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Abstract

Background: Developing intervention strategies for the control of parasitic nematodes continues to be a significant
challenge. Genomic and post-genomic approaches play an increasingly important role for providing fundamental molecular
information about these parasites, thus enhancing basic as well as translational research. Here we report a comprehensive
genome-wide survey of the developmental transcriptome of the human filarial parasite Brugia malayi.

Methodology/Principal Findings: Using deep sequencing, we profiled the transcriptome of eggs and embryos, immature
(#3 days of age) and mature microfilariae (MF), third- and fourth-stage larvae (L3 and L4), and adult male and female
worms. Comparative analysis across these stages provided a detailed overview of the molecular repertoires that define and
differentiate distinct lifecycle stages of the parasite. Genome-wide assessment of the overall transcriptional variability
indicated that the cuticle collagen family and those implicated in molting exhibit noticeably dynamic stage-dependent
patterns. Of particular interest was the identification of genes displaying sex-biased or germline-enriched profiles due to
their potential involvement in reproductive processes. The study also revealed discrete transcriptional changes during larval
development, namely those accompanying the maturation of MF and the L3 to L4 transition that are vital in establishing
successful infection in mosquito vectors and vertebrate hosts, respectively.

Conclusions/Significance: Characterization of the transcriptional program of the parasite’s lifecycle is an important step
toward understanding the developmental processes required for the infectious cycle. We find that the transcriptional
program has a number of stage-specific pathways activated during worm development. In addition to advancing our
understanding of transcriptome dynamics, these data will aid in the study of genome structure and organization by
facilitating the identification of novel transcribed elements and splice variants.
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Introduction

Wuchereria bancrofti, Brugia malayi and Brugia timori are mosquito-

borne filarial nematode parasites that cause the tropical disease

lymphatic filariasis (LF). The manifestation of the disease ranges

from swelling of the lymph nodes to elephantiasis and hydrocele.

LF is a major cause of clinical morbidity and disability, leading to

significant psychosocial and psychosexual burden in endemic

countries. B. malayi is the primary organism for the study of LF

because it has a tractable lifecycle that can be replicated in a

laboratory setting. Like other filarial nematodes it is a hetero-

xenous parasite alternating between arthropod vectors and

vertebrate hosts. Filarial nematodes are dioecious and reproduce

sexually via copulation. Inseminated adult female worms are

ovoviviparous and release live larvae (microfilariae) into the

lymph, where they eventually circulate in the bloodstream to be

taken up by mosquitoes during blood feeding. After a microfilaria

(MF) successfully penetrates the midgut of a susceptible vector, it

migrates to the thoracic muscles, and develops intracellularly

through two molts to achieve the developmentally arrested third-

stage larva (L3) that exits the mosquito proboscis during blood-

feeding and subsequently penetrates the mammalian host. Once

L3s enter the definitive host, they undergo two additional molts

and mature to adults in the lymphatics.

Characterization of the transcriptional program over the

complete lifecycle is necessary to clearly understand the develop-

ment of the parasite and could help devise better target strategies

for control. From the standpoint of possibly designing drug-based

or vaccine interventions that prevent infection or curtail parasite

transmission, there is particular interest in understanding the
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biology of the L3 to L4 transition in the mammalian host, and the

reproductive biology of filarial worms. The completion of the draft

genome of B. malayi [1] has ushered in the possibility to use whole-

genome gene expression profiling. With that goal in mind, we used

next-generation sequencing to comparatively analyze the tran-

scriptome of seven B. malayi lifecycle stages: eggs & embryos,

immature MF (of less than 3 days of age), mature MF, L3, L4,

adult male and adult female. We find that the transcriptional

program has a number of stage-specific pathways activated during

worm development and that a number of these are potential

targets for drugs or vaccines.

Methods

Ethics statement
All animal work was conducted according to relevant national

and international guidelines outlined by the National Institutes of

Health Office of Laboratory Animal Welfare, and was approved

under UWO Institutional Animal Care and Use Protocol 0-03-

0026-000246-4-6-11; and UWM Research Animal Resource

Center Protocol V00846-0-10-09.

Parasites
Brugia malayi adults and MF were obtained from the peritoneal

cavities of patently infected dark-clawed Mongolian gerbils

(Meriones uguiculatus) by peritoneal flush with prewarmed RPMI

media (Fisher Scientific, Piscataway, NJ). MF were purified by

centrifugation through Ficoll-PaqueH lymphocyte isolation media

(Amersham Pharmacia Biotech, Piscataway, NJ), and washed in

PBS three times prior to flash freezing at 280uC. Adult worms

were separated by gender, washed three times in RPMI, and flash

frozen. Egg and embryo preparations were made by repeated

cutting of 10 female worms with a scalpel to release eggs and

embryos into a small volume of cold RPMI. The sample was

examined microscopically and pieces of uterine tissue were

removed using watchmaker’s forceps. The sample was washed

three times in cold RPMI prior to flash freezing. Immature MF

(#3 days old) were generated and purified as previously described

[2]. L4s were isolated from gerbils 12–13 days post peritoneal

infection and were processed as described for adult worms. L3s

were obtained from the NIAID-NIH Filariasis Research Reagent

Resource Center at University of Georgia, Athens, GA.

RNA isolation
Total RNA was isolated from the majority of samples using a

previously described protocol [2] that combines organic extraction

with Trizol LS (Invitrogen, Carlsbad, CA) and column purification

(RNAqeous-MicroH, Applied Biosystems, Foster City, CA).

Samples were treated with DNase I (Ambion, Austin, TX, USA)

according to the manufacturer’s instructions, and the absence of

background DNA confirmed by using a portion of each sample in

a PCR designed to amplify the B. malayi GPX gene [Gen-

Bank:X69128] (data not shown). Isolation of RNA from L3s often

produces low yields therefore we used a modified protocol

employing homogenization of tissue combined with organic

extraction in RNAzol [3] followed by cleaning, concentration

and DNase treatment using a Zymo Research RNA column

(Zymo Research Corp, Orange, CA). For all samples RNA

integrity was confirmed visually by agarose gel electrophoresis

(data not shown) and purity and concentration determined

spectrophotometrically (NanoDrop ND-1000, ThermoFisher Sci-

entific); samples were stored at 280uC. Total RNA was

lyophilized under vacuum for transport on dry ice to the Wellcome

Trust Sanger Institute Genome Facility.

RNA library creation
Polyadenylated mRNA was purified from total RNA using

oligo-dT dynabead selection followed by metal ion hydrolysis

fragmentation with the Ambion RNA fragmentation kit. First

strand synthesis, primed using random oligonucleotides, was

followed by 2nd strand synthesis with RNaseH and DNApolI to

produce double-stranded cDNA using the Illumina mRNA Seq

kit. Template DNA fragments were end-repaired with T4 and

Klenow DNA polymerases and blunt-ended with T4 polynucle-

otide kinase. A single 39 adenosine was added to the repaired ends

using Klenow exo- and dATP to reduce template concatemeriza-

tion and adapter dimer formation, and to increase the efficiency of

adapter ligation. Adapters (containing primer sites for sequencing)

were then ligated and fragments size-selected (200–275 bp) by

agarose gel electrophoresis. DNA was extracted using a Qiagen gel

extraction kit protocol but with dissolution of gel slices at room

temperature (rather than 50uC) to avoid heat induced bias.

Libraries were then amplified by PCR to enrich for properly

ligated template strands, to generate enough DNA, and to add

primers for flowcell surface annealing. AMPure SPRI beads were

used to purify amplified templates before quantification using an

Agilent Bioanalyser chip and Kapa Illumina SYBR Fast qPCR kit.

Sequencing
Libraries were denatured with 0.1 M sodium hydroxide and

diluted to 6 pM in a hybridization buffer to allow the template

strands to hybridize to adapters attached to the flowcell surface.

Cluster amplification was performed on the Illumina cluster

station or the Illumina cBOT using the V4 cluster generation kit

following the manufacturer’s protocol. A SYBRGreen QC was

performed to measure cluster density and to determine whether to

pass or fail the flowcell for sequencing. This was followed by

linearization, blocking and hybridization of the R1 sequencing

primer. The hybridized flowcells were loaded onto the Illumina

Genome Analyser IIx for 54 cycles of sequencing-by-synthesis

using Illumina’s v4 or v5 SBS sequencing kit then, in situ, the

linearization, blocking and hybridization step was repeated to

Author Summary

Lymphatic filariasis, also known as elephantiasis, is a
tropical disease affecting over 120 million people world-
wide. More than 40 million people live with painful,
disfiguring symptoms that can cause severe debilitation
and social stigma. The disease is caused by infection with
thread-like filarial nematodes (roundworms) that have a
complex parasitic lifecycle involving both human and
mosquito hosts. In the study, the authors profiled the
transcriptome (the set of genes transcribed into messen-
ger RNA rather than all of those in the genome) of the
human filarial worm Brugia malayi in different lifecyle
stages using deep sequencing technology. The analysis
revealed major transitions in RNA expression from eggs
through larval stages to adults. Using statistical approach-
es, the authors identified groups of genes with distinct life
stage dependent transcriptional patterns, with particular
emphasis on genes displaying sex-biased or germline-
enriched patterns and those displaying significant changes
during larval development. This study presents a first
comprehensive analysis of the lifecycle transcriptome of B.
malayi, providing fundamental molecular information that
should help researchers better understand parasite biolo-
gy and could provide clues for the development of more
effective interventions.
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regenerate clusters, release the 2nd strand for sequencing and to

hybridize the R2 sequencing primer followed by another 54 cycles

of sequencing to produce paired end reads. These steps were

performed using proprietary reagents according to manufacturer’s

recommended protocol (https://icom.illumina.com/). Data were

analyzed using the RTA1.6 or RTA1.8 Illumina pipeline and

submitted to Array Express (http://www.ebi.ac.uk/arrayexpress/)

under the accession number E-MTAB-811.

QC Analysis
Each lane of Illumina sequence was assessed for quality based

on %GC content, average base quality and Illumina adapter

contamination. To assess the quality of the lane, the mean base

quality at each base position in the read was computed over all

reads from the lane. To assess %GC content of the reads a

frequency distribution of values was plotted. For a single sample in

a lane, a GC plot with a normal distribution around the expected

GC for the organism would be expected. Any lanes containing a

contamination could therefore be identified by the presence of

multiple peaks in the %GC plot. To screen for adapter

contamination, the sequence reads were aligned to the set of

Illumina adapter sequences using BLAT v.34 with default

parameters [4]. Any reads matching these sequences were

reported as being contaminated with adapter sequence.

Sequence alignment and transcript quantification
Sequence reads from each lifecycle stage were aligned to the

genome assembly [GenBank:DS236884–DS264093] using To-

pHat v1.0.14, a splice junction mapper built upon the short read

aligner Bowtie [5,6]. The pipeline utilized exon records in the

genome annotation [1] to build a set of known splice junctions for

each gene model, complementing its de novo junction mapping

algorithm. Default parameters were used except for the following:

minimum intron length was set to 50; minimum isoform fraction

filter was disabled; closure-search, coverage-search, microexon-

search and butterfly-search were enabled for maximum sensitivity.

The resulting alignment files were converted to BAM format and

low quality alignments with mapping quality scores less than 5

were removed before downstream analyses [7,8]. No replicate

samples were sequenced and all data were combined per lifecycle

stage. Reads aligned to exonic regions were enumerated for each

gene model using the HTSeq package (v0.4.7) in Python (www-

huber.embl.de/users/anders/HTSeq). Reads overlapping more

than one gene model were counted as ambiguous with the mode

parameter set as ‘‘union’’. Following Mortazavi et al. [9],

transcript abundance estimates were computed as RPKMs (Reads

Per Kilobase of exon model per Million mapped reads) with the

following modifications: (i) a set of paired-end reads were counted

as one in compiling sequence counts to represent a single sampling

event and (ii) TMM (trimmed mean of M)-normalized values were

used in place of the nominal library size to account for

compositional biases [10]. The correction factors for TMM-

normalization (i.e., the weighted trimmed mean of M values to the

reference) were calculated using the Bioconductor edgeR package

[11]. The weights were from the delta method on binomial data,

and the library whose upper quartile is closest to the mean upper

quartile was used as the reference.

Differential expression analysis
Differential expression analysis was performed in edgeR by

fitting a negative binomial model to the sequence count data.

Using the quantile-adjusted conditional maximum likelihood

method, dispersion parameters were estimated for each gene as

a measure of the overall stage-to-stage variability to facilitate

between-gene comparisons. All hypothesis testing was carried out

using exact test for the negative binomial distribution with a

common dispersion term for all genes. P-values less than 0.01 were

considered significant. Dispersion parameters were estimated

directly from the count data for comparisons contrasting a single

stage or two related stages relative to all other stages. For

comparisons between pairs of lifecycle stages, a common

dispersion value of 0.2 was used, which is equivalent to allowing

within-stage variations in expression levels of up to 45%. This

value was chosen based on the level of variability observed

between the immature and mature MF samples. Because longer

transcripts give more statistical power for detecting differential

expression between samples [12], Gene Ontology (GO) analysis

was performed using the goseq package that adjusts transcript

length bias in deep sequencing data [13]. GO annotation was

retrieved from the UniProtKB-GOA database [14], and statisti-

cally over-represented GO terms in a given gene list were

identified using the Wallenius non-central hypergeometric distri-

bution. Hierarchical clustering analysis was performed using

GeneSpring GX (Agilent Technologies). RKPM values for each

gene were baseline transformed to the median of all samples, and

hierarchically clustered with centroid linkage using Pearson’s

uncentered correlation coefficient as distance metric.

Results

Transcriptome quantification by deep sequencing
In total, 104 million paired-end reads (2654 bp) were generated

from polyA-tailed mRNA using the Illumina Genome Analyser IIx

(Table S1). Sequence reads were aligned to the genome assembly

using TopHat [5], and the number of reads aligned to each gene

model was summed yielding relative transcript levels for individual

genes. Approximately 50% of the sequenced reads were mapped

to the reference genome after low quality alignments were

removed; 10% of which were aligned to genomic regions outside

of the current gene models. Sequencing depth varied between the

lifecycle stage libraries, affecting gene model coverage and the

distribution of the read counts per gene model for each library

(Figure 1 and Figure S1). Overall, in each library, 8,000–10,000

genes (equivalent to 70 to 90% of the currently annotated gene

models) had 5 or more mapped reads. Sequence counts were

RPKM (Reads Per Kilobase of exon model per Million mapped

reads)-transformed and TMM (trimmed mean of M)-normalized

to assist in the interpretation of transcript abundance comparisons

between stages and genes [9,10]. For statistical inferences,

however, raw read counts were directly used. Further analysis of

our sequence data from a genomics perspective, covering issues

related to missing, incomplete or incorrect gene models of the

2007 assembly [1] will be published elsewhere (in preparation).

Our sequencing libraries contained reads that map to the

Wolbachia genome [GenBank:AE017321]. However, the study was

not adequately designed such that one could quantitatively analyze

these reads in a biologically meaningful way. Abundance estimates

(inferred from read counts) of these transcripts most likely deviate

substantially from their true in vivo levels. Poly-A selection directly

affects the relative abundance of non-poly-A Wolbachia transcripts

with respect to B. malayi transcripts. Moreover, the nature and

extent of the biases introduced by oligo-dT method to the relative

abundance levels among the non-poly-A species (with respect to

each other) is not well understood, and one cannot assume that

these biases would remain uniform among different sample

preparations. Another layer of uncertainty stems from the

possibility that these ‘‘Wolbachia’’ sequences were transcribed from

the B. malayi nuclear genome rather than the endosymbiont as a

Developmental Transcriptome of Brugia malayi
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consequence of the past horizontal gene transfer events, leading to

a differential capture of (presumably) poly-A tailed ‘‘Wolbachia’’

transcripts of the B. malayi nuclear origin. However, given the

incomplete draft nature of the B. malayi genome assembly and the

inherent difficulty in mapping short reads originating from

multiple loci that are similar in sequences, it remains challenging

to rigorously test this hypothesis in silico.

Lifecycle stage dependent changes in the transcriptome
To investigate the global transcriptional differences between

stages and between genes during development, a negative

binomial (NB) based model [11] was fit to sequence count data.

First, the degree of between-stage differences was assessed globally

using a multidimensional scaling (MDS) of all-against-all compar-

isons in the NB model (Figure 2). The resulting sample relations

appear consistent with the expected biological differences between

the samples. The MDS plot indicates that, in relative terms, the

transcriptome profiles of the immature and mature MF are more

similar to each other than either is to other stages. Likewise, the

eggs & embryos sample is closely related to the adult female

sample, part of which consists of the germ-line cells. Interestingly,

this plot also shows how different the transcriptome profiles of

adult male and female worms are to each other.

Next, we made between-gene comparisons in terms of overall

transcriptional variability across stages. It is generally hypothesized

that while some genes are expressed constitutively, genes with

specific developmental functions are expressed at specific stages.

To quantify the level of transcriptional variation for each gene

across the seven lifecycle stages, the NB dispersion parameters

were estimated for each gene, and used as a measure of the extra-

Poisson, stage-to-stage variability. Genome-wide distribution of

the dispersion parameter estimates suggests that the level of

transcriptional variation is not uniform across all genes (Figure S2).

Although the majority of genes show low to moderate levels of

variation, certain groups of genes exhibit a significantly greater

level of variation. Approximately 25% of genes have NB

dispersion parameter values larger than 1. After ranking by

dispersion, genes were partitioned into quarters and designated as

Q1 through Q4 in the order of decreasing variability.

To examine genes displaying life stage dependent transcrip-

tional patterns in greater detail, the top 25% most variable genes

according to the NB dispersion (i.e., Q1) were subjected to an

unsupervised hierarchical clustering (Figure 3A). The resulting

heatmap and dendrogram suggest that there are four major

transcriptional patterns, each of which corresponds to an increased

transcript abundance in (i) female and/or eggs & embryos, (ii)

male, (iii) microfilariae, or (iv) late larval stages. The transcrip-

tional patterns identified through the clustering analysis largely

recapitulate the sample relations revealed in the MDS plot

(Figure 2). To classify genes into these broad but distinct co-

expression groups in a statistically robust manner, we performed a

series of exact tests for the NB distribution using raw read counts

for all genes (Figure 3B). Relying solely on the ‘‘shape’’ of

expression patterns derived from RPKM values, without consid-

ering how many reads contributed to each pattern, may lead to

false-positive findings. We first identified genes preferentially

transcribed during single stages by performing exact tests

contrasting each individual stage relative to the mean of all other

stages. The resulting gene lists were augmented by additional exact

tests to include genes displaying increased transcript abundance in

two (related) stages with respect to all other stages. At the level of

p-value,0.01, mutually-exclusive, non-redundant gene lists were

compiled for each group. In total, we cataloged 2,430 genes into

groups with distinct life stage dependent transcriptional patterns.

Comparing the gene lists to the highly variable genes in the Q1

group suggests that members of the four main expression groups

account for ,80% of the top 25% most variable genes (Figure 3C).

Genes that are highly variable in transcript abundance, yet are not

assigned to any of the four main groups (n = 563) likely display

complex transcriptional patterns falling outside of the four

categories. In addition, five direct pairwise comparisons were

made between relevant stages to gain further insights into the

transcriptomic features associated with (1) sex differences, (2)

intrauterine reproductive processes, (3) MF maturation, and (4)

late larval development (Figure 3D). Cross-referencing with the

previously defined coexpression groups (Figure 3B) indicates that

stage specificity is not homogeneous within each group of

differentially transcribed genes, highlighting the complexity of

the relative transcriptome differences among the lifecycle stages

examined in the study. The results outlined above are described in

further detail in the following sections.

Figure 2. Multidimensional scaling (MDS) plot showing sample
relations. The distance between each pair of samples was the square
root of the common dispersion for the top 500 genes that best
distinguished that pair of samples. These top 500 genes were selected
according to the tagwise dispersion of all the samples.
doi:10.1371/journal.pntd.0001409.g002

Figure 1. Library size and gene model coverage. Library size
refers to the total number of reads unambiguously mapped to gene
models. At the sequencing depth of the current study, $8,000 gene
models had 5 or more mapped reads in each lifecycle stage library.
doi:10.1371/journal.pntd.0001409.g001
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Genes displaying high levels of transcriptional variation
over lifecycle

We identified and compared statistically overrepresented GO

terms in groups of genes that differ in their level of transcriptional

variation over the lifecycle (i.e., Q1 to Q4) to investigate specific

gene sets and functional categories distinctly associated with high

levels of transcriptional variation (Table S2 and Figure S2). This

analysis identified ‘structural constituent of cuticle’ (GO:0042302)

as the most significantly overrepresented GO category among Q1

genes that exhibit high levels of between-stage transcriptional

variation. Forty-six cuticle collagen genes are annotated with this

GO term, and thirty-three of these have distinct lifecycle stage

dependent transcriptional patterns (18 late larval, 12 female/eggs,

2 male and 1 microfilarial; Dataset S1). Additional GO terms

overrepresented among Q1 genes include those related to serine

type endopeptidase inhibitor (serpin), structural molecule, and

kinase/phosphatase activity. By contrast, GO categories associated

with protein metabolism, such as translation, protein transport and

proteasome complex are significantly overrepresented among

genes displaying relatively little transcriptional variation over

lifecycle stages (i.e., Q2-4).

Sex-biased and germline-enriched transcriptome
Although transcript levels of 990 genes are significantly higher

during larval stages, 886 and 554 genes display elevated transcript

abundance in adult male, and adult female and/or eggs &

embryos, respectively (Figure 3B). A direct pairwise comparison of

male versus female transcriptome further indentified 1,279 genes

with male-biased expression and 651 genes with female-biased

expression (Figure 3D). At the level of GO categories, structural

molecular activity and those associated with protein phosphory-

lation and dephosphorylation are prominent among genes

preferentially transcribed in adult male. A closer look at individual

genes with male-biased expression reveals that major sperm

proteins are largely responsible for driving the statistical

significance of structural molecular activity (GO:0005198) in these

comparisons. By contrast, structural constituents of cuticle

(collagens), transcription factor/regulator activity, nuclear receptor

activity and serpin activity constitute a main theme of the

overrepresented functional categories among genes preferentially

transcribed in adult female and/or eggs & embryos.

In an effort to elucidate female germline-enriched transcripts

and gain insight into intrauterine reproductive processes, the

transcriptome profile of a library enriched for eggs and embryos

was compared with that of whole adult female (Figure 3D).

However, because the eggs & embryos transcriptome is inherently

a subset of the adult female transcriptome, this pairwise

comparison is almost subtractive in nature and is likely biased

against identifying transcripts enriched in germline tissues. On the

contrary, detection of female transcripts either not expressed or

expressed at lower levels in eggs and embryos likely remains

unaffected by this asymmetric sample relation. For this reason, we

used the adult male transcriptome profile as an additional

reference point to better identify genes showing a germline-

enriched expression pattern. We performed a Venn diagram

analysis with three datasets: (1) genes with enriched expression in

adult female relative to eggs & embryos, (2) genes with enriched

expression in eggs & embryos relative to adult male, and (3) genes

with enriched expression in adult female and/or eggs & embryos

relative to all other stages (Figure S3). We considered genes

belonging to the first set to exhibit somatic tissue-enriched

expression pattern, and those belonging to either of the last two

sets, but excluded from the first set, to exhibit germline-enriched

expression pattern. Based on these criteria, 788 and 239 genes

show enriched expression in female germline and somatic tissues,

respectively. GO term overrepresentation analysis indicates that

functional categories, such as transcription factor activity, DNA

binding, regulation of transcription and nuclear receptor activity

are more frequently found among genes displaying germline-

enriched expression. On the contrary, genes implicated in chloride

transport, lipid binding, and proteolysis are overrepresented

among those with somatic tissue-enriched expression pattern

(Table S3). Interestingly, structural constituents of cuticle

Figure 3. Comparison of transcriptome profiles between
lifecycle stages. (A) Unsupervised hierarchical clustering of the RPKM
values of the top 25% most variable genes according to the NB
dispersion parameter (see Figure S2). (B) The number of genes classified
into groups with distinct life stage dependent transcriptional patterns
using a series of exact tests for the NB distribution (p-value,0.01). (C)
Venn diagram showing that members of the expression groups
identified through the exact tests account for ,80% of the top 25%
genes most variable in transcript abundance. (D) The number of
differentially transcribed genes. Five direct pairwise comparisons were
made between relevant stages to gain insights into the transcriptomic
features associated with (1) sex differences, (2) intrauterine reproductive
processes, (3) MF maturation, and (4) late larval development.
Differentially transcribed genes were cross-referenced with the
previously defined coexpression groups (Figure 3B).
doi:10.1371/journal.pntd.0001409.g003
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(GO:0042302) is overrepresented among both genes with germ-

line-enriched and somatic tissue-enriched expression patterns. A

closer look at individual genes reveals that mutually exclusive

subsets of collagens are overrepresented in each gene set.

MF, L3 and L4 transcriptome
When compared across all stages, transcript levels of 148 genes

are distinctly elevated during the MF stage. Overrepresented GO

terms in this group include zinc ion binding, nucleic acid binding,

chitinase activity, and proteolysis (Figure 3B and Table 1). Most

notably, among these are 44 genes that encode proteins with

C2H2-type zinc finger domains. There are 195 zinc finger protein

genes annotated in the B. malayi draft genome, some of which have

high transcript levels in stages other than MF (i.e., 3 late larval, 17

male and 6 female/eggs). In a similarly biased manner, 3 out of 4

endochitinase genes identified in the current B. malayi genome

show transcriptional increase during MF stages. Diverse classes of

proteases are also represented in this gene set (e.g., cathepsin L-like

proteases including Bm-cpl-6, papain cysteine protease family,

metalloprotease I, aspartyl protease and trypsin-like protease).

Direct comparison of immature and mature MF (IM and MM)

indicates that 126 genes show differential transcript abundance

between the two samples (Figure 3D). Many different metabolic

genes are found in the IM overexpressed gene set, while the

endochitinases are overrepresented in the MM.

We identified 842 genes displaying increased transcript

abundance during L3 and/or L4 stages relative to other lifecycle

stages (Figure 3B). Functional categories overrepresented among

these genes include structural components of the cuticle,

oxidoreductase activity, serpin activity, chloride transport, hedge-

hog receptor activity, glycogen biosynthetic process, and proteol-

ysis. As suggested by the last GO category, various proteases (e.g.,

metalloprotease, papain family peptidase, zinc carboxypeptidase

family and cathepsin-like cysteine proteases, including Bm-cpl-1,4

and 5) are prominently represented in this gene set, a pattern

similarly found in the MF transcriptome. A pairwise comparison of

the transcriptomes of late larval stages indicates that 342 genes

have elevated transcript levels in L3s, and 155 in L4s. At the level

of functional categories, cysteine-type peptidase activity (e.g.,

cathepsin-z and -L like proteases) and serpin activity are

overrepresented among L3-enriched transcripts, whereas structur-

al constituents of the cuticle and cellular component organization

are overrepresented among L4-enriched transcripts (Table S3). In

addition, our data indicate that abundant larval transcripts (Alt1.2

and Alt2) show increased abundance in L3s relative to L4s.

Discussion

Using high-throughput sequencing, we have undertaken a

comprehensive genome-wide survey of the developmental tran-

scriptome of the human filarial parasite B. malayi. Although deep

sequencing data are highly informative in identifying novel

transcribed elements and splice variants that help improve genome

annotation [15], the present study aims to characterize transcrip-

tome changes along the progression of the parasite’s lifecycle.

Transcriptome changes mediating cuticular molting likely repre-

sent one of the most notable developmental transitions in RNA

expression. Like all nematodes, Brugia spp. have five lifecycle stages

that are punctuated by molting of the collagenous cuticle. The

tightly regulated process of molting involves cell signaling within

the hypodermis to cue secretion of the new collagenous cuticle,

shedding of the old cuticle and proteolytic remodeling of the new

cuticle [16,17]. Analysis of overrepresented GO terms highlights

structural cuticle components, extracellular matrix components

and cysteine-peptidase inhibitors, among others, in genes with

high levels of transcriptional variation over the lifecycle (Table S2).

In particular, the cuticle collagen gene family displays distinct

dynamic transcriptional patterns over the course of the lifecycle,

likely reflecting compositional variation in cuticular structure

among different life stages. Besides these structural components,

genes displaying the most dramatic transcriptional variation in our

data set are likely associated with developmental processes that

differ between the larval and the adult stages and/or between the

genders (e.g., gametogenesis). By contrast, genes constitutively

expressed over the developmental period studied frequently have

predicted cellular functions related to protein expression, modifi-

cation and transport, possibly representing core cellular processes

that are essential to the survival of cells independent of the lifecycle

stage.

The present study indicates that genes exhibiting adult male

enriched transcriptional pattern (relative to adult female and/or

other stages) show strong statistical bias towards GO categories

related to cytoskeleton, structural molecule activity, protein

phosphorylation and dephosphorylation (Table 1). Many of these

gene sets and functional categories are highly represented among

classes of male-enriched transcripts in parasitic nematodes

[18,19,20,21] and have been identified in the Caenorhabditis elegans

male and hermaphrodite germline as being involved in spermato-

genesis [22]. Nematode sperm are unique in that they utilize a

nematode-specific cytoskeletal element, major sperm protein, for

ameboid motility. It is hypothesized that because mature

nematode sperm lack ribosomal elements, the phosphorylation

and dephosphorylation of molecules by a host of enzymes within

the differentiated cells could promote maturation and pseudopod

extension [22]. Seven of the genes found to be differentially

expressed in male worms in our study were also found in a

microarray comparison of adult male and female worms [23], and

were shown by in situ localization to be expressed either in sperm

or vas deferens tissue of adult male worms and not in gravid adult

female worms [24]. If we compare our RNA-seq data with recent

microarray work comparing gene expression in adult male and

female B. malayi [19], 515 of our 1,276 (40%) genes with male-

biased expression match with male up-regulated genes found in

the microarray comparison, and 150 out of the 651 (23%) genes

with female-biased expression match the microarray findings.

In filarial nematodes, fertilization is internal and gravid females

hold oocytes, sperm, zygotes, developing embryos, and MF in their

uteri. Structural constituents of cuticle, transcription factor

activity, DNA binding, and regulation of transcription emerged

as notable themes in our analysis of overrepresented functional

categories among genes with increased transcript levels in adult

female and/or eggs & embryos (Table 1). These are likely relevant

in the context of embryogenesis. Pairwise comparison of adult

female with adult male presents us with a similar but more

expanded view on features of genes displaying female-enriched

expression (Table S3). Further comparisons with genes displaying

germline-enriched expression patterns suggest that many of the

female-biased transcripts, and more importantly, the majority of

the above mentioned functional categories are attributable to the

characteristics of the germline transcriptome. For instance, 33 out

of 34 genes annotated with transcription factor activity (e.g.,

nuclear hormone receptors and homeobox domain containing

proteins) that are enriched in female and/or eggs & embryos, have

a distinctly germline-enriched expression pattern. Bm-fab-1

(Bm1_33050), an embryonic fatty acid binding protein transcript

previously found to be female-associated by differential display

PCR and whose protein localizes to embryos [25,26] also exhibits

a germline-enriched expression pattern.
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Table 1. List of over-represented GO terms in gene groups with distinct lifecycle stage dependent transcriptional patterns.

MICRO-
FILARIAL

LATE
LARVAL MALE FEMALE/EGGS GO terms

cellular component

1.8E-22 intracellular GO:0005622

1.2E-05 integral to membrane GO:0016021

2.1E-04 membrane GO:0016020

2.9E-04 intermediate filament GO:0005882

7.8E-05 cytoskeleton GO:0005856

6.2E-07 nucleus GO:0005634

molecular function

1.2E-23 zinc ion binding GO:0008270

1.4E-10 nucleic acid binding GO:0003676

9.7E-06 chitinase activity GO:0004568

1.6E-05 cation binding GO:0043169

2.5E-05 hydrolase activity, acting on glycosyl bonds GO:0016798

2.5E-05 1.8E-06 cysteine-type peptidase activity GO:0008234

7.6E-04 hydrolase activity, hydrolyzing O-glycosyl compounds GO:0004553

9.2E-10 1.8E-06 structural constituent of cuticle GO:0042302

2.9E-06 cysteine-type endopeptidase activity GO:0004197

1.6E-05 transporter activity GO:0005215

3.3E-05 oxidoreductase activity GO:0016491

4.5E-05 extracellular matrix structural constituent GO:0005201

9.5E-05 3.8E-04 serine-type endopeptidase inhibitor activity GO:0004867

1.2E-04 voltage-gated chloride channel activity GO:0005247

4.7E-04 calcium ion binding GO:0005509

8.8E-04 hedgehog receptor activity GO:0008158

9.5E-18 phosphoprotein phosphatase activity GO:0004721

1.1E-13 protein kinase activity GO:0004672

6.7E-12 structural molecule activity GO:0005198

6.3E-10 kinase activity GO:0016301

2.8E-08 protein tyrosine phosphatase activity GO:0004725

1.0E-06 protein tyrosine kinase activity GO:0004713

5.7E-06 phosphatase activity GO:0016791

5.8E-04 ATP binding GO:0005524

1.6E-11 transcription factor activity GO:0003700

5.5E-10 sequence-specific DNA binding GO:0043565

4.4E-07 DNA binding GO:0003677

6.1E-05 ligand-dependent nuclear receptor activity GO:0004879

1.0E-04 transcription regulator activity GO:0030528

biological process

1.0E-04 1.9E-04 proteolysis GO:0006508

6.2E-04 chitin catabolic process GO:0006032

1.4E-06 metabolic process GO:0008152

6.0E-06 oxidation reduction GO:0055114

4.0E-05 transport GO:0006810

1.2E-04 chloride transport GO:0006821

3.2E-04 cell adhesion GO:0007155

5.8E-04 glycogen biosynthetic process GO:0005978

3.7E-13 protein amino acid phosphorylation GO:0006468

2.0E-07 protein amino acid dephosphorylation GO:0006470

1.7E-06 dephosphorylation GO:0016311

2.4E-10 regulation of transcription GO:0045449
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Much of our current information on molecular aspects of filarial

reproduction comes from microarray and PCR-based transcrip-

tome comparisons between whole adult male and female worms.

These studies were based on the assumption that gender-

associated transcripts arise from the reproductive organs and their

contents. Our data suggest that such an assumption is not wholly

unreasonable but may not always hold true. Out of 651 female-

enriched transcripts we identified (in comparison to male), 82

display somatic tissue-enriched expression patterns, and it is likely

that some of these transcripts are truly not derived from the

germline tissues. Spatial expression patterns have not been

confirmed for the majority of gender-associated B. malayi genes,

and a growing body of research on nematode neurobiology and

extracellular signaling lends support to the idea that some gender-

associated genes can be expressed in non-reproductive tissues. For

example, free-living and parasitic nematodes use gender-specific

receptors to sense environmental signals, as demonstrated by the

presence of anterior chemosensors in male worms that specifically

bind female pheromones [27,28]. Nematodes also store fat in

intestinal cells, which may act as endocrine organs involved in

germline signaling and are triggered by activation of intestinal cell

nuclear receptors by lipophilic hormones [29,30,31].

On the other hand, these observations are not inconsistent with

the possibility that some somatic tissue derived transcripts play an

essential role in embryonic development or intrauterine repro-

ductive processes. The current study suggests that components

incorporated into the embryonic cuticle and the eggshell

membrane may be in some part maternal in origin. This

interpretation is supported in at least one case where MF sheath

protein transcripts in Brugia are detectable by in situ hybridization

only in adult female tissues and not in eggs or embryos [24], while

the encoded protein is found on the surface of in utero sheathed MF

but not in maternal tissues [32]. Other notable transcripts showing

enrichment in female somatic tissues in our study include Juv-p120

excretory/secretory proteins and astacin proteases (Bm1_30065;

Bm1_13915). Homologs of the latter in C. elegans, nas-4 and nas-9

are found in pharyngeal marginal cells, and in the hypodermis and

reproductive tract, respectively [33]. Their functions are unknown

but the localizations suggest roles in cuticle and eggshell

remodeling.

After expulsion from females, developmentally arrested Brugia

MF must undergo a maturation process within the mammalian

host to become infective to the mosquito vector [2,34,35]. Brugia

MF are sheathed in a remnant of the eggshell membrane that is

acellular and insoluble, and is composed of chitin and a variety of

cross-linking proteins, lipids and polysaccharides [36,37,38,39].

Our data indicate that a large number of transcripts representing

DNA-binding proteins with zinc finger motifs as well as several

endochitinase transcripts are significantly elevated in MF.

Proteomic analysis also revealed a significant enrichment of zinc

finger proteins in this stage of the lifecycle [21]. Although the

precise role of these DNA binding proteins is unknown, it is

tempting to speculate on their involvement in maintaining the

developmentally arrested state of circulating MF. Transcriptional

increase in proteases and chitin-associated enzymes in MF could

be important in the process of casting off the chitinous sheath

during or after mosquito midgut penetration [35,40,41].

Immunolocalization studies have shown that in sheathed MF,

chitinase is stored in the inner body of the MF and secreted to the

surface to degrade the sheath upon mosquito infection [42].

Microfilarial maturation is accompanied by transcriptional

transitions and changes in the composition of the microfilarial

surface [2,35]. Despite the remarkable change in infectivity, our

data suggest that transcriptional differences between IM and MM

are relatively small; it is the least pronounced of all pairwise

comparisons made in this study (Figure 2 and 3D). Genes

involved in ATP synthase activity, tRNA production and

cytoskeleton are overrepresented among those that show

transcriptional change between IM and MM (Table S3).

Although it is difficult to further characterize the exact nature

of these changes due to a high proportion of genes with no

functional annotation, we hypothesize that a metabolic shift is

likely part of the maturation process in anticipation of the

transition from the blood of a homeothermic host to the

inhospitable midgut and hemocoel of the poikilothermic mosqui-

to vector. It is important to consider that both populations of MF

used in this experiment were derived from the peritoneal cavities

of infected gerbils. Although we have previously shown a

dramatic difference in mosquito infectivity between peritoneal-

ly-derived immature and mature MF [2,34,35], it is clear that

intraperitoneally-derived MF, regardless of age, are considerably

less infective than those found in circulating blood [43]. It is

possible that the transcriptional profile of mature circulating MF

differs from those that are derived from the peritoneal cavity.

Following the introduction of L3s into the peritoneal cavity of

gerbils, the L3 to L4 transition requires no migration and occurs

approximately 8 days post infection (unpublished). This particular

lifecycle transition is of great interest to researchers trying to

identify parasite molecules that mediate interactions with the host

immune system, and that could be exploited with vaccines to

confer protective immunity, or with drugs to prevent infection.

Antigens that historically have been of interest in this regard are

the ALT (abundant larval transcript) family of potentially secreted

larval acidic proteins found predominately in L2 and L3 stages

[44,45,46]; the L3 cystatin cysteine protease inhibitor family, Bm-

SPN-2, TGF-b homologues, macrophage inhibition factor and

Bm-VAL-1 [46]; troponin, tropomyosin and cuticular collagens

[47]; Onchocerca volvulus activation associated secreted protein (Ov-

ASP-1) [48], onchocystatin (Ov-CPI-2) [49] and Ov-SPI-1 [50],

and B. malayi glutathione-s-transferase [51]. One hypothetical

protein found to be L3 specific in our experiment, Bm1_38105,

was also highly ranked as a potential drug target [52].

Table 1. (Cont.)

MICRO-
FILARIAL

LATE
LARVAL MALE FEMALE/EGGS GO terms

5.3E-10 regulation of transcription, DNA-dependent GO:0006355

9.1E-05 transcription GO:0006350

The gene groups used for the analysis were defined through a series of exact tests for NB distribution (Figure 3B). Over-represented GO terms with p-value,0.01 were
included.
doi:10.1371/journal.pntd.0001409.t001
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In the present study, the transcriptome of developmentally

arrested, vector-derived L3s was compared to that of peritone-

ally-derived L4s at 12–13 days post infection. Comparing our

RNA-seq data to a recent microarray experiment [53] that

assessed transcriptomes of vector-derived L3s to cultured and

irradiated L3s, shows that 29 genes are shared, and likely

constitute genes required for L3 survival in mosquitoes. These

include Alt-2 and Alt1.2 proteins, cathepsin L precursors, Bm-col-

2, cystatin, microfilarial surface associated protein, metabolic

proteins and BmSERPIN. The differential expression of cathep-

sins Bm-cpl-1, 4, and 5 in vector stage L3s is supported by EST

sequences and these genes are grouped phylogenetically into a

distinct clade (Ia) separate from other nematode cathepsin-like

proteases [54]. There is strong evidence that these proteins play

important roles in the L3 to L4 molt, because targeting the cpl-1

gene in O. volvulus by RNAi decreased the rate of molting [55],

and suppression of the cathepsin L-like cysteine protease

transcript by injection of siRNA or dsRNA into infected

mosquitoes carrying L2 and L3 stages of B. malayi retarded

worm growth, disrupted development and resulted in cuticular

sloughing [56]. It is important to point out that the L4s we used

were from the peritoneal cavity of gerbils, and did not follow the

normal behavioral pathway of intradermal passage and migration

to the lymphatics. It is possible that the transcriptional profile of

intraperitoneally-derived L4s is different than that of worms

found in lymphatics; indeed Chirgwin et al. [57] showed different

transcriptional profiles for three L3 genes at 3 days post infection

in groups that had been injected intradermally and allowed to

migrate naturally to the popliteal lymph node in the gerbil model,

and those that were confined to the peritoneum.

In this study we provide a detailed overview of the molecular

repertoires that define and differentiate distinct lifecycle stages of

the parasite, extending and complementing previously published

work on stage-specific gene expression [2,19,21,24,53,58,59].

Inclusion of seven different developmental stage samples uniquely

allows us to place specific between-stage transcriptional differences

into the broader context of the transcriptomic landscape during

the lifecycle of B. malayi. It is important to emphasize, however,

that this is just an overview of observations and that these data will

be mined by the community to provide specific information on

particular gene sets to bring these deep sequencing data into more

complete biological context.

Because expression dynamics is an important consideration in

the genome-wide assessment of candidate targets for control

[52,60,61], our comprehensive analysis of transcript abundance

over developmental time is a valuable addition to a growing body

of genomic and post-genomic resources that guide and support the

concerted efforts to develop better intervention strategies.

Supporting Information

Figure S1 Histogram of raw read counts per gene model and

scaling-normalized RPKM values. To facilitate transcript abun-

dance comparisons between genes and stages, read counts were

RPKM-transformed and TMM-normalized [9,10]. The distribu-

tion of transcript level estimates indicated 4 to 5 logs of dynamic

range.

(PDF)

Figure S2 Genome-wide distribution of the dispersion param-

eter estimating stage-to-stage variability in transcript abundance.

Based on the NB dispersion parameter, genes were ordered from

the most variable to the least variable, and partitioned into four

equal-sized groups as indicated by the horizontal dotted lines. GO

term enrichment tests were performed on each of the four groups

(Table S2).

(PDF)

Figure S3 Venn diagram analysis to identify genes with female

somatic tissue- or germline-enriched expression pattern. (1) genes

with enriched expression in adult female relative to eggs &

embryos; (2) genes with enriched expression in eggs & embryos

relative to adult male; (3) genes with enriched expression in adult

female and/or eggs & embryos relative to all other stages.

(PDF)

Table S1 Total number of reads sequenced and mapped to the

genome.

(PDF)

Table S2 List of over-represented GO terms in groups of genes

with different levels of overall variability in their transcript

abundance across lifecycle stages. Genes were partitioned into

four equal-sized groups designated as Q1 to 4 in the order of

decreasing variability (Figure S2). Over-represented GO terms

with p-value,0.01 were included.

(PDF)

Table S3 List of over-represented GO terms and their

corresponding p-values among genes that show relative transcrip-

tional enrichment in pairwise comparisons (Figure 3D). Female

somatic tissue- and germiline-enriched patterns were defined using

Venn diagram analysis (Figure S3).

(PDF)

Dataset S1 Gene-level RNA-seq read counts and RPKM values

for Brugia malayi lifecycle transcriptome.

(XLS)
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