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Analogical Predictions 

Jan Willem Romeyn, Groningen 

1. Introduction 
This paper deals with exchangeable analogical predic-
tions, and proposes a Bayesian model for such predic-
tions. The paper first discerns two kinds of analogical 
predictions, based on similarity of individuals and of types 
respectively. It then introduces a Bayesian framework that 
employs hypotheses for making predictions. This frame-
work is used to describe predictions based on the similarity 
of individuals, and further relates exchangeable predictions 
with a specific partition of hypotheses on types. Exchange-
able predictions based on type similarity are determined by 
prior probabilities over the partition, but the partition ob-
structs the control over the similarity relations. Finally the 
paper develops a model for exchangeable predictions 
based on type similarity, which employs hypotheses on 
similarity between individuals, thereby offering a better 
control over the similarity relations. 

2. Similarity of individuals and types 
This section introduces the two kinds of similarity that play 
a role in analogical predictions. It further describes the 
relation between the predicates associated with these 
similarities. 

Following (Niiniluoto 1981), analogical predictions based 
on similarity between individuals have this form: 

M1a1 ∩ M2a1 

M1a2 ∩ M2a2 

⋅⋅⋅ 

M1at ∩ M2at 

M1at+1 

––––––––––––––– 

probably M2at+1. 

That is, the similarity between individuals a1 to at and the 
further individual at+1 is derived from the fact that all of 
them satisfy the predicate M1. This similarity is subse-
quently used to derive from M2a1 to M2at that probably also 
M2at+1. The similarity involved in this inference is between 
individuals a1 to at on the one hand, and the further 
individual at+1 on the other. 

Imagine that we have a limited number L of M-predi-
cates, indexed k, which can be either true or false of an 
individual. Denote the above predications of ai as Mm

k ai, 
where m = 0 or m = 1 for Mkai being true or false respec-
tively. We can define the type predicate of an individual ai 
as cells Q in the partition generated by the M-predicates. 
These cells are determined with an L-tuple q of the 
binaries m, which encode the satisfaction of M-predicates 
by individual ai: 

q = 〈m1, m2, ... , mL〉 . 

So every individual ai can be assigned a unique type 
predicate Qq, which refers to one particular cell in the 
partition generated by the M-predicates. I sometimes refer 

to the type predicates as Q-predicates, and where 
convenient I denote the L-tuples q with natural numbers. 

Imagine that we only have access to the types, or Q-
predicates, and not to the M-predicates underlying these 
types. In that case we can still make analogical predic-
tions. For example, it may be that we consider type Q1 
more similar to type Q2 than type Q0, where these type 
numbers refer to specific L-tuples q, and further that we 
observe the t-th individual to be of type Q1. Then, apart 
from deeming Q1 more probable for the next individual, we 
may also take the effect of observing Q1 to be more 
favourable to Q2 than to Q0. The observation of Q1 is thus 
assumed to have some predictive relevance for Q2 as well. 
Below I give a formal definition of this kind of analogical 
prediction. For now, note that the example is an analogical 
prediction based on similarity between types of individuals. 

3. Bayesian framework 
The following contains a brief introduction into a Bayesian 
framework that employs hypotheses for making predic-
tions. It deals with observations, belief states, hypotheses, 
updating by conditioning, and predictions. 

In expressing the observations of Q- or M-predicates, it 
will be convenient to omit reference to the individuals ai. 
Instead we can refer to the observations directly by adding 
a time index to the predicates. Thus, the expressions Qq

t 
and Mm

kt refer to the observations of individual at having 
predicates Qq and Mm

k respectively. The expressions EQ
t 

and EMk
T refer to sequences of such observations, having 

length t, or a vector of such lengths T. We can write 

Qq
t ∩ EQ

t-1 = EQ
t , 

Mm
kt ∩ EM

Tb = EM
Ta , 

in which Tb and Ta are vectors of lengths having t-1 and t 
in the k-th element respectively. The remainder of this 
section deals with Q-predicates. The formal treatment of 
M-predicates is analogous. 

Belief is represented with a probability function p, which 
takes observations and hypotheses as arguments. 
Observations Qq

t are defined above. Hypotheses H are 
general observational statements that prescribe specific 
probabilities for the observations Qq

t. The prescribed 
probabilities p( Qq

t | H ∩ EQ
t-1) are called the likelihoods of 

observations Qq
t on hypothesis H. A partition of hypothe-

ses P = { Hα | α ∈ [0,1] } is a collection of such general 
statements that are together assumed to exhaust logical 
space. 

When we observe Qq
t, our new belief can be repre-

sented with the same probability function conditioned on 
the new observation: 

p( ⋅ | EQ
t-1) → p( ⋅ | Qq

t ∩ EQ
t-1) . 

This transition between belief states is called updating by 
conditioning. We can update the probability assigned to 
hypotheses by means of the likelihoods on these hypothe-
ses: 

p( Hα | Qq
t ∩ EQ

t-1) = p( Hα | EQ
t-1) × p( Qq

t | Hα ∩ EQ
t-1) /  

p( Qq
t | EQ

t-1) . 
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Moreover, using the partition we can write the denominator 
p( Qq

t | EQ
t-1) in terms of likelihoods and probabilities over 

hypotheses: 

p( Qq
t | EQ

t-1) = ∫ p( Hα | EQ
t-1) × p( Qq

t | Hα ∩ EQ
t-1) dα . 

The predictions p( Qq
t+1 | EQ

t ) can be expressed in the 
same way. In sum, they can be derived from a partition P, 
a prior probability p(Hα), the likelihoods p( Qq

i | Hα ∩ EQ
i-1) 

for i ranging from 1 to t+1, and the observations EQ
t. 

The above may seem an unnecessarily complicated 
framework for making predictions: we can also define 
predictions directly, as a function of previous observations 
EQ

t and some further parameters. However, as I will show, 
hypotheses are very useful in laying down the assump-
tions underlying analogical predictions. 

4. Similarity between individuals 
Consider again the analogical predictions based on 
similarity between individuals, as introduced in section 1. 
We can model these predictions using the framework of 
section 2. This section defines the model by means of a 
specific partition of hypotheses. 

To model similarity between individuals we can use a 
partition of hypotheses Hμ , which is summarised with the 
following diagram: 

 
 

Every hypothesis Hμ is characterised by a vector μ 
containing parameters μ1, μ2

1, and μ2
0. The diagram shows 

the likelihoods of the M-predicates conditional on these 
hypotheses. The parameter μ1 is the likelihood of M1

1t for 
any t: 

p( M1
1t | Hμ ∩ EM

〈t-1,t’〉) = μ1 . 

The parameters μ2
1 and μ2

0 are the likelihoods of M1
2t on 

Hμ , conditioned on the further occurrence of M1
1t and M0

1t 
respectively: 

p( M1
2t | Hμ ∩ EM

〈t-1,t’〉 ∩ M1
1t) = μ2

1 , 

p( M1
2t | Hμ ∩ EM

〈t-1,t’〉 ∩ M0
1t) = μ2

0 . 

The probability distribution over the partition of hypotheses 
Hμ is a function of the three independent parameters in μ. 

With this partition of hypotheses in place, I can make 
explicit how the predictions resulting from it employ 
similarity between individuals. Assume that the prior 
probability distribution over hypotheses Hμ is uniform, so 
that the marginal distributions over the parameters in μ are 
uniform too: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, assume that the observations until t are 
those given in the example of section 1: 

EM
T = M1

11 ∩ M1
21 ∩ M1

12 ∩ M1
22 ⋅⋅⋅ M1

1t ∩ M1
2t . 

We can then compute a probability over the hypotheses 
conditional on these observations. The marginal distribu-
tions of this updated distribution will look approximately as 
follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since there has been no relevant observation on the value 
of μ2

0, the distribution over μ2
0 has not changed. But the 

distributions over μ1 and μ2
1 are both tilted towards higher 

values. This is because updating with the observations of 
M1

1i and M1
2i favours hypotheses that have higher likeli-

hoods μ1 and μ2
1 for these observations. 

Now we can compare the prediction of M1
2t+1 based on the 

observations EM
T and EM

T ∩ M1
1t+1 respectively. This 

difference measures the effect of taking individual at+1 to 
be similar to the observed individuals a1 to at, for which M1 
was true. Using the above likelihoods, the predictions are 

1 
μ1 

p1(μ1)
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p( M1
2t+1 | EM

T ) = ∫ p( Hμ | EM
T ) × [μ1μ2

1 + (1-μ1) μ2
0] dμ , 

p( M1
2t+1 | EM

T ∩ M1
1t+1 ) = ∫ p( Hμ | EM

T ) × μ2
1 dμ . 

It can easily be verified that the prediction based on EM
T 

and the further observation that M1
1t+1 is higher than the 

one based on EM
T alone. The Bayesian framework thus 

models analogical predictions based on similarity between 
individuals. 

5. Exchangeability and type similarity priors 
The above concerns predictions based on direct observa-
tions of M-predicates. Similarity of individuals is exhibited 
in the M-predicates that the individuals have in common. 
However, in many cases we do not have access to M-
predicates, but only to Q-predicates. Similarity between 
individuals must then be replaced by similarity between 
types. The remainder of this paper is devoted to analogical 
predictions based on type similarity. 

The following only discusses exchangeable analogical 
predictions. Let the operation Φi[ ⋅ ] permute the first and 
the i-th observation of a sequence EQ

t. The exchangeability 
of a prediction can then be defined as 

p( Qq
t+1 | Φi[EQ

t] ) = p( Qq
t+1 | EQ

t ) . 

This means that the prediction does not depend on the 
order of the observations Qq in EQ

t. In a Bayesian 
framework, exchangeable predictions can be represented 
with a specific partition of hypotheses. Assuming that the 
types q are numbered 0 to K and indexed j, these 
hypotheses have the following likelihoods: 

p( Q jt | Hα ∩ EQ
t) = αj . 

A hypothesis Hα is thus defined by a vector α containing 
parameters α0 to αK-1. The parameter αK must be such that 
Σjαj = 1. 

Let me now give a formal definition of type similarity. 
Following Carnap’s original suggestions in (1980), the 
similarity effect may be rephrased as 

s12 > s10 ⇒ p( Q1
t+1 | Q2

t ∩ EQ
t-1 ) > p( Q1

t+1 | Q0
t ∩ EQ

t-1 ) , 

where sij denotes the similarity between types i and j. For 
the purpose of this paper, I take similarity to be reflexive, 
so that from s12 > s10 we also have 

p( Q2
t+1 | Q1

t ∩ EQ
t-1 ) / p( Q2

t+1 | EQ
t-1 )  >   

p( Q0
t+1 | Q1

t ∩ EQ
t-1 ) / p( Q0

t+1 | EQ
t-1 ). 

This is a formal expression of the type similarity in the 
example of section 1. I will not discuss the improved and 
refined definitions of type similarity suggested in (Kuipers 
1984a) or (Festa 1997).  

Exchangeable analogical predictions can now be char-
acterised using the partition of Hα, and an appropriate prior 
over this partition. Intuitively, it must look somewhat like 
the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The simplex on the left is first transformed into a square by 
stretching the top corner. The prior over the simplex for Hα 
can then be decomposed in a marginal distribution over α1 
and a continuum of distributions over the transformed 
simplex, each of them associated with a specific value of 
α1. The idea behind the continuum is that higher values of 
α1 are associated with distributions that favour Q2 over Q0. 
If we observe Q1, the marginal distribution over α1 will tilt 
towards the higher values, and this will cause the dis-
tributions favouring Q2 to gain more weight. The marginal 
distribution for α0 will then shift slightly towards lower 
values. 

However, this representation makes it difficult to trans-
late the update with Q1 into an operation on the marginal 
distribution for α0 or α2. A related difficulty is in encoding 
type similarity relations into the priors. Skyrms (1993), 
Maher (2001) and others have presented interesting ways 
to do this more or less indirectly. The last section develops 
a new method, based on the model of section 3. 
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6. Type similarity model 
The idea behind the model is that similarity relations 
between types can be expressed in terms of shared under-
lying M-predicates. This section employs the hypotheses 
of section 3 to make this idea precise. 

Following the example, types Q1 and Q2 are highly 
similar, and both are dissimilar to Q0. We can now employ 
the hypotheses Hμ to facilitate an expression of the similar-
ity relations. The diagram represents the new hypotheses 
Hαμ : 

 

This diagram gives the following relations between M- 
and Q-predicates: 

M0
1t ∩ M0

2t = Q0
t , 

M1
1t ∩ M1

2t = Q1
t , 

M0
1t ∩ M1

2t = Q2
t , 

M1
1t ∩ M0

2t = ∅ . 

From this last relation we know that μ2
1 = 0. So the 

hypotheses Hαμ are defined by only two parameters. These 
are related to the original likelihoods of the Q-predicates 
on the hypotheses Hα: 

p( Q1
t | Hαμ ∩ EQ

t) = μ1 = α1 , 

p( Q2
t | Hαμ ∩ EQ

t) = (1 - μ1) μ2
0 = (1 - α1) μ2

0
 , 

p( Q0
t | Hαμ ∩ EQ

t) = (1 - μ1) (1 - μ2
0) = (1 - α1) (1 - μ2

0) . 

In the following, I take the hypotheses to be parameterised 
with α1 and μ2

0. 

The similarity relations between types can now be 
expressed with a prior over these new parameters. We can 
use a marginal distribution p1(α1|EQ

t-1), and a continuum of 
distributions over μ2

0 associated with the values of α1: 

 

 

 

 

 

 

 

 

In this representation the prior is related to the similarity 
relations much more directly. Because the framework 
involves no transformation, the marginal distributions for αj 
can be computed quite easily. The shift in the probability of 

Q2
t+1 due to the occurrence of Q1

t can therefore be readily 
expressed: 

p( Q2
t+1 | EQ

t-1) = ∫ p1( α1 | EQ
t-1) × α1 Aμ(α1) dα1 , 

p( Q2
t+1 | Q1

t ∩ EQ
t-1) = ∫ α1 p1( α1 | EQ

t-1) × α1 Aμ(α1) dα1 , 

where Aμ(α1) is the average of μ2
0 as a function of α1. With 

these expressions for the shifts we have full control over 
the similarity relations encoded by the prior. 

The above presents one example of encoding similarity 
between types in a prior over hypotheses that employ 
underlying predicates. Many more underlying predicate 
structures may be investigated, all of them facilitating 
different similarity relations. Positing such structures turns 
out to be a convenient tool for controlling the similarity 
assumptions used in analogical predictions. 
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μ2
0 → 

α1 

p1(α1)


