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Eukaryotic cells utilize intricate mechanisms for the uptake and

intracellular sorting of various macromolecules, such as membrane

components and extracellular proteins. Microscopic imaging

studies have helped considerably to describe and define important

steps of the uptake process. It has been shown that the cytosolic

face of the plasma membrane is studded with small, domed

assemblages of peripheral membrane proteins. These constitute

transitory sorting stations that dynamically remodel the compo-

sition of the cell surface in response to both intracellular and

extracellular stimuli. Typically, within a minute of forming, these

assemblages invaginate to generate ‘‘buds’’ that then detach,

generating small (,60 nm), membrane-bound transport vesicles

that deliver their contents (often receptors) to specific intracellular

compartments—namely acceptor early endosomes—for further

dissemination within the cell (Figure 1). This invagination and

sorting process is called endocytosis, and although several

morphologically and structurally distinct endocytic sorting assem-

blies occur at the surface of most cells [1], perhaps the most

recognizable are polyhedral clathrin-coated structures. First

identified to be cargo-selective transport carriers during yolk

uptake and storage within oocytes of blood-fed mosquitoes [2],

clathrin-coated vesicles are now known to support many vital

cellular processes, ranging from nutrient uptake, cellular locomo-

tion, and transcriptional regulation and proliferation to complex

developmental morphogenetic events. Clathrin-mediated endocy-

tosis also seems important for the efficacy of anti-receptor

monoclonal antibody-based tumor therapy [3] and for suscepti-

bility to double-stranded RNA–mediated gene silencing [4].

The Mysteries of Clathrin-Coated Structure
Initiation and Function

Clathrin assembles at discrete patches on the plasma membrane

through cooperative interactions involving a large set of endocytic

proteins [5]. Chief among these are adaptor proteins, which, as the

name suggests, link membrane components with the outer layer of

the vesicle coat, which is composed of clathrin trimers (Figure 1,

inset). While the principal role of clathrin-coated buds is to gather

appropriate transmembrane proteins, generically designated

‘‘cargo,’’ for selective delivery to the cell interior, cargo capture

is not the driving force for the deposition of coat components at a

nascent bud site. AP-2, a major adaptor complex within clathrin-

coated structures, has two separate cargo-binding surfaces that are

probably both inaccessible when AP-2 first docks onto the plasma

membrane [6,7]. This means that although cargo depends on a

sorting signal(s) for its incorporation into clathrin-coated vesicles,

recognition of these signals is unlikely to be the event that recruits

adaptors and thus allows clathrin coats to form on bare

membrane. Instead, the rare and spatially restricted phospholipid

phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) seems to play

a major role in placing coat protomers on the plasma membrane

to begin clathrin assembly [8–11]; AP-2 and several other

important coat and accessory proteins bind physically to

PtdIns(4,5)P2 [5]. Perturbing PtdIns(4,5)P2 production in cultured

cells leads to an almost immediate dissolution of preexisting

clathrin-coated structures at the cell surface [8,10,11].

Because transmission electron microscope (EM) images typically

reveal isolated, invaginating coated buds all along the cell surface, and

clathrin immunolabeling often shows a profusion of small, separated

puncta apparently randomly scattered over the surface membrane

(Figure 2), it seems reasonable to suspect that clathrin-coated vesicles

might form de novo for each internalization cycle. There is indeed

evidence for this from live-cell imaging. In the unicellular yeast

Saccharomyces cerevisiae, the predictable kinetic behavior of coat

components has led to a thorough cataloging of temporally resolved

protein entry and exit at single-turnover endocytic sites [12]. In BS-C-

1 cells, an African green monkey–derived cell line, clathrin coats at

the surface are similarly uniform. The stereotyped behavior of these

structures has allowed the definition of coat lifetimes and revealed

different types of failure events [13,14] for these canonical

constructions, which are known as clathrin-coated pits. Most

importantly, insufficient (or perhaps inappropriate) cargo packaging

appears to presage nonproductive collapse of an incipient bud

[13,14]. So, while cargo clearly does not actively recruit coat

machinery to the membrane, it plays an important role in driving the

process forward to the next step: the budding of vesicles.

Yet, in other cell lines [15–19] and isolated primary cells [20],

the size distribution of clathrin-coated structures on the cell surface

is far less regular than in BS-C-1 cells. For example, in HeLa cells,

in addition to transient diffraction-limited objects (,200 nm),

large, long-lived and rather sedentary clathrin spots (.500 nm)

are observed (Figure 2). Both EM [21,22] and time-resolved

fluorescence imaging techniques, like total internal reflection

fluorescence microscopy (TIR-FM) [17,18,23,24], have been used

to visualize the bulky clathrin structures on the basal adherent

surface, but EM-based visualization of isolated dorsal plasma
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membrane also shows regions of extensive flat clathrin lattice

[25,26]. Why are there different clathrin assemblies at the plasma

membrane and what, if any, is the functional significance of this

dichotomy? The variability in position, size, and dynamic behavior

of diverse clathrin structures has made global computational

analysis of large data sets of time-resolved events very challenging.

For one thing, the kinetic inconsistency makes modeling difficult

and much depends upon whether, despite morphological and

temporal plasticity, the sorting and functional properties of the

different patches is basically the same.

Clathrin-Coated Pits versus Clathrin-Coated
Plaques

In this issue of PLoS Biology, the Kirchhausen laboratory delves

into this issue by utilizing quantitative live-cell imaging of several

Figure 1. Clathrin-regulated uptake and the endocytic pathway. Schematic illustration of a cultured cell showing surface-positioned clathrin-
coated buds, ventrally located large, flat clathrin ‘‘plaques,’’ and the major internal endosomal sorting stations. After clathrin coat uncoating,
transport vesicles quickly fuse with the peripheral early endosome compartment, mingling incoming cargo molecules in this initial sorting endosome.
Transmembrane cargo can return either directly to the plasma membrane from the early endosome, or be sorted into tubules that are delivered to
the juxtanuclear recycling endosome compartment, from which cargo can also be directed back to the cell surface. The bulbous vacuolar portion of
the early endosome, containing a flat, bilayered clathrin coat, matures into a multivesicular body for delivery of selected components to lysosomes
for degradation. The inset shows the basic composition and organization of a clathrin-coated vesicle, with the three major layers: the inner
membrane vesicle with various embedded transmembrane cargo (blue and green), an intermediate layer of adaptors including AP-2 (gray), and the
outer clathrin polyhedral lattice (red).
doi:10.1371/journal.pbio.1000192.g001

Figure 2. Morphology of clathrin-coated structures at the cell surface. (A) Confocal optical section of a HeLa cell immunolabeled with antibodies
to AP-2 to reveal clathrin-coated structures on the adherent plasma membrane. Selected examples of diffraction-limited spots (arrowheads) and large
clathrin assemblies (arrows) are shown. (B) Freeze-etch EM image of the adherent surface of a cultured cell, showing both flat and rounded, budding
polygonal clathrin structures (pseudocolored in red) on the plasma membrane and the proximity of budding vesicles to the planar sheets.
doi:10.1371/journal.pbio.1000192.g002
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distinct cell types [27]. Their overarching conclusion is that two

mechanistically distinct modes of clathrin assembly and internal-

ization occur at the ventral plasma membrane of different cells.

They deduce that rounded buds correspond to de novo–forming,

canonical clathrin-coated pits on naked membrane, while clathrin-

coated ‘‘plaques’’ are equivalent to the persistent, flat clathrin

sheets, and are found only on the basal adherent surface. A pivotal

finding is that plaques apparently remain roughly planar

throughout, including when an abrupt inward trajectory signifies

entry into the cell interior. In curved coated pits, the distribution of

AP-2 and epsin, another adaptor, relative to the clathrin coat

appears asymmetric, but not in plaques [27]. This again suggests

that the underlying plasma membrane is not deformed into a

spherical vesicle, typical of most coat-mediated transport events;

plaques seemingly maintain a constant arrangement throughout

their functional lifetime.

Saffarian et al. provocatively argue that their characterization of

general plaque behavior rationalizes a rather discrepant literature,

yet the work also raises several fundamental questions. Foremost is

whether the plaques they catalog are generally equivalent to the

extensive, long-lived, and immobile clathrin patches seen by

others. In contrasting ultrastructural studies from other laborato-

ries, the flat patches can be considerably larger [21,25,26,28,29],

and internalization en masse could possibly generate a large

puncture in the basal membrane unless much circumferential

uncoated membrane is also incorporated into the incoming vesicle,

with concomitant reorganization of the underlying surface bilayer

(Figure 3). Do plaques invariably enter as intact structures? And, if

so, how mechanistically does this occur without compromising the

bulk membrane structure? Curiously, despite being plentiful at the

adherent surface, thin-section EM images of plaques captured

precisely at the instant of internalization are not available.

Saffarian et al. assert that the slow relative rate of plaque

internalization makes this visualization unlikely. Still, a striking

feature of clathrin structures in freeze-etch images of the adherent

cell surface is the frequent close proximity of emerging rounded

buds to adjacent flat arrays (Figure 2). Corroborating thin-section

EM images have been published previously in which buds within,

or immediately adjacent to, plaques are plainly seen [21]. One

interpretation of this juxtaposed positioning is that flat clathrin

arrays could operate as staging scaffolds for spherical bud

production. This idea is in accord with observed fluctuations in

TIR-FM fluorescence intensity within the persistent lattice

population [20], which are compatible with loss of (peripheral)

subregions of an extended patch, leaving portions remaining at the

plasma membrane [15]. Labeled cargo molecules also have been

seen emerging from stationary clathrin patches [20,26].

Next, we do not understand clearly how, when compared with

pits, flat arrays are differentially nucleated and apparently

restricted to the adherent surface of the cell. The requirement

for a very large excess of hexagonal facets to construct a planar

lattice differs obviously from de novo–nucleated buds. Yet, flat

lattices must require PtdIns(4,5)P2 for assembly, as consumption of

this lipid leads to prompt loss of most clathrin structures and

adaptors at the ventral surface [10,11]. Fluorescence recovery after

photobleaching (FRAP) experiments indicate that during assem-

bly, clathrin and AP-2 molecules rapidly enter and exit small and

large structures alike [16,30]. That both structures are dynamic at

the microscopic level suggests similar overall apparatus and

assembly mechanisms. And if cargo is needed to stabilize coats

[13,14], then long-lived plaques must contain and sequester cargo,

just as pits do. This is borne out experimentally: fluorescently

tagged transferrin (a serum iron transporter that engages the

transmembrane transferrin receptor for clathrin-dependent import

of iron into the cell interior) labels essentially all surface clathrin

structures in HeLa and other cells [17,19,20,30]. The density of

transferrin receptor in flat lattice is proportional to receptor

concentration [26], and the rate and quantitative nature of

transferrin uptake makes it highly unlikely that cargo concentrated

within plaques fails to internalize rapidly. Thus, morphologically

discernible clathrin structures do appear to cluster the same

constitutively internalized cargo.

Another (possibly related) issue is, what prevents the flat clathrin

arrays from forming invaginated buds? Perhaps information can

be gleaned from comparison with another membrane compart-

ment where flat clathrin arrays also form with no evidence of

rounded bud production: on early endosomes maturing into

multivesicular bodies (Figure 1). Originally discovered in 1964

[31], we now know that these endosomal clathrin assemblies

operate by sequestering cargo, just like clathrin-coated structures

at the plasma membrane [32]. However, these so-called bilayered

clathrin coats do not contain AP-2 and have an unusual EM

morphology that is not seen at plasma membrane plaques. The

odd appearance of bilayered clathrin coats could indicate inclusion

of structural components that preclude lattice curvature. In

canonical, de novo–forming rounded buds, it is thought that the

force to sculpt the plasma membrane may come from assembling

clathrin, which has inherent curvature when pentagonal facets are

incorporated into the lattice [22,27,33]; or, instead of inducing

curvature itself, clathrin may stabilize curvature resulting from

thermal fluctuation–driven membrane rearrangements [34]. Do

plasma membrane plaques then, like bilayered clathrin coats on

early endosomes, incorporate some additional structural compo-

nent(s) that blocks clathrin-mediated induction or stabilization of

membrane curvature?

An alternative model for what prevents the basally located, flat

clathrin arrays from forming invaginated buds is that it is due to a

unique role for the actin cytoskeleton in plaque formation, coupled

with the strength of adhesion of the basal cell surface to the

underlying substrate on which cells are growing. Saffarian et al. find

that actin nucleation is unnecessary for the budding of spherical coats,

although it is worth noting that at the apical surface of polarized

epithelial cells, where clathrin buds are incontestably spherical, actin

Figure 3. Internalizing clathrin-coated buds and plaques.
Schematic depiction of a deeply invaginated clathrin-coated bud and
a flat clathrin-coated plaque undergoing endocytic uptake and the
resultant uncoated vesicles. Both transmembrane cargo (green and
blue receptors) that are selectively sorted into clathrin-coated vesicles
and bulk membrane-associated cell surface proteins (orange and
magenta) that are perhaps nonselectively incorporated into plaques
are shown.
doi:10.1371/journal.pbio.1000192.g003
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does regulate vesicle internalization [35] and also drives entry of

rounded clathrin-coated structures housing vesicular stomatitis virus

[36]. In contrast to what Saffarian et al. observe for bud formation,

nucleation of branched actin microfilaments appears to drive plaque

movement into the cell [27] (Figure 3). This conclusion is based on

the observations that depolymerization of the actin cytoskeleton with

the sponge toxin latrunculin A arrests development and internaliza-

tion of extant plaques and that the branched actin regulators cortactin

and Arp2/3 build up at plaques just prior to movement away from

the cell cortex [27]. Because latrunculin A application also prevents

the formation of new plaques [27], an additional activity of the actin

cytoskeleton may be to maintain the planar topology of plaques,

perhaps in concert with resistance to deformation caused by tight cell

adhesion to the underlying substrate. These observations of actin

contributions to plaque formation in particular are intriguing, as the

closest mechanistic parallels to the behavior of plaques seem to come

from cortical actin patches in S. cerevisiae, the sites of clathrin-mediated

endocytosis [12]. While absolutely actin-dependent, cortical patches

remodel the plasma membrane into tubulovesicular profiles upon

internalization [37], quite unlike what is suggested for higher

eukaryotic plaques.

Irrespective of mechanism, the current schematic depiction

suggests that uptake of a flat clathrin sheet leads to extraneous

(noncoated) membrane around the perimeter of the plaque also

being internalized (Figure 3). Superficially, this seemingly defies

the whole elegant selectivity of coat-mediated sorting. Two

important questions arise from this model: how can this

membrane excess prevent endocytosis of inappropriate plasma

membrane segments, and how is scission regulated at the

molecular level?

But perhaps the most important lingering question is what the

functional significance of the flat clathrin arrays is, if they have no

operative relationship to buds. Two different types of clathrin

assemblies could be a physical manifestation of compositionally

discrete sorting stations operating in parallel to presort cargo at the

cell surface. Data to support the idea of cargo-selective clathrin coats

are accumulating [38–41], but do not seem to strictly reflect

selective partitioning of different membrane-embedded proteins

into either pits or plaques. There are, in fact, suggestions that even

in BS-C-1 cells, which lack plaques, different types of clathrin

sorting structures occur [40]. Doubtless, more work is needed to

establish the precise functional interrelationships between different

types of clathrin-coated structures, but, unarguably, the new results

from Saffarian et al. have given cell biologists much to ponder.
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