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Abstract

The fulvous fruit bat (Rousettus leschenaulti) and the greater short-nosed fruit bat (Cynopterus sphinx) are two abundant and
widely co-distributed Old World fruit bats in Southeast and East Asia. The former species forms large colonies in caves while
the latter roots in small groups in trees. To test whether these differences in social organization and roosting ecology are
associated with contrasting patterns of gene flow, we used mtDNA and nuclear loci to characterize population genetic
subdivision and phylogeographic histories in both species sampled from China, Vietnam and India. Our analyses from R.
leschenaulti using both types of marker revealed little evidence of genetic structure across the study region. On the other
hand, C. sphinx showed significant genetic mtDNA differentiation between the samples from India compared with China
and Vietnam, as well as greater structuring of microsatellite genotypes within China. Demographic analyses indicated
signatures of past rapid population expansion in both taxa, with more recent demographic growth in C. sphinx. Therefore,
the relative genetic homogeneity in R. leschenaulti is unlikely to reflect past events. Instead we suggest that the absence of
substructure in R. leschenaulti is a consequence of higher levels of gene flow among colonies, and that greater vagility in
this species is an adaptation associated with cave roosting.
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Introduction

Comparative studies taxa offer a powerful approach to elucidate

how population processes and historical events have acted in

shaping organisms’ current distribution and genetic structure.

Spatially matched taxa are often expected to show similar

signatures of structure based on their shared histories [1]. For

example, several studies have reported concordant patterns of

genetic structure in Europe, increasing our understanding of the

impact of current and past barriers to gene flow [2,3,4,5].

Conversely, disparities in genetic structure between co-distributed

species can highlight differential responses to these processes often

resulting from contrasting life history and ecological traits.

Dispersal ability is a key demographic force shaping natural

populations [6]. Contrasting dispersal strategies, which are often

linked with social structure, impact on the balance between gene

flow, genetic drift, mutation and natural selection [7]. In general,

species with limited dispersal abilities show more population

genetic structure than do species with a tendency towards greater

dispersal [8]. In bats, social structure is largely determined by

roosting ecology. Natural caves provide one type of roosting

habitat, but their patchy distribution in the landscape and

potential to accommodate large numbers of individuals means

that the number of bats using one cave can range from hundreds

to thousands. Consequently, competition for local resources is

expected to be high and many cave roosting bat species typically

exhibit high vagility, thus allowing them to commute large

distances to foraging sites [9]. Conversely, tree cavity/foliage

roosting species of bats tend to live in much smaller numbers in a

ubiquitous resource. This might have led to less evolutionary

pressures for high dispersal. These expectations are supported by

empirical data that show cavity/foliage roosting species are more

susceptible to fragmentation than cave-roosting species [10].

The fulvous fruit bat (Rousettus leschenaulti) and the greater short-

nosed fruit bat (Cynopterus sphinx) are co-distributed throughout

much of their range in Southern Asia [11,12]. Although both

species are frugivorous they exhibit markedly different roosting

behavior with R. leschenaulti predominantly roosting in caves

consisting of mixed sex colonies that can consist of up to 10,000

individuals [13]. In contrast, C. sphinx typically roosts in palm trees

during the breeding season, and is characterized by a single male

with a harem of females [7].

By occupying a similar range but having different roosting

preferences, R. leschenaulti and C. sphinx provide us with an

opportunity to test whether expected differences in dispersal show

a correlation to population genetic structure. In this study, we aim

to compare the population genetic structure of R. leschenaulti and C.

sphinx over a wide geographical area using both mitochondrial
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(cytochrome b gene) and microsatellite markers. We predict that R.

leschenaulti will have a high dispersal ability that will be

characterized by the identification of low population genetic

structure across its range, while the opposite will be found for C.

sphinx due to its predicted limited dispersal ability.

Materials and Methods

Ethics statement
Sampling was approved by the Administrative Panel on

Laboratory Animal Care (approval number 2009001) of the

Guangdong Entomological Institute in China, which also

incorporates the South China Institute of Endangered Animals.

Sample collection
Rousettus leschenaulti was sampled at four localities in China

(Maoming, Wuming, Haikou, Menglun) and one in India

(Cheranmahadevi). Cynopterus sphinx was sampled at six localities

in China (Guangzhou, Zhongshan, Jiangmen, Beihai, Haikou,

Xishuangbanna), one in India (Mandiyoor) and one in Vietnam

(Pu Huong) (Table 1, Figure 1). To avoid over-representation of

potential relatives, bats of both species were captured using mist

nets at foraging grounds (or for Rousettus, also near to roost

entrances) rather than by hand-netting. Tissue samples were taken

from the wing-membrane using a 3-mm diameter biopsy punch

and stored in 80% ethanol until processing [5]. All bats were

released at the site of capture

DNA extraction and microsatellite genotyping
DNA was extracted using DNeasy Tissue kits (Qiagen). R.

leschenaulti was genotyped at eight microsatellite loci while C. sphinx

was genotyped at six (see Table S1). To amplify microsatellite loci,

polymerase chain reactions (PCRs) were undertaken using total

reaction volumes of 10 ml, each containing 50–100 ng genomic

DNA, 0.25 mM of each primer, and 1x PCR buffer containing

2 mM MgCl2, 0.2 mM of each dNTP, and 0.25 U hot-start Taq

DNA polymerase (Qiagen). Forward primers were 59-fluoro-

labelled (MedProbe). PCRs were performed using a PTC-200

thermal cycler (MJ Research) with the following profile: denatur-

ation at 95uC for 15 min, 35 amplification cycles (94uC for 30 s,

annealing temperature for 30 s, 72uC for 30 s) and an extension

step at 72uC for 20 min. PCR products were genotyped using an

ABI 3100 DNA sequencer (Applied Biosystems) and alleles were

sized using the programs GENESCAN version 2.1 and GENO-

TYPER version 2.5 (Applied Biosystems).

mtDNA sequencing
Five to eight individuals from each population (total n = 88)

were amplified at the cytochrome b gene (,1100 bp) using the

published primers cy1 (59-AAA TCA CCG TTG TAC TTC

AAC-39) and cy2 (59-TAG AAT ATC AGC TTT GGG TG-39)

[14]. PCRs were performed using a PTC-220 thermal cycler (MJ

Research) in 50 ml reaction volumes, each containing 25 ml of 26
ExTaq polymerase (Takara), 0.5 ml of DNA templates (50 mg/ml),

and 2 ml of each primer (10 mM). For PCR conditions see the

microsatellite genotyping section above. PCR products were

sequenced using Big Dye Terminator kits (Applied Biosystems)

on an ABI 3730 automated sequencer with both primers.

Microsatellite statistical analyses
We tested for deviations from linkage equilibrium between loci

in FSTAT version 2.9.3.2 [15], and from Hardy-Weinberg

equilibrium (HWE) for each population and locus using the

Markov chain method (10,000 dememorization steps, 10,000

batches and 10,000 iterations per batch) in GENEPOP version 3.3

[16]. Population values of the mean number of alleles per locus

and heterozygosity (observed and expected) was calculated using

GENEPOP. We also estimated allelic richness (RS) per locus per

population, which accounts for unequal sample sizes, in FSTAT.

To estimate the power of the markers, we calculated the total

probability of identity’ (PID) for each locus and for all loci

combined in GENALEX [17].

To quantify genetic structure, we calculated pairwise FST values

using the software GENETIX version 4.02 [18]. To test for a

phylogeographic signal in the data, we also derived pairwise RST

values, which accounts for the stepwise mutation model of

microsatellite alleles [19], and compared these to RST values in

which allele sizes were permuted (1000 times) among alleles (pRST)

[20] using the software SPAGeDi version 1.3 [21]. The extent to

which RST exceeds pRST is thus a measure of the extent to which

phylogenetic distance among ordered alleles explains the observed

pattern of genetic differentiation. We then assessed the relative

contribution of phylogeography between the two species by using

a paired sample t-test on equivalent pairwise values of RST - pRST.

We also plotted linearized pairwise values of both FST and RST

against log-transformed geographic distances (km) to test for

isolation by distance (IBD), using a Mantel test with permutations

(1000 times) to assess significance in GENEPOP. An analysis of

molecular variance (AMOVA) was used to examine genetic

variation within and among the different populations, based on all

samples, with and without the Indian colony (AMOVA I and II,

respectively). We assessed whether the derived indices were

significantly different from zero using a permutation procedure

(5,000 iterations) in the software ARLEQUIN version 3.1 [22].

Population structure was further investigated using Bayesian

clustering analysis. We estimated the likelihood of different

numbers of clusters (K) in the data using the method in

STRUCTURE version 2.0 [23]. Five independent runs (burn-in

of one million and one million MCMC steps), were undertaken

for each value of K from 1 to 8. We applied the admixture

symmetric similarity coefficients (SSC) among replicate runs

within each value of K [24], using the Greedy algorithm of

CLUMPP version 1.1.1 [25] in which groups of runs with a

SSC$0.8 were identified and combined. Summary outputs for

each value of K were then displayed graphically using the software

DISTRUCT version 1.1 [26].

Sequence analysis
Cytochrome b sequences were aligned in BioEdit version

7.0.5 [27] and both haplotype diversity (h) and nucleotide

diversity (p) were calculated for each population in the software

DNASP version 4.0 [28]. For each species, the relationship

among haplotypes was assessed using a network method based

on statistical parsimony. Haplotype networks were constructed

in the program TCS version 1.21 [29] with the maximum

number of mutational differences justified by the parsimony limit

of 0.95.

Tests for genetic differentiation among samples (n$5), calcu-

lated using pairwise WST values and tested for significance by

permutation (10 000). AMOVAs were used to examine genetic

variation following the methods described above. Finally, to test

whether any detected differences in population structure between

the two species could be explained by contrasting demographic

histories, we performed sequence mismatch distribution analyses

in ARLEQUIN. Mismatch distributions are typically ragged or

multimodal for populations at stationary demographic equilibri-

um, but smooth or unimodal for populations that have undergone

a demographic expansion [30]. Goodness of fit tests for a model

Genetic Structure in Fruit Bat
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of population expansion were calculated from the sum of

squared deviation (SSD) and the raggedness index (r), and

significance was assessed by bootstrapping (10 000 replicates).

Where evidence of population expansion was found, the expansion

time in generations (t) was derived following t = T/2u, where T
(tau) is a parameter of the time to expansion in units of mutations,

and u is the mutation rate per generation for the DNA sequence.

We used a mutation rate of 2% per Myr [31] with a generation

time of 2 years, based on age of first breeding for most

insectivorous bat species [32].

Results

Genetic diversity
Samples of both Rousettus leschenaulti and Cynopterus sphinx

showed no evidence of linkage disequilibrium between loci, and

there was no significant deviation from Hardy-Weinberg equilib-

rium detected in either species following Bonferroni correction

for multiple tests.

For R. leschenaulti, the mean number of alleles per locus ranged

from 12.1 (Cheranmahadevi) to 15.5 (Haikou) while the observed

heterozygosity ranged from 0.85 (Cheranmahadevi) to 0.95

(Maoming). Allelic richness (RS) ranged from 11.0 (Wuming) to

12.2 (Menglun) (Table 2). For Cynopterus sphinx, the number of

alleles per locus ranged from 7.1 (Mandiyoor) to 12.6 (Xishuang-

banna) while the observed heterozygosity (Ho) ranged from

0.73 (Beihai) to 0.84 (Zhongshan). The allelic richness (AR)

ranged from 6.5 (Mandiyoor, India) to 8.9 (Xishuangbanna)

(Table 2). Total probability of identity (PID) values for each

marker set were calculated to be 5.5610218 for Rousettus and

1.561024 for Cynopterus, indicating sufficient power for our

analyses (Table S1).

Genetic population structure
Levels of population genetic differentiation appeared to differ

between the two species. Global FST for C. sphinx was considerablly

greater (FST = 0.0235, P,0.001) than that recorded for R.

leschenaulti (FST = 0.0067, non-significant). Pairwise FST values

among C. sphinx samples ranged from 0.0090 (non-significant)

for Pu Huong vs. Jiangmen to 0.0801 (P,0.001) for Jiangmen vs.

Mandiyoor with 22 out of 28 pairwise values found to be

significant (Table S2). Pairwise values among R. leschenaulti samples

were significantly different in just three out of ten comparisons (all

involving comparisons with Cheranmahadevi and Haikou) (Table

S3). Although C. sphinx was sampled at more localities than was R.

leschenaulti, thus precluding a meaningful comparison of their

overall level of differentiation, the above species trend was also

evident for those comparisons that were exactly or approximately

geographically matched.

Global RST was not significantly different from global pRST

(P,0.05) in either species indicating that stepwise mutation had

not contributed to observed differentiation and that FST is a more

suitable estimator in this study. Hierarchical AMOVAs based on

FST revealed that more genetic variance was partitioned among

individuals within populations than among populations in C. sphinx

(96.62% versus 3.38% respectively) and R. leschenaulti (99.48%

versus 0.52% respectively). Removing the populations from India

did not significantly alter the result. C. sphinx was also found to ex-

hibit a significant pattern of isolation by distance based on pairwise

FST (R2 = 0.778; P,0.01). This analysis was not undertaken for R.

leschenaulti due to the smaller number of pairwise comparisons.

In agreement with F-statistics, Bayesian clustering analyses also

revealed differences between the two taxa (Figure 2). For C. sphinx,

K = 4 showed highest probability, however, forcing values of K

from 2 to 8 recovered hierarchical population structure. At K = 2,

Mandiyoor in India and Xishuangbana in SW China formed a

single cluster with all other populations forming a second cluster,

though partial admixture was observed. At K = 3, Mandiyoor and

Xishuangbana remained as a single cluster, while the five

populations from China showed partial membership to the

remaining two clusters, one of which being dominated by the

colony from Haikou (Hainan Island). Pu Huong appears to share

mixed ancestry from all the sampled populations. At K = 4 the

Mandiyoor and Xishuangbana populations split with Xishuang-

bana largely forming a new cluster, although some admixture is

seen, while the populations from China and Pu Huong show very

little structure and show partial membership to all the clusters

apart from the one for Mandiyoor. Clustering analyses revealed no

Table 1. Details of sampling locations in a) five populations of Rousettus leschenaulti and b) eight populations of Cynopterus
sphinx.

Location Locality Province Country Easting Northing n

a) 1 Cheranmahadevi Tamil Nadu India E77:42 N8:44 20

2 Menglun Yunnan China E101:15 N21:55 25

3 Wuming Guangxi China E108:17 N20:03 32

4 Maoming Guangdong China E110:53 N21:40 39

5 Haikou Hainan Island China E110:20 N20:02 41

b) 6 Mandiyoor Tamil Nadu India E78:43 N10:55 19

7 Xishuangbanna Yunnan China E101:25 N21:41 31

8 Beihai Guangxi China E109:07 N21:28 22

9 Jiangmen Guangdong China E113:04 N22:35 14

10 Guangzhou Guangdong China E113:23 N23:09 64

11 Zhongshan Guangdong China E113:22 N22:32 18

12 Haikou Hainan Island China E110:20 N20:02 36

13 Pu Hong Nghe An Vietnam E105:15 N20:22 14

Locality, province, country, geographic co-ordinates (Easting and Northing), and sample size (n) are shown.
doi:10.1371/journal.pone.0013903.t001
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substructure in the R. leschenaulti samples, where the most probable

number of clusters was one.

MtDNA sequence analysis
We sequenced 1100 bp of cytochrome b in 29 individuals of R.

leschenaulti and recorded 27 haplotypes and 52 polymorphic sites

(GenBank accessions FJ489931 - FJ489957). For C. sphinx we

sequenced 1075 bp of cytochrome b in 59 individuals and found

34 haplotypes with 71 polymorphic sites (GenBank accessions

FJ489958 - FJ489992). No insertions or deletions were observed in

either species. For each sample, the number of haplotypes,

haplotype diversity, the number of polymorphic sites, average

number of differences and nucleotide diversity are given in

Table 1.

Parsimony-based haplotype networks revealed differences be-

tween the two taxa (Figure 3). For R. leschenaulti, haplotypes formed a

single network at a 95% parsimony threshold, and were scattered

with respect to locality. No evidence of any structure was present.

The most common haplotype was geographically widespread,

recorded in both Maoming and Cheranmahadevi. In C. sphinx, a

parsimony threshold of 95% yielded two subnetworks, one

comprising only haplotypes from Mandiyoor and the other

comprising the remaining haplotypes. The most common haplotype

was found mainly in Guangzhou, Zhongshan and Jiangmen but was

also recorded in Pu Huong. Based on its interior position and high

level of connectedness, it is likely to be ancestral. The lack of

monophyly seen in haplotypes from Haikou, Beihai and Xishuang-

banna points to past mixing among these localities.

No genetic differentiation was detected based on mtDNA data

(global exact test, P.0.05) for R. leschenaulti populations. In C. sphinx,

significant genetic differentiation was detected (global exact test,

P,0.05) with pairwise values indicating that this is caused by the

population sampled at Mandiyoor which was consistently differen-

tiated from all other colonies sampled in China and Vietnam

(P,0.05). Apart from the tests including Mandiyoor, no significant

differentiation was detected between any other pairwise values.

Figure 1. Sampling locations for Cynopterus sphinx and Rousettus leschenaulti. Map of the sampling locations for Cynopterus sphinx (triangles)
and Rousettus leschenaulti (circles) across a) whole sampling range and b) detailed view of sampling sites and provinces in China and Vietnam.
doi:10.1371/journal.pone.0013903.g001
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AMOVAs carried out for R. leschenaulti showed no significant

genetic variance among populations, with or without Cheranma-

hadevi, with 3.90% of the variance explained by among-

population variation, and 96.10% by within-population variation

(Table S4). AMOVAs for C. sphinx revealed that significant genetic

variance was attributable to the two hierarchical levels examined

(among and within populations). When all eight populations were

included in the analysis (AMOVA I), 55.11% of the total genetic

variance was explained by among population differences, and

44.89% by within population differences, however, when

Mandiyoor was excluded (AMOVA II), these values were reduced

to 3.04% and 96.96%, respectively (Table S4).

Mismatch distribution analysis for R. leschenaulti failed to reject

the model of population expansion (PSSD.0.05 and raggedness

index PR.0.05) with an estimated timing of expansion occurring

around 200 000 years BP (95% CI: 130 000–250 000 years BP).

In C. sphinx, separate mismatch distribution analyses undertaken

for all localities also failed to reject the expansion model

(PSSD.0.05 and raggedness index PR.0.05), with an estimated

timing of expansion of around 107 000 years BP (95% CI: 16 000–

560 000 years BP).

Discussion

In this study we applied mtDNA and microsatellite analyses to

characterize the phylogeographic histories of co-distributed

populations of Rousettus leschenaulti and Cynopterus sphinx. We show

that in spite of their similar ranges, these two fruit bat species

exhibit highly contrasting patterns of genetic structure, and that

these differences are more likely to reflect differences in vagility

rather than demographic history.

Populations of R. leschenaulti were characterized by a lack of

genetic structure at both classes of molecular marker. Our MSN

network showed that haplotypes were not geographically struc-

tured while tests of AMOVA indicated that 96% of the genetic

variance was due to within-population variation. Microsatellite

data also revealed complete mixing of localities based on clustering

analyses of genotypes which was further supported by limited

evidence of genetic differentiation from FST statistics.

In contrast, haplotype data for C. sphinx showed a lack of genetic

structure among all populations sampled across China and

Vietnam but significant genetic differentiation between each of

these populations and that from Mandiyoor (India). These results

were also reflected in the distribution of haplotypes in the MSN

network, in which the Indian haplotypes formed a monophyletic

sub-network. Greater substructure was detected from microsatel-

lite data, with significant genetic differentiation seen among most

pairs of populations, including 11 pairwise comparisons within

China. Bayesian clustering of genotypes also revealed clear

subdivision. Specifically, we found that samples from Yunnan in

Southwest China showed greater similarities with samples from

India than those from elsewhere in China and Vietnam. Sampling

of additional populations in the adjoining regions would help to

verify these results and delimit the geographical extent of these

haplotype affiliations.

A lack of genetic structure can reflect either gene flow or a recent

expansion. We tested whether broad differences between our two

focal taxa could be explained by differences in their demographic

history. Although we detected expansions in both taxa, we estimated

that the timing of population growth in the more genetically

homogenous R. leschenaulti occurred around 200,000 years BP,

which was earlier than the date of inferred growth for C. sphinx

(107,000 years BP). Our results therefore indicate that the lack of

genetic structure in R. leschenaulti is unlikely to reflect a recent

expansion but instead results from a high level of gene flow among

localities, both contemporary and in the past. In C. sphinx, however,

the comparatively higher level of structure appears to have resulted

from restricted gene flow since a more recent expansion.

Although our results are based on few and unevenly distributed

populations, and so should be treated cautiously, the observed

Table 2. Genetic variability based on cytochrome b and microsatellites recorded for a) Rousettus leschenaulti and b) Cynopterus
sphinx.

cytochrome b microsatellites

Locality n h H S K p n MNA He Ho RS FIS

a) Cheranmahadevi 6 5 0.93 23 1.00 0.0086 20 12.1 0.87 0.85 11.3 0.055

Menglun 5 5 1.00 22 1.00 0.0086 25 14.0 0.88 0.87 12.2 0.037

Wuming 6 6 1.00 21 1.00 0.0069 32 14.2 0.87 0.94 11.0 20.062

Maoming 6 5 0.93 16 0.93 0.0063 39 14.8 0.87 0.95 11.3 20.070

Haikou 6 6 1.00 19 1.00 0.0070 41 15.5 0.88 0.86 11.5 0.043

Total 29 27 0.99 52 0.99 0.0073 157 14.1 0.87 0.89 11.4 20.007

b) Mandiyoor 8 7 0.96 20 2.68 0.0025 19 7.1 0.78 0.82 6.5 20.020

Xishuangbanna 8 7 0.96 25 6.75 0.0063 31 12.6 0.83 0.82 8.9 0.027

Beihai 7 6 0.95 24 8.19 0.0076 22 11.0 0.82 0.73 8.8 0.139

Jiangmen 8 4 0.82 6 2.50 0.0023 14 9.3 0.81 0.74 8.2 0.116

Guangzhou 8 4 0.64 9 2.25 0.0021 64 11.8 0.82 0.77 7.8 0.069

Zhongshan 7 5 0.86 10 4.00 0.0037 1 7.9 0.79 0.84 7.6 20.022

Haikou 6 5 0.93 10 4.40 0.0041 36 11.6 0.81 0.74 8.1 0.105

Pu Huong 7 7 1.00 26 10.0 0.0093 14 8.4 0.81 0.78 8.2 0.085

Total 59 34 0.96 71 10.5 0.0098 218 9.5 0.81 0.78 8.0 0.062

n = sample size, h = no. of haplotypes, H = haplotype diversity, S = no. polymorphic sites, K = no. pairwise nucleotide differences, p= nucleotide diversity, MNA =
Mean no. alleles per locus, Ho = observed heterozygosity, He = expected heterozygosity, RS = allelic richness, FIS = inbreeding coefficient.
doi:10.1371/journal.pone.0013903.t002
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differences in genetic structure observed between R. leschenaulti and

C. sphinx are consistent with our predictions based on their

different roosting ecology. Studies in India and China have shown

that R. leschenaulti migrates seasonally, with maternity colonies

reaching numbers of up to 20,000 individuals during the summer

and decreasing to only a few individuals each winter [33,34].

Therefore, depending on whether mating occurs before or during

migration this could provide further opportunities to promote gene

flow [but see: [35]]. In contrast, C. sphinx forms smaller colonies,

often in palm trees, and typically comprising a single male with

Figure 2. Clustering analysis for Cynopterus sphinx and Rousettus leschenaulti. Clustering analysis for a) eight Cynopterus sphinx populations
and b) five Rousettus leschenaulti populations. The different colors represent the proportional membership of individuals from each locality to a given
cluster, undertaken for increasing numbers of clusters (K) using STRUCTURE.
doi:10.1371/journal.pone.0013903.g002
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Figure 3. Parsimony haplotype networks for Cynopterus sphinx and Rousettus leschenaulti. Parsimony haplotype networks for a) Cynopterus
sphinx and b) Rousettus leschenaulti. Haplotypes are colour coded based on sampling locality, as follows: Guangdong = dark green, Yunnan = light
green, Hainan = blue, Guangxi = yellow, Vietnam = red, India = pink. Circles are sized in proportion to the number of individuals with that haplotype.
doi:10.1371/journal.pone.0013903.g003
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multiple females [36]. A previous study of this taxon at a landscape

scale revealed a high variance in male reproductive success yet

only moderate genetic differentiation among groups [37]. In our

study, mist netting of C. sphinx at foraging sites rather than at roosts

was undertaken to reduce the potential over-representation of

relatives in our samples; however, we cannot rule the possibility

that this has contributed to observed subdivision.

In addition to the overall trend of restricted gene flow, our

results of C. sphinx from Yunnan also revealed a marked

discontinuity in allele frequencies within China and Vietnam,

pointing to a phylogeographic signature. In particular, we found

that bats sampled from Yunnan clustered with more geograph-

ically distant individuals from India rather than with other bats in

China and Vietnam. In recent years, deep genetic subdivision in

Southwest China, with associated suggestions of multiple glacial

refugia and contact zones in this region, have been reported for

several taxa, including the greater horseshoe bat [38] and the ring-

necked pheasant [39]. Although the sampling regime in this study

cannot resolve or explain such subdivisions, our results do hint at

the possibility of multiple refugia. Our network analyses of the

cytochrome b sequence data based on a parsimony threshold of

95% confirmed the monophyly of the Indian samples previously

described [40]. This distinction was also reflected in the

contrasting degree of population subdivision recorded when India

was either included (Table S4, 55.11%, AMOVA I) or excluded

(among population, 3.04%, AMOVA II) from our analyses, so

supporting earlier suggestions that C. sphinx in India and China

probably belong to different subspecies [41]. Interestingly,

however, no such pattern was seen in the corresponding AMOVA

results based on the microsatellites (among population variance

3.38% and 2.52% with and without the Indian sample,

respectively). Given that both of the corresponding pairwise Fst

values were not especially high, one possible explanation for this

result is male-biased gene flow, either current or in the past.

Alternatively, and arguably more reasonable given the scale

involved, the low Fst between India and China could reflect

microsatellite allele size homoplasy, which can sometimes result

in erroneously low Fst values between geographically distant

samples [e.g. [5]].

Comparative studies of co-distributed taxa provide a powerful

means of disentangling the relative impact of biotic and abiotic

factors on population genetic structure [e.g. [42,43]]. A recent

study of five passerine bird species from the Tibetan Plateau

revealed that species-specific demographic histories depended on

habitat requirements and, therefore, local distributions [44]. In

contrast, the bats in our study have broadly similar habitat

requirements, and thus the observed differences in genetic

structure are probably more likely to be shaped by roosting and

behavioural differences that hold across a wider sampling area.

Our findings support a number of papers that have linked social

structure to genetic differentiation [e.g. [45]], and also corroborate

suggestions that colonial cave roosting bats are likely to show more

dispersal and gene flow than do tree roosting species [10].

Supporting Information

Table S1 PCR conditions and details for loci used in this study

for a) Rousettus leschenaulti and b) Cynopterus sphinx.

Found at: doi:10.1371/journal.pone.0013903.s001 (0.06 MB

DOC)

Table S2 Pairwise WST (above the diagonal) and FST estimates

(below the diagonal) for eight Cynopterus sphinx populations. Bold =

significant differentiation at P,0.05.

Found at: doi:10.1371/journal.pone.0013903.s002 (0.04 MB

DOC)

Table S3 Pairwise WST (above diagonal) and FST estimates

(below diagonal) for five Rousettus leschenaulti populations. Bold =

significant differentiation at P,0.05.

Found at: doi:10.1371/journal.pone.0013903.s003 (0.03 MB

DOC)

Table S4 Results of AMOVA based on microsatellite and

mtDNA data for a) Cynopterus sphinx and b) Rousettus leschenaulti

populations. AMOVA I includes all populations, AMOVA II

excludes the populations from India.

Found at: doi:10.1371/journal.pone.0013903.s004 (0.03 MB

DOC)

Acknowledgments

We thank JP Zhang, JS Zhang, XC Tang and XD Zhao from Institute of

Zoology, CAS and LB Zhang, GJ Zhu, DW Li, TY Hong, W Zhang from

the Guangdong Entomological Institute, NT Son from the Institute of

Ecology and Biological Resources of Vietnamese Academy of Sciences and

Technology and XG Mao for assistance with sample collection.

Author Contributions

Conceived and designed the experiments: JC SR SZ. Performed the

experiments: JC YS. Analyzed the data: JC SR JRF YS CMB. Contributed

reagents/materials/analysis tools: JC PH XL KER SZ. Wrote the paper:

JC SR JRF YS.

References

1. Zink RM (1996) Comparative phylogeography in North American birds.

Evolution 50: 308–317.

2. Castella V, Ruedi M, Excoffier L, Ibanez C, Arlettaz R, et al. (2000) Is the

Gibraltar Strait a barrier to gene flow for the bat Myotis myotis (Chiroptera:

Vespertilionidae)? Molecular Ecology 9: 1761–1772.

3. Hewitt GM (2004) Genetic consequences of climatic oscillations in the

Quaternary. Philosophical Transactions of the Royal Society of

London B Biological Sciences 359: 183–195.

4. Coulon A, Guillot G, Cosson JF, Angibault JMA, Aulagnier S, et al. (2006)

Genetic structure is influenced by landscape features: empirical evidence from a

roe deer population. Molecular Ecology 15: 1669–1679.

5. Rossiter SJ, Benda P, Dietz C, Zhang S, Jones G (2007) Rangewide

phylogeography in the greater horseshoe bat inferred from microsatellites:

implications for population history, taxonomy and conservation. Molecular

Ecology 16: 4699–4714.

6. Proctor MF, McLellan BN, Strobeck C, Barclay RMR (2004) Gender-specific

dispersal distances of grizzly bears estimated by genetic analysis. Canadian

Journal of Zoology-Revue Canadienne De Zoologie 82: 1108–1118.

7. Storz JF, Bhat HR, Kunz TH (2001) Genetic consequences of polygyny and

social structure in an Indian fruit bat, Cynopterus sphinx. I. Inbreeding,

outbreeding, and population subdivision. Evolution 55: 1215–1223.

8. Bailey NW, Gwynne DT, Ritchie MG (2007) Dispersal differences predict popu-

lation genetic structure in Mormon crickets. Molecular Ecology 16: 2079–2089.

9. Shilton LA, Altringham JD, Compton SG, Whittaker RJ (1999) Old World fruit

bats can be long-distance seed dispersers through extended retention of viable

seeds in the gut. Proceedings of the Royal Society B-Biological Sciences 266:

219–223.

10. Struebig MJ, Kingston T, Zubaid A, Le Comber SC, Mohd-Adnan A, et al.

(2009) Conservation importance of limestone karst outcrops for Palaeotropical

bats in a fragmented landscape. Biological Conservation 142: 2089–2096.

11. Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM, eds.

Mammal species of the world: a taxonomic and geographic reference. Baltimore:

The Johns Hopkins University Press.

12. Wang YX (2003) A complete checklist of mammal species and subspecies in

China: A taxonomic and geographic reference. Beijing, China: Chinese Forest

Publishing House (in Chinese). 394 p.

Genetic Structure in Fruit Bat

PLoS ONE | www.plosone.org 8 November 2010 | Volume 5 | Issue 11 | e13903



13. Vanlalnghaka C, Keny VL, Satralkar MK, Pujari PD, Joshi DS (2005) Social

entrainment in the old frugivorous bats, Rousettus leschenaulti from the Lonar
crater. Biological Rhythm Research 36: 453–461.

14. Li G, Jones G, Rossiter SJ, Chen SF, Parsons S, et al. (2006) Phylogenetics of

small horseshoe bats from east Asia based on mitochondrial DNA sequence
variation. Journal of Mammalogy 87: 1234–1240.

15. Goudet J (1995) FSTAT, version 1.2: a computer program to calculate F-
statistics. Journal of Heredity 86: 485–486.

16. Raymond M, Rousset F (1995) GENEPOP - Population genetics software for

exact tests and ecumenicism. Journal of Heredity 86: 248–249.
17. Peakall R, Smouse PE (2005) GENALEX 6: genetic analysis in Excel.

Population genetic software for teaching and research. Molecular Ecology
Notes 6: 288–295.

18. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX
4.05, Windows TM Software for population Genetics. Montpellier, France:

Laboratoire Génome et Populations, Université de Montpellier II.
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