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Abstract

Histone deacetylase inhibitors (HDI) dampen cellular innate immune response by decreasing interferon production and have
been shown to increase the growth of vesicular stomatitis virus and HSV. As attenuated tumour-selective oncolytic vaccinia
viruses (VV) are already undergoing clinical evaluation, the goal of this study is to determine whether HDI can also enhance the
potency of these poxviruses in infection-resistant cancer cell lines. Multiple HDIs were tested and Trichostatin A (TSA) was
found to potently enhance the spread and replication of a tumour selective vaccinia virus in several infection-resistant cancer
cell lines. TSA significantly decreased the number of lung metastases in a syngeneic B16F10LacZ lung metastasis model yet did
not increase the replication of vaccinia in normal tissues. The combination of TSA and VV increased survival of mice harbouring
human HCT116 colon tumour xenografts as compared to mice treated with either agent alone. We conclude that TSA can
selectively and effectively enhance the replication and spread of oncolytic vaccinia virus in cancer cells.
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Introduction

As biological tumour killing machines, oncolytic viruses (OVs)

often display an array of anti-cancer activities including direct

tumour lysis, immune cell recruitment and anti-vascular activity

[1,2]. In order to safely implement OVs in the clinic it is critical to

restrict their replication and activity to tumours. To date, this has

been achieved in part by the engineering or selection of virus

variants that have mutations or deletions in viral virulence genes.

The proteins encoded by virulence genes often attack or antagonize

normal cellular anti-viral programs facilitating the invasion and

ultimate destruction of the infected cell. Since OVs have impaired

virulence genes they are unable to productively infect normal cells,

however, since tumour cells frequently have acquired defects in anti-

viral signaling pathways, they remain uniquely sensitive to OV

infection and killing. One signaling pathway that is defective in a

large proportion of cancer cells (,70–75%) is the interferon (IFN)

pathway, which mediates the first line of cellular anti-viral response

[3,4,5,6,7]. However we and others have shown that the extent of

interferon non-responsiveness is variable in tumour cell lines and

patient tumour explants and this may lead to less than optimal

therapeutic benefit from some OVs [2,8,9].

Vaccinia virus (VV) has many of the biological properties that

an ideal oncolytic or cancer killing virus should have. It has an

extensive safety history in humans, a large cloning capacity for

insertion of therapeutic transgene payloads, is active as a systemic

agent, lacks any known genotoxic activity and expresses a

sophisticated array of immune modulating genes that can be

exploited for therapeutic benefit [1]. A Phase I trial of an oncolytic

vaccinia virus JX-594 demonstrated acceptable safety and

promising anti-cancer activity in patients with advanced liver

tumours [10].

Vaccinia encodes close to two hundred genes, some of which

are now known to be redundant for growth in tumour cells

[1,11,12]. For example VV mutants with deletions in the

thymidine kinase gene (TK) and/or the vaccinia growth factor

gene (VGF) are well advanced in pre-clinical and clinical studies

[1,10,13,14]. These mutants grow selectively in cancer cells in

which high levels of cellular TK and constitutively activated

EGFR/Ras pathway signaling complements the loss of the viral

gene products [12]. Another vaccinia gene that can be

manipulated to enhance virus selectivity for cancer cells is B18R

which encodes a soluble mimetic of the type-1 interferon receptor.

When produced and secreted from VV infected cells the B18
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protein locally blunts the cellular interferon response by

sequestering interferon produced by the infected cell [15,16,17].

Previously, we have shown that a VV strain with an engineered

deletion of the B18R gene is more rapidly cleared from normal

tissues than the parental strain while remaining active within

tumours [18]. A natural truncation of the B18R gene of the

clinical vaccinia candidate JX-594, has been shown by others to

have reduced ability to antagonize interferon activity [16] and this

likely contributes to its acceptable safety profile in humans [10].

As mentioned above, while defects in innate anti-viral

responses are common in malignant cells the extent of the defect

is variable and can affect the growth of OVs in tumours. In an

earlier study we showed that a Histone Deacetylase Inhibitor

(HDI) can specifically enhance the growth of an interferon

sensitive version of vesicular stomatitis virus (VSVD51) in tumour

cells. HDIs block the activity of histone deacetylases (HDACs),

leading to increased acetylation of histones and other proteins

[4,19,20,21] and importantly inhibit the ability of tumour cells to

mount a productive anti-viral response [22,23,24]. In the current

study we set out to examine the ability of a panel of HDIs to

augment oncolytic activity of vaccinia virus. We present evidence

that the growth of vaccinia virus is most potently and selectively

enhanced in tumour cells both in vitro and in vivo by the HDI

trichostatin A.

Results

Trichostatin A is a potent enhancer of vaccinia virus
spread

A number of HDIs are in clinical development and we assessed

a panel of candidates for their ability to enhance vaccinia virus

replication and spread in tumour cells. 4T1 murine breast cancer

cells were pre-treated with individual HDIs over a range of

concentrations then challenged with a Green Fluorescent Protein

(GFP)-expressing vaccinia virus (herein referred to as VVdd) [12],

at a multiplicity of infection (MOI) of 0.1 plaque forming units

(pfu) per cell. The percentage of GFP positive cells visible

(indicating active virus replication) following 120 h incubation

was subsequently assessed from fluorescence microscopy images

quantified using image analysis software. Each condition was

related to percent GFP-positive area in the vehicle control. Table 1

shows that several HDIs enhance the spread of VVdd albeit to

varying extents. Overall, we found that Valproic Acid, SBHA,

M344 and Trichostatin A (TSA) elicited the greatest response

however clearly TSA was the most potent enhancer of VVdd

replication (Table 1). We confirmed by western blot analysis that

all the HDIs were able to affect histone acetylation in treated cells

and the extent of histone 4 acetylation generally corresponded

with the ability of the HDI to enhance VVdd growth. Since TSA

seemed to be the most potent HDI in these studies we chose to test

it in a variety of in vitro an in vivo models.

TSA enhances the spread of VV strains specifically in
cancer cells

Murine 4T1 breast cancer cells and B16 melanoma cells were

plated in vitro and confluent cells were pre-treated with low-dose

TSA (37.5 nM) before infection with VVdd-GFP at MOIs of 0.01,

0.1 and 1 pfu/cell. Figure 1a shows that TSA enhanced VVdd-

associated GFP expression in both murine cancer cell lines. TSA

treatment resulted in visibly more and larger plaques (Figures 1a

and b) and increased viral titers of up to 100-fold (Figure 1c) in

tumour cells. Performing single-step and multi-step growth curves

(starting MOI = 0.1 and 3 respectively) further revealed that TSA-

enhanced VVdd growth was more substantial when the virus was

provided at a low MOI and allowed to spread (Figure 1d). In

earlier studies we and others, demonstrated that VVdd presents

attenuated growth in normal cells when compared to the wild type

Western Reserve strain [12]. In figure 1e it is evident that the

attenuated growth of VVdd in normal MRC-5 fibroblasts is not

affected by treatment with TSA. Combination indices calculated

as described by Chou and Talalay [25] revealed that TSA and

VVdd combination therapy results in synergistic killing in 4T1

cells (Figure 1f).

TSA enhances VVdd efficacy in a syngeneic lung
metastasis model

We next tested the ability of TSA to enhance VVdd activity in a

mouse tumour model. To this end, C57/Bl6 mice were injected

intravenously with 36105 B16F10LacZ melanoma cells. Following

tumour seeding in the lungs, mice were treated with either TSA (4

daily intraperitoneal doses of 0.05 mg) and/or VVdd (2

intravenous injections of 16107 pfu/mouse). This treatment

schedule can be visualized in figure 2a. At the doses used, mice

did not display any discernable side effects from treatment with

TSA, VVdd, or the combination of both. Two weeks following

implantation, lungs were collected and tumours identified

(figure 2c) by using established X-gal staining procedures

[26,27]. As single agents at the doses used, both TSA and VVdd

reduced the number of lung tumours in treated animals compared

to vehicle treated controls. When used in combination however a

further therapeutic benefit was obvious with significantly fewer

lung metastases observed than with either agent alone (Figure 2b,

p,0.05). To determine if the effect of TSA was limited to VVdd

growth in tumour tissues, we carried out bio-distribution studies in

a sampling of normal tissues in infected animals. At the indicated

times (figure 2d) infected animals were sacrificed and virus titers in

selected organs determined by plaque assay. We found that

Table 1. TSA is a potent enhancer of vaccinia virus spread.

HDI
Maximum
effect

Effective
Dose ( mM)

Level of Acetylated
H4

SAHA ++ 0.8 33.7

MS-275 + 1.6 26.6

Oxamflatin ++ 2.5 28.0

Apicidin + 0.25 26.7

SBHA +++ 25 50.8

Scriptaid ++ 0.5 16.0

CHAHA + 0.6 4.7

Valproic Acid +++ 1250 1.5

M344 +++ 0.6 66.2

TSA +++ 0.08 52.7

4T1 cells were plated in 96-well plates then pre-treated with a concentration
gradient of the indicated drugs. DMSO was used as a control. Following pre-
treatment with drugs, cells were challenged with VVdd-GFP at an MOI of 0.1.
After 120 h incubation period, fluorescence pictures were taken of each well,
spanning the entire well-surface. Green fluorescence, indicating vaccinia spread,
was measured using an image analysis software (Image J, NIH) and reported as
a fold change in GFP-positive comparison to control (average of triplicate). +
indicates increase in spread ,2-fold, ++ indicates between 2 and 3-fold
increase, +++ indicates .3-fold increase. TSA was the most active compound at
the lowest dose tested. 10 cm plates of confluent 4T1 cells were treated with
indicated HDI and samples were probed for hyper-acetylated histone H4 by
Western Blot and reported as level of acetylated H4 relative to the untreated
control.
doi:10.1371/journal.pone.0014462.t001
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treatment with TSA did not generally lead to increased VVdd

replication in normal tissues, although clearance of VVdd

appeared to be slightly quicker in lymph nodes and heart while

prolonged in ovaries. In light of this, we further tested the effect of

TSA on VVdd growth in mouse lymph node, heart and ovarian

tissue explants as well as three normal primary ovarian cell lines.

We found that TSA treatment did not significantly change virus

yields from tissue explants of any origin, not did it increase titers

obtained from normal ovarian cells (Supplemental figure S1a-c).

These findings coupled with the increased anti-tumour activity

and minimal toxicity suggests the TSA/VVdd combination

therapy may be clinically beneficial.

TSA enhances an attenuated B18R-deleted vaccinia strain
Although vaccinia encodes a number of interferon signaling

antagonists [15,16,17,28,29,30], it nonetheless can have its growth

attenuated by pre-treatment of normal cells with interferon (IFN)

prior to the time when virus can initiate the production of its

armament of innate immune suppressing proteins. As shown in

Figure 3a, pre-treatment of normal human fibroblast GM38 and

MRC-5 cells with IFN led to strong inhibition of virus replication

and spread. Importantly, the protective effect of IFN was not

overcome by TSA in these same cells (Figures 3a, c). In contrast,

TSA enhanced VVdd spread as evidenced by vaccinia-associated

GFP expression in several cancer cell lines even in the presence of

Figure 2. TSA is an effective enhancer of vaccinia in vivo. (A) C57BL/6 mice were injected intravenously with B16F10LacZ melanoma cells
(36105 cells/mouse) and TSA (4 daily intraperitoneal doses of 0.05 mg/mouse) alone or in combination with VVdd (16107 pfu/mouse). (B) The mice
were sacrificed after 14 days and the lung metastases were counted after staining with X-gal. Asterix * indicates a P value ,0.05 and is significantly
different than PBS group and each of the single treatment groups. (C) Lung lobes from control or VVdd and TSA treated mice. B16F10LacZ cells
stained with X-Gal. (D) Balb/C mice pre-treated or not with TSA (0.05 mg/mouse) on days 0 through 3. After 3 hr pre-treatment on day 0, mice were
given an intra-venous dose of VVdd-luciferase of 16108 pfu/mouse. One mouse per group was sacrificed at each time point and organs were titered
for virus content by standard plaque assay on U2OS cells.
doi:10.1371/journal.pone.0014462.g002

Figure 1. TSA enhances the spread and replication of VVdd in vitro. (A) 4T1 breast cancer and B16 melanoma cells were pretreated with TSA
(0.0375 uM) for 3 hr and infected at an MOI of 0.01, 0.1 or 1 pfu/cell. Fluorescence microscopy pictures were taken at 72 hours post infection. (B) 4T1
and B16 cells were infected with VVdd at an MOI of 0.1 and 0.01 respectively and plaques were stained for visualization with Coomassie Blue 72 hours
post-infection. (C) 4T1 and B16 cells were infected with VVdd-GFP (MOI of 0.01, 0.1, and 1) and samples were collected after 72 hours. Viral titers were
measured by standard plaque assay on U2OS cells. The experiment was done in triplicate. Star indicates P value ,0.05. (D) B16 cells were pre-treated
with TSA 0.0375 mM for 3 hours then challenged with VVdd at an MOI of 3 (Single step growth curve, top panel) or an MOI of 0.1 (Multi-step growth
curve, bottom panel). Samples were collected at the indicated times and viral titers assessed by plaque assay on U2OS cells. (E) MRC-5 normal human
fibroblasts were plated into 6-well plates and treated with PBS or a non-toxic concentration (1 uM) of TSA for 6 h. At the end of the pre-treatment,
cells were infected at an MOI of 1.0 by vaccinia strain VVdd or wild type WR. Cells and media were collected after 72 h and viral pfu/cell titered by
plaque assay on BSC-1 cells. (F) B16 cells were pre-treated for 4T1 cells were treated with serial dilutions of a fixed ratio combination mixture of VVdd
and TSA (1562 PFU: 1 mM VVdd:TSA). Cytotoxicity was assessed using alamar blue reagent after 96 h. Combination indices (CI) were calculated
according to the method of Chou and Talalay using Calcusyn. Plots represent the algebraic estimate of the CI in function of the fraction of cells
affected (Fa). Error bars indicate the estimated standard error.
doi:10.1371/journal.pone.0014462.g001
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IFN (Figure 3b). In the HCT116 cell line, we further confirmed

that this leads to significant increases in viral titers as expected

(Figure 3c). These results demonstrate that TSA can enhance

vaccinia spread even in the presence of IFN in cancer cells but that

TSA cannot overcome an IFN-induced anti-viral state in normal

cells.

Since the vaccinia virus B18 protein (encoded by the B18R

gene) plays a major role in scavenging IFN secreted from infected

cells [15,16,17], we predicted that TSA may be particularly

effective in enhancing the growth of vaccinia strains in which the

B18R gene has been deleted [18]. We have previously created an

oncolytic version of vaccinia virus by deletion of the B18R gene

and while as predicted, this virus replicates poorly in normal cells

it still replicates in and kills a wide spectrum of cancer cells [18].

However in tumour cells that retain some interferon responsive-

ness the B18R deleted virus is less effective than a B18R-replete

virus. To investigate the growth of a B18R deleted vaccinia in

combination with TSA, the fold induction in plaque forming

units produced was compared between TK-deleted and TK/

B18R-deleted WR strains in several cell lines. Whereas TSA did

not lead to any increase in viral production in normal MRC-5

cells for either strain, it increased viral titers for both strains in

human UCI-101 ovarian cancer cells, HeLa cervical cancer cells,

and HCT116 colon cancer cells (Figure 4a). In these three cancer

cell lines the growth of B18R deleted virus is significantly less

than WR parental strain however this deficit can be overcome by

incubation of infected cells with TSA. Thus the relative fold

induction of B18R deleted virus by TSA is significantly higher

than in WR infected cells (figure 4a). This TSA-induced increase

in B18R-deleted virus replication led to synergistic cytotoxicty in

HCT116 cells as determined by isobologram analysis (Figure 4b).

These results support the idea that the spectrum of cancer cells a

B18R deleted virus can effectively destroy can be enhanced with

TSA without compromising the superior safety of this oncolytic

virus, as evidenced from viral bio-distribution studies done for

this virus in control conditions or in presence of TSA

(supplemental Figure S2a). We further tested the possibility that

the combination of B18R-deleted vaccinia virus and TSA could

be effective in a human xenograft tumour model. Immunocom-

promised mice with palpable HCT-116 colon cancer tumours

were treated with TSA (or vehicle) and a luciferase-expressing

B18R/TK-deleted virus and IVIS imaging was used to examine

Figure 3. TSA enhances vaccinia in presence of IFN in cancer cells. (A) Normal cells GM38 and MRC-5 were treated or not with 200 IU/ml of
IFN for 16 hrs. Cells were then infected with VVdd at MOI 0.001 and fluorescent pictures were taken after 72 h. (B) Cells were pre-treated for 3 h with
TSA (0.04 mM) and then 200 IU/ml of IFN for 16 h. Cells were subsequently infected with VVdd at MOI 0.001 and fluorescent pictures were taken after
72 h. (C) Cells were treated as in (B) but samples were collected after 72 h for tittering on U2OS cells. Error bars indicate the standard error. NS stands
for non-significant (n = 3, ANOVA).
doi:10.1371/journal.pone.0014462.g003
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the growth of the virus in tumour bearing mice. Treatment with

TSA resulted in increased virus-associated luciferase activity

within HCT-116 tumours when compared to treatment with

vaccinia virus alone (Supplemental Figure S2b). The low virus

signal in the lungs after 48 h is consistent with the biodistribution

data; however this signal is gone by 4 days. Importantly the signal

in the lungs is not enhanced by TSA treatment whereas the signal

is greatly enhanced in the tumour. Consistent with this

observation and the results obtained in the lung metastasis model

(Figure 2a), mice treated with the combination of TSA and TK/

B18R-deleted WR had delayed tumor progression (Figure 4c)

and demonstrated increased survival versus mice treated with

either agent alone (Figure 4d, p = 0.024).

Discussion

Trichostatin A (TSA) was one of the first HDAC inhibitors to be

discovered and although its anti-cancer properties are well

documented, its sub-optimal in vivo stability has made it less

attractive for use as a chronically administered anti-cancer drug

[31,32]. A considerable effort in the HDI field has led to the

development of more stable TSA derivatives such as Vorinistat H
(SAHA), which was recently approved for limited applications like

treatment of CTCL [33,34,35,36]. In this study we found that

SAHA was significantly less effective at augmenting vaccinia virus

spread in vitro than TSA. In this context, we also found that TSA

interacted synergistically with vaccinia virus, leading to better cell

killing. Theoretically, this synergistic interaction predicts that the

effective dose used for each therapeutic in vivo could be reduced

while retaining efficient anti-tumour activity. However, since OVs

need to overcome numerous physiological barriers in order to

reach tumors, it is likely that TSA/Vaccinia combination therapy

would be best used as a means to increase efficacy as opposed to

dose reduction. Nonetheless, this suggests that the relatively short

half-life of TSA in vivo may not be a concern for the therapeutic

application described here in light of the relative potency of its

vaccinia-enhancing effect.

Oncolytic virus therapy is an acute treatment with curative

intent. Indeed the activity of OVs involves not only replication in,

and destruction of tumour cells but also the recruitment of host

Figure 4. TSA enhances B18R-deleted vaccinia in vitro and increases survival in a xenograft model. (A) Human cell lines (MRC-5; UCI-101,
HeLa or HCT116) treated with PBS or TSA (1 mM) for 6 h. At the end of the pre-treatment, cells were infected at an MOI or 1.0 by vaccinia strains
Western Reserve or Western Reserve with a deletion in the B18R gene. Cells and media were collected after 72 h and viral pfu/cell titered by plaque
assay on BSC-1 cells. Fold induction of titer upon TSA treatment relative to control is reported. (B) HCT116 cells were plated in 96-well plates and pre-
treated with 0.1 mM TSA for 3 hours then infected with B18R-deleted vaccinia virus at varying MOIs, resulting in the TSA: VVB18R ratios indicated in
the figure legend. Cytotoxicity data was obtained using alamar blue 72 hours later and data was analyzed using Calcusyn according to the Chou and
Talaly method and the resulting isobologram was plotted. The fraction of the EC50 doses for each VVB18R and TSA required in order to result in 50%
cell killing for the combination are drawn on the x-axis and y-axis, respectively. Notably, if the combination data point falls on the diagonal (dashed
line), an additive effect is indicated; if it falls on the lower left, synergism is indicated; and if falls on the upper right, antagonism is indicated. (C–D)
Athymic nu-/nu- mice were implanted subcutaneously with HCT-116 cells (56106 cells/mouse). Once palpable tumours had formed (50–100 mm3),
mice were treated with either (i) intraperitoneal PBS; (ii) intraperitoneal TSA (6 mg/mouse) on days 21, 0 and 2; (ii) intravenous injection of WR B18R2
TK2 Luc+ (16108 pfu/mouse) on day 0; or (iv) both TSA and WR B18R2 TK2 Luc+ (n = 10 mice/group). Subsequent tumour burden was followed by
caliper measurement (C) and mice were sacrificed when their tumours reached 1400 mm3. Percent survival of mice is graphed (D, p = 0.024).
doi:10.1371/journal.pone.0014462.g004
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immune cells to the tumour bed leading to the initiation of anti-

tumour immunity. It is known that HDIs can impact the patient’s

immune cells [37,38,39] and thus a fast acting, virus enhancing,

compound that is rapidly cleared once an infection is established

may be preferred. Furthermore the short half-life of TSA allows

for better control over the OV dose should treatment need to be

stopped abruptly. Given that our data shows anti-tumoral activity

of several different VV strains can be enhanced by TSA in vivo the

clinical application of TSA may need to be re-visited. This is of

considerable interest since VV strains such as JX-594 (Wyeth TK-

deleted, GM-CSF expressing) and JX-929 (Western Reserve TK/

VGF-deleted, GM-CSF expressing) are currently undergoing

Phase I/II clinical trials.

The effect of TSA on the IFN response is well documented

[40,41] and the enhancing effect of HDIs such as TSA on IFN-

sensitive strains including VSV and HSV has been previously

reported [22]. It is therefore not surprising that TSA can increase

the activity of B18R-deleted VV strains. However our finding that

vaccinia with an intact B18R gene is still enhanced by TSA

suggests that either the anti-interferon activities of B18R are

insufficient to completely impair the cellular interferon response or

alternatively the effects of TSA go beyond interferon induced anti-

viral responses. While we cannot distinguish between these

possibilities at the present time, the latter explanation seems likely

to us since we and others have found using microarray analysis of

HDI treated cells, that hundreds of cellular transcripts induced by

viral infection are affected by blocking histone deacetylase activity

[23,42].

Using small molecule OV-enhancers is attractive from a clinical

standpoint. In principle, this strategy allows for quite significant

genetic attenuation of OVs to restrict growth in normal tissues

with conditional rescue of the virus replication in tumour cells

following treatment with an enhancing compound like an HDI or

other classes of molecules that can complement viral defects [42].

In this and our previous studies, one of the key features of small

molecule complementation of attenuated viruses is that the effect

of virus enhancers is restricted to tumour cells with minimal

impact on the anti-viral programs of normal tissues. This clearly is

the case for TSA in the studies presented here where we

demonstrate both in vitro and in animal models that TSA does

not enhance virus growth in normal tissues. The reason for this

selectivity is unclear at this time however tumour cells are known

to have elevated levels of histone deacetylases suggesting that

perhaps malignancies have evolved more dependency upon this

type of epigenetic modification to control gene expression [43].

Alternatively since tumour cells have often inactivated at least

some components of their anti-viral programs, it may be that the

addition of HDIs simply ‘‘break the camel’s back’’ in tumour cells

but are ineffective in normal tissues that have fully intact multi-

layered protection systems. Further studies are currently under

way to address some of these issues.

We conclude that TSA is a potent enhancer of VV in vitro and in

vivo. We propose that HDIs such as TSA could be used to enhance

the effectiveness of OVs in vivo and that further clinical evaluation

of this possibility is warranted.

Materials and Methods

Cells and Viruses
4T1 murine breast cancer cells, HCT116, MCF7, OVCAR4,

786O and MRC5 cells were obtained from ATCC. Maintained in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% 3:1 calf serum: fetal bovine serum and grown at 37uC with

5% CO2. B16F10-LacZ murine melanoma cells were obtained

from ATCC and maintained in aMEM supplemented with 10%

3:1 calf serum: fetal bovine serum. GM38 cells were kindly

provided by Dr. Bruce McKay (Ottawa Hospital Research

Institute, Ottawa, ON) and maintained in DMEM supplemented

with 15% 3:1 calf serum: fetal bovine serum. Human lines MRC-

5, UCI-101 and HeLa were provided by Stephen Thorne.

NOV2963D, NOV3128D and NOV3198G normal ovarian cell

lines were kindly provided by Dr. Anne-Marie Mes-Masson

(Institut du Cancer de Montreal, Montreal, QC, Canada) and

were grown in OSE (Wisent, QC, CA) media supplemented with

10 ng/ml endothelial growth factor, 34 mg/ml bovine pituitary

extract, 5 mg/ml insulin and 0.5 mg/ml hydrocortisone. VVdd was

derived from the wild type strain Western Reserve with a double

deletion of the genes thymidine kinase and vaccinia growth factor

[12]. Green fluorescent protein was inserted at the TK locus.

Virus was propagated in U2OS cells. Lastly, the wild type Western

Reserve (WR) and WR B18R-TK-Luc+ were also used in in vitro

and in vivo experiments.

Fluorescence Microscopy and Fluorescence
Quantification

A fluorescent microscope (Zeiss Axiovert S 100) was used to

photograph the cells. The GFP expressing virus can be visualized

with a fluorescence microscope. Infected cells with actively

replicating virus appear green under the fluorescent microscope.

Images were quantified for green fluorescence using the image

analysis software Image J (NIH).

In Vitro Assays and Cell Staining
The HDI screening was done in 96-well plates with 20,000 cells

per well. Cells were plated and 24 hours later were pre-treated for

3 hours with indicated HDI. The drugs: SAHA (Exclusive

Chemistry, Obninsk, Russia), MS-275 (Selleck Chemicals, Hous-

ton, TX, USA), Oxamflatin (Alexis Biochemicals, Plymouth

Meeting, PA, USA), Apicidin (Alexis Biochemicals, Plymouth

Meeting, PA, USA), SBHA (Enzo Life Sciences International Inc.,

Plymouth Meeting, PA, USA), Scriptaid (Sigma), Valproic acid

(Sigma), CHAHA (Sigma), M344 (Sigma) and Trichostatin A

(Sigma) were added to wells at indicated concentrations and cells

were infected with VV. Images spanning well surface were

quantified as described above. For further TSA testing in vitro cells

were plated in 12 well plates with 2.56105 cells per well. Once

confluence was reached, the cells were pre-treated with TSA

(0.0375 mM) and DMSO as the drug vehicle control. After 3 hours

of pre-treatment, the virus was added at the indicated multiplicity

of infection. Fluorescence images were taken after 24, 48 and

72 hours. Cells were collected after 72 hours and frozen at 280uC
for titering on U2OS cells. Other wells were stained for plaques by

first rinsing each well with PBS, then fixing the cells for 10 minutes

using 3:1 ratio of methanol to acetic acid. After the cells were

fixed, they were stained with Coomassie Blue to visualize viral

plaques. Cell lines GM38, MRC5, HCT116, MCF7, 786O and

OVCAR4 were pre-treated for 3 hrs with TSA and then treated

with 200 IU/ml of IFN (Intron A from Schering, Kenilworth, NJ)

overnight (16 hrs) and then infected with vaccinia at various

MOIs. For combination index 20,000 4T1 cells were plated in 96-

well plates. Cells were treated with serial dilutions of a fixed ratio

combination mixture of VVdd and TSA (1562 PFU: 1 mM

VVdd:TSA). Alternately in Figure 4a, HCT116 cells were plated

similarly but treated with drug:virus at the indicated ratio, where

the TSA concentration was 0.1 mM. Cytotoxicity was assessed

using alamar blue reagent after 96 h. Combination indices (CI)

were calculated according to the method of Chou and Talalay

using Calcusyn [25]. In Figure 1f, Plots represent the algebraic
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estimate of the CI in function of the fraction of cells affected (Fa).

Error bars indicate the estimated standard error.

Titration of virus samples
Each sample (cells and supernatants) was collected from the well

and cells were lysed by freezing and thawing (280uC to 37uC) three

times. Samples were diluted serially by a factor of 10 and 500 mL of

each dilution were put on confluent U2OS or BSC-1 cells in a 12 well

plate (56105 cells per well plated 24 hours prior). The samples are

placed in an incubator for 2 hours at 37uC to allow the virus to enter

the cells. After the 2 hour incubation, the virus sample was removed

from the U2OS cells and an 1 mL of an overlay solution was put on

the cells (1:1 ratio of 3% CMC: 2XDMEM +20% FBS). The plates

were left to incubate at 37uC for 72 hours. After 72 hours, the overlay

was removed and each well was stained with Coomassie Blue to

visualize and count the plaques (see above for staining).

Western Blot
4T1 cells were plated in 10 cm dishes and treated with HDI at

the indicated concentrations. The following day cells were lysed

with Radioimmunoprecipitation assay (RIPA) lysis buffer contain-

ing protease inhibitor (Sigma, P2714). Equal amounts of proteins

collected from samples were electrophoresed on a 15% SDS-

polyacrylamide gel. Gels were blotted on nitrocellulose mem-

branes and detected by Western blot analysis probing with the

antibody Anti-hyperacetylated Histone H4 (Penta, 06-946) diluted

1:5,000. Actin was used as the loading control and was detected by

mouse actin antibody (Sigma) diluted 1:10,000.

Lung metastasis model
B16F10 LacZ cells were injected intravenously into female

C57BL/6 mice from Charles River Laboratories (Wilmington,

MA). Each mouse was injected with 36105 cells into the tail vein

on day 0. On days 1–4 mice were given intra-peritoneal injections of

TSA of 0.05 mg/mouse. On days 1 and 3 mice were given 16107

pfu/mouse of VVdd intravenously via the tail vein. On day 14 mice

were sacrificed and lungs were dissected. Lung tumours were stained

with the substrate X-gal and each metastasis was counted [26,27].

Colon Cancer Survival Model
Athymic nu-/nu- mice were implanted subcutaneously with

HCT-116 cells (56106 cells/mouse). Once palpable tumours had

formed (50–100 mm3), mice were treated with either (i) intraper-

itoneal PBS; (ii) intraperitoneal TSA (6 mg/mouse) on days 21, 0

and 2; (iii) intravenous injection of WR B18R- TK- Luc+ (16108

pfu/mouse) on day 0; or (iv) both TSA and WR B18R- TK- Luc+
(n = 10 mice/group). Subsequent tumour burden was followed by

caliper measurement and mice sacrificed when their tumours

reached 1400 mm3. In addition, mice receiving viral treatment

were imaged by bioluminescence imaging at regular times after

treatment to assess viral gene expression. Mice were injected with

D-luciferin (Molecular Imaging Products, Ann Arbor, MI) for

firefly luciferase imaging. Mice were anesthetized under 3%

isoflurane (Baxter, Deerfield, IL) and imaged with (IVIS200,

Xenogen, part of Caliper Life Sciences). Data acquisition and

analysis were performed using Living Image v2.5 software.

Biodistribution
Balb/C mice were pre-treated with 0.05 mg of TSA per mouse

or a control by intra-peritoneal injections on day 0. Mice were

given the same dose of TSA or control each day for days 0 through

3. Mice were give 16108 pfu/mouse of VVdd-luciferase or

luciferase-expressing B18R/tk-deleted vaccinia virus by intrave-

nous injection into the tail vein on day 1 after a 3 hour pre-

treatment with TSA. One mouse from each condition (treated or

not with TSA) was sacrificed at various time points. Mice were

sacrificed 3 hours after virus injection and on day 1, 4, 7 and 10.

The following organs were collected for titering: lymph nodes

(brachial and inguinal), ovaries, spleen, kidney, liver, lungs, heart

and brain. Organs were homogenized in PBS and titered by

standard plaque assay on U2OS cells (see above).

Supporting Information

Figure S1 TSA does not increase in vitro infection of normal

mouse tissues or human normal ovarian primary cell lines. (A)

Mouse Lymph nodes (LN), Heart, and Ovaries were obtained by

dissection and immediately put in cell culture. Tissues were

subsequently pretreated with 0.1 mM TSA for 24 hours and

infected with 1E7 PFU VVdd-GFP. 72 hours later, tissues were

collected, weighed, and homogenized in PBS using a tissue

homogenizer. Homogenates were subsequently titered on U2OS

cells and VVdd PFU/g of tissue was graphed. (B) Normal human

ovarian primary cells (NOV2963D, NOV3128D, and

NOV3198G) were plated in 96-well plates (25 000 cells/well)

overnight and pre-treated with TSA 0.04 mM for 3 hours.

Subsequently, cells were infected with VVdd-GFP at an MOI of

0.001. 72 hours later, pictures were taken by fluorescence

microscopy. Cells and supernatant were subsequently harvested

and titered on U2OS cells. Titers are presented in (C). Error bars

represent the standard error. NS stands for non significant

(ANOVA, n = 3).

Found at: doi:10.1371/journal.pone.0014462.s001 (1.68 MB TIF)

Figure S2 TSA increases virus-associated luciferase activity in

subcutaneous tumour. (A) Balb/C mice pre-treated or not with TSA

(0.05 mg/mouse) on days 0 through 3. After 3 hr pre-treatment on

day 0, mice were given an intra-venous dose of B18R-deleted at

16108 pfu/mouse. One mouse per group was sacrificed at each

time point and organs were titered for virus content by standard

plaque assay on U2OS cells. (B) Athymic nu-/nu- mice were

implanted subcutaneously with HCT-116 cells (56106 cells/

mouse). Once palpable tumours had formed (50–100 mm3), mice

were treated with either (i) intraperitoneal PBS; (ii) intraperitoneal

TSA (6 mg/mouse) on days 21, 0 and 2; (ii) intravenous injection of

WR B18R2 TK2 Luc+ (16108 pfu/mouse) on day 0; or (iv) both

TSA and WR B18R2 TK2 Luc+ (n = 10 mice/group). Viral

replication at tumour sites was imaged using in vivo imaging system

48 hours after virus injection for luciferase.

Found at: doi:10.1371/journal.pone.0014462.s002 (1.46 MB TIF)
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