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Abstract

Adult height is a classic polygenic trait of high heritability (h2 ,0.8). More than 180 single nucleotide polymorphisms (SNPs),
identified mostly in populations of European descent, are associated with height. These variants convey modest effects and
explain ,10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height
not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide
association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African
Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4610212 and 2p14-rs4315565, P = 1.261028). As a
group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry
(P = 1.761024 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed
an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height
SNPs (P,0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of
complex human diseases and traits.
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Introduction

Adult height is a classic polygenic trait of high heritability (h2,0.8)

[1,2]. A recent large meta-analysis of genome-wide association

(GWA) results for height, which included data from .180,000

individuals of European descent, identified 180 loci that associate

with variation in height [3]. The most significantly associated variants

at these loci explain approximately 10% of the variance, consistent

with the hypothesis put forward in 1918 by Fisher on the ‘‘cumulative

Mendelian factors’’, which suggested that the segregation of a large

number of genetic variants, each of small effect, is sufficient to explain

the variation in height observed in humans [4].

In parallel to the work in European-ancestry populations, GWA

studies for adult height in other ethnic groups, including Koreans,

Japanese, Africans, and African Americans have also been

performed [5–10]. The GWA scans in East Asians replicated

several of the height loci already identified in individuals of

European descent, and also found evidence for new height loci not

previously implicated in individuals of European ancestry [6,7].

The studies in Africans and African Americans were modest in size

and, although they replicated nominally some of the associations

previously found in European populations, were not well-powered

to find new population-specific height loci [8,9].

To search for novel loci for height in populations of African ancestry,

and to explore systematically the replication of previously validated

height loci, we combined GWA results for height from nine studies

totaling 20,427 individuals of African descent. We identified two novel

height loci and observed significant evidence for the replication of

European height signals in African-derived populations. In fine-

mapping of the European height loci we also identified variants that

better define the association in individuals of African ancestry and

control local gene expression in cis (cis-eQTLs), suggesting that they are

likely to be better surrogates of the biologically functional alleles.

Results/Discussion

The meta-analysis included results from nine studies: four

population-based African-American studies (ARIC (N = 2,740),

CARDIA (N = 699), JHS (N = 2,119), and MESA (N = 1,646)),

one family-based African-American study (CFS (N = 386)),

African-American GWA study consortia of breast (AABC

(N = 5,380)) and prostate cancer (AAPC (N = 5,526)) and two

case-control studies of obesity (Maywood (N = 743)) and hyper-

tension (Nigeria (N = 1,188)) (Materials and Methods, Text S1 and

Table S1). We tested associations between 3,310,998 genotyped or

imputed SNPs and sex-, age-, and disease status-adjusted height Z-

scores under an additive genetic model, correcting for global

admixture using principal components (PCs) as covariates, and

modeling family structure when appropriate (Text S1). Height

results for each study were scaled using genomic control, and then

combined using the inverse-variance meta-analytic method

(Text S1).

The quantile-quantile (QQ) plot suggested little departure from

the null expectation, except at the right end tail of the distribution

(Figure 1). The associations that deviate most strongly from the

null correspond to loci previously associated with height in

European populations, providing a strong validation of our

approach (Table 1). The overall inflation factor in the meta-

analysis was lGC = 1.064 and results were again scaled using

genomic control, a slightly conservative approach [11].

Two genomic loci (LCORL on chromosome 4 and PPARD on

chromosome 6), previously implicated in height in European

populations [3], reached genome-wide significance in the

discovery meta-analysis (P,561028; Table 1, Figure S1 and

Table S2). We prioritized 153 SNPs with P,161025 from our

meta-analysis for in silico replication in up to 16,436 African

Americans from five additional studies (Text S1). After combining

the data in a joint analysis, 40 SNPs from 11 different

chromosomal regions reached genome-wide significance (Table 1

and Table S2), including two SNPs not previously implicated in

the regulation of height: rs12393627 on the X-chromosome and

rs4315565 on chromosome 2 (Table 1).

rs12393627 is located 3.2 kb upstream of the arylsulfatase E

(ARSE) gene on chromosome Xp22 (Figure 2a). Mutations in the

ARSE gene cause X-linked brachytelephalangic chondrodysplasia

punctata (CDPX1; OMIM #302950), a congenital disorder of

bone and cartilage development also characterized by short stature

[12]. The co-localization of human growth syndrome genes with

SNPs associated with adult height has been reported in European-

ancestry samples [3,13,14]. rs12393627 reached a P = 1.461026

in the initial meta-analysis (N = 8,333; the SNP was not on the

genotyping arrays and/or could not be imputed for AABC,

AAPC, Maywood, and Nigeria), and was strongly replicated for

association with height in 13,153 African Americans (replication

P = 2.661027; combined P = 5.7610212) (Table 1). When consid-

ering the number of independent markers in a 1 Mb window we

found no secondary independent signals in the region conditioning

on genotype at rs12393627. We also found no significant evidence

of heterogeneity at rs12393627 between men and women

(P = 0.26).

The derived A-allele (i.e. non-ancestral allele based on the

chimp genome) at rs12393627 is monomorphic in the HapMap

CEU individuals and has a frequency of 54% in the HapMap YRI

participants. We also investigated the association of rs12393627

with height in 3,487 Japanese Americans and 2,979 Latinos from

the Multiethnic Cohort (MEC) (Text S1). Whereas the marker was

monomorphic in Japanese Americans, the association between

height and rs12393627 was replicated in Latinos with a

comparable effect size (A-allele frequency = 97%, standardized

effect size = 20.17760.088, P = 0.044). The frequency of this

allele is consistent with previous estimates of ,5–10% African

ancestry among Latinos in the MEC [15]. Measures of local

Author Summary

Adult height is an ideal phenotype to improve our
understanding of the genetic architecture of complex
diseases and traits: it is easily measured and usually
available in large cohorts, relatively stable, and mostly
influenced by genetics (narrow-sense heritability of height
h2,0.8). Genome-wide association (GWA) studies in
individuals of European ancestry have identified .180
single nucleotide polymorphisms (SNPs) associated with
height. In the current study, we continued to use height as
a model polygenic trait and explored the genetic influence
in populations of African ancestry through a meta-analysis
of GWA height results from 20,809 individuals of African
descent. We identified two novel height loci not previously
found in Europeans. We also replicated the European
height signals, suggesting that many of the genetic
variants that are associated with height are shared
between individuals of European and African descent.
Finally, in fine-mapping the European height loci in
African-ancestry individuals, we found SNPs more likely
to be associated with the expression of nearby genes than
the SNPs originally found in Europeans. Thus, our results
support the utility of performing genetic studies in non-
European populations to gain insights into complex
human diseases and traits.

GWAS of Height in Individuals of African Ancestry
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ancestry (the number of European-derived chromosomes (0, 1, or

2) in each individual) were not available for the X-chromosome,

but since the marker is polymorphic only in African-derived

populations (according to HapMap phase 3 data [16]), the height

association signal defined by rs12393627 on Xp22 is likely to be

specific to these populations.

SNP rs4315565 on 2p14 (discovery P = 1.561027; combined

P = 1.261028) is located in intron 3 of the anthrax toxin receptor 1

(ANTXR1) gene, and 189 kb upstream of the bone morphogenetic

protein 10 (BMP10) gene (Figure 2b), a member of the TGF-b
signaling pathway. This pathway is important in normal skeletal

growth [17] and implicated in previous GWA studies of height [3].

We observed no evidence of heterogeneity by sex (P = 0.34) and no

independent signals when conditioning on rs4315565 within a

1 Mb window.

The allele frequency of rs4315565 differs strongly between the

HapMap CEU and YRI samples: the derived A-allele, which is

associated with decreased height, has a frequency of 85% in CEU

and 2% in YRI, respectively (Fst = 0.701). This allele frequency

difference is consistent with recent weak positive selection acting in

individuals of European ancestry (iHS = 21.668) [18], and could

indicate an association with local ancestry. In a conditional

analysis where we controlled for global ancestry using PCs as

covariates, we did observe a significant association between height

and local ancestry at the ANTXR1 locus, with an increase in the

number of European chromosomes associated with a decrease in

height (P = 1.661026; N = 18,495 samples available for this

analysis) [19]. Still controlling for global ancestry with PCs,

genotypes at rs4315565 could account for the association between

local ancestry and height (P = 0.22 for local ancestry conditional

on rs4315565), while the association of rs4315565 with height

diminished but remained significant in the same model

(P = 4.661028 and P = 0.0044, before and after conditioning on

local ancestry; N = 18,495).

To investigate the relationship between rs4135565 and local

ancestry further, we considered the background on which the

rs4135565 variants were present in different individuals. In

analyses stratified by the number of African/European chromo-

somes in the region, rs4315565 was nominally associated with

height in African Americans that are homozygous (P = 0.038) or

heterozygous (P = 0.043) for African chromosomes (with effect size

stronger in African chromosome homozygotes) (Table 2). In 1,188

Nigerians from the discovery phase, a similar trend between height

and rs4315565 was observed (P = 0.075). rs4315565 was not

significantly associated with height in African Americans that are

homozygous for European chromosomes at the locus (P = 0.91),

although the sample size of this sub-group is small (N = 943)

(Table 2). More strikingly, this variant is not associated with height

in populations of European ancestry in the GIANT Consortium

(N = 133,653, P = 0.66) [3]. Together, these results suggest that

2p14 harbors at least one novel height-associated variant that is

strongly associated with African ancestry and is correlated with

rs4315565 in African- but not European-derived chromosomes.

Our results also indicate that rs4315565 is a better marker of the

functional variant(s) than is local ancestry or any other SNPs

represented in HapMap.

We then considered the previously known height loci. Of the

180 SNPs previously reported by the GIANT Consortium to be

associated with height in populations of European ancestry, the

effect estimates for 38 SNPs were in the same direction as the

initial report and nominally associated (P,0.05) with height in the

African-derived height meta-analysis. This number is however a

lower-bound estimate of the number of known European height

loci that replicate in individuals of African ancestry because it does

not take into account different LD relationships in European and

African chromosomes: since any of the SNPs in LD in European-

ancestry individuals with the GIANT height SNPs could be causal,

this entire set of SNPs need to be evaluated, both in terms of

statistical significance and direction of effect, for replication in the

African height meta-analysis. To address this issue, we utilized a

rigorous framework, described in the Materials and Methods

section and graphically summarized in Figure S2, to test

Figure 1. Quantile–quantile (QQ) plot of the meta-analysis with up to 3.3 M SNPs across 9 studies (N = 20,427). Each black circle
represents an observed statistic for genotyped SNPs only (defined as the 2log10P) against the corresponding expected statistic. The grey area
corresponds to the 90% confidence intervals calculated empirically using permutations. The individual studies’ inflation factors, as well as the inflation
factor of the meta-analysis, were corrected using genomic control. The inflation factor of the meta-analysis is lGC = 1.064.
doi:10.1371/journal.pgen.1002298.g001
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Figure 2. SNPs are plotted using LocusZoom [22] by position on the chromosome against association with adult height (2log10 P).
The SNP name shown on the plot was the most significant SNP after the discovery meta-analysis. Estimated recombination rates (from HapMap) are
plotted in cyan to reflect the local LD structure. The SNPs surrounding the most significant SNP are color coded to reflect their LD with this SNP (taken
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systematically for replication at the previously known European

height loci in the African meta-analysis. We started with 161 of the

180 height SNPs identified by the GIANT Consortium (19 SNPs

could not be tested because linkage disequilibrium (LD) informa-

tion in HapMap was not available) [3], and generated 5,819 sets of

161 SNPs matched on minor allele frequency using the

HapMap2+3 CEU dataset. We then counted the number of

SNPs (also considering LD proxies) in the African height meta-

analysis with directionally consistent (one-tailed) P#0.05 for the set

of 161 height-associated SNPs and the simulated sets. We found

one simulation with a count of nominal associations equal to or

higher than what we observed for the 161 height-associated SNPs

(P = 1.761024; 171 nominal associations for the GIANT height

SNPs (and their proxies); median number of nominal associations

to height in the matched sets of SNPs = 28 (range = 8–172)).

Therefore, we found strong overall evidence of replication in our

large meta-analysis of 20,427 individuals of African ancestry for

SNPs previously associated with adult height in individuals of

European ancestry, indicating a substantial shared genetic basis for

height in populations separated since the out-of-Africa event.

The replication procedure described above also allowed us to

identify, for each of the 161 European height loci that we assessed

using data from our African meta-analysis, the best candidate

height index SNP (Table 3 and Table S3). For instance in

population of European ancestry at the LCORL locus on

chromosome 4, the GIANT height SNP (rs6449353) and the

SNP identified by fine-mapping in the African height meta-

analysis (rs7663818) are both strongly associated with height

(P,1610225) and in strong LD (r2.0.8) with each other

(Figure 3a). However, in African-derived populations, LD is

weaker between the two SNPs (r2,0.6) and the association with

height is stronger for rs7663818 (P = 2.961027) than for

rs6449353 (P = 0.0025) (Figure 3b). When we consider SNPs in

strong LD (r2.0.8) with rs7663818 in HapMap CEU and YRI

populations, they define genomic intervals of 250 kb and 80 kb,

respectively (light blue boxes in Figure 3). Finally, in lymphoblas-

toid cell lines derived from YRI individuals (Materials and

Methods), rs7663818, but not rs6449353, is associated with

LCORL gene expression levels (LCORL eQTL P = 0.0026 and

P = 0.13 for rs7663818 and rs6449353, respectively). Thus, the

LCORL locus illustrates a clear example of the utility of fine-

mapping association signals in other ethnic groups, both in terms

of narrowing the genomic interval of interest and highlighting

potential functional variants (cis-eQTL).

For 40 loci, the index SNPs from our fine-mapping list was

nominally associated with height (P,0.05) in the African height

meta-analysis, whereas the corresponding index European height

SNPs was not. To test whether this result reflects an enrichment of

surrogates for functional variants identified by fine-mapping, we

designed an experiment using allelic gene expression phenotypes

in the HapMap YRI cell lines as functional readouts. We

hypothesized that if our trans-ethnic fine-mapping strategy was

successful, a larger fraction of variants in the list of fine-mapped

height SNPs should be associated with phenotypes (in this case

gene expression) than of variants in the list of European index

height SNPs. In other words, the list of SNPs from our fine-

mapping experiment should contain more cis-eQTLs than the

GIANT list of height SNPs in cell lines derived from Africans. We

retrieved allelic expression mapping datasets from the HapMap

YRI cell lines (Materials and Methods) and observed that 4.7% of

the GIANT index height SNPs and 8.6% of the best candidate

height SNPs obtained by trans-ethnic fine-mapping, were both

nominally associated with height (P,0.05) in our meta-analysis

and with allelic expression phenotypes (P,0.01). When we used

simulations to assess the significance of these results, we found no

simulated set with a cis-eQTL enrichment equal or above that

observed in the data (P,0.01, obtained from 100 simulations

(Text S1)). Therefore, fine-mapping European height loci in

African-ancestry individuals generated a list of markers more likely

to control gene expression, potentially improving mechanistic

insights into the biology of height. Although we did not see an

enrichment when compared to the list of GIANT index height

SNPs, we also found that 17 missense SNPs are in strong LD

(r2$0.8 based on HapMap phase II YRI) with the fine-mapped

height SNPs (Table S4).

In conclusion, our study shows the benefit of performing large-

scale genetic studies in non-European populations to discover new

biology (we identified two novel height loci), and to gain functional

insights at the loci previously found in European-derived

individuals (in this case, by enrichment of cis-eQTL signals). The

strong replication of most of the European height loci in African-

ancestry populations suggest that many of the published

association signals with common variants from GWA studies –

for height and perhaps other complex diseases and traits – are

relevant across different populations and caused by shared genetic

factors that predate the out-of-Africa event.

Materials and Methods

Ethics statement
All participants gave informed written consent. The project has

been approved by the local ethics committees and/or institutional

review boards.

Studies
Five discovery studies/consortia (AABC, AAPC, CARe, May-

wood, and Nigeria) and five replication studies (GeneSTAR,

HANDLS, Health ABC, WHI, and MEC) contributed height

association results to this project. There were eight population-

based cohorts (ARIC (N = 2,740), CARDIA (N = 699), JHS

(N = 2119), MESA (N = 1,646), HANDLS (N = 993), HABC

Table 2. Stratified analysis of the association between adult
height and rs4315565 based on ancestry at the locus.

Ancestry N Beta (SE) P-value

African homozygote 11,608 20.067 (0.032) 0.038

African/European heterozygote 5,971 20.052 (0.026) 0.043

European homozygote 943 20.007 (0.056) 0.90

Combined analysis 18,522 20.051 (0.019) 0.0079

The effect size (beta) and standard error (SE) are in Z-score units. The direction
of the effect is given for the A-allele at rs4315565. Results are from a meta-
analysis of the results in ARIC, CARDIA, CFS, JHS, MESA, AABC, and AAPC.
Because of its small sample size, we could not analyze height in the CFS
participants homozygous for the European chromosome.
doi:10.1371/journal.pgen.1002298.t002

from pairwise r2 values from the ARIC African Americans Affymetrix6.0 dataset for rs1239627 (A) and from the HapMap YRI data for rs4315565 (B)).
The size of the points on the plots is proportional to the number of individuals with available genotype for any given SNP. Genes, the position of
exons and the direction of transcription from the UCSC genome browser are noted. Hashmarks represent SNP positions available in the meta-analysis.
doi:10.1371/journal.pgen.1002298.g002
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Figure 3. Height association results. In Europeans from the GIANT Consortium (A) [3] and in individuals of African ancestry (B) (this study) at the
LCORL locus on chromosome 4. The GIANT Consortium originally reported SNP rs6449353, whereas rs7663818 was fine-mapped in the African height
meta-analysis. For each panel, the light blue box corresponds to the chromosomal interval flanked by the leftmost and rightmost SNPs with a r2$0.8
with rs7663818 in HapMap CEU (A) and YRI (B) participants: these intervals are 250 kb and 80 kb wide in CEU and YRI, respectively.
doi:10.1371/journal.pgen.1002298.g003
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(N = 1,139), WHI (N = 8,149) and MEC (N = 11,569)), two family-

based cohorts (CFS (N = 386) and GeneSTAR (N = 1,148)) two

case-control studies (Maywood (obesity, N = 743) and Nigeria

(hypertension, N = 1,188)), and two cancer consortia comprised of

case-control studies that were population-based or nested within

prospective cohorts (AABC (breast cancer, N = 5380), AAPC

(prostate cancer, N = 5,526). All cohorts with genome-wide

genotyping data available were genotyped on the Affymetrix 6.0

array, except AABC, AAPC, HANDLS, HABC and GeneSTAR,

that were genotyped on the Illumina 1M-duo or 1Mv1_c chip.

The studies, including genotyping and quality control steps, are

described in detail in Text S1. The statistics (height and age) are

summarized in Table S1. Genotype imputation was performed as

previously described [20] and is summarized in Text S1.

Statistical analysis
Height measures were corrected for sex, age, disease status, and

other appropriate covariates (e.g. recruitment centers), and were

normalized into Z-scores (Text S1). Association analysis was

performed using linear regression for studies of unrelated

individuals and a linear mixed effect model for family-based

studies, testing an additive model and including the 4–10 first

principal components. Results were combined using the inverse

variance meta-analysis method. Local ancestry was estimated

using the HAPMIX software using default parameters [19].

Conditional analyses were performed by including SNP genotypes

or local ancestry estimates in the linear models.

Replication of European height loci in African Americans
The list of European height loci from the largest study to date

was used as a source of known European loci for fine-mapping [3].

The procedure is graphically summarized in Figure S2. Of the 180

SNPs from this list, 19 were filtered for lack of available LD data

(we combined data from HapMap2 haplotype release 22 (Aug

2007), HapMap3 haplotype release 2 (Jul 2009), and HapMap2+3

LD data release 27 (Apr 2009); conflicting data, as is the case for

these 19 SNPs, were excluded). LD estimates (r2) from CEU

HapMap 2+3 were used to generate the set of common SNPs

(proxies) tagging the remaining putative loci (r2$0.8). These sets

were then binned using YRI HapMap 2+3 LD as follows: the

whole list of proxies was randomized, to remove any bias towards

significance in the representative P-values; the first SNP was

removed and set as an ‘‘index’’ SNP; then all SNPs not yet binned

were filtered based on LD (r2$0.3) with the index SNP. This

procedure was repeated until all SNPs were binned. The metric

for replication of a European signal was the number of SNP bins

nominally significant (P#0.05), and replication of the entire list of

known SNPs was the number of significant bins across all loci.

Each SNP bin was represented by the index SNP used to generate

it. Because the SNPs are in LD with known European signals,

there is a strong prediction as to which index SNP allele should be

increasing height: it should be the allele in LD with the height-

increasing allele in Europeans. Therefore, all index SNP P-values

were made one-tailed (set to P/2 or 1-P/2) based on the hypothesis

that the height-increasing allele should be the one predicted by the

European SNP, based on the phased HapMap CEU data.

The LD thresholds used for proxy determination in European

ancestry and binning in African ancestry were arbitrary and likely

do not fully encompass the LD structure of the populations in this

meta-analysis. To control for artifacts introduced by these

thresholds and the HapMap data, 5,819 sets of 161 SNPs,

matched to the European known loci on HapMap 2+3 CEU

minor allele frequency, were generated. Since the European SNP

list contains independent loci, each simulated list was designed to

contain relatively independent SNPs (CEU r2$0.2); changing this

threshold did not alter the results. The same procedure of proxy

generation and SNP binning (see Figure S2 for a graphical

description of the binning strategy) was performed on each of the

5,819 sets to generate a null distribution of significant bins.

To generate the list of ‘‘best’’ SNP for each locus (fine-mapped

list), the binning procedure was repeated for the known SNPs,

except each iteration selected an index SNP from the list of

remaining SNPs, sorted on P-value, not randomized. Note that the

best SNPs at each locus are not perfectly concordant between

Table 1 and Table 3 because our fine-mapping approach did not

consider the in silico replication data and required that the SNPs

are available in the HapMap phased haplotypes. We note that our

fine-mapping approach focuses on SNPs with low P-values and is

thus more likely to identify markers with fewer missing genotypes,

that is markers for which we have more statistical power.

Analysis of cis-acting eQTLs
To assess whether European SNPs replicated for height (at

nominal P,0.05) in African-ancestry populations would also be

more likely to show links to functional variation in samples of

African ancestry, we applied a sensitive technique for mapping cis-

regulatory allelic expression SNPs [21] in lymphoblastoid cell lines

(LCLs) derived from 56 unrelated Yoruba HapMap participants.

A detailed description of the protocols and statistical methods used

is available in the Text S1.

Supporting Information

Figure S1 Manhattan plot of the height meta-analysis

(3,310,998 SNPs in up to 20,809 participants from 9 studies).

The dashed line highlights the genome-wide significance threshold

used in this study (P,561028). In the discovery phase of the

project, SNPs at 4 loci reached genome-wide significance: LCORL

on chromosome 4, PPARD on chromosome 6, SULF1 on

chromosome 8, and ACAN on chromosome 15. The association

between height and SNPs near SULF1 did not replicate. The 3

remaining loci – LCORL, PPARD, and ACAN – are loci previously

associated with height in Europeans. Genomic-control P-values

are displayed.

(TIF)

Figure S2 On the left, an example analysis for the European

SNP rs12470505 (CCDC108). Top: rs12470505 (square) and

proxies (circles; r2$0.8 in HapMap2+3 CEU), plotted with their P-

values in the GIANT European analysis. Bottom: the same SNPs,

plotted with African-American meta-analysis P-values, converted

to one-tailed P-values based on predicted direction of effect from

the European result and phased HapMap2 CEU data. Colors

segregate SNPs into 6 randomly seeded ‘‘independent’’ clusters

(r2$0.3) using HapMap2+3 YRI linkage disequilibrium estimates.

Right: simulation results for the fine-mapping analysis. Simula-

tions were matched to the European SNP list by minor allele

frequency; SNPs in each simulation were independent of each

other at r2$0.2 in HapMap2+3 CEU. The result for each

simulation is significant bins/total bins. Red line indicates

observed proportion of significant bins for true European SNP

replication (P = 8.661026).

(TIF)

Table S1 Baseline characteristics of cohorts involved in the

study.

(DOC)

Table S2 Association results for the top 153 SNPs in the

discovery meta-analysis. Positions are on NCBI build 36.1 (hg18)

GWAS of Height in Individuals of African Ancestry
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and the alleles are on the forward strand. Beta (effect size) and SE

(standard error) are in standardized ‘Z-score’ units.

(DOC)

Table S3 Fine-mapping results for SNPs associated with height

in Caucasians [49]. We could not fine-map 19 of the 180 SNPs

reported by the GIANT Consortium because they were not

available in the HapMap phased datasets. In the left-handed side

of the table, we present the association results in the African-

American height meta-analysis for SNPs associated with height in

Caucasians. In the right-handed side of the table, we present

results from our fine-mapping experiment using data from our

African-American height meta-analysis. For intergenic SNPs, we

provide the closest gene and the physical distance between them.

(DOC)

Text S1 Supplementary information.

(DOC)
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