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his study aims to analyze the effects of thermal buoyancy on the
aminar boundary layer about a vertical plate in a uniform stream
f fluid under a convective surface boundary condition. Using a
imilarity variable, the governing nonlinear partial differential
quations have been transformed into a set of coupled nonlinear
rdinary differential equations, which are solved numerically by
pplying shooting iteration technique together with fourth-order
unge–Kutta integration scheme. The variations in dimensionless
urface temperature and fluid-solid interface characteristics for
ifferent values of Prandtl number (Pr), local Grashof number
rx, and local convective heat transfer parameter Bix are graphed
nd tabulated. A comparison with previously published results on
pecial case of the problem shows excellent agreement.
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Introduction
Convective heat transfer studies are very important in processes

nvolving high temperatures such as gas turbines, nuclear plants,
hermal energy storage, etc. The classical problem �i.e., fluid flow
long a horizontal, stationary surface located in a uniform
reestream� was solved for the first time in 1908 by Blasius �1�; it
s still a subject of current research �2,3� and, moreover, further
tudy regarding this subject can be seen in most recent papers
4,5�. Moreover, Bataller �6� presented a numerical solution for
he combined effects of thermal radiation and convective surface
eat transfer on the laminar boundary layer about a flat-plate in a
niform stream of fluid �Blasius flow� and about a moving plate in
quiescent ambient fluid �Sakiadis flow�. Recently, Aziz �7� in-

estigated a similarity solution for laminar thermal boundary layer
ver a flat-plate with a convective surface boundary condition.
umerous studies such as Refs. �8–10� considered different varia-

ions in temperature and heat flux at the plate; no study appeared
o have considered the combined effects of buoyancy force and a
onvective heat exchange at the plate surface on the boundary
ayer flow, which is the focus of this paper.
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In this present paper, the recent work of Aziz �7� is extended to
include the effect of buoyancy force. The numerical solutions of
the resulting momentum and the thermal similarity equations are
reported for representative values of thermophysical parameters
characterizing the fluid convection process.

2 Mathematical Analysis
We consider a two-dimensional steady incompressible fluid

flow coupled with heat transfer by convection over a vertical
plate. A stream of cold fluid at temperature T� moving over the
right surface of the plate with a uniform velocity U� while the left
surface of the plate is heated by convection from a hot fluid at
temperature Tf, which provides a heat transfer coefficient hf �see
Fig. 1�. The density variation due to buoyancy effects is taken into
account in the momentum equation �Boussinesq approximation�.
The continuity, momentum, and energy equations describing the
flow can be written as

�u

�x
+

�v
�y

= 0 �1�

u
�u

�x
+ v

�u

�y
= �

�2u

�y2 + g��T − T�� �2�

u
�T

�x
+ v

�T

�y
= �

�2T

�y2 �3�

where u and v are the x �along the plate� and the y �normal to the
plate� components of the velocities, respectively, T is the tempera-
ture, � is the kinematics viscosity of the fluid, and � is the thermal
diffusivity of the fluid and � is the thermal expansion coefficient.
The velocity boundary conditions can be expressed as

u�x,0� = v�x,0� = 0 �4�

u�x,�� = U� �5�

The boundary conditions at the plate surface and far into the cold
fluid may be written as

− k
�T

�y
�x,0� = hf�Tf − T�x,0�� �6�

T�x,�� = T� �7�

Introducing a similarity variable � and a dimensionless stream
function f��� and temperature ���� as

� = y�U�

�x
=

y

x
�Rex,

u

U�

= f�, v =
1

2
�U��

x
��f� − f� ,

� =
T − T�

Tf − T�

�8�

where prime symbol denotes differentiation with respect to � and
Rex=U�x /� is the local Reynolds number. Equations �1�–�7� re-
duces to

f� +
1

2
f f� + Grx� = 0 �9�

�� +
1

2
Pr f�� = 0 �10�

f�0� = f��0� = 0, ���0� = − Bix�1 − ��0�� �11�

f���� = 1, ���� = 0 �12�
where
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Bix =
hf

k
� �x

U�

, Pr =
�

�
, Grx =

�xg��Tf − T��
U�

2 �13�

or the momentum and energy equations to have a similarity so-
ution, the parameters Grx and Bix must be constants and not func-
ions of x as in Eq. �13�. This condition can be met if the heat
ransfer coefficient hf is proportional to x−1/2 and the thermal ex-
ansion coefficient � is proportional to x−1. We therefore assume

hf = cx−1/2, � = mx−1 �14�

here c and m are constants. Substituting Eq. �14� into Eq. �13�,
e have

Bi =
c

k
� �

U�

, Gr =
�mg�Tf − T��

U�
2 �15�

ith Bi and Gr defined by Eq. �15�, the solutions of Eqs. �9�–�12�
ield the similarity solutions, however, the solutions generated are
he local similarity solutions whenever Bix and Grx are defined as
n Eq. �13�.

Numerical Solutions
The coupled nonlinear Eqs. �9� and �10� with the boundary

onditions in Eqs. �11� and �12� are solved numerically using the
ourth-order Runge–Kutta method with a shooting technique and
mplemented on Maple �11�. The step size 0.001 is used to obtain
he numerical solution with seven-decimal place accuracy as the
riterion of convergence.

Results and Discussion
Numerical calculations have carried out for different values of

he thermophysical parameters controlling the fluid dynamics in
he flow regime. The Prandtl number used are 0.72, 1, 3, and 7.1;
he convective parameter Bix used are 0.05, 0.10, 0.20, 0.40, 0.60,
.80, 1, 5, 10, and 20; and the Grashof number �Grashof number
rx� used are Gr�0 �which corresponds to the cooling problem�.
he cooling problem is often encountered in engineering applica-

ions; for example, in the cooling of electronic components and
uclear reactors. Comparisons of the present results with previ-
usly work is performed and excellent agreement has been ob-
ained. We obtained the results as shown in Tables 1 and 2 and
igs. 2–6 below.
Table 1 shows the comparison of Aziz �7� work with the present

ork for Prandtl number �Pr=0.72� and it is noteworthy that there
s a perfect agreement in the absence of Grashof number. Table 2,
llustrates the values of the skin-friction coefficient and the local
usselt number in terms of f��0� and −���0�, respectively, for
arious values of embedded parameters. From Table 2, it is un-
erstood that the skin-friction and the rate of heat transfer at the
late surface increases with an increase in local Grashof number
nd convective surface heat transfer parameter. However, an in-
rease in the fluid Prandtl number decreases the skin-friction but
ncreases the rate of heat transfer at the plate surface. Figures 2

x

][ TTh
y
Tk ff ��
�
�

�
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u

y

Fig. 1 Flow configuration and coordinate system
nd 3 depict the fluid velocity profiles. Generally, the fluid veloc-
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ity is zero at the plate surface and increases gradually away from
the plate toward the freestream value satisfying the boundary con-
ditions. It is interesting to note that an increase in the intensity of
convective surface heat transfer �Bix� produces a slight increase in
the fluid velocity within the boundary layer. Similar trend is ob-
served with an increase in local Grashof number due to buoyancy
effects. Moreover, the effect of local Grashof number on the ve-
locity profiles �see Fig. 3� is more pronounced than the effect of
convection parameter �Bix� �see Fig. 2�. Figures 4–6 illustrate the
fluid temperature profiles within the boundary layer. The fluid
temperature is maximum at the plate surface and decreases expo-
nentially to zero value far away from the plate satisfying the
boundary conditions. From this figures, it is noteworthy that the
thermal boundary layer thickness increases with an increase in Bix
and decreases with and increase in the values of Grx and Pr.
Hence, convective surface heat transfer enhances thermal diffu-

Table 1 Computations showing comparison with Aziz †7‡ re-
sults for Grx=0 and Pr=0.72

Bix

��0�
Aziz �7�

−���0�
Aziz �7�

��0�
Present

−���0�
Present

0.05 0.1447 0.0428 0.1447 0.0428
0.10 0.2528 0.0747 0.2528 0.0747
0.20 0.4035 0.1193 0.4035 0.1193
0.40 0.5750 0.1700 0.5750 0.1700
0.60 0.6699 0.1981 0.6699 0.1981
0.80 0.7302 0.2159 0.7302 0.2159
1.00 0.7718 0.2282 0.7718 0.2282
5.00 0.9441 0.2791 0.9442 0.2791

10.00 0.9713 0.2871 0.9713 0.2871
20.00 0.9854 0.2913 0.9854 0.2913

Table 2 Computation showing f�„0…, �„0…, and ��„0… for differ-
ent parameter values

Bix Grx Pr f��0� −���0� ��0�

0.1 0.1 0.72 0.36881 0.07507 0.24922
1.0 0.1 0.72 0.44036 0.23750 0.76249
10 0.1 0.72 0.46792 0.30559 0.96944
0.1 0.5 0.72 0.49702 0.07613 0.23862
0.1 1.0 0.72 0.63200 0.07704 0.22955
0.1 0.1 3.00 0.34939 0.08304 0.16954
0.1 0.1 7.10 0.34270 0.08672 0.13278

___ 1.0�xBi

oooo 5.0�xBi
++++ 1�xBi
……. 10�xBi
Fig. 2 Velocity profiles for Pr=0.72, Grx=0.1
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Fig. 4 Temperature profiles for Pr=0.72, Grx=0.1

Fig. 5 Temperature profiles for Pr=0.72 and Bix=0.1
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sion while an increase in the Prandtl number and the intensity of
buoyancy force slows down the rate of thermal diffusion within
the boundary layer.

5 Conclusion
Analysis has been carried out to study the boundary layer flow

over a vertical plate with a convective surface boundary condition.
A similarity solution for the momentum and the thermal boundary
layer equations is possible if the convective heat transfer of the
fluid heating the plate on its left surface is proportional to x−1/2

and the thermal expansion coefficient � is proportional to x−1. The
numerical solutions of the similarity equations were reported for
the various parameters embedded in the problem. The combined
effects of increasing the Prandtl number and the Grashof number
tends to reduce the thermal boundary layer thickness along the
plate.

Acknowledgment
O.D.M. would like to thank the National Research Foundation

�NRF� Thuthuka program for financial support. Dr. Olanrewaju of
Convent University, Nigeria visited CPUT South Africa on Post-
doctoral studies.

Nomenclature
�x ,y� � Cartesian coordinates
�u ,v� � velocity components

T� � freestream temperature
Tf � hot fluid temperature
g � gravitational acceleration
T � fluid temperature

Pr � Prandtl number
U� � freestream velocity
Grx � local Grashof number
Bix � local convective heat transfer parameter

k � thermal conductivity

Greek Symbols
� � thermal diffusivity of the fluid
� � thermal expansion coefficient

___ 72.0Pr �
ooooo 0.1Pr �
++++ 3Pr �
……. 1.7Pr �

Fig. 6 Temperature profiles for Grx=0.1 and Bix=0.1
___ 1.0�xGr

oooo 5.0�xGr
++++ 1�xGr
……. 2.1�xGr

Fig. 3 Velocity profiles for Pr=0.72, Bi =0.1
___ 1.0�xBi

oooo 5.0�xBi
++++ 1�xBi
……. 10�xBi
___ 1.0�xGr

ooooo 5.0�xGr
++++ 1�xGr
……. 2.1�xGr
� � kinematic viscosity
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