sample.  

6.1.2	 Risk assessment 

Variables considered 
Data on education, smoking, leisure time exercise, alcohol consumption, previous 
diseases (e.g. type 2 diabetes and cardiovascular diseases), and antihypertensive 
medication were self-reported in a health interview or a self-administered questionnaire 
at baseline. Height and weight were measured at a health examination, and body mass 
index (BMI) was calculated. Waist circumference was measured in Health 2000 only. 
Casual blood pressure was measured twice with a 1.5 minute interval in both populations 
by the auscultatory method, and fasting blood samples were taken and stored at –20 °C 
(MFH) or –70 °C (Health 2000). Serum HDL cholesterol, serum triglycerides, and 
fasting glucose levels were determined as soon as technically possible (usually some 
weeks) after the samples were taken. Serum HDL cholesterol was analyzed using 
Mg-dextrane sulphate precipitation in MFH (Kostner 1976) and using a direct method 
in Health 2000 (HDL-C Plus, Roche Diagnostics, Germany). Serum triglyceride 
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concentration was determined fully enzymatically (MFH: Boehringer, Mannheim, 
Germany; Health 2000: Olympus System Reagent, Germany). Plasma samples were 
used for glucose analysis in MFH (glucose oxidase, Boehringer Mannheim, Germany) 
and serum samples in Health 2000 (hexokinase, Olympus System Reagent, Germany). 
Serum vitamin D concentrations (serum 25-hydroxyvitamin D) were determined in 
2001–2004 using  radioimmunoassay (RIA, DiaSorin, Minnesota). Every variable was 
standardized between the two cohorts to the greatest extent possible.

Low-risk lifestyle 
Five modifiable lifestyle factors were used to define a low-risk lifestyle level, i.e. 
BMI, exercise, smoking, alcohol consumption, and serum vitamin D. Low risk was 
defined as a BMI < 25.0 kg/m2, occasional or regular exercise (3–4 hours per week, i.e. 
approximately 30 minutes per day), not smoking, alcohol consumption of 1–99g/week 
in women and 1–199g/week in men, and a serum vitamin D level above the median 
( > 39 nmol/l in MFH and > 44 nmol/l in Health 2000).

The metabolic syndrome
The metabolic syndrome was, according to the International Diabetes Federation (IDF) 
(Alberti et al. 2006), defined as waist circumference ≥ 94 cm in men and ≥ 80 cm in 
women together with an unsatisfactory value in at least two of the following variables: 
blood pressure, serum HDL cholesterol, serum triglycerides, and fasting glucose. 
Unsatisfactory values were defined as follows: blood pressure was considered elevated 
if the mean level of two systolic blood pressure measurements was ≥ 130 mmHg or 
the mean level of two diastolic blood pressure measurements was ≥ 85 mmHg or 
antihypertensive medication was used; low serum HDL cholesterol included serum 
values ≤ 1.02 mmol/l in men and ≤ 1.29 mmol/l in women; serum triglycerides were 
considered elevated if the serum value was ≥ 1.7 mmol/l; fasting glucose was elevated 
if it was ≥ 5.6 mmol/l. Since waist circumference was not measured in MFH, a BMI 
≥ 25 kg/m2 was used as its proxy measure in definition of metabolic syndrome (IDF 
criteria). The relative risk (95% CI) of diabetes for individuals with metabolic syndrome 
according to the original definition and the proxy definition in Health 2000 were 6.70 
(3.61, 12.4) and 6.78 (3.72, 12.4), respectively. The corresponding PAF values were 0.71 
(0.52, 0.83) and 0.71 (0.52, 0.82).
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6.1.3	 Diabetes incidence

A cohort study design with type 2 diabetes incidence as the outcome was adopted. 
Under the Sickness Insurance Act, all diabetics needing drug therapy are entitled to 
reimbursement of drug costs, eligibility for which requires a detailed medical certificate 
from an attending physician (Reunanen et al. 2000). A central register of all patients 
receiving drug reimbursement is kept by the Social Insurance Institution. Participants 
in the cohorts of the present study were linked to this register by the unique code 
assigned to each Finnish citizen. All medical certificates of these cases were checked to 
ensure that they meet the WHO diagnostic criteria for type 2 diabetes mellitus (World 
Health Organization 1985). In addition, disease events leading to hospitalization were 
identified by linking data from the Finnish Hospital Discharge Register (Heliövaara 
et al. 1984). Furthermore, information on mortality was based on death certificates 
obtained from Statistics Finland (Reunanen et al. 1983), and the individuals with type 
2 diabetes cited as the principal cause of death were classified as diabetes cases. The 
follow-up time was defined as the number of days from the baseline examination to 
the date of type 2 diabetes occurrence, death, or end of follow-up, whichever came 
first. The follow-up time was 10 years in MFH and 7 years in Health 2000. During the 
follow-up times, a total of 145 individuals in MFH and 81 in Health 2000 developed 
type 2 diabetes. 

6.2	 Statistical methods 

6.2.1	 Cohort-specific analyses

A piecewise constant hazards model (Friedman 1982) was used to assess the 
Population Attributable Fraction (PAF) (4.11) for the potential risk factors of type 2 
diabetes incidence. Two-sided 95% confidence intervals (CI) for PAF were estimated 
using the delta method and by applying a symmetrizing complementary logarithmic 
transformation of PAF (4.16). To avoid assumptions about the shape of the relationship 
between the potential continuous risk factors and the incidence of type 2 diabetes in 
the statistical analyses, RRs and PAFs were estimated for categories of these variables. 
Cox’s model (Cox 1972) was used to assess the relative risk (RR).

Two main effects models were defined. The first model (both RR and PAF) included 
age, sex, and separately each of the five lifestyle factors (i.e. BMI, physical exercise, 
smoking, alcohol consumption, and serum vitamin D), or each of the components 
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of metabolic syndrome (i.e. BMI, blood pressure, serum HDL cholesterol, serum 
triglycerides, and fasting glucose), or metabolic syndrome as a whole. The second model 
(only PAF) included age, sex, and combinations of lifestyle factors or components of 
metabolic syndrome adjusted for the factors not included in the combination. 

Possible modifications by sex, age, metabolic syndrome or its components on the 
prediction of the lifestyle factors on type 2 diabetes risk were studied by including 
an interaction term between the risk factor or combination of risk factors of interest 
and the potential effect modifying factor in the model. The statistical significance of 
effect modification was studied by calculating the 95% confidence interval (CI) of the 
difference of the PAF estimates between the categories of the effect modifying factor 
using the delta method (4.18).

6.2.2	 Pooling

The sub-cohort specific logs of RRs or complementary-log transformed PAFs or 
untransformed PAF differences were combined, weighting them by the inverse of 
their variance, in a random-effects model using formula (4.19) (DerSimonian and 
Laird 1986). Heterogeneity among the study-specific RRs or PAFs was tested using 
the asymptotic DerSimonian and Laird Q statistic (DerSimonian and Laird 1986). The 
potential heterogeneity due to sex was tested by the Wald test (Stram 1996). 

The calculations were performed using the SAS procedures PHREG, TPHREG, 
LIFEREG, MIXED and IML (SAS Institute Inc. 2007).

6.3	 Results

6.3.1	 Description of the study populations

During the 20-year period between the MFH and Health 2000 the educational level in 
Finland rose and the proportion of persons occasionally or regularly exercising increased 
(Table 2). Of the components of the metabolic syndrome, both blood pressure and 
serum HDL cholesterol improved. At the same time, however, the Finnish population 
became more obese and heavy use of alcohol increased. The relative risk of diabetes 
during a 10-year follow-up from baseline did not differ between the two samples, with 
the exception of the fasting glucose level (Original publication IV). 
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Table 2. 	 Prevalences, Relative Risks (RR) and Population Attributable Fractions (PAF) for risk factors of type 2 diabetes in Mini-Finland 
Health Survey (MFH) and Health 2000 Survey.

  MFH    Health 2000
Variable a   n N % RR 95% CI PAF 95% CI    n   N     % RR   95% CI  PAF  95% CI
Socio-demographic factors
Sex
   Male   67 2,004 44.4 1 42 1,850 45.0 1
   Female   78 2,513 55.6 0.78 0.56, 1.09 39 2,260 55.0 0.70 0.45, 1.09
Age (years) b
   40–49   28 1,576 34.9 1 20 1,528 37.2 1
   50–59   47 1,431 31.7 1.95 1.22, 3.11* 31 1,301 31.6c 1.83 1.04, 3.21*

   60–69   49    952 21.1 3.37 2.11, 5.37* 16    813 19.8 1.58 0.82, 3.04
   70–79   21    558 12.3c 2.99 1.69, 5.30* 14    468 11.4 2.61 1.31, 5.18*

Education
   Basic 116 3,337 74.1 1 34 1,545 37.7 1
   Intermediate   23    962 21.4 0.75 0.48, 1.18 33 1,491 36.4 1.18 0.71, 1.95
   High     4    205  4.5c 0.62 0.23, 1.68 14 1,059 25.9 0.74 0.39, 1.42
Modifiable lifestyle factors 
Body mass index (kg/m2) d
   < 25   16 1,809 40.1 1    4 1,404 34.3c 1
   ≥ 25 129 2,705 59.9 5.09 3.03, 8.56* 0.71  0.55, 0.82*  77 2,695 65.7c 9.36 3.42, 25.6* 0.84  0.59, 0.94*

Exercise
   No   65 1,646 36.5 1  26    970 24.1 1
   Occasional or regular   80 2,864 63.5 0.72 0.52, 1.01 0.11 -0.03, 0.23  54 3,051 75.9 0.65 0.40, 1.03 0.10 -0.04, 0.23
Alcohol consumption e
   None   88 2,238 49.6 1  33 1,208 30.0 1
   Moderate   45 1,953 43.3 0.61 0.41, 0.90*  30 2,187 54.3 0.52 0.31, 0.86*

   Heavy   12    321   7.1 1.01 0.53, 1.94 0.03 -0.02, 0.08  17    633 15.7 1.05 0.56, 1.99 0.10 -0.01, 0.20
Smoking
   Never smoked   77 2,598 57.6 1 35 2,135 52.3 1
   Former smoker   35    942 20.9 1.38 0.87, 2.20  24     954 23.4 1.56 0.90, 2.69
   Current smoker:
       Pipe or cigar only or
       < 30 cigarettes/day   27    893 19.8 1.30 0.80, 2.11  16     899 22.1c 1.29 0.69, 2.39
       ≥ 30 cigarettes/day     6      79 1.7c 3.88 1.59, 9.49* 0.05 -0.04, 0.14    6       91   2.2 4.87 1.95, 12.2* 0.08 -0.06, 0.20
Serum vitamin D median  
(nmol/l) f

   ≤ median   86 2,169 49.0 1 42 1,939 50.2 1
   > median   56 2,257 51.0 0.63 0.45, 0.89* 0.21  0.03, 0.35* 32 1,920 49.8 0.73 0.46, 1.15 0.14 -0.11, 0.34
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Metabolic syndrome and  
its components
Waist circumference g
   Normal    2 1,150 28.2 1
   Large  79 2,932 71.8 15.2 3.74, 62.2*

Blood pressure h
   Normal   10    653 14.5 1    9 1,270 31.0 1
   Elevated 135 3,262 85.5 1.93 1.00, 3.69* 0.41 -0.08, 0.68  72 2,827 69.0 3.20 1.57, 6.50* 0.60  0.26, 0.78*

Serum triglycerides  
(mmol/l) i
   < 1.7   49 3,177 70.4 1  27 2,750 67.2c 1
   ≥ 1.7   96 1,338 29.6 4.46 3.15, 6.31* 0.51  0.38, 0.60*  53 1,339 32.8c 3.90 2.44, 6.23* 0.48  0.30, 0.62*

Serum HDL cholesterol  
(mmol/l) j
   Low   24    281 93.8 1  47 1,355 66.9 1
   High 121 4,233   6.2 0.33 0.21, 0.51* 0.11  0.04, 0.17*  33 2,734 33.1 0.34 0.22, 0.53* 0.38  0.20, 0.52*

Fasting glucose (mmol/l) k
   < 5.6   81 3,350 74.2 1  17 2,654 64.9 1
   ≥ 5.6   64 1,165 25.8 2.15 1.55, 3.00* 0.23  0.11, 0.33*  63 1,435 35.1 6.70 3.88, 11.6* 0.65  0.48, 0.77*

Metabolic syndrome l
   Negative   41 3,094 68.6 1  13 2,379 58.1 1
   Positive 104 1,419 31.4 5.22 3.62, 7.52* 0.57  0.45, 0.67*  67 1,715 41.9 6.78 3.72, 12.4* 0.71  0.52, 0.82*

HDL = high-density lipoprotein, n = number of disease cases in respective category, N = number of subjects in respective category
* Statistically significant association (P < 0.05)
a Adjusted for sex and age.
b Mean (SD) age in MFH 55.3 (10.4) years and in Health 2000 54.7 (10.2) years.
c Per cents rounded to sum up to 100.
d Mean (SD) value of body mass index in MFH 26.4 (3.98) kg/m2 and in Health 2000 27.2 (4.56) kg/m2.
e Moderate: 1–99g/week for women and 1–199g/week for men.   Heavy: ≥ 100g/week for women and ≥ 200g/week for men.
f Evaluated separately in MFH (39 nmol/l) and in Health 2000 (44 nmol/l).
g Normal: < 80 cm for women and < 94 cm for men.  Large: ≥ 80 cm for women and ≥ 94 cm for men.
h Elevated: SBP ≥ 130 mmHg or DBP ≥ 85 mmHg or antihypertensive medication.    Normal: Not elevated.
i Mean (SD) value of serum triglycerides in MFH 1.54 (0.85) mmol/l and in Health 2000 1.59 (1.02) mmol/l.
j Low: ≤ 1.29 mmol/l in women and ≤ 1.02 mmol/l in men. High: > 1.29 mmol/l in women and > 1.02 mmol/l in men.
k Mean (SD) value of fasting glucose in MFH 5.27 (0.59) mmol/l and in Health 2000 5.45 (0.75) mmol/l.
l Waist circumference in the International Diabetes Federation (IDF) definition of the metabolic syndrome was replaced by a proxy measure BMI in which the category 
normalg was replaced by BMI < 25 kg/m2 and the category largeg by BMI ≥ 25 kg/m2.
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6.3.2	 PAF for lifestyle factors and components of metabolic syndrome  

Obesity appeared to predict well the occurrence of type 2 diabetes: 77% (CI: 53%, 88%) 
of all cases might have been prevented if everyone had had a BMI < 25.0 kg/m2 (Table 3). 
Of the other lifestyle factors considered, only smoking independently predicted the 
occurrence of type 2 diabetes (PAF = 10%, CI: 2%, 17%). A combination of these 
variables, however, improved the prediction; altogether 82% (CI: 70%, 90%) of the 
diabetes cases could have been prevented if all individuals had belonged to the low-
risk category with respect to all lifestyle factors and 27% (CI: 11%, 40%) of the cases 
could have been prevented if they had belonged to the low-risk category in all other 
variables except BMI.

All 5 components of metabolic syndrome appeared to predict the incidence of diabetes, 
PAF values adjusted for age, sex, and other components of metabolic syndrome varying 
from 11% to 66% (Table 3). The PAF for metabolic syndrome was 62% (CI: 47%, 73%). 
When all of its five components were modified to the low-risk level, the PAF was, 
however, much higher, 92% (CI: 67%, 98%). Also the PAF for modification to the low-
risk category in four other variables except BMI was considerable (PAF = 77%, CI: 
36%, 91%).

6.3.3	 Effect modification by metabolic syndrome and socio-demographic factors 

Metabolic syndrome or its most important component, obesity, did not statistically 
significantly modify the prediction of lifestyle factors (i.e. exercise, alcohol consumption, 
smoking, and the serum vitamin D level) on the incidence of type 2 diabetes (Table 
4). A simultaneous low-risk level in exercise, alcohol consumption and smoking did, 
however, have a statistically significantly better prediction in persons with normal 
blood pressure (PAF = 58%, CI: 16%, 79%) in comparison to those with elevated blood 
pressure (PAF = 15%, CI: 3%, 26%) (P for interaction = 0.01). On the other hand, in 
MFH, more type 2 diabetes cases could have been avoided by modifying the BMI to 
the low-risk category among those with elevated blood pressure (PAF = 77%, CI: 60%, 
87%) than among those without it (PAF = 10%, CI: –66%, 52%) (P for interaction 
= 0.02). In Health 2000, the respective estimates could not be obtained due to too 
few low-BMI non-hypertensive diabetes cases, but the pooled results obtained using a 
higher cut-off value of 28 for the BMI indicated a similar, statistically significant result 
(data not shown). 
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Table 3. 	 Population Attributable Fractions (PAF) and their 95% confidence intervals (CI) 
for modifiable lifestyle factors and components of metabolic syndrome in Mini-
Finland Health Survey (MFH), Health 2000 Survey, and the Pooled Sample.

Variable a

  MFH  Health 2000  Pooled

P bPAF  CI PAF    CI PAF  CI

Modifiable lifestyle factors c

A. Body mass index 0.71  0.54, 0.81* 0.87  0.59, 0.96* 0.77  0.53, 0.88* 0.20
B. Exercise 0.03 -0.11, 0.16 0.07 -0.09, 0.20 0.05 -0.06, 0.14 0.76
C. Alcohol consumption d 0.02 -0.03, 0.07 0.08 -0.05, 0.19 0.03 -0.02, 0.07 0.42
D. Smoking e 0.10  0.01, 0.18* 0.10 -0.05, 0.23 0.10  0.02, 0.17* 0.98
E. Serum vitamin D 0.17 -0.02, 0.32 0.01 -0.28, 0.23 0.11 -0.06, 0.25 0.30
B, C, D 0.15 -0.01, 0.28 0.21  0.02, 0.37* 0.17  0.05, 0.28* 0.59
B, C, D, E 0.30  0.03, 0.45* 0.22 -0.06, 0.43 0.27  0.11, 0.40* 0.63
A, B, C, D, E 0.80  0.65, 0.88* 0.90  0.67, 0.97* 0.82  0.70, 0.90* 0.30

Metabolic syndrome and  
its componentsf

A. Body mass index 0.63  0.41, 0.76* 0.76  0.38, 0.91* 0.66  0.48, 0.77* 0.42
B. Blood pressure 0.13 -0.57, 0.52 0.33 -0.21, 0.64 0.24 -0.16, 0.50 0.53
C. Serum triglycerides 0.44  0.30, 0.55* 0.34  0.10, 0.51* 0.40  0.29, 0.50* 0.38
D. Serum HDL cholesterol 0.05 -0.01, 0.12 0.22 -0.01, 0.40 0.11 -0.06, 0.25 0.15
E. Fasting glucose 0.19  0.06, 0.29 0.62  0.43, 0.75* 0.43 -0.20, 0.73 0.001
B, C, D, E 0.62  0.28, 0.80* 0.86  0.71, 0.94* 0.77  0.36, 0.91* 0.04
A, B, C, D, E 0.85  0.68, 0.93* 0.96  0.89, 0.99* 0.92  0.67, 0.98* 0.04
Metabolic syndrome g 0.57  0.45, 0.67* 0.71  0.52, 0.82* 0.62  0.47, 0.73* 0.19

HDL = high-density lipoprotein
* Statistically significant association (P < 0.05)
a Variables in this table correspond to the variables and their classification in Table 2. Population Attributable 
Fraction estimates the reduction in type 2 diabetes if all persons belonged to the category with the lowest 
type 2 diabetes risk, if not otherwise mentioned.
b P for heterogeneity between pooled samples.
c Variable/s mentioned, adjusted for age, sex and other lifestyle factors.
d The category with the lowest type 2 diabetes risk, i.e. moderate alcohol consumption, is used as the 
reference category, but the type 2 diabetes risk of non-users remains unchanged.
e The category with the lowest type 2 diabetes risk, i.e. have never smoked, is used as the reference category, 
but the type 2 diabetes risk of former smokers remains unchanged.
f Variable/s mentioned, adjusted for age, sex and other components of the metabolic syndrome.
g Waist circumference in the International Diabetes Federation (IDF)  definition of the metabolic syndrome 
was replaced by a proxy measure BMI in which the category normal (< 80 cm for women and < 94 cm for 
men) was replaced by BMI < 25 kg/m2 and the category large (≥ 80 cm for women and ≥ 94 cm for men) by 
BMI ≥ 25 kg/m2.
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Table 4. 	 Population Attributable Fractions (PAF) and their 95% confidence intervals (CI) 
for modifiable lifestyle factors of type 2 diabetes by categories of potential effect 
modifying factors and the statistical significance of their differences in a pooled 
sample of Mini-Finland Health Survey (MFH) and Health 2000 Survey.

Variable a,b

Effect modifying factor

    P for  
    interaction

Category A     Category B

PAFA    CI     PAFB    CI

Metabolic syndrome: A= No     B =Yes
B. Exercise -0.01 -0.19, 0.15  0.08 -0.04, 0.18 0.44
C. Alcohol consumptionc -0.02 -0.15, 0.10  0.06 -0.04, 0.16 0.39
D. Smokingd  0.09 -0.08, 0.24  0.07 -0.01, 0.15 0.78
E. Serum vitamin D  0.04 -0.26, 0.27  0.16 -0.02, 0.30 0.35
B, C, D  0.20  0.03, 0.34*  0.06 -0.19, 0.27 0.77
B, C, D, Ee  0.13 -0.31, 0.43  0.29  0.03, 0.48* 0.47
                     

Sex: A = Men B = Women
A. Body mass index  0.77  0.57, 0.88*  0.79  0.11, 0.95* 0.74
B. Exercise  0.07 -0.06, 0.19  0.12 -0.03, 0.24 0.70
C. Alcohol consumptionc  0.09 -0.00, 0.17  0.01 -0.06, 0.08 0.08
D. Smoking d  0.12 -0.03, 0.24  0.04 -0.04, 0.11 0.33
E. Serum vitamin D  0.04 -0.15, 0.20  0.33  0.12, 0.50* 0.02
B, C, D  0.22  0.04, 0.36*  0.17  0.01, 0.30* 0.61
B, C, D, E  0.22 -0.02, 0.40  0.38  0.15, 0.55* 0.32
A, B, C, D, E  0.83  0.65, 0.92*  0.83  0.63, 0.92* 0.80
         

Age: A = 40–59 years     B = 60–79 years
A. Body mass index  0.77  0.48, 0.90*  0.73  0.49, 0.85* 0.74
B. Exercise  0.13 -0.00, 0.24  0.07 -0.09, 0.20 0.57
C. Alcohol consumption c  0.06 -0.04, 0.15  0.02 -0.02, 0.06 0.43
D. Smoking d  0.16  0.04, 0.27* -0.04 -0.12, 0.03 0.002
E. Serum vitamin D  0.11 -0.08, 0.26  0.29  0.06, 0.46* 0.15
B, C, D  0.27  0.12, 0.40*  0.06 -0.12, 0.22 0.06
B, C, D, E  0.32  0.12, 0.47*  0.25 -0.03, 0.46 0.71
A, B, C, D, E  0.87  0.50, 0.97*  0.79  0.57, 0.90* 0.67
* Statistically significant association (P < 0.05)
aAdjusted for sex and age.
b Variables in this table correspond to the variables and their classification in Table 2. Population Attributable 
Fraction estimates the reduction in type 2 diabetes if all persons belonged to the category with the lowest type 
2 diabetes risk, if not mentioned otherwise.
c The category with the lowest type 2 diabetes risk, i.e. moderate alcohol consumption, is used as the reference 
category, but the type 2 diabetes risk of non-users remains unchanged.
d The category with the lowest type 2 diabetes risk, i.e. have never smoked, is used as the reference category, 
but the type 2 diabetes risk of former smokers remains unchanged
e Pooled effect modification analysis could not be carried out due to too few diabetes cases in some low-risk 
strata of Health 2000 data, and therefore these figures derive from the MFH data.
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Study of the interactions between lifestyle and socio-demographic factors (i.e. sex 
and age) showed that belonging to the low-risk category for smoking had a stronger 
prediction on reduction of type 2 diabetes in younger persons (P for interaction = 0.002) 
and having higher serum vitamin D a stronger prediction in women (P for interaction 
= 0.02). 

In summary, this study showed that weight control is the primary diabetes prevention 
method and that adequate exercise, moderate alcohol consumption, not smoking, and 
a satisfactory vitamin D level also play an important role. Metabolic syndrome did not 
modify the prediction of lifestyle factors. However, of its single components, blood 
pressure did modify the prediction: individuals with elevated blood pressure apparently 
benefit less from positive changes in exercise, smoking, or alcohol consumption.
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7.1	 Main findings 

7.1.1	 Statistical method and program for the estimation of PAF for total mortality and 
disease incidence in a cohort study design

Methods that properly take into account the time perspective in the estimation of 
Population Attributable Fraction (PAF) in cohort studies with censored time-to-event 
data have been developed during recent years (Chen et al. 2006, Samuelsen and Eide 
2008, Cox et al. 2009). Censoring during follow-up may result from different sources. 
If the event of interest is death, censoring due to end of follow-up or loss to follow-up 
needs to be considered. If the event of interest is the incidence of a specific disease, 
censoring due to death due to reasons other than the event of interest also needs to be 
considered. Ignoring censoring due to death leads to potentially biased estimates, as an 
unrealistic assumption of no one dying during the follow-up is made in the estimation. 
So far, censoring due to death has only been considered in single studies (Silverberg 
et al. 2004, Samuelsen and Eide 2008), but the definition of PAF for disease incidence 
has not been generalized to account for censoring due to death. In this study, the PAF 
was defined as the proportion of mortality or disease incidence that could be avoided 
during a time interval (0, t] if their risk factors were modified. In the definition of 
PAF for disease incidence, censoring due to death was taken into account. Thus, the 
interest was in the order of occurrence of disease and death. The times to death or 
disease incidence were assumed to follow a proportional hazards model with piecewise 
constant baseline hazard functions, independently given the risk factors X. Maximum 
likelihood estimation was used to obtain the point estimates of PAF. Taking censoring 
due to death into account in the estimation was shown to decrease the point estimates 
of PAF in comparison to methods which ignored censoring due to death. This bias 
was greater when the impact of risk factors on mortality was stronger and when the 
follow-up time was longer. The bias became even clearer when the cumulative effect 
of the modification of several risk factors on disease incidence was analyzed (Original 
Publication II). The formulas and estimation methods of PAF for total mortality and 
disease incidence provided in this study can also be applied for the estimation of 
PAF for other types of inevitable and not inevitable events, and accounting also for 
censoring due to competing risks other than just death.
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So far, the estimation of PAF for the time interval (0, t] has usually been carried 
out using the Cox proportional hazards model with the Breslow estimator for the 
cumulative baseline hazard (Chen et al. 2006, Samuelsen and Eide 2008). The variance 
of PAF estimates has either been been derived asymptotically (Chen et al. 2006) or it 
has been obtained using resampling-based methods, such as bootstrap (Samuelsen and 
Eide 2008). The resampling-based methods, despite having the advantage of simplicity 
over analytic methods, are very time-consuming in terms of computing resources. In 
this study, asymptotic variance estimation of PAF applying the delta method based on 
the fully parametrized piecewise constant hazards model was carried out. 

The exposure-outcome relationship, and thus PAF, is affected by confounding and 
effect modification. In the model-based estimation presented in this study, potential 
confounding factors were adjusted for and effect modifying factors accounted for by 
including them in the model. In this study, new model-based methods for the analysis 
of PAF in the subpopulations defined by categories of potential effect modifying 
factors and determination of the statistical significance of the differences between 
these subpopulation-specific PAF estimates in a cohort study design were developed. 

The pooling of different cohorts is becoming increasingly common. Pooled PAF 
estimates so far presented in the literature have, however, been calculated by inserting 
the adjusted RR derived from meta-analysis and the average prevalence of the risk 
factor across individual studies in some of the PAF formulas presented in the literature 
(Olsen et al. 2010). In this study, the pooling methodology presented and applied in the 
literature for pooling relative risks (Knekt et al. 2004, Smith-Warner et al. 2006) was 
generalized to apply for pooling PAF estimates, and pooled PAF estimates based on 
the new formulas provided in this study were presented.
 
The need for publicly available programs for the estimation of PAF has been 
acknowledged in the literature (Benichou 2001), but only one program for the estimation 
of PAF in a cohort study design has been presented (Spiegelman et al. 2007). This 
program, however, produces static PAF estimates over time considering censoring due 
to loss to follow-up in the estimation of PAF. No publicly available programs thus exist 
for the estimation of the dynamic PAF for a certain time interval, and taking censoring 
due to competing risks, such as death, into account when the outcome of interest is not 
an inevitable event, such as a specific disease. In this study, a SAS-based program for 
the estimation of PAF in a cohort study design, both for total mortality and for disease 
incidence, considering censoring due to death, was presented. 
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7.1.2	 Application of PAF for the analysis of the relative importance of the risk factors of 
type 2 diabetes 

There seems to be a gap between theory and the practice of PAF in the literature. 
Although the estimation of PAF from different designs has become more thoroughly 
covered in statistical and biometrical journals since the 1970s, there are still relatively few 
applications using PAF, especially in cohort studies. In this study, the new methodology 
and program presented for the estimation of PAF in a cohort study design was applied 
to estimate the relative importance of lifestyle factors and components of metabolic 
syndrome as well as the potential effect modification by metabolic syndrome on the 
incidence of type 2 diabetes in a pooled sample of two representative Finnish cohorts. 

Over 80% of all incident diabetes cases occurring in these two cohorts could be 
attributed to failure to follow a low-risk lifestyle, including a body mass index under 
25, adequate exercise, moderate alcohol consumption, not smoking, and a satisfactory 
vitamin D level. This suggests that the majority of type 2 diabetes cases could be 
avoided by modifications of lifestyle, which is in line with previous findings (Hu et al. 
2001, Schulze et al. 2007, Mozaffarian et al. 2009). Obesity was the most important 
predictor of type 2 diabetes. Accordingly, and in line with previous cohort (Hu et al. 
2001, Schulze et al. 2007, Mozaffarian et al. 2009) and intervention (Schulze and Hu 
2005, Liberopoulos et al. 2006) studies, weight control would apparently be the most 
important strategy for type 2 diabetes prevention. The four other lifestyle variables 
were also significantly associated with an increased risk of diabetes, in agreement 
with previous studies (Hu et al. 2001, Mozaffarian et al. 2009). At the population level, 
however, only one fourth of the incident disease cases seemed attributable to all four 
variables combined; smoking being the only single variable significantly associated 
with a reduced diabetes risk. 

Two thirds of the disease cases could be attributed to having metabolic syndrome, 
which is in agreement with the fact that metabolic syndrome is a strong predictor of 
type 2 diabetes (Cheung et al. 2007, Ford et al. 2008). All five single components of 
metabolic syndrome (i.e. waist circumference or BMI, blood pressure, serum HDL 
cholesterol, serum triglycerides, and fasting glucose) also predicted the occurrence of 
type 2 diabetes, which is also in accordance with previous cohort (Cheung et al. 2007, 
Hanson et al. 2002) and intervention (Liberopoulos et al. 2006, Schulze et al. 2005) 
studies. In fact, over 90% of all cases could have been avoided if all individuals had 
belonged to the low-risk category in all five components of metabolic syndrome.



63Research 34/2010
National Institute for Health and Welfare

Population Attributable Fraction (PAF) in 
Epidemiologic Follow-up Studies

7 D ISCUSSION

The potential effect modification of metabolic syndrome on the prediction of lifestyle 
modifications for the incidence of type 2 diabetes was explored for the first time in the 
present study. No interactions between lifestyle and metabolic syndrome were, however, 
found. It appeared, however, that positive changes in smoking, alcohol consumption 
and exercise could have prevented more type 2 diabetes cases among persons with 
normal blood pressure than among persons with elevated blood pressure. This result 
thus contradicts the frequent claim that lifestyle modifications have a greater effect 
in high-risk individuals (Narayan et al. 2003). Reducing the BMI, on the other hand, 
was more strongly associated with a reduced diabetes risk in persons with elevated 
blood pressure than in persons without it. This result is consistent with the finding that 
weight reduction had a stronger effect on the incidence of type 2 diabetes in high-risk 
individuals than in low-risk individuals (Knowler et al. 2002, Orchard et al. 2005). 
Overall, lifestyle factors not involved in metabolic syndrome seem to play a more 
important role in the prevention of type 2 diabetes in low-risk individuals. Therefore, 
as regards the constantly growing diabetes epidemic, it is important to target lifestyle-
related prevention not only among those at a high risk of developing type 2 diabetes, 
but also within the entire population (Alberti et al. 2007).

7.2	 Methodological considerations

7.2.1	 Statistical method and program for the estimation of PAF for total mortality and 
disease incidence in a cohort study design

In this study, methods for the  estimation of PAF and its variance in a cohort study design 
both for total mortality and disease incidence were developed based on the proportional 
hazards model with a piecewise constant baseline hazard function. Also, methods for 
the analysis of PAF in the presence of potential effect modification were provided. A 
generalization of the pooling methodology for the PAF estimates and the use of these 
methods in a pooled cohort study design was demonstrated. A new PAF program for 
the estimation of PAF in a cohort study design was developed. This program covers 
the estimation of PAF for both total mortality and disease incidence as well as the 
analysis of the significance of potential effect modifying factors on the PAF estimates 
using the piecewise constant hazards model. The program is implemented with the 
SAS language and is flexible in that both categorical and continuous risk factors and 
confounding factors as well as interactions can be included in the model. Furthermore, 
the baseline hazard in the piecewise constant hazard model may be stratified with 
respect to both follow-up time and birth cohort, and can be further generalized to 
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allow stratification with respect to other factors as well. The cut-points in the piecewise 
constant hazards model can be chosen as closely-spaced as considered necessary to 
well approximate the hazard in the program, given the sufficiency of the data and the 
capacity of the computer, as long as the iterative estimation algorithm still converges. 
The program provides information on the convergence status of the model chosen. It is, 
however, the user’s responsibility to ensure that after the choice of the cut-points there 
are still enough cases in all strata of the baseline hazard for a reliable estimation of 
PAF. In addition to the number of the cut-points, the lead-time of the program depends 
on the number and type of variables included in the model. In general, the program 
is very fast, even with quite closely-spaced cut-points, especially when compared to 
methods based on resampling. This is partly due to the asymptotic variance estimation. 
Furthermore, although in this study it was assumed that the parameter estimates and 
PAF estimates were calculated based on the same data, it is also possible to calculate 
the parameters from external data and apply them to the data of interest by using the 
SAS macros the program is based on separately instead on linking them together. To 
further promote the use of PAF in practice, it would be useful if similar and extended 
programs for the estimation of dynamic PAF in cohort studies were also available in 
other generally used programming languages, such as in Stata and especially in free 
R language. 

There are certain issues related to the general definition of PAF that should be noted 
when interpreting the PAF results (Rockhill et al. 1998). First, in the definition of 
PAF, a causal relationship between the risk factors and the outcome is assumed. 
Second, the risk factor modification is usually assumed to be fully effective, so that 
after the modification the risk factor of interest is totally removed (or reduced) from 
all individuals. In practice, however, when risk factor modification is intended, it 
is likely to be successful only in a small number of persons. This potential impact 
of an intervention has been dealt with in several studies (Walter 1980, Morgenstern 
and Bursic 1982, Drescher and Becher 1997).  In the formulas and program for the 
estimation of PAF presented in this study, the reference level can be chosen flexibly as 
any combination of the levels of different risk factors of interest. Third, an immediate 
reduction in risk is assumed to follow from the modification of the risk factor. Often, 
however, a certain amount of time is needed before the effect of the modification on 
the outcome can be seen. A randomized clinical trial, in which the effect of changing 
certain risk factor values to their target values would be followed and compared to the 
effect of not changing them, would be needed to be able to evaluate the length of this 
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delay. Samuelsen and Eide (2008) have considered the calculation of PAF in case the 
effect of risk factor modification was not instantaneous but was to actualize at a later 
time. Fourth, in cohort studies the risk factor modification is often thought to happen 
at baseline. In practice, however, it may sometimes be more useful to consider risk 
factor modification that happens later during follow-up. Samuelsen and Eide (2008) 
have also discussed the consideration of some later time for the risk factor modification 
than the baseline in the calculation of PAF. Fifth, the modification of one risk factor 
is not assumed to change the values of the other risk factors. The direct modification 
of a certain risk factor, such as diet, is, however, likely to indirectly affect many other 
risk factors, such as weight or serum cholesterol, and accordingly, also the outcome. 
It would be important to be able to separate the direct and indirect effects of the risk 
factor modification to be able to realistically evaluate the independent effect of each 
risk factor on the outcome. Sixth, whenever the effects of several risk factors on the 
outcome are evaluated simultaneously, part of the effect is due to the interaction of 
these factors. Therefore, to be able to evaluate the relative importance of a certain risk 
factor in different risk factor combinations, the joint effect of the risk factors should 
be partitioned among the individual risk factors so that the separate PAF estimates for 
the different risk factors sum to the total PAF estimate (Eide and Gefeller 1995, Rabe 
et al. 2007). Seventh, certain factors may act as risk factors for some outcome but as 
protective factors for another outcome, and thus their modification may not always 
result in positive PAF estimates. In such cases, an estimate for the overall benefit (or 
harm) of the risk (or protective) factor modification would be useful. 

Certain issues particularly related to the calculation of PAF in a cohort study design may 
affect the interpretation of the PAF results. Due to several reasons, there is a decreasing 
tendency in the PAF estimates for both mortality and disease incidence during follow-
up. First, it is a well-known phenomenon in cohort studies that the strength of prediction 
of the risk factors measured at baseline diminishes with a longer follow-up. Repeated 
measurements of the risk factors during follow-up would be needed to estimate the effect 
of this phenomenon, and thus to study the accuracy of the proportionality assumption 
of the piecewise constant hazards model. Second, the decreasing PAF estimates during 
follow-up may also be partly due to the effect of age since risk factors are not strong 
predictors for old people. Third, in case of disease incidence, the consideration of the 
effect of censoring due to death, which becomes stronger during a longer follow-up as 
mortality increases, may also contribute to this phenomenon. If the disease of interest 
and death share the same risk factors, modification of these factors is likely to delay 
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the occurrence of both events. The individuals may thus still contract the disease 
before dying and the risk factor modification does not result in disease reduction. If 
the risk factors are more strongly related to mortality than disease incidence, the PAF 
estimates may even become negative. This also emphasizes the importance of using 
the complementary logarithmic transformation for the estimation of the confidence 
interval of PAF in order to maintain it in its natural range from −∞ to 1 (Greenland and 
Drescher 1993). This stands  in contrast to a transformation such as the logit, which 
assumes the PAF to be within (0, 1). Ultimately, however, the decreasing tendency of 
PAF estimates is related to the inevitability of death; if the follow-up time were extended 
enough, eventually everyone would die, and the PAF estimates would approach zero. It 
is thus useful to calculate PAF estimates as a function of time in order to demonstrate 
the effect of a potential intervention in the long run. 

In addition to the assumptions inherent in the general definition of PAF in cohort 
studies, certain assumptions related to the calculation of PAF in this specific study 
were made. First, the time of the occurrence of the disease of interest and the time of 
death were assumed to be independent conditionally on all relevant risk factors for 
both disease incidence and mortality. The survival analysis for disease incidence and 
death could thus be made separately, treating deaths as censored observations when 
modeling disease onset, and vice versa. Since many diseases as well as mortality have 
several risk factors, having comprehensive data on all these known or unknown risk 
factors is a strong assumption. The assumption of conditional mutual independency is, 
however, very common in the literature regarding competing or semi-competing risks 
(Hakulinen 1977), and essential for the sake of simplicity of the analysis. Second, the 
disease was assumed to be a chronic, so that there was no transition from the disease 
state back to a disease-free state. Extension of the calculation of PAF to allow for the 
possibility of recurrent disease event would thus be useful. The calculation of PAF for 
recurrent disease events has been considered in several studies (Alho et al. 1996, Oja 
et al. 1996, Pichlmeier and Gefeller 1997). Third, the time of disease occurrence and 
time of death were assumed to follow a piecewise constant hazards model, given the 
risk factors. There are strengths and weaknesses related to the use of the piecewise 
constant hazards model in the estimation of PAF. The strength of this model is that 
judicious choice of the cut-points allows us to approximate well almost any baseline 
hazard. This, however, leads to the issue of the sufficiency of data, especially in the 
case of a stratified baseline hazard, as at least one case per each stratum within each 
interval is required to estimate the levels of the baseline hazard rate. This may limit the 
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choice of cut-points, and thus the approximation of the hazard, especially in the case of 
smaller datasets. One possible solution for obtaining realistic parameter estimates in 
the presence of zero cells might be the application of a COPY algorithm (Lumley et al. 
2006). In it, a copy of the data is made in which the outcome is reversed (Y = 1-Y) and 
then the original data is given a large weight and the copied data a small weight. In the 
case of a more rapidly varying hazard, a flexible choice of intervals of varying length, 
instead of equal length set by the investigator used in this study, might also be useful. 
Bayesian methods, for instance, may be used for choosing the number and position of 
cut-points (Arjas and Gasbarra 1994, Demarqui et al. 2008). This can be done using 
the PIECEWISE option in the BAYES statement of the SAS procedure PHREG, where 
it is possible to specify to how many intervals with an approximately equal number of 
events the time axis is partitioned into (SAS/STAT version 9.2).

7.2.2	 Application of PAF for the analysis of the relative importance of the risk factors of 
type 2 diabetes 

Several methodological issues need to be considered when interpreting the findings 
from the application of PAF on analyzing the relative importance of the risk factors 
of type 2 diabetes. Considerable advantages in this study were the relatively large 
amount of data based on two independent representative samples of the whole Finnish 
population and the cohort study design. Also, using a PAF designed for cohort studies 
with a single disease as the outcome, taking into account censoring due to death, was a 
definite advantage as it enables an accurate analysis of the population-level importance 
of the risk factors. Furthermore, pooling of the PAF estimates was conducted for the first 
time in this study, increasing the power to detect associations. The fact that practically 
all known important lifestyle variables and all components of the metabolic syndrome 
were included in this study further provided the opportunity for a multifaceted 
investigation of the interplay within and between lifestyle and metabolic syndrome. 
The only factors missing were waist circumference as a part of the definition provided 
by International Diabetes Federation (IDF) for metabolic syndrome and dietary habits 
as a part of lifestyle, neither of which was available in the data from the Mini-Finland 
Health Survey. Waist circumference was replaced by body mass index and this proxy 
IDF definition of the metabolic syndrome gave results that were practically identical 
to those of the original IDF definition in the Health 2000 population. Dietary habits 
were replaced by the serum vitamin D level, which is apparently related to both healthy 
dietary intake and healthy lifestyle, as its main sources in this Finnish low vitamin D 
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population were fish consumption and exposure to the sun. It has also currently been 
shown that vitamin D is an important determinant of the incidence of type 2 diabetes, 
possibly due to its influence on the pathogenesis of the disease (Knekt et al. 2008, 
Pittas et al. 2007).

There are also several factors related to the assumptions, estimation and pooling 
of PAF that should be considered. First, all lifestyle factors included in this study 
have definitely not been stated as causal. Because these factors are known to be very 
strong determinants of diabetes occurrence, the assumption of a causal connection 
is, however, realistic. Second, these factors, measured at baseline, were assumed to 
be fixed although they were a random sample from the population. Furthermore, the 
properties of the multistage stratified cluster samples used were not taken into account 
in the statistical analysis. Third, some factors may have caused underestimation of 
the strength of the association and, accordingly, led to conservative PAF estimates. 
Some of the variables, especially exercise, may have included measurement errors. 
Also, possible changes may have appeared in the lifestyle variables during follow-up. 
Because of the relatively short follow-up, such changes are likely to have been fairly 
small, however. Despite the large number of variables considered in this study, the 
possibility of residual confounding cannot be fully excluded either. Also, since only 
patients receiving diabetes medication were included as diabetes cases in this study, 
and patients receiving dietary treatment and individuals with undiagnosed diabetes 
were classified as non-cases, all estimates were conservative. By contrast, multiple 
comparisons may have led to some spurious positive findings. Fourth, as the associations 
between diabetes occurrence and its determinants were mainly consistent in the two 
samples studied, the pooling of these samples was justified. The only deviations from 
this rule were found for fasting glucose and for serum HDL cholesterol, which were 
stronger predictors of type 2 diabetes in Health 2000, possibly due to the different 
composition of the reference category or a higher prevalence of unsatisfactory values. 
When pooling PAF estimates, a test for heterogeneity in prevalence estimates would 
be useful. Fasting glucose was also the only variable significantly associated with sex. 
This heterogeneity both within and between the samples resulted in a wider confidence 
interval for the pooled estimate.
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7.3	 Implications for further research  

The disease burden caused by the risk factors ( iX ) can also be estimated through 
measures other than PAF for the incidence of disease. One alternative measure could 
be the prevalence of diseased individuals in the population at a certain time t (Original 
publication II):
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If the risk factors were modified, iX  → *
iX , the number of diseased individuals at a 

certain time, and thus the proportion of diseased individuals among those still living, 
would be expected to diminish. If the same risk factors were also related to mortality, 
the number of living people would be expected to increase, thus further decreasing the 
prevalence of diseased individuals. Furthermore, PAF could be used to estimate the 
excess proportion of diseased individuals at a certain time t due to certain modifiable 
risk factors in iX :
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Besides calculating the PAF for the prevalence of diseased individuals at a certain time t, 
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and that of the years with the disease 
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Thus, similarly as the PAF for prevalence of diseased individuals, PAF(PD )t , measures 
the disease burden at a certain time t, the ratio of the expected number of years with 
the disease and the number of years of life in total 2t tE E measures the disease burden 
during the entire interval (0, t]. In general, the number of healthy years of life free 
from the disease of interest is maximized when the probability {min( , ) | }M DT T t XΡ >
in figure 3 is maximized.
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Figure 3. 	 Illustration of the probabilities used in the calculation of PAF for prevalence of 
the diseased at time t.
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The estimation of these measures requires that the follow-up continues after the 
occurrence of the non-fatal disease so that the risk of death after the occurrence of 
the disease can be evaluated. It should be taken into account that the risk factors 
measured at the baseline may, however, no longer predict death after the individual has 
contracted the disease. Instead, some new risk factors, possibly related to the treatment 
of the disease, may be more effective predictors of death. Thus, new measurements of 
such individually relevant risk factors from the time of the occurrence of the disease 
onwards are needed to guarantee reliable estimates of the risk of death also after 
having contracted the disease. Since most cohort data sets only include measurements 
at the baseline, only the effects of average treatment can be evaluated in them. The 
size of the data is another relevant issue related to the reliable estimation of risk of 
death after the occurrence of the disease. A sufficient number of disease cases during 
the entire follow-up from the baseline and, subsequently, a sufficient number of death 
cases during the follow-up from the disease occurrence until the end of the follow-
up are needed to obtain reliable estimates. Furthermore, the amount of time that has 
passed since the disease occurrence may also affect the risk of death and should also 
be considered in the model. 

So far, in the estimation of PAF the outcome has been assumed to be binary. Extension 
of the calculation of PAF also for continuous outcomes would be useful, however. 
Furthermore, although the estimation of PAF has been dealt with in relation to classical 
epidemiological research designs – cross-sectional, case-control and cohort study 
designs – the extension of the concept of PAF also for a nested case-control design and 
a cohort study with repeated measurements is still needed. 
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This study examined the concept, calculation, programming and application of the 
Population Attributable Fraction (PAF), which assesses the impact of risk factor 
modification on mortality or morbidity, in a single and pooled cohort study design. 

Point and asymptotic variance estimators of PAF for a certain time interval, based on 
a parametric piecewise constant hazards model, both for total mortality and disease 
incidence were developed. In the estimation of PAF for disease incidence, censoring 
due to death was taken into account. Methods to assess the impact of potential effect 
modification in the estimation of PAF and for pooling of the PAF estimates in a 
cohort study design were provided. A new program based on the SAS software for the 
estimation of PAF, both for mortality and disease incidence, was developed.

This study shed light on the importance of considering the time perspective in the 
estimation of PAF. A tendency of the PAF estimates, due to various reasons, to 
decrease in time, and ultimately become meaningless, was demonstrated. This study 
also showed how ignoring censoring due to death in the estimation of PAF for disease 
incidence, especially with long follow-up times, leads to an overestimation of the 
proportion of the disease cases that could be prevented by the risk factor modification 
in question. Thus, to avoid biased conclusions, censoring due to death should always 
be considered in the calculation of PAF of morbidity. The new, publicly available 
program, considering censoring due to death, provided in this study can help to attain 
this goal, as well as in general to promote the estimation of PAF in cohort studies. As 
demonstrated in the practical application regarding risk factors of type 2 diabetes, 
PAF is a very useful public health measure in the evaluation of the relative importance 
of different, potential risk factors of specific diseases. Pooling of PAF estimates from 
single cohort studies further increases the power to detect associations.

Extending further the consideration of time perspective in the estimation of PAF, by 
also taking into account the potential delay from the risk factor modification to the 
change in the outcome, would be useful with regard to practical applications. Similarly, 
letting the intended risk factor modification be successful for only a fraction of persons 
may be more realistic. Also, being able to divide fairly the total PAF obtained for a 
combination of several risk factors to its components would be useful in the evaluation 
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of the role of single risk factors in different risk factor combinations. Furthermore, to 
evaluate both the direct and indirect effect of the risk factor modification, the changes 
it may bring about on the values of other factors should be studied. Finally, it would 
be useful to extend the concept of PAF to cover different kinds of measures of burden, 
such as the expected gain in healthy years of life, to be applied in different studies, 
depending on the size and type of data available for the analysis.
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Appendix 1. Sample SAS code for calculating PAF for total mortality with piecewise 

constant hazards model 

 

The SAS program for the estimation of PAF for total mortality and its 95% confidence 

interval requires the SAS procedures LIFEREG and IML and the following inputs: 

 

DES = Design matrix  (n*J rows and B+J+B*J+m columns) for baseline hazard 

parameters and observed covariates, which indicates the categories of the baseline 

hazard variables (follow-up time intervals, birth cohorts, and their interactions) that 

each individual belongs to at each follow-up time interval and which values of the risk 

factors each individual has. 

 

DES_STAR = Design matrix (n*J rows and B+J+B*J+m columns) for baseline 

hazard parameters and modified covariates, which indicates the categories of the 

baseline hazard variables (follow-up time intervals, birth cohorts, and their 

interactions) that each individual belongs to at each follow-up time interval and which 

values of the risk factor each individual has after the hypothetical change of the risk 

factors of interest. 

 

EST = Column vector (B+J+B*J+m rows) of parameter estimates for the baseline 

hazard variables and the risk factors obtained from the LIFEREG analysis. 

 

COVB = Covariance matrix (B+J+B*J+m rows and columns) of the parameter 

estimates for the baseline hazard variables and the risk factors obtained from the 

LIFEREG analysis. 

 

To estimate PAF for a chosen time interval ( , ]t t t+ Δ , the user must define the 

exposure at different time intervals until time t (DELTA_1) and time 

t t+ Δ (DELTA_2). For example, to estimate PAF for total mortality for a time interval 

(0, 20] when the follow-up time is divided into four 5-year time intervals, the user 

must define: 
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DELTA_1 = {0, 0, 0, 0}; 

DELTA_2 = {5, 5, 5, 5}; 

 

Then, the following SAS/IML code can be applied to obtain the point estimate of PAF 

for total mortality (PAF) and its lower and upper 95% confidence limits (lPAF_CL_l 

and lPAF_CL_u): 
 
start _COLSUM_( inmatrix, outmatrix, groupsize ); 
 
   %* Column sums related to each invidual                         *; 
   %* GROUPSIZE = Number of columns related to the same individual,*; 
   %*             if missing, assumed to include all rows.         *; 
 
   if missing(groupsize) then groupsize = nrow( inmatrix ); 
   ncolumns  = ncol( inmatrix ); 
   outmatrix = btran( btran( inmatrix, groupsize, 
                             ncolumns)[+, ], 1, ncolumns ); 
 
finish _COLSUM_; 

 
 
start _PAF_; 
 
    %* POINT ESTIMATE OF PAF *; 
 
    %* Number of follow-up time intervals *; 

PERIODCOUNT = nrow (DELTA_1); 
 

%* Hazard of death for observed and modified ('star') *; 
%* covariate values (see formula (4.7))*; 
%* Note that the regression coefficients obtained from *; 
%* the LIFEREG analysis have inverse sign compared to the *; 
%* PHREG procedure *; 

    lambda      = exp (DES * (-EST)); 
    lambda_star = exp (DES_STAR * (-EST)); 
 
    %* Exposure at different follow-up time intervals until time t *; 
    lambda_delta_t1      = lambda # DELTA_1; 
    lambda_star_delta_t1 = lambda_star # DELTA_1; 
 

%* Exposure at different follow-up time intervals until time *; 
%* t+delta_t *; 

    lambda_delta_t2      = lambda # DELTA_2; 
    lambda_star_delta_t2 = lambda_star # DELTA_2; 
 
    %* Individual total exposure until time t:               *; 
    %* sum of exposure at different follow-up time intervals *; 

run _COLSUM_( lambda_delta_t1, sum_lambda_delta_t1, 
              &PERIODCOUNT ); 
run _COLSUM_( lambda_star_delta_t1, sum_lambda_star_delta_t1, 
              &PERIODCOUNT ); 

 
    %* Individual total exposure until time t+delta_t:       *; 
    %* sum of exposure at different follow-up time intervals *; 

run _COLSUM_( lambda_delta_t2, sum_lambda_delta_t2, 
              &PERIODCOUNT ); 
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run _COLSUM_( lambda_star_delta_t2, sum_lambda_star_delta_t2, 
              &PERIODCOUNT ); 

 
    %* Survival until time t *; 
    S_t1      = exp (-sum_lambda_delta_t1); 
    S_t1_star = exp (-sum_lambda_star_delta_t1); 
 
    %* Survival until time t+delta_t *; 
    S_t2      = exp (-sum_lambda_delta_t2); 
    S_t2_star = exp (-sum_lambda_star_delta_t2); 
 
    %* Point estimate of PAF (see formula (4.10))*; 
    I      = (S_t1 - S_t2) [:,]; 
    I_star = (S_t1_star - S_t2_star) [:,]; 
    PAF    = 1 - (I_star/I); 
 
 
    %* CONFIDENCE INTERVAL OF PAF *; 
 
    %* Derivative of I w.r.t. gamma *; 
 
    %* Preparation of parameters needed for the derivation *; 
    lambda_delta_t1_Z = lambda_delta_t1 # DES; 

run _COLSUM_( lambda_delta_t1_Z, sum_lambda_delta_t1_Z, 
              &PERIODCOUNT ); 

    lambda_star_delta_t1_Z_star = lambda_star_delta_t1 # DES_STAR; 
run _COLSUM_( lambda_star_delta_t1_Z_star, 
              sum_lambda_star_delta_t1_Z_star, &PERIODCOUNT ); 

    lambda_delta_t2_Z = lambda_delta_t2 # DES; 
run _COLSUM_( lambda_delta_t2_Z, sum_lambda_delta_t2_Z, 
              &PERIODCOUNT ); 

    lambda_star_delta_t2_Z_star = lambda_star_delta_t2 # DES_STAR; 
run _COLSUM_( lambda_star_delta_t2_Z_star, 
              sum_lambda_star_delta_t2_Z_star, &PERIODCOUNT ); 

 
    dI_gamma = t( (S_t2 # sum_lambda_delta_t2_Z 
               - S_t1 # sum_lambda_delta_t1_Z) [:,] ); 
    dI_star_gamma = t( (S_t2_star # sum_lambda_star_delta_t2_Z_star 
                - S_t1_star # sum_lambda_star_delta_t1_Z_star)[:,] ); 
 
    %* Derivative of PAF w.r.t gamma *; 
    dPAF_gamma = (dI_gamma # I_star - dI_star_gamma # I) / I##2; 
 
    %* Variance and standard error of PAF (see formula (4.14))*; 
    var_PAF = t(dPAF_gamma) * COVB * dPAF_gamma; 
    se_PAF  = sqrt(var_PAF); 
 
    %* 95% confidence limits for PAF (see formula (4.15)) *; 
    PAF_CL_l = PAF - PROBIT(0.975) * se_PAF; 
    PAF_CL_u = PAF + PROBIT(0.975) * se_PAF; 
 
 

%* CONFIDENCE INTERVAL OF PAF USING COMPLEMENTARY *;  
%* LOGARITHMIC TRANSFORMATION *; 

 
    %* Complementary logarithmic transformation of PAF: log(1-PAF) *; 
    lPAF = log(1-PAF); 
 
    %* Derivative of log(1-PAF) w.r.t gamma *; 
    dlPAF_gamma = dI_star_gamma / I_star - dI_gamma / I; 
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    %* Variance and standard error of log(1-PAF) *; 
    var_lPAF = t(dlPAF_gamma) * COVB * dlPAF_gamma; 
    se_lPAF  = sqrt(var_lPAF); 
 

%* 95% confidence limits for inverse log(1-PAF) (see formula *; 
%* (4.16)) *; 

    lPAF_CL_l = 1 - exp(lPAF + PROBIT(0.975) * se_lPAF); 
    lPAF_CL_u = 1 - exp(lPAF - PROBIT(0.975) * se_lPAF); 
 
  finish _PAF_; 
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Appendix 2. Sample SAS code for calculating PAF for disease incidence with 

piecewise constant hazards model 

 

The SAS program for the estimation of PAF for disease incidence and its 95% 

confidence interval requires the SAS procedures LIFEREG and IML and the 

following inputs: 

 

DES = Design matrix  (n*J rows and B+J+B*J+m columns) for baseline hazard 

parameters and observed covariates, which indicates the categories of the baseline 

hazard variables (follow-up time intervals, birth cohorts, and their interactions) that 

each individual belongs to at each follow-up time interval and which values of the risk 

factors each individual has. 

 

DES_STAR = Design matrix (n*J rows and B+J+B*J+m columns) for baseline 

hazard parameters and modified covariates, which indicates the categories of the 

baseline hazard variables (follow-up time intervals, birth cohorts, and their 

interactions) that each individual belongs to at each follow-up time interval and which 

values of the risk factor each individual has after the hypothetical change of the risk 

factors of interest. 

 

EST_M = Column vector (B+J+B*J+m rows) of parameter estimates for the baseline 

hazard variables and the risk factors related to mortality obtained from the LIFEREG 

analysis. 

 

EST_D = Column vector (B+J+B*J+m rows) of parameter estimates for the baseline 

hazard variables and the risk factors related to disease incidence obtained from the 

LIFEREG analysis. 

 

COVB_M = Covariance matrix (B+J+B*J+m rows and columns) of the parameter 

estimates for the baseline hazard variables and the risk factors related to mortality 

obtained from the LIFEREG analysis. 

 



89Research 34/2010
National Institute for Health and Welfare

Population Attributable Fraction (PAF) in 
Epidemiologic Follow-up Studies

APPENDICES

COVB_D = Covariance matrix (B+J+B*J+m rows and columns) of the parameter 

estimates for the baseline hazard variables and the risk factors related to disease 

incidence obtained from the LIFEREG analysis. 

 

To estimate PAF for a chosen time interval (0, ]t , the user must define the exposure at 

different time intervals until time t (DELTA). For example, to estimate PAF for 

disease incidence for a time interval (0, 20] when the follow-up time is divided into 

four 5-year time intervals, the user must define: 

DELTA = {5, 5, 5, 5}; 

 

Then, the following SAS/IML code can be applied to obtain the point estimate of PAF 

for disease incidence (PAF) and its lower and upper 95% confidence limits 

(lPAF_CL_l and lPAF_CL_u): 

 
 
start _CUMSUM_( inmatrix, outmatrix, groupsize ); 
 
     %* Cumulative column sums related to each invidual   *; 
     %* GROUPSIZE = Number of columns related to the same *; 
     %* individual,                                       *;  
     %* if missing, assumed to include all rows.          *; 
 
     if missing(groupsize) then groupsize = nrow( inmatrix ); 
 
     ncolumns  = ncol( inmatrix ); 
     outmatrix = t( btran( inmatrix, groupsize, ncolumns ) ); 
     ncolout   = ncol( outmatrix ); 
     do _i=2 to ncolout; 
        outmatrix[ ,_i] = outmatrix[ ,_i-1] + outmatrix[ ,_i]; 
     end; 
     outmatrix = btran( t(outmatrix), groupsize, ncolumns ); 
 
finish _CUMSUM_; 
 
  
start _LAG_( inmatrix, outmatrix, groupsize, lag, value ); 
 
     %* Preceding column value by individual                       *; 
     %* GROUPSIZE = Number of columns related to the same          *; 
     %* individual,                                                *; 
     %* if missing, assumed to include all rows.                   *;      
     %* LAG       = length of lag in choosing the preceding column *; 
     %* value,                                                     *; 
     %* if missing, assumed to be 1                                *; 
     %* VALUE     = value replacing the possible missing value at  *; 
     %* beginning                                                  *; 
 
     if missing(groupsize) then groupsize = nrow( inmatrix ); 
     if missing(lag)       then lag = 1; 
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     if groupsize<=1 then 
        outmatrix = j( nrow(inmatrix), ncol(inmatrix), value ); 
     else do; 
        ncolumns  = ncol( inmatrix ); 
        outmatrix = t( btran( inmatrix, groupsize, ncolumns ) ); 
        nrowout   = nrow( outmatrix  ); 
        outmatrix = btran( t( j(nrowout, lag, value) || 
        outmatrix[ ,1:groupsize-lag] ), groupsize, ncolumns ); 
     end; 
 
finish _LAG_; 
 
 
start _PAF_; 
 
     %* POINT ESTIMATE OF PAF *; 
 
     %* Number of follow-up time intervals *; 

 PERIODCOUNT = nrow (DELTA); 
 

%* Hazard of death for observed and modified ('star') *; 
%* covariate values (see formula (4.7))*; 

 %* Note that the regression coefficients obtained from *; 
 %* the LIFEREG analysis have inverse sign compared to the *; 
 %* PHREG procedure *; 

     lambda_M      = exp (DES * (-EST_M)); 
     lambda_M_star = exp (DES_STAR * (-EST_M)); 
 

%* Hazard of disease incidence for observed and modified *; 
%* ('star') covariate values (see formula (4.8))*; 

     lambda_D      = exp (DES * (-EST_D)); 
     lambda_D_star = exp (DES_STAR * (-EST_D)); 
 
     %* Sum of hazard of death and hazard of disease incidence *; 
     lambda_M_plus_D      = lambda_M      + lambda_D; 
     lambda_M_plus_D_star = lambda_M_star + lambda_D_star; 
 
     %* Probability that the observed event is disease *; 
     dis_prob      = lambda_D      / lambda_M_plus_D; 
     dis_prob_star = lambda_D_star / lambda_M_plus_D_star; 
 

%* Exposure at different follow-up time intervals until the *; 
%* end of follow-up *; 

     lambda_M_plus_D_delta      = lambda_M_plus_D      # DELTA; 
     lambda_M_plus_D_star_delta = lambda_M_plus_D_star # DELTA; 
 

%* Individual total exposure by the end of each follow-up *; 
%* time-interval: *; 

     %* sum of exposure at previous follow-up time intervals *; 
     run _CUMSUM_( lambda_M_plus_D_delta, cs_lambda_M_plus_D_delta, 
                   &PERIODCOUNT ); 
     run _CUMSUM_( lambda_M_plus_D_star_delta, 
                   cs_lambda_M_plus_D_star_delta, &PERIODCOUNT ); 
 
     %* Survival until time a_j: S_j ja S_j* *; 
     S_t2      = exp (-cs_lambda_M_plus_D_delta); 
     S_t2_star = exp (-cs_lambda_M_plus_D_star_delta); 
 

%* Survival until time a_j-1: S_j-1 ja S_j-1* (calculated *;  
%* with the help of S_j ja S_j*) *; 

     run _LAG_( S_t2,  S_t1, &PERIODCOUNT, 1, 1 ); 
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     run _LAG_( S_t2_star, S_t1_star, &PERIODCOUNT, 1, 1 ); 
 
     %* Point estimate of PAF (see formula (4.11))*; 
     I      = ( dis_prob # (S_t1 - S_t2) )[:,]; 
     I_star = ( dis_prob_star # (S_t1_star - S_t2_star) )[:,]; 
     PAF    = 1 - (I_star/I); 
 
 
     %* CONFIDENCE INTERVAL OF PAF *; 
 
     %* Derivative of I w.r.t. gamma_M *; 
 

%* Preparation of parameters related to mortality needed for *; 
%* the derivation *; 

     lambda_M_delta_t2_Z = (lambda_M # DELTA) # DES; 
     run _CUMSUM_( lambda_M_delta_t2_Z, cs_lambda_M_delta_t2_Z, 
                   &PERIODCOUNT ); 
     lambda_M_star_delta_t2_Z_star = (lambda_M_star # DELTA) # 
                                      DES_STAR; 
     run _CUMSUM_( lambda_M_star_delta_t2_Z_star, 
                   cs_lambda_M_star_delta_t2_Z_star, &PERIODCOUNT ); 
     run _LAG_( cs_lambda_M_delta_t2_Z, cs_lambda_M_delta_t1_Z, 
                &PERIODCOUNT, 1, 0 ); 
     run _LAG_( cs_lambda_M_star_delta_t2_Z_star, 
                cs_lambda_M_star_delta_t1_Z_star, &PERIODCOUNT, 1, 
                0 ); 
 
     dI_gamma_M = ( -DES # lambda_D # lambda_M / (lambda_M_plus_D##2) 
                     # (S_t1 - S_t2) 
                   + dis_prob # ( S_t2 # cs_lambda_M_delta_t2_Z 
                      - S_t1 # cs_lambda_M_delta_t1_Z ) ) [:,]; 
 
     dI_star_gamma_M = ( -DES_STAR # lambda_D_star # lambda_M_star / 
                 (lambda_M_plus_D_star##2) # (S_t1_star - S_t2_star) 
                     + dis_prob_star # ( S_t2_star # 
                       cs_lambda_M_star_delta_t2_Z_star 
             - S_t1_star # cs_lambda_M_star_delta_t1_Z_star ) ) [:,]; 
 
     %* Derivative of I w.r.t. gamma_D *; 
 

%* Preparation of parameters related to disease needed for *; 
%* the derivation *; 

     lambda_D_delta_t2_Z = (lambda_D # DELTA) # DES; 
     run _CUMSUM_( lambda_D_delta_t2_Z, cs_lambda_D_delta_t2_Z, 
                   &PERIODCOUNT ); 
     lambda_D_star_delta_t2_Z_star = (lambda_D_star # DELTA) # 
                                      DES_STAR; 
     run _CUMSUM_( lambda_D_star_delta_t2_Z_star, 
                   cs_lambda_D_star_delta_t2_Z_star, &PERIODCOUNT ); 
     run _LAG_( cs_lambda_D_delta_t2_Z, cs_lambda_D_delta_t1_Z, 
                &PERIODCOUNT, 1, 0 ); 
     run _LAG_( cs_lambda_D_star_delta_t2_Z_star, 
                cs_lambda_D_star_delta_t1_Z_star, &PERIODCOUNT, 1, 
                0 ); 
 
     dI_gamma_D = ( DES # lambda_D # lambda_M / (lambda_M_plus_D##2) 
                    # (S_t1 - S_t2) 
                    + dis_prob # ( S_t2 # cs_lambda_D_delta_t2_Z 
                       - S_t1 # cs_lambda_D_delta_t1_Z ) ) [:,]; 
 
     dI_star_gamma_D = ( DES_STAR # lambda_D_star # lambda_M_star / 
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                 (lambda_M_plus_D_star##2) # (S_t1_star - S_t2_star) 
                     + dis_prob_star # ( S_t2_star # 
                        cs_lambda_D_star_delta_t2_Z_star 
            - S_t1_star # cs_lambda_D_star_delta_t1_Z_star ) ) [:,]; 
 
     %* Derivative of PAF w.r.t. gamma_M *; 
     dPAF_gamma_M  = (dI_gamma_M # I_star - dI_star_gamma_M # I) / 
                      I##2; 
 
     %* Derivative of PAF w.r.t. gamma_D *; 
     dPAF_gamma_D  = (dI_gamma_D # I_star - dI_star_gamma_D # I) / 
                      I##2; 
 
     %* Variance and standard error of PAF (see formula (4.17)) *; 
     var_PAF = dPAF_gamma_D * COVB_D * t(dPAF_gamma_D) + 
               dPAF_gamma_M * COVB_M * t(dPAF_gamma_M); 
     se_PAF  = sqrt(var_PAF); 
 
 
     %* 95% confidence limits for PAF (see formula (4.18))*; 
     PAF_CL_l = PAF - PROBIT(0.975) * se_PAF; 
     PAF_CL_u = PAF + PROBIT(0.975) * se_PAF; 
 
 

%* CONFIDENCE INTERVAL OF PAF USING COMPLEMENTARY *; 
%* LOGARITHMIC TRANSFORMATION *; 

 
     %* Complementary logarithmic transformation of PAF: log(1-PAF)*; 
     lPAF = log(1-PAF); 
 
     %* Derivative of log(1-PAF) w.r.t gamma_M *; 
     dlPAF_gamma_M = dI_star_gamma_M / I_star - dI_gamma_M / I; 
 
     %* Derivative of log(1-PAF) w.r.t gamma_D *; 
     dlPAF_gamma_D = dI_star_gamma_D / I_star - dI_gamma_D / I; 
 
     %* Variance and standard error of log(1-PAF) *; 
     var_lPAF = dlPAF_gamma_D * COVB_D * t(dlPAF_gamma_D) + 
                dlPAF_gamma_M * COVB_M * t(dlPAF_gamma_M); 
     se_lPAF  = sqrt(var_lPAF); 
 
     %* 95% confidence limits for inverse log(1-PAF) (see formula *; 
     %* (4.16))*; 
     lPAF_CL_l = 1 - exp(lPAF + PROBIT(0.975) * se_lPAF); 
     lPAF_CL_u = 1 - exp(lPAF - PROBIT(0.975) * se_lPAF); 
 
  finish _PAF_; 
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