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A Correction Rule for Inductive Methods 

Ruurik Holm, Helsinki 

I will discuss the problem of choosing the correct inductive 
method from Carnap’s (1952) continuum. My proposal is to 
use a correction rule to adjust the method according to 
obtained evidence. I will discuss a minimum requirement 
such a rule has to satisfy, especially from a consturctive 
point of view. The question of refuting inductive scepticism 
by means of a correction rule is assessed. 

Carnap (e.g. 1950, 564; 1952, 38) regards the extreme 
method λ=∞ as seemingly inappropriate for sound 
scientific reasoning on the grounds that it gives no 
consideration to experience in making expectations or 
estimations. However, the argument is based on the 
presupposition that inductive reasoning is sound. A strict 
anti-inductivist holds that λ=∞ is the right choice precisely 
because it gives no regard to experience. Therefore, the 
question remains how to reject λ=∞ in Carnap’s continuum 
without making the inductivist presupposition. 

My aim in this paper is to argue for a correction rule for 
adjusting inductive methods, including λ=∞, to overcome 
this difficulty which can be considered as one formulation 
of the problem of induction. First, however, I will discuss 
what kind of minimum requirement any correction rule 
must have, especially from the point of view of constructive 
semantics. Then I will proceed to present a concrete 
example of such a rule. In the final section, I will discuss if 
using the rule presented in section 2 satisfying the 
requirement presented in section 1 is more rational than 
adhering to λ=∞. 

1. The Minimum Requirement 
My first proposal for a minimum requirement for any 
acceptable correction rule is that the method it yields 
should be the same in the limit as the method corre-
sponding to the limit of the degree of order of the se-
quence, always when one of the limits exist.  

However, in constructive mathematics, limits can only 
exist for sequences that have been constructively given. 
Let us consider the state description obtained by tossing 
an indestructible coin with an unknown bias. It is clear that 
a particular infinite sequence of tosses cannot be given as 
a computable or constructive function – otherwise the 
result of each toss would be fixed in advance. A classical 
formalization is available: one can define the i’th toss to be 
the value t(i) of some function t: N → {Heads, Tails}, even 
without being able to give a computation rule for t. 

Martin-Löf’s (1990) nonstandard type theory provides a 
constructive semantics for sequences that are not given by 
a computable rule. However, there remains another 
problem with respect to the constructive interpretation of 
the minimum requirement as phrased above.  

A sequence can constructively converge towards a limit 
only if one can compute the terms of the sequence up to 
infinity since otherwise it is impossible to know the value of 
the limit and hence also impossible to consider that the 
sequence has a limit in the constructive sense. On the 
other hand, the motivation behind the correction rule is that 
it would eventually guide us towards the optimum method, 
even if it is not knowable what the optimum method is. The 

problem is how to formulate this idea in constructive 
semantics.  

In nonstandard type theory, one can give a constructive 
formulation of the minimum requirement. Denote the 
sequence of x tosses by w(x), the degree of order of the 
sequence w(y) by do(w(y)) and the correction rule applied 
to w(y) by Corr(λa, w(y)), where λa is the initial method. 
The function δ:⎥→⎥ gives the corresponding degree of 
order for each real-valued method (hence, when λ→∞, 
δ(λ)→0.5 in the case of the coin tossing example since 
then the maximum degree of disorder is 0.5). By Δω we 
denote any infinite subsequence (in the nonstandard 
sense) of the set natural numbers {0,1,2,…} that consists 
of consecutive numbers, and a is an arbitrary real number: 

).)))(,(()(()))(()(( aywCorryaywdy ao ≈Δ∈∀⇔≈Δ∈∀ λδωω

The above formula says that for any (in the nonstandard 
sense) infinite interval, the real degree of order remains 
within the same boundaries as the degree of order 
obtained by Corr. The standard interpretation of the 
formula is that there is a minimum length such that for all 
intervals with at least that length, if the degree of order is 
within some distance ε from a in that interval, also the 
degree of order obtained by using the correction rule is 
within ε from a, and vice versa. In other words, it follows 
from the minimum requirement that for all sufficiently long 
intervals, the results of the correction rule have the same 
boundaries as the degree of order. 

The motivation for using nonstandard type theory here 
arises from the infinitistic property of the nonstandard 
number ω of being provably bigger than any standard 
natural number. The meaning of expressions dealing with 
such an infinitely long interval is constructively explained 
by reference to multiple finite intervals so that the minimum 
requirement is not in contradiction with any proposition 
obtained by negating it and replacing the infinite interval Δω 
with an arbitrary finite interval.  

Since it is now clear that the minimum requirement 
makes sense also constructively, I can proceed to present 
a concrete example of a correction rule which fulfils the 
requirement. 

2. Formulating the Rule 
It is obvious that the correction rule must have its first 
effects on the initial method when some finite amount of 
data is received. One cannot change the method unless 
one begins at some finite point.  

Let the parameter c denote a positive real number which 
expresses how cautiously the method is changed 
according to the observed degree of order; a big value for 
c means moderate changes. The variable wx denotes a 
sequence of x first tosses. 

The following formulas give an inductive definition of a 
simple but still adequate correction rule G, where the 
induction variable denotes the number of performed 
tosses: 
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The definition can also be applied when aλ →∞. 

The idea of the rule is to take the difference of the 
observed degree of order and the one implied by the 
currently used method as the basis of correction. This 
number is then multiplied by the caution factor 1/c to 
acquire the magnitude of the adjustment. The final result, 
which is a number denoting an inductive method, is 
obtained by application of the inverse function of δ. 

3. The Problem of Induction 
The problem of induction formulated in the context of 
inductive probability concerns the justification of increasing 
or decreasing the probability value of a hypothesis on the 
basis of evidence. 

Strict anti-inductivism represented by the choice of λ=∞ 
means that one will never adopt the optimum method 
when the order in the state description under examination 
is higher than the theoretical minimum. The question is if 
this kind of complete rejection of inductive inference is 
justified, i.e., whether it is justified to hold that past 
observations should not influence the probabilities of future 
observations even though it follows that one makes less 
than optimal estimates about the relative frequency of 
properties except in the case of minimum order, the error 
being bigger the higher the degree of order of the state 
description in question is. 

Hans Reichenbach’s (1949) vindication of induction was 
based on the idea that one should adopt a method of 
which it is known that it will lead to successful approxima-
tions about the relative frequencies of properties in an 
infinite domain, provided that such success is possible, 
i.e., that the limits of relative frequencies exist when the 
domain size tends to infinity. 

A related idea can be applied here. The correction rule 
will eventually lead to closer and closer approximations of 
the optimum method when the sample size increases, but 
it does not exclude the possibility of a priori considerations 
about the optimum method. The problem with both 
Reichenbach’s straight rule and the correction rule is that 
no particular body of obtained data can really justify 
inductive predictions concerning future observations. In the 
correction rule approach, this means that no particular 
sample can justify the shift from the anti-inductivism toward 
moderate inductivism.  

However, even if one holds that inductive reasoning is 
not justified, one must admit that it is possible that the 
method λ=∞ is not optimal any longer when more 
information is obtained. There is always some (logical) 
probability that future will manifest order, even according to 
the anti-inductivist method, because it assigns positive 
probabilities to ordered state descriptions. If one does not 
change the method on the basis of evidence at all when 
one has set λ=∞ in the beginning, one thus runs the risk of 
making an infinite number of inaccurate predictions, while 
the employment of an adequate correction rule would 
eliminate this risk. Hence, there seems to be a pragmatic 
argument suggesting the utilization of a correction rule. 

On the other hand, if the unknown optimum method 
corresponding to the unknown state description is λ=∞, 
every correction rule satisfying the minimum requirement 
will necessarily agree with any approximation of the real 
degree of order. Hence, there is no risk of making an 
infinite number of inaccurate predictions. The risk one 
takes is only that the first observed terms of the sequence 
are misleading with respect to relative frequencies in the 
full sequence, guiding the adjustment of the method away 
from the optimum value. There is thus a possibility of an 
arbitrarily high but still finite number of inaccurate 
predictions.  

To add up, the correction rule never leads to an infinite 
number of inaccurate predictions, whereas for λ=∞ this 
possibility exists. I hold this to be an argument for not 
adhering to λ=∞, which does not contain the inductivist 
presupposition. What remains to be discussed in this 
context is the role of probabilities, namely those assigned 
by λ=∞ to state descriptions where λ=∞ is not the optimum 
method as contrasted to those assigned to state descrip-
tions where the method is indeed optimal. 
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