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Abstract

Background: The uptake and trans-placental trafficking of fatty acids from the maternal blood into the fetal circulation are
essential for embryonic development, and involve several families of proteins. Fatty acid transport proteins (FATPs) uniquely
transport fatty acids into cells. We surmised that placental FATPs are germane for fetal growth, and are regulated during
hypoxic stress, which is associated with reduced fat supply to the fetus.

Methodology/Principal Findings: Using cultured primary term human trophoblasts we found that FATP2, FATP4 and FATP6
were highly expressed in trophoblasts. Hypoxia enhanced the expression of trophoblastic FATP2 and reduced the
expression of FATP4, with no change in FATP6. We also found that Fatp2 and Fatp4 are expressed in the mouse amnion and
placenta, respectively. Mice deficient in Fatp2 or Fatp4 did not deviate from normal Mendelian distribution, with both
embryos and placentas exhibiting normal weight and morphology, triglyceride content, and expression of genes related to
fatty acid mobilization.

Conclusions/Significance: We conclude that even though hypoxia regulates the expression of FATP2 and FATP4 in human
trophoblasts, mouse Fatp2 and Fatp4 are not essential for intrauterine fetal growth.
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Introduction

Both the human and mouse placenta are hemochorial, with
fetal-derived trophoblasts bathed in maternal blood, and are thus
well-positioned to regulate placental transport functions, including
transport of oxygen, nutrients, and waste products between the
maternal and fetal blood. Among transported nutrients, the uptake
and trafficking of fatty acids is critical for embryonic development
and growth in all eutherians, particularly during the second half of
pregnancy, when the fetal/placental growth ratio is markedly
increased, corresponding to increasing fetal caloric demands [1–
3]. Transported essential fatty acids (linoleic acid, and a-linolenic
acid) are metabolized into long chain poly-unsaturated fatty acids
(LCPUFAs), and are necessary for development of vital organs
such as the heart and lung. A particularly high amount of
arachidonic acid and docosahexaenoic acid is needed for
development of the brain and retina [3–8]. Fatty acids are also
essential for biosynthesis of membrane phospholipids, myelin,
gangliosides, glycolipids and sphingolipids, and for production of
signaling eicosanoids [9–12]. Albumin-bound free fatty acids
(FFA), VLDL, and chylomicrons in the maternal circulation are
the major source of fatty acids to the placenta, and require the
action of trophoblastic triglyceride hydrolase for liberation of FFA

and transport across the trophoblastic microvillous membrane
[13–15]. The mechanisms underlying trophoblast fatty acid
uptake and trafficking are largely unknown. Membrane-bound
and cytoplasmic fatty acid binding proteins (FABPs) are expressed
in trophoblasts, but their function in intracellular trafficking of
fatty acids in trophoblasts is unknown [16–18].

Cytoplasmic FFAs bound to fatty acid binding proteins (FABPs)
are targeted for metabolism or storage in lipid droplets, which are
dynamic organelles that actively store neutral lipids (such as
triglycerides, cholesteryl esters and retinol esters) [19–21]. In
addition to their neutral fats, lipid droplets are encased within a
layer of amphipathic lipids, and coated by lipid droplet-associated
(PLIN) proteins that regulate the assembly, maintenance, and
composition of lipid droplets, as well as lipolysis and lipid efflux
[22–25].

The family of fatty acid transport proteins (FATPs, solute
carrier family 27, SLC27) is an evolutionarily conserved group of
integral trans-membrane proteins which, along with fatty acid
translocase (FAT/CD36), mediate cellular uptake of long-chain
and very long chain fatty acids. This prevalent, saturable, carrier-
regulated process is distinct from the less common, passive (‘‘flip-
flop’’) membrane diffusion [26–28]. FATPs comprise a family of
six highly homologous proteins, which are expressed primarily in
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fatty acid-utilizing tissues [28–30]. Interestingly, FATP4 is also
highly expressed by epithelial cells of the visceral endoderm and
localizes to the brush-border of extraembryonic endodermal cells
[31]. It is hypothesized that FATP1, FATP2, and FATP4 are
bifunctional, exhibiting both transport and acyl-CoA synthase
activities, which facilitate fatty acid influx across biological
membranes [32–34].

The expression of placental FATPs and their regulation in this
tissue is largely unknown. We recently showed that ligand-
stimulated PPARg enhances the expression of FATP1 and FATP4
as well as PLIN2 in primary human trophoblast (PHT) [35], and
that hypoxic trophoblasts retain neutral lipids in the form of lipid
droplets (35, and manuscript in preparation). In this study we
sought to identify key FATPs that are expressed in the human
placenta and regulated during hypoxic stress, and use Fatp mutant
mice to decipher the function of relevant FATPs in vivo.

Results

We initially examined the expression of FATP transcripts in the
human placenta and in isolated primary term trophoblasts (PHTs),
and compared the level of FATP expression to that of other human
tissues, serving as controls. Because hypoxia increases the
accumulation of lipid droplets in trophoblasts [35], we also
assessed the expression of FATPs in hypoxic PHT cells. As shown
in Fig. 1A, FATP2, FATP4, and FATP6 are clearly expressed in the
placenta and in PHT cells, with weaker expression of FATP1 and
FATP3. FATP5 is not expressed in the human placenta. As control,
we also assessed the expression of the lipid droplet–associated
(PLIN) transcripts, and detected the expression of PLIN2 and
PLIN3, but not the other members of this family. Among the
highly expressed FATPs, we found that hypoxia enhanced the
expression of FATP2, but diminished the expression of FATP4,
with no change in FATP6 (Fig. 1B). Notably, the weakly expressed
FATP1 was also increased in hypoxia. The increase in PLIN2 in
hypoxic PHTs (Fig. 1B) was expected [36], and suggests lipid
droplet accumulation in hypoxic PHT cells. Together, these data
indicate that placental FATP2 and FATP4 are relatively highly
expressed in primary human trophoblasts, and that hypoxia has an
opposite influence on their expression in human trophoblasts.
Therefore, our subsequent analysis centered on FATP2 and
FATP4.

To gain insight into the role of placental FATP2 and FATP4 in
vivo, we initially sought to examine the expression of Fatps in
placentas of wild type C57Bl/6 mice. We found several differences
in Fatp expression between human and murine placentas. The
near term mouse placenta expresses primarily Fatp1, Fatp3, Fatp4,
and Fatp6 (Fig. 2A). Interestingly, Fatp2 is expressed mainly in the
mouse amnion, but not in the placenta (Fig. 2A). We confirmed
the expression pattern of FATP2 and FATP4 proteins in the
placenta and amnion (Fig. 2B–C).

The expression of Fatps in other mouse organs was similar, but
not identical, to that in humans (compare Fig. 1A–2A). The
expression pattern of murine Plins was similar to that of human
tissues, with weak expression of Plin4 in the mouse placenta.
Hypoxia had a weak and statistically insignificant effect on the
expression of relevant murine Fatps and Plins in both the placenta
and the amnion (Fig. 2D–E). As a control, we showed reduced
expression of placental transferrin receptor (Tfrc), a marker of
hypoxic mouse placenta [37,38].

We used ISH to localize the expression of Fatp2, Fatp4, and
Fatp6 at E7.5 (prior to establishment of maternal-fetal trafficking),
E12.5 (after maternal-fetal trafficking is initiated), and E17.5 (near-
term placenta, Fig. 3). None of the three Fatps were definitively

detected at E7.5. Using renal cortical expression of Fatp2 as
positive control [39], we found that Fatp2 was expressed in the
murine amnion but not in the placenta proper at E12.5 and E17.5
(Fig. 3, A–E). Similarly, Fatp4 was expressed in amnion at E12.5,
and exhibited weak, relatively diffuse placental expression at E12.5
and E17.5. This was confirmed using Fatp4 expression in placentas
derived from Fatp4 transgenic mice (Fig. 3I), and using Fatp4
expression in the intestinal villous epithelium as positive control
(Fig. 3J). Fatp6 was primarily detected in the spongiotrophoblast at
E12.5 and E17.5, but not at E7.5 clearly (Fig. 3, L–O).

We next sought to assess the impact of Fatp2 or Fatp4 deficiency
on the murine placenta. Crossing heterozygous Fatp2 or Fatp4
males and females, we found that at E17.5 Fatp2 or Fatp4 deficient
fetuses were indistinguishable from their wild type littermates in
either standard or hypoxic conditions with respect to litter size,
genotype distribution, placental and embryo weight (Fig. 4). In

Figure 1. FATP and PLINs transcripts expression in PHT cells,
human placentas and other tissues. (A) Expression of FATP1-6 and
PLIN1-5 in diverse human tissues and PHT cells in standard or hypoxic
conditions. Transcripts were detected by standard RT-PCR (representa-
tive results, n = 3). (B) RT-qPCR analysis of FATP1, 2, 3, 4, 6 and PLIN2 and
3 in standard vs. hypoxic PHT cells (n = 5). * denotes p,0.05, ** denotes
p,0.01.
doi:10.1371/journal.pone.0025865.g001
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addition, placental histology was unchanged among the genotypes
in either normal or hypoxic placenta (data not shown). Because
FATPs play a role in cellular fatty acid uptake, we examined the
accumulation of neutral fat, as well as triglyceride levels, in the
placentas of wild type and Fatp2 or Fatp4 deficient mice. Oil Red
O staining (Fig. 5A–C) and Sudan Black B staining (Fig. 5D–F) of
placentas from all genotypes showed a similar pattern of diffuse fat
staining, with more abundant fat in the decidua. This expression
pattern was unchanged in hypoxic placentas (data not shown).
Similarly, the concentration of placental triglycerides was also

Figure 2. Fatp and Plin transcript expression in mouse
placentas and other tissues. (A) Expression of Fatp1-6, Plin1-5 in
diverse mouse tissues and in the placenta (E17.5), amnion (E17.5),
placenta (E10.5), and embryo (E10.5), detected by standard RT-PCR
(representative results, n = 3). (B) Western blot analysis of FATP2. (C)
Western blot analysis of FATP4. (D) RT-qPCR of Tfrc, Fatp1, 3, 4, 6, and
Plin2, 3 in mouse placentas under standard vs. hypoxic conditions

(n = 8). (E) RT-qPCR of Tfrc, Fatp1, 2, 4, and Plin2, 3 in mouse amnion
under standard vs. hypoxic conditions (n = 10). * denotes p,0.05.
doi:10.1371/journal.pone.0025865.g002

Figure 3. ISH for detection of Fatp2, Fatp4 and Fatp6
expression in the mouse placenta. Fatp2 expression in the mouse
embryo at E7.5 (A), placenta at E12.5 (B) and at E17.5 (C), and kidney (D).
Arrowheads point to the amnion. Fatp4 expression in mouse embryo at
E7.5 (F), placenta at E12.5 (G) and at E17.5 (H), in the Fatp4 transgenic
placenta (I) and in the small intestine (J). Fatp6 expression in mouse
embryo at E7.5 (L), placenta at E12.5 (M) and at E17.5 (N). Negative
controls using a sense probe are shown in E, K, O. Scale bars = 0.5 mm.
doi:10.1371/journal.pone.0025865.g003
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similar among the genotypes, with hypoxia causing a small yet
significant increase in triglyceride concentration in the hypoxic
Fatp2 KO placenta (Fig. 5G). Lastly, we used quantitative RT-
PCR to rule out the possibility that the expression of other Fatps

might compensate for the reduced levels of Fatp2 or Fatp4. As
shown in Fig. 6, the expression of Fatp2 or Fatp4 was appropriately
reduced in the respective placentas and amnion tissues, with
reduced expression in placental Fatp6 or Fatp3 in the Fatp2 and

Figure 4. The feto-placental phenotype of Fatp2 and Fatp4 deficient mice. The litter size, genotype distribution, placental and embryo
weight at E17.5 in standard or hypoxic conditions after cross-breeding of heterozygous pregnant mice. (A) Fatp2 analysis, (B) Fatp4 analysis. The
graphs depict placenta and embryo weight. * denotes p,0.05.
doi:10.1371/journal.pone.0025865.g004

Figure 5. The effect of Fatp2 or Fatp4 deficiency on the levels of neutral lipids in the mouse placenta. Frozen sections stained with oil
Red O (A–C) or with Sudan Black B (D–F) of wild type, Fatp2 KO, or Fatp4 KO at E17.5. Scale bars = 1 mm and 100 mm in larger panels and insets,
respectively. (G) Triglyceride concentration of Fatp2 wild type or KO (left panel), or Fatp4 wild type or KO (right panel) in standard or hypoxic
condition (n = 5 for each strain and each condition). * denotes p,0.05.
doi:10.1371/journal.pone.0025865.g005
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Fatp4 KO placentas, respectively. Importantly, none of the Fatps,
Plin2 or Plin3 exhibited a compensatory increase in expression.

Discussion

The uptake, mobilization and efflux of fatty acids are critical for
fetal growth, with fetuses of malnourished pregnant women being
at risk for intrauterine growth restriction [10,14,40,41]. Several
observations regarding FATPs led us to interrogate the expression
and function of placental FATPs: (a) hypoxic human trophoblasts
accumulate neutral lipids with lipid droplets [35], and manuscript
in preparation], (b) PPARg/RXR increase trophoblastic FATP1
and FATP4 expression, reduce FATP2 expression, and enhance
trophoblast uptake of fatty acids and lipid droplet accumulation
[42], and (c) inhibition of p38 (which mimics key aspects of PPARg
deficiency) also up-regulates FATP2 and down-regulates FATP4
expression [42]. We found that among FATPs, FATP2, FATP4
and FATP6 are expressed in human trophoblasts, and that hypoxia
enhanced FATP2 and reduced FATP4 expression levels. These
data, which are opposite of the effect of PPARg/RXR signaling on
FATP2 and FATP4, suggest that FATP2 and FATP4 play a role
in trophoblast fatty acid trafficking. We therefore used pregnant
mice to assess the function of FATP2 and FATP4 in the placenta
in vivo. Although the human and mouse placenta share many
structural, functional, and gene expression patterns [43,44], there
are marked morphological and functional differences between
placentas of the two species, including differences in transport
functions [45–47]. Whereas FATP4 was expressed in both the
human and murine placenta, the expression of murine Fatp2 was
restricted to the amnion. Unlike the expression changes in human
trophoblastic FATP2 and FATP4 when cultured in hypoxic
atmosphere, we found no difference in the expression of murine
placental Fatp2 and Fatp4 between standard and hypoxic
conditions in vivo.

We produced hypoxia during the latter part of mouse
pregnancy using an O2 concentration of 12% for 6 days, which

is similar to the level of hypoxia used by others and us [48,49]. The
most suitable degree of hypoxia for cultured PHT cells remains
controversial. Low oxygen tension (pO2 of 15–20 mmHg)
characterizes the early human placenta, before maternal blood
begins to perfuse the intervillous space, with a rise to , 55 mmHg
after 12 weeks of pregnancy [50,51]. Placental hypoxia is
abnormal after that gestational age [52,53]. Exposure of cultured
third trimester trophoblasts to pO2,1%, as we chose in our
experiments, is commonly used to model hypoperfusion-induced
villous injury [54–56]. Notably, the differences between our in vitro
analysis using PHT cells and intact mouse placentas likely reflect
inter-species differences in expression patterns and functions of
FATPs. Moreover, there is a clear dissimilarity between exposure
to hypoxia in vitro and in vivo, where the response of purified
cultured cells to extreme hypoxia might be different from that of
intact tissue, which is exposed to marked, yet life-sustaining
hypoxia.

Genetic ablation of murine Fatp2 and Fatp4 expression did not
lead to any functional consequences with respect to feto-placental
growth, and specifically, lipid accumulation. These data are
consistent with those of Heinzer et al [57], which did not
specifically focus on embryonic development, yet reported normal
growth, behavior and activity of Fatp2 KO mice. Moulson et al
[58] reported that Fatp4 KO mice died soon after birth, with shiny,
tight, thick skin. This phenotype was reproduced by Herrmann
et al [59,60], who showed that epidermal-specific conditional Fatp4
KO mice exhibited similar morphological abnormalities as
embryos, indicating that the skin-related abnormalities of Fatp4
KO fetuses reflect fetal maldevelopment and not placental
dysfunction. In addition, Gimeno et al [61] demonstrated early
embryonic lethality in Fatp4 KO mice, possibly related to the
expression of FATP4 in the extraembryonic endoderm. Interest-
ingly, two other membrane-related fatty acid transporters,
FABPpm and CD36 (FAT), are also expressed in the murine
placenta, primarily in the labyrinth and junctional zone [17].
While a knockout mouse model for FABPpm has not been

Figure 6. The effect of Fatp2 or Fatp4 deficiency on the expression of other Fatps or Plins in the mouse placenta. RT-qPCR of Fatps,
Plin2 and Plin3 in the placenta or amnion, comparing expression in WT to KO placenta. Data include only relevant FATPs (A) Fatp2 WT or KO (n = 12
each) (B) Fatp4 WT or KO. * denotes p,0.05, ** denotes p,0.01.
doi:10.1371/journal.pone.0025865.g006
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published, CD36 deficient mice do not exhibit a pregnancy or
placenta –related phenotype [62].

Although we ruled out significant compensatory changes in
placental Fatp expression in Fatp2- or Fatp4-deficient mice, we
cannot rule out functional redundancy among fatty acid
transporters. Such redundancy is unlikely, though, because the
expression of the different Fatp’s in the placenta is dissimilar.
Furthermore, as noted above, the phenotype of Fatp2- and Fatp4 -
deficient mice in non-placental tissues does not overlap. Our data
are the first to show the expression of Fatp6, hitherto known to be
expressed in the human heart and bovine mammary tissue
[12,63], in human trophoblasts and mouse placentas, as well as in
the female and male gonads. It is possible that FATP6 plays a role
on fat trafficking in the placenta as well as in other organs, which
may be redundant with the function of other FATPs.

While critical experiments that might have uncovered the role
of FATPs in the human placenta cannot be ethically performed,
our results underscore limitations in the use of animal models to
inform human biology. Mutations in human FATP2 are currently
unknown. Several mutations in human FATP4 are associated with
ichthyosis prematurity syndrome, where preterm delivery is
related to polyhydramnios, not a placental function [64], or with
congenital verruciform hyperkeratosis [65]. New animal models as
well as manipulation of FATP expression using ex vivo human
samples might be necessary in order to fully analyze the role of
FATPs in placental fat uptake and trafficking.

Materials and Methods

Primary human trophoblast (PHT) isolation and culture
Placental tissue samples were collected by the Obstetrical

Specimen Procurement Unit at Magee-Womens Hospital of the
University of Pittsburgh Medical Center. Collection was conduct-
ed under an approved exempt protocol by the Institutional Review
Board of the University of Pittsburgh. Patients provided written
consent for the use of de-identified, discarded tissues for research
upon admittance to the Hospital. PHT cells were isolated from
term human placentas (n = 5) and cultured as we previously
described [55]. Cells were cultured in an atmosphere of 20% O2
with 5% CO2 at 37C as standard condition, or in O2,1% in a
hermetically enclosed incubation chamber (Thermo Electron,
Marietta, OH), where indicated [55]. Cells were harvested after
48 h and processed as detailed below.

Mouse breeding, genotyping and exposure to hypoxia
Our experiments were conducted under protocol number

0806669-B4, which was approved by the Institutional Animal
Care and Use Committee of University of Pittsburgh. Fatp2
(Slc27a2tm1Kds) heterozygous C57Bl/6 mice harboring a targeted
mutation in the Fatp2 gene were generously provided by Dr. Kirby
Smith (Johns Hopkins). Fatp4 heterozygous (Slc27a4/wrfr) C57Bl/
6 mice, which harbor a spontaneous transposon insertion in Fatp4
gene, as well as the Fatp4 overexpressing mouse, were previously
described [66]. Timed matings were carried out by pairing
heterozygous males and females for one night, with the morning
after mating designated as embryonic day 0.5 (E0.5). Pregnancy
was assumed based the presence of vaginal plug and a 10% weight
gain on E10.5. Mice were kept under constant conditions until
E11.5, were given a standard rodent chow and water ad libitum,
and kept on a 12:12 h light-dark cycle in room air. Delivery
typically occurs on E19.5. Exposure to hypoxia, where relevant,
was initiated on E11.5, when the mice were either exposed to
FiO2 = 12% between E11.5 and E17.5 (hypoxia group) or
normoxia at standard atmospheric conditions. For exposure to

normobaric hypoxia we used a Polymer Hypoxic Glove Box with
a Purge Airlock system with CO2 and O2 control indicators (Coy
Laboratory Products, Grass Lake, MI), which is specifically
designed for experiments in live rodents and regulates ambient
temperature, humidity, and gas composition. Dams were eutha-
nized by CO2 asphyxiation. Embryos and placentas were weighed,
and immediately processed for further analysis (see below). Each
set of analyses included ten pregnant mice, each carrying 6–10
embryos. Fetuses from uterine horns containing only one embryo
were excluded from the final analysis. Genomic DNA was
extracted from embryo tails by the alkaline lysis and boiling
method [67] and genotyped using standard PCR, as previously
described [34,58].

Histological Analysis
For oil Red O staining, 4% PFA-fixed samples were immersed

in 10%, then 20% sucrose in PBS, followed by OCT embedding.
Sections were cut using a cryostat (Cryotome FSE, Thermo
Scientific, Wilmington, DE) at 7 mm thickness, then stained with
oil Red O (Sigma) [68] and counter-stained with hematoxylin or
stained with Sudan Black B (Sigma) and counter-stained with
nuclear fast red.

For detection of Fatp2, Fatp4 and Fatp6 by ISH we used
digoxigenin-labeled cRNA probes, synthesized using digoxigenin
RNA labeling kit (Roche, Basel, Switzerland). Cryosections
(10 mm) of the OCT-embedded placentas were rehydrated in
PBS, digested with proteinase K (10 mg/ml, 5 min at 37 C),
treated with 0.2 N HCl for 10 min at RT, acetylated (0.25% acetic
anhydride in TEA for 10 min at RT), and then hybridized with
cRNA probes overnight at 60 C. Slides were washed four times
with 46 SSC, digested with RNaseA (5 mg/ml) for 15 min at 37 C,
and washed twice with 0.56 SSC for 15 min at 60 C. Slides were
blocked using 1% blocking reagent (Roche) in maleic acid buffer
(MAB), followed by incubation with anti-DIG-AP antibody
(0.5 U/ml) for 2 h at RT, washed with MABT (MAB with 0.2%
Tween20), and then reacted with BM purple (Roche) with 1 mM
levamisole overnight. The sections were examined using Nikon 90i
microscope (Nikon, Tokyo, Japan) equipped with DS-Ri1 CCD
camera (Nikon).

Standard and quantitative RT-PCR
Total RNA was extracted from PHT cells or from diverse tissues

of eight weeks old mice using TriReagent (MRC, Cincinnati, OH)
according to the manufacturer’s instructions. Some of the analyses
were also performed using Human Total RNA Survey Panel
(Ambion, Austin, CA). RNA samples were treated with DNaseI
using a Turbo DNA-free Kit (Ambion). Complementary DNA
(cDNA) was synthesized from 1 mg of total RNA in 20 ml of
reaction mixture using High Capacity RNA-to-cDNA Master Mix
(Applied Biosystems, Foster City, CA). Synthesized cDNA samples
were diluted 1:5 in DEPC-treated H2O. RNA quality was assessed
by 260/280 and 260/230 absorbance ratio using NanoDrop
(Thermo). Standard RT-PCR was performed using KOD Xtreme
DNA polymerase (EMD, Gibbstown, NJ) with 2 ml cDNA per
20 ml reaction volume, with amplification in a Veriti thermal
cycler (Applied Biosystems) using the following conditions: 94 C
for 2 min, 35 cycles at 98 C for 10 sec, 60 C for 30 sec, and 68 C
at 30 sec. PCR products were electrophoresed on a 2% TAE
agarose gel and DNA detected using ethidium bromide.
Quantitative RT-PCR was carried out in duplicates using 384
well plates with 2 ml of cDNA per 10 ml of reaction mixture using
SYBR Green PCR master mix (Applied Biosystems). A total of 8–
12 cDNA from mouse samples and five cDNAs from human
samples were used for each analysis. PCR was carried out in
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Geneamp 7900 (Applied Biosystems). The specificity of amplifi-
cation was confirmed using a dissociation curve of the PCR
product. Detection of YWHAZ for human [69] or L32 for mouse
[70] was used as normalization control. The relative expression
change was calculated using the DDCt method [71]. All primers
used in this study are listed in Table S1.

Western blot analysis
Proteins for western blot were prepared from cells using lysis

buffer, and by homogenization in lysis buffer for tissues, as we
previously described [35]. Protein lysates were electrophoresed
using 7.5% sodium dodecyl sulfate (SDS)-polyacrylamide gel at
180 V for 1 h, then transferred to polyvinylidene difluoride
membranes (Biorad, Hercules, CA) at 23 V for overnight. After
blocking with 5% non-fat dried milk in TBST, the membranes
were incubated overnight with rabbit anti-FATP2, FATP4
antibodies as previously described [30] or mouse anti-actin,
Millipore, Bedford, MA) antibodies at 4 C. After washing with
TBST, the membranes were incubated with goat anti-rabbit IgG
peroxidase conjugated (Santa Cruz Biotech, Santa Cruz, CA) and
donkey anti-mouse IgG peroxidase conjgated (Santa Cruz) for 2 h
at RT. Detection was performed with Western Lightning ECL kit
(Perkin Elmer).

Triglyceride Assay
Lipids were extracted from each murine placenta by the Folch

method [72], and triglyceride concentration determined using a

triglyceride spectrophotometer assay kit (Cayman Chemical, Ann
Arbor, MI), detected using a VersaMax microplate reader
(Molecular Devices, Sunnyvale, CA). Five placental fragments,
each 10–20 mg, were used for analysis, and normalized by weight.

Statistics
Statistical analysis was performed using analysis of variance

(ANOVA) with Bonferroni post hoc test for multiple comparisons
of placental and embryo weight, and by Mann-Whitney test for
RT-qPCR and triglyceride assay using Dr SPSS II for Windows
(SPSS, Chicago, IL). Significance was determined at p,0.05.

Supporting Information

Table S1 Primers used in standard and RT-qPCR.
(DOC)

Acknowledgments
We thank Kirby Smith (Johns Hopkins) for the VLCS (FATP2)
heterozygous mice. We also thank Tonia Tse and Karen Peters for
technical assistance, and Lori Rideout for assistance in manuscript
preparation.

Author Contributions
Conceived and designed the experiments: TM JHM AS YS. Performed the
experiments: TM MM. Analyzed the data: TM YS. Wrote the paper: TM
JHM AS YS. Generated FATP4 transgenic mice: JHM.

References
1. Hornstra G, Al MD, van Houwelingen AC, Foreman-van Drongelen MM

(1995) Essential fatty acids in pregnancy and early human development.
Eur J Obstet Gynecol Reprod Biol 61: 57–62.

2. Dutta-Roy AK (2000) Transport mechanisms for long-chain polyunsaturated
fatty acids in the human placenta. Am J Clin Nutr 71: 315S–322S.

3. Haggarty P (2002) Placental regulation of fatty acid delivery and its effect on fetal
growth–a review. Placenta 23 Suppl A: S28–38.

4. Neuringer M, Connor WE, Lin DS, Barstad L, Luck S (1986) Biochemical and
functional effects of prenatal and postnatal omega 3 fatty acid deficiency on
retina and brain in rhesus monkeys. Proc Natl Acad Sci USA 83: 4021–4025.

5. Uauy R, Treen M, Hoffman DR (1989) Essential fatty acid metabolism and
requirements during development. Semin Perinatol 13: 118–130.

6. Larque E, Demmelmair H, Koletzko B (2002) Perinatal supply and metabolism
of long-chain polyunsaturated fatty acids: importance for the early development
of the nervous system. Ann N Y Acad Sci 967: 299–310.

7. Lauritzen L, Hansen HS, Jorgensen MH, Michaelsen KF (2001) The essentiality
of long chain n-3 fatty acids in relation to development and function of the brain
and retina. Prog Lipid Res 40: 1–94.

8. Herrera E, Amusquivar E (2000) Lipid metabolism in the fetus and the newborn.
Diabetes Metab Res Rev 16: 202–210.

9. Knipp GT, Audus KL, Soares MJ (1999) Nutrient transport across the placenta.
Adv Drug Deliv Rev 38: 41–58.

10. Belkacemi L, Nelson DM, Desai M, Ross MG (2010) Maternal undernutrition
influences placental-fetal development. Biol Reprod 83: 325–331.

11. Doege H, Stahl A (2006) Protein-mediated fatty acid uptake: novel insights from
in vivo models. Physiology (Bethesda) 21: 259–268.

12. Duttaroy AK (2009) Transport of fatty acids across the human placenta: a
review. Prog Lipid Res 48: 52–61.

13. Bonet B, Brunzell JD, Gown AM, Knopp RH (1992) Metabolism of very-low-
density lipoprotein triglyceride by human placental cells: the role of lipoprotein
lipase. Metabolism 41: 596–603.

14. Magnusson AL, Waterman IJ, Wennergren M, Jansson T, Powell TL (2004)
Triglyceride hydrolase activities and expression of fatty acid binding proteins in
the human placenta in pregnancies complicated by intrauterine growth
restriction and diabetes. J Clin Endocrinol Metab 89: 4607–4614.

15. Magnusson-Olsson AL, Lager S, Jacobsson B, Jansson T, Powell TL (2007)
Effect of maternal triglycerides and free fatty acids on placental LPL in cultured
primary trophoblast cells and in a case of maternal LPL deficiency. Am J Physiol
Endocrinol Metab 293: E24–30.

16. Dutta-Roy AK (2000) Cellular uptake of long-chain fatty acids: role of
membrane-associated fatty-acid-binding/transport proteins. Cell Mol Life Sci
57: 1360–1372.

17. Knipp GT, Liu B, Audus KL, Fujii H, Ono T, et al. (2000) Fatty acid transport
regulatory proteins in the developing rat placenta and in trophoblast cell culture
models. Placenta 21: 367–375.

18. Daoud G, Simoneau L, Masse A, Rassart E, Lafond J (2005) Expression of
cFABP and PPAR in trophoblast cells: effect of PPAR ligands on linoleic acid
uptake and differentiation. Biochim Biophys Acta 1687: 181–194.

19. Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis.
Endocrinology 149: 942–949.

20. Farese RV, Jr., Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-
C-T. Cell 139: 855–860.

21. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic
organelle. Nat Rev Mol Cell Biol 7: 373–378.

22. Brown DA (2001) Lipid droplets: proteins floating on a pool of fat. Curr Biol 11:
R446–449.

23. Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, et al. (2002) Functional
conservation for lipid storage droplet association among Perilipin, ADRP, and
TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol
Chem 277: 32253–32257.

24. Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin
family of structural lipid droplet proteins: stabilization of lipid droplets and
control of lipolysis. J Lipid Res 48: 2547–2559.

25. Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010)
Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-
family of intracellular lipid storage droplet proteins. J Lipid Res 51: 468–471.

26. Hirsch D, Stahl A, Lodish HF (1998) A family of fatty acid transporters
conserved from mycobacterium to man. Proc Natl Acad Sci USA 95:
8625–8629.

27. Schaffer JE (2002) Fatty acid transport: the roads taken. Am J Physiol
Endocrinol Metab 282: E239–246.

28. Stahl A (2004) A current review of fatty acid transport proteins (SLC27). Pflugers
Arch 447: 722–727.

29. Gimeno RE, Ortegon AM, Patel S, Punreddy S, Ge P, et al. (2003)
Characterization of a heart-specific fatty acid transport protein. J Biol Chem
278: 16039–16044.

30. Stahl A, Hirsch DJ, Gimeno RE, Punreddy S, Ge P, et al. (1999) Identification
of the major intestinal fatty acid transport protein. Mol Cell 4: 299–308.

31. Stahl A, Gimeno RE, Tartaglia LA, Lodish HF (2001) Fatty acid transport
proteins: a current view of a growing family. Trends Endocrinol Metab 12:
266–273.

32. Hall AM, Wiczer BM, Herrmann T, Stremmel W, Bernlohr DA (2005)
Enzymatic properties of purified murine fatty acid transport protein 4 and
analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J Biol
Chem 280: 11948–11954.

33. Herrmann T, Buchkremer F, Gosch I, Hall AM, Bernlohr DA, et al. (2001)
Mouse fatty acid transport protein 4 (FATP4): characterization of the gene and
functional assessment as a very long chain acyl-CoA synthetase. Gene 270:
31–40.

FATP2 and FATP4 in the Placenta

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e25865



34. Heinzer AK, Watkins PA, Lu JF, Kemp S, Moser AB, et al. (2003) A very long-
chain acyl-CoA synthetase-deficient mouse and its relevance to X-linked
adrenoleukodystrophy. Hum Mol Genet 12: 1145–1154.

35. Biron-Shental T, Schaiff WT, Ratajczak CK, Bildirici I, Nelson DM, et al.
(2007) Hypoxia regulates the expression of fatty acid-binding proteins in primary
term human trophoblasts. Am J Obstet Gynecol 197: 516 e511–516.

36. Roh CR, Budhraja V, Kim HS, Nelson DM, Sadovsky Y (2005) Microarray-
based identification of differentially expressed genes in hypoxic term human
trophoblasts and in placental villi of pregnancies with growth restricted fetuses.
Placenta 26: 319–328.

37. Mando C, Tabano S, Colapietro P, Pileri P, Colleoni F, et al. (2010) Transferrin
receptor gene and protein expression and localization in human IUGR and
normal term placentas. Placenta.

38. Gheorghe CP, Mohan S, Oberg KC, Longo LD (2007) Gene expression
patterns in the hypoxic murine placenta: a role in epigenesis? Reprod Sci 14:
223–233.

39. Johnson AC, Stahl A, Zager RA (2005) Triglyceride accumulation in injured
renal tubular cells: alterations in both synthetic and catabolic pathways. Kidney
Int 67: 2196–2209.

40. Araya J, Soto C, Aguilera AM, Bosco C, Monlina R (1995) [Modification of the
lipid profile of human placenta by moderate maternal undernutrition]. Rev Med
Chil 122: 503–509.

41. Cetin I, Giovannini N, Alvino G, Agostoni C, Riva E, et al. (2002) Intrauterine
growth restriction is associated with changes in polyunsaturated fatty acid fetal-
maternal relationships. Pediatr Res 52: 750–755.

42. Schaiff WT, Bildirici I, Cheong M, Chern PL, Nelson DM, et al. (2005)
Peroxisome proliferator-activated receptor-gamma and retinoid X receptor
signaling regulate fatty acid uptake by primary human placental trophoblasts.
J Clin Endocrinol Metab 90: 4267–4275.

43. Georgiades P, Ferguson-Smith AC, Burton GJ (2002) Comparative develop-
mental anatomy of the murine and human definitive placentae. Placenta 23:
3–19.

44. Cox B, Kotlyar M, Evangelou AI, Ignatchenko V, Ignatchenko A, et al. (2009)
Comparative systems biology of human and mouse as a tool to guide the
modeling of human placental pathology. Mol Syst Biol 5: 279.

45. Takizawa T, Anderson CL, Robinson JM (2005) A novel Fc gamma R-defined,
IgG-containing organelle in placental endothelium. J Immunol 175: 2331–2339.

46. Mohanty S, Kim J, Ganesan LP, Phillips GS, Hua K, et al. (2010) IgG is
transported across the mouse yolk sac independently of FcgammaRIIb. J Reprod
Immunol 84: 133–144.

47. Kim J, Mohanty S, Ganesan LP, Hua K, Jarjoura D, et al. (2009) FcRn in the
yolk sac endoderm of mouse is required for IgG transport to fetus. J Immunol
182: 2583–2589.

48. Carter AM (2007) Animal models of human placentation–a review. Placenta 28
Suppl A: S41–47.

49. Vuguin PM (2007) Animal models for small for gestational age and fetal
programming of adult disease. Horm Res 68: 113–123.

50. Burton GJ, Jauniaux E, Watson AL (1999) Maternal arterial connections to the
placental intervillous space during the first trimester of human pregnancy: the
Boyd collection revisited. Am J Obstet Gynecol 181: 718–724.

51. Rodesch F, Simon P, Donner C, Jauniaux E (1992) Oxygen measurements in
endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol
80: 283–285.

52. Fox H (1970) Effect of hypoxia on trophoblast in organ culture. A morphologic
and autoradiographic study. Am J Obstet Gynecol 107: 1058–1064.

53. Cetin I, Alvino G (2009) Intrauterine growth restriction: implications for
placental metabolism and transport. A review. Placenta 30 Suppl A: S77–82.

54. Alsat E, Wyplosz P, Malassine A, Guibourdenche J, Porquet D, et al. (1996)
Hypoxia impairs cell fusion and differentiation process in human cytotropho-
blast, in vitro. J Cell Physiol 168: 346–353.

55. Mouillet JF, Chu T, Nelson DM, Mishima T, Sadovsky Y (2010) MiR-205
silences MED1 in hypoxic primary human trophoblasts. FASEB J 24:
2030–2039.

56. Peltier MR, Gurzenda EM, Murthy A, Chawala K, Lerner V, et al. (2011) Can
oxygen Tension Contribute to an Abnormal Placental Cytokine Milieu?
Am J Reprod Immunol.

57. Heinzer AK, McGuinness MC, Lu JF, Stine OC, Wei H, et al. (2003) Mouse
models and genetic modifiers in X-linked adrenoleukodystrophy. Adv Exp Med
Biol 544: 75–93.

58. Moulson CL, Martin DR, Lugus JJ, Schaffer JE, Lind AC, et al. (2003) Cloning
of wrinkle-free, a previously uncharacterized mouse mutation, reveals crucial
roles for fatty acid transport protein 4 in skin and hair development. Proc Natl
Acad Sci USA 100: 5274–5279.

59. Herrmann T, van der Hoeven F, Grone HJ, Stewart AF, Langbein L, et al.
(2003) Mice with targeted disruption of the fatty acid transport protein 4 (Fatp 4,
Slc27a4) gene show features of lethal restrictive dermopathy. J Cell Biol 161:
1105–1115.

60. Herrmann T, Grone HJ, Langbein L, Kaiser I, Gosch I, et al. (2005) Disturbed
epidermal structure in mice with temporally controlled fatp4 deficiency. J Invest
Dermatol 125: 1228–1235.

61. Gimeno RE, Hirsch DJ, Punreddy S, Sun Y, Ortegon AM, et al. (2003)
Targeted deletion of fatty acid transport protein-4 results in early embryonic
lethality. J Biol Chem 278: 49512–49516.

62. Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, et al. (1999) A null
mutation in murine CD36 reveals an important role in fatty acid and lipoprotein
metabolism. J Biol Chem 274: 19055–19062.

63. Bionaz M, Loor JJ (2008) ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are
the most abundant isoforms in bovine mammary tissue and their expression is
affected by stage of lactation. J Nutr 138: 1019–1024.

64. Klar J, Schweiger M, Zimmerman R, Zechner R, Li H, et al. (2009) Mutations
in the fatty acid transport protein 4 gene cause the ichthyosis prematurity
syndrome. Am J Hum Genet 85: 248–253.

65. Morice-Picard F, Leaute-Labreze C, Decor A, Boralevi F, Lacombe D, et al.
(2010) A novel mutation in the fatty acid transport protein 4 gene in a patient
initially described as affected by self-healing congenital verruciform hyperker-
atosis. Am J Med Genet A 152A: 2664–2665.

66. Moulson CL, Lin MH, White JM, Newberry EP, Davidson NO, et al. (2007)
Keratinocyte-specific expression of fatty acid transport protein 4 rescues the
wrinkle-free phenotype in Slc27a4/Fatp4 mutant mice. J Biol Chem 282:
15912–15920.

67. Hanley T, Merlie JP (1991) Transgene detection in unpurified mouse tail DNA
by polymerase chain reaction. Biotechniques 10: 56.

68. Koopman R, Schaart G, Hesselink MK (2001) Optimisation of oil red O
staining permits combination with immunofluorescence and automated
quantification of lipids. Histochem Cell Biol 116: 63–68.

69. Meller M, Vadachkoria S, Luthy DA, Williams MA (2005) Evaluation of
housekeeping genes in placental comparative expression studies. Placenta 26:
601–607.

70. Maity A, Solomon D (2000) Both increased stability and transcription contribute
to the induction of the urokinase plasminogen activator receptor (uPAR)
message by hypoxia. Exp Cell Res 255: 250–257.

71. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using
real-time quantitative PCR and the 2(2Delta Delta C(T)) Method. Methods 25:
402–408.

72. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation
and purification of total lipides from animal tissues. J Biol Chem 226: 497–509.

FATP2 and FATP4 in the Placenta

PLoS ONE | www.plosone.org 8 October 2011 | Volume 6 | Issue 10 | e25865


