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Abstract

Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 Gag assembly takes place at the
plasma membrane. However, little is known about the mechanisms by which thousands of Gag molecules are targeted to
the plasma membrane. Using a bimolecular fluorescence complementation (BiFC) assay, we recently reported that the
cellular sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA export from the nucleus,
known to be mediated by Rev. Here we describe an assembly deficiency in human cells for HIV Gag whose expression
depends on hepatitis B virus (HBV) post-transcriptional regulatory element (PRE) mediated-mRNA nuclear export. PRE-
dependent HIV Gag expressed well in human cells, but assembled with slower kinetics, accumulated intracellularly, and
failed to associate with a lipid raft compartment where the wild-type Rev-dependent HIV-1 Gag efficiently assembles.
Surprisingly, assembly and budding of PRE-dependent HIV Gag in human cells could be rescued in trans by co-expression of
Rev-dependent Gag that provides correct membrane targeting signals, or in cis by replacing HIV matrix (MA) with other
membrane targeting domains. Taken together, our results demonstrate deficient membrane targeting of PRE-dependent
HIV-1 Gag and suggest that HIV MA function is regulated by the trafficking pathway of the encoding mRNA.
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Introduction

Retrovirus assembly and budding is a highly concerted process

mediated by largely undefined spatially- and temporally-regulated

interactions between viral proteins and cellular factors. During the

viral assembly process, thousands of copies of viral structural

polyproteins multimerize to form virus particles via an energy-

dependent, multi-step process. Expression of retroviral Gag

polyprotein is generally sufficient for the assembly and release of

non-infectious virus like particles (VLPs). The Gag polyprotein

consists of matrix (MA), capsid (CA), nucleocapsid (NC), late

domain, and spacer proteins and is cleaved into the distinct

structural proteins upon virus maturation [1,2]. These Gag

domains orchestrate the major steps in virus assembly and

budding (reviews [1,2]). It is well established that HIV-1 Gag

buds from the plasma membrane of T lymphocytes and some

epithelial cell lines [1–5]. In contrast, the major histocompatibility

complex (MHC) class II compartments or multivesicular bodies

(MVBs) are apparently the sites of HIV-1 Gag accumulation and

particle production in macrophages and dendritic cells [6–9].

However, recent studies indicate that in macrophage HIV-1

virions bud from invaginated plasma membranes [10,11]. Little is

known about the precise mechanisms by which thousands of

copies of Gag molecules synthesized from ribosomes in the

cytoplasm are transported to specific locations on the plasma

membrane for assembly and budding. Consistent with results

published by Malim and colleagues [12,13], our recent work

suggests that HIV-1 Gag assembly is regulated at a step as early as

nuclear export of its encoding mRNA [14].

Retroviral Gag polyproteins are synthesized from an unspliced

full-length viral genomic mRNA that requires specific regulatory

factors for nuclear export. The HIV-1 genome contains a cis-

acting RNA element known as the Rev-response element (RRE)

that binds to a viral trans-acting protein (Rev). Rev binds to the

nuclear export protein Crm1 which in turn binds to Ran, a small

GTPase that shuttles between the nucleus and the cytoplasm.

Some simple retroviruses, such as Mason-Pfizer monkey virus (M-

PMV), contain cis-acting RNA export elements (constitutive

transport elements or CTE) that do not require viral trans-acting

factors and that function by interacting directly with cellular

export factors NXF1/NXT [13]. Swanson et al [12] recently

demonstrated that altering the RNA nuclear export element used

by HIV-1 gag-pol mRNA from the RRE to the CTE resulted in

efficient trafficking and assembly of Gag at cellular membranes in

murine cells, which are notable for their inability to support HIV-1

assembly and budding [12,15,16]. Our recent study also

demonstrated that one copy of the hepatitis B virus posttranscrip-

tional regulatory element (PRE) could support a similar level of

HIV-1 Gag expression compared with Rev-dependent Gag [14]

and that HIV-1 Gag assembly and budding in mouse cells could
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be rescued by substitution of the Rev-dependent RNA nuclear

export signal with PRE [14]. Interestingly, in human cells the

PRE-dependent, Rev-independent HIV-1 Gag showed lower

assembly efficiency and different assembly sites compared with

Rev-dependent HIV-1 Gag [14]. These results support the model

that RNA export pathway selection during Gag expression and

assembly can affect the cytosolic fate or function of the HIV-1 Gag

polyproteins. In the current study, we sought to define the

determinants of inhibited PRE-dependent HIV-1 Gag assembly

and budding in human cells and to test whether altering these

determinants can alleviate this block.

Results

Distinct Intracellular Distribution and Assembly Kinetics
of Rev-dependent and PRE-dependent HIV-1 Gag

We recently demonstrated different assembly efficiencies and

assembly sites for Rev-dependent and PRE-dependent HIV-1 Gag

in both human and mouse cell lines [14]. We proposed that the

observed distinct Gag assembly patterns could be the result of

differential intracellular Gag trafficking as a consequence of the

different pathways used for the export of HIV-1 Gag mRNA from

the nucleus. Since the BiFC assays used in our previous study only

revealed assembled Gag multimers inside cells, in the current study

we first visualized the distribution of the total population of Rev-

dependent or PRE-dependent HIV-1 Gag-GFP in 293T cells over

time using live cell imaging. The results of these studies revealed

that Rev-dependent HIV-1 Gag-GFP quickly (,1 hr) assembled

into bright puncta on cell surface after appearance of the GFP

signal (Fig. 1A and supplemental Video S1). In marked contrast,

PRE-dependent HIV-1 Gag-GFP was diffusely distributed

throughout the cells over a long time course (.10 hr), and did

not form bright puncta on the cell surface even though large

amounts of Gag-GFP were synthesized (Fig. 1B and supplemental

Video S2). If the punctate Gag-GFP signal represents assembled

Gag multimers as previously suggested [17], our results indicate

faster assembly kinetics of Rev-dependent HIV-1 Gag compared

with PRE-dependent HIV-1 Gag.

Recent reports indicate that the efficiency of retrovirus assembly

depends on the concentration of Gag molecules [18]. To test if the

observed delayed assembly of PRE-dependent HIV-1 Gag could be

attributed to a lower expression level compared with Rev-dependent

HIV-1 Gag, the expression and trafficking of Gag-GFP in individual

cells was monitored by live cell imaging after transfection with either

Rev-dependent or PRE-dependent HIV-1 Gag-GFP. For these

assays, 30 cells from each transfection were randomly selected and

analyzed individually, as summarized in Figure 2. These data reveal

marked differences in the expression kinetics and trafficking patterns

of the Gag-GFP produced by Rev-dependent or PRE-dependent

expression. Both the Rev-dependent HIV-1 Gag-GFP expressing

cells (black diamond) and the PRE-dependent HIV-1 Gag-GFP

expressing cells (gray square) showed an increase of fluorescence

over time (Figure 2A). However, the mean fluorescence intensity of

PRE-dependent HIV-1 Gag-GFP expressing cells is consistently

higher than Rev-dependent HIV-1 Gag-GFP expressing cells at all

time points, with a 5-fold higher expression being observed at

9 hours after the initial detection of Gag-GFP expression. All the 30

randomly chosen Rev-dependent HIV-1 Gag-GFP expressing cells

started to form bright puncta at surface at early time point (average

44 minutes after Gag-GFP started to be detected) with the average

mean fluorescence intensity of 17 (Figure 2B), indicating a fast

assembly kinetic of Rev-dependent HIV-1 Gag upon protein

synthesis. In marked contrast, among the 30 randomly chosen PRE-

dependent HIV-1 Gag-GFP expressing cells, only 7 cells displayed

bright puncta at very late time points with the average mean

fluorescence intensity of 1079 (Figure 2B). Taken together, this

single cell imaging assay demonstrates that PRE-dependent Gag

was in fact synthesized with similar kinetics and to similar

concentrations as Rev-dependent Gag. However, the observations

clearly indicated that the PRE-dependent Gag displayed a distinct

trafficking pattern in transfected cells compared to the Rev-

dependent Gag and failed to assemble into VLP as efficiently that

leaded to intracellular Gag accumulation. Thus, these data support

the concept that Gag assembly may be significantly influenced by

the nuclear export pathway of its mRNA.

Having established similar expression levels in cells transfected

with Rev-dependent or PRE-dependent Gag constructs, we next

sought to compare the extracellular VLP production between cells

transfected with either the Rev-dependent or PRE-dependent

HIV-1 Gag. For these assays 293T cells were transfected with

either HA-tagged PRE-dependent or Rev-dependent HIV-1 Gag

expression plasmids. A G2A Gag mutant that lacks myristoylation

and fails to bind to membranes for assembly was used as a

reference for a budding deficient Gag [2]. Cells were transfected in

parallel with Rev-dependent or PRE-dependent Gag, or with G2A

mutant HIV-1 Gag expression plasmids. At 24 h post transfection,

cell lysates and supernatant pellets (VLPs) were subjected to SDS-

PAGE and Western Blotting to determine the respective Gag

budding efficiencies (Figure 2C). The results indicate essentially

undetectable levels of VLP budding from cells transfected with the

PRE-dependent HIV-1 Gag, as observed with the myristoylation

deficient G2A mutant Gag (Figure 2C, lines 3–5). In distinct

contrast, a high level of extracellular VLP was produced from cells

transfected with the Rev-dependent HIV-1 Gag, reflecting

efficient assembly and budding by protein produced from this

construct (Figure 2C, lines 1 and 2). Interestingly, analyses of the

transfected cellular lysates indicated similar levels of intracellular

Gag accumulation in cells transfected with any of the three

assembly deficient Gag constructs, evidently reflecting similar

levels of Gag expression regardless of the specific Gag construct

(Figure 2C, compare line 3–5 and lines 1). Take together, these

data are consistent with our previous report that Rev-dependent

HIV-1 Gag assembles more efficiently in human cells compared

with PRE-dependent HIV-1 Gag [14], despite the similar levels of

Gag expression observed for the respective expression plasmids.

Co-assembly of Rev-dependent and PRE-dependent HIV-
1 Gag Rescues Budding of PRE-dependent HIV-1 Gag

We next took advantage of the BiFC assay to test whether Rev-

dependent and PRE-dependent HIV-1 Gag can interact with each

other even though they may utilize different trafficking pathways.

Co-expression of Rev-dependent Gag-VC with PRE-dependent

Gag-VN (Fig. 3B, panel c) or of Rev-dependent Gag-VN with

PRE-dependent Gag-VC (Fig. 3B, panel d) both resulted in bright

punctate BiFC signals on the plasma membrane, indicating

interactions between Rev-dependent and PRE-dependent HIV-1

Gag. This pattern was similar to the BiFC pattern obtained upon

coexpression of Rev-dependent HIV-1 Gag VN and VC pairs

(Fig. 3B, panel a). In marked contrast, expression of PRE-

dependent HIV-1 Gag VN and VC pairs resulted in a weaker

intracellular punctate signal above a diffuse background (Fig. 3B,

panel b), as we reported previously [14].

Since Rev-dependent HIV-1 Gag could efficiently co-assemble

with PRE-dependent Gag at the plasma membrane, we next tested

whether this co-assembly can rescue PRE-dependent HIV-1 Gag

budding in human cells (Fig. 4B). PRE-dependent HIV-1 Gag-

GFP was co-transfected with empty vector, HA-tagged PRE-

dependent, or Rev-dependent HIV-1 Gag in 293T cells. At 24 h

HIV-1 Gag Assembly
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post transfection, cell lysates and supernatant pellets (VLPs) were

subjected to SDS-PAGE and Western Blotting to determine

budding efficiencies. Co-expression with Rev-dependent HIV-1

Gag-HA enhanced PRE-dependent HIV-1 Gag-GFP budding by

about 30 fold (Fig. 4B, compare lanes 1 and 3). In contrast, this

enhancement was not observed upon co-expression of PRE-

dependent HIV-1 Gag-HA (Fig. 4B, compare lanes 1 and 2).

To gain further insight into the key determinants in Rev-

dependent Gag required to restore budding of co-expressed Rev-

independent Gag, we generated a panel of Rev-dependent HIV-1

Gag mutants (Fig. 4A) and tested their ability to rescue PRE-

dependent HIV-1 Gag-GFP budding (Fig. 4B). A mutant with a

constitutively exposed myristol residue generated by replacing MA

with the myristoylation signal of v-Src (SrcDMA) [19–21] (Fig. 4B,

Figure 1. Distinct intracellular distribution and assembly dynamics of Rev-dependent and PRE-dependent HIV-1 Gag. 293T cells were
transfected with Rev-dependent (A) and PRE-dependent (B) HIV-1 Gag-GFP and monitored with time-lapse confocal microscopy. Images of different
Z sections were overlaid to produce single extended-focus image for each time point. Arrays of individual frames from two time-lapse videos
covering about 12 hr compare the distribution and assembly dynamics of Rev-dependent and PRE-dependent HIV-1 Gag.
doi:10.1371/journal.pone.0006551.g001
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lane 4) could rescue budding of co-expressed PRE-dependent

HIV-1 Gag-GFP as efficiently as wild type Rev-dependent HIV-1

Gag (Fig. 4B, lane 3). However, the myristoylation deficient G2A

mutant (Fig. 4B, lane 5) and CA deletion mutant (DCA) (Fig. 4B,

lane 6) were unable to enhance budding of co-expressed PRE-

dependent HIV-1 Gag-GFP compared to co-expression of Rev-

dependent wild type HIV-1 Gag (Fig. 4B, lane 2). Together, these

results indicate that proper membrane association of Rev-

dependent HIV-1 Gag constructs and co-assembly of Rev-

dependent Gag with PRE-dependent Gag are required to rescue

the budding of PRE-dependent HIV-1 Gag in human cells.

Substitution of the Membrane Binding Domain Rescues
PRE-dependent HIV-1 Gag Assembly and Budding

Because our results suggested that membrane targeting of Rev-

dependent HIV-1 Gag is required to rescue budding of co-

assembled PRE-dependent HIV-1 Gag, we next asked whether

PRE-dependent HIV-1 Gag assembly and budding in human cells

can be rescued by substitution of the HIV-1 membrane binding

motif with other membrane targeting motifs. We have previously

reported that in contrast to HIV-1 Gag, both Rev-dependent and

PRE-dependent EIAV Gag can efficiently assemble and bud from

human cells [14]. Thus, we also tested whether switching MA

domains of EIAV and HIV-1 Gag altered their respective

assembly and budding phenotypes.

We first constructed a panel of PRE-dependent HIV-1 Gag and

EIAV Gag MA mutants (Fig. 5A). 293T cells were transfected with

this panel of HA tagged PRE-dependent HIV-1 Gag and EIAV

Gag constructs, followed by Western blotting of cell lysates and

pelleted VLPs at 24 h post transfection. Replacing the HIV MA

with the v-Src myristoylation signal rescued PRE-dependent HIV-1

Gag budding (Fig. 5B, compare lane 1 and lane 2). Consistent with

Figure 2. Deficient assembly and budding of PRE-dependent HIV-1 Gag. (A) Comparison of mean fluorescence intensity of 293T cells
transfected with Rev-dependent (black diamond) or PRE-dependent HIV-1 Gag-GFP (gray square). Ceslls were monitored with time-lapse confocal
microscopy as described in Figure 1. 30 randomly selected cells for each were tracked immediately after GFP fluorescence appeared and mean
fluorescence intensity was measured. Average mean fluorescence intensity was plot over time. (B) Comparison of mean fluorescence intensity of
293T cells transfected with Rev-dependent (black diamond) or PRE-dependent HIV-1 Gag-GFP (gray square) when Gag-GFP puncta appear. All the 30
Rev-dependent HIV-1 Gag-GFP transfected cells tracked in (A) and 7 of the 30 PRE-dependent HIV-1 Gag-GFP transfected cells tracked in (A) displayed
Gag-GFP puncta. (C) Budding of Rev-dependent and PRE-dependent wild type and myristoylation mutant HIV-1 Gag-HA. Rev-dependent and PRE-
dependent Gag constructs were transfected into 293T cells. At 24 h post transfection, VLPs (upper panel) were analyzed by immunoblotting using HA
antibody and cell lysates (lower panel) were analyzed by immunoblotting using HA and actin antibody. Data are representative of three independent
experiments.
doi:10.1371/journal.pone.0006551.g002
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our previous observations [14], and in contrast to PRE-dependent

HIV-1 Gag, PRE-dependent EIAV Gag could bud efficiently from

human cells (Fig. 5B, compare lane 1 and lane 4). Interestingly, MA

swapping reversed this phenotype. PRE-dependent chimeric HIV-1

Gag containing EIAV MA budded as efficiently as PRE-dependent

EIAV Gag (Fig. 5B, compare lane 3 and lane 5), whereas PRE-

dependent chimeric EIAV Gag containing HIV MA failed to bud

efficiently (Fig. 5B, lane 6). The PRE-dependent chimeric EIAV

Gag budding deficiency seemed to be specific for the HIV MA,

because replacing EIAV MA with the v-Src myristoylation signal

did not interfere with chimeric EIAV Gag budding (Fig. 5B, lane 5).

Distinct Membrane Association Properties of Rev-
dependent and PRE-dependent HIV-1 Gag

Our live cell imaging results revealed an apparent cytoplasmic

accumulation of PRE-dependent HIV-1 Gag over time. Addi-

tionally, the budding rescue assays described above suggested that

MA-dependent membrane targeting of PRE-dependent HIV-1

Gag was apparently deficient in human cells. These observations

led us to test whether the membrane association properties of

PRE-dependent HIV-1 Gag are different from Rev-dependent

HIV-1 Gag (Fig. 6). Postnuclear supernatants derived from 293T

cells expressing either Rev-dependent HIV-1 Gag or PRE-

dependent HIV-1 Gag were analyzed using membrane flotation

to segregate membrane-associated and soluble Gag [22,23]. After

centrifugation, gradient fractions were collected and analyzed for

Gag content by Western blotting. Transferrin receptor and actin

were used as markers for membrane (fractions 1 to 3) and soluble

(fractions 7 to 9) fractions, respectively. Roughly equal amounts of

Rev-dependent (,60%) and PRE-dependent (,50%) HIV-1 Gag

were recovered in membrane fractions, and these populations

represented a significant proportion of the total Gag expressed in

each case (Fig. 6A and 6C). Under the same conditions,

myristoylation deficient G2A mutants were not present in

membrane fractions regardless of whether they were expressed

in a Rev-dependent or PRE-dependent context, consistent with

previous reports [23–25]. These data suggest that PRE-dependent

HIV-1 Gag can target human cell membranes and is unlikely to be

myristoylation deficient, consistent with other studies showing

efficient membrane association of other Rev-independent HIV-1

Gag in human cells [25–27]. Taken together with the fluorescence

microscopy results (Fig. 1), our data suggest that unlike Rev-

dependent HIV-1 Gag, PRE-dependent HIV-1 Gag fails to

specifically bind to plasma membrane. Cytosolic soluble Gag and

random membrane bound Gag together display a diffusive

distribution pattern of PRE-dependent Gag in human cells.

Figure 3. Co-assembly of Rev-dependent HIV-1 Gag and PRE-dependent HIV-1 Gag. (A) Schematic diagram of plasmids expressing Rev-
dependent and PRE-dependent HIV-1 Gag-BiFC constructs. (B) Demonstration of co-assembly of Rev-dependent and PRE-dependent HIV-1 Gag by
BiFC. HeLa cells grown on glass coverslips were transfected with plasmids expressing the indicated HIV-1 Gag-BiFC pair. At 8 h post transfection, cells
were fixed and imaged. Bar: 10 mm.
doi:10.1371/journal.pone.0006551.g003
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It has been reported that plasma membrane lipid rafts play a

critical role in HIV-1 Gag assembly and budding [28–33]. Raft

association of HIV-1 Gag occurs after membrane binding [31] and

is independent of the Gag assembly ability [30,31]. Therefore we

next tested whether Rev-dependent and PRE-dependent HIV-1

Gag were differentially targeted to lipid rafts (Fig. 6B). Postnuclear

supernatants derived from 293T cells expressing either Rev-

dependent HIV-1 Gag or PRE-dependent HIV-1 Gag were

analyzed as described above except that they were treated with

0.5% Triton X-100 on ice for 30 min before being subjected to

membrane flotation. Under these conditions, transferrin receptor, a

membrane protein known not to partition into detergent-insoluble

microdomains, was not detected in lipid raft fractions. About one

third of the membrane-associated Rev-dependent HIV-1 Gag could

still be detected in these fractions after cold Triton X-100 treatment,

demonstrating its association with lipid rafts or detergent-resistant

membranes (Fig. 6C, left panel). In contrast, only 6% of the

membrane-associated Rev-independent HIV-1 Gag was present in

Figure 4. Coexpression of membrane targeting and assembly competent Rev-dependent HIV-1 Gag rescues PRE-dependent HIV-1
Gag budding. (A) Schematic diagram of plasmids expressing HA tagged Rev-dependent HIV-1 Gag mutants. (B) Budding of PRE-dependent HIV-1
Gag-GFP upon co-expression with PRE-dependent or Rev-dependent HIV-1 Gag-HA. PRE-dependent HIV-1 Gag-GFP was co-transfected at an equal
molar ratio into 293T cells with empty vector, PRE-dependent HIV-1 Gag-HA, or the indicated Rev-dependent HIV-1 Gag-HA constructs described in A.
At 24 h post transfection, VLPs (upper panel) and cell lysates (lower panel) were analyzed by immunoblotting using GFP and HA antibody. Data are
representative of three independent experiments.
doi:10.1371/journal.pone.0006551.g004
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lipid raft-containing fractions after detergent extraction (Fig. 6C,

right panel).

Discussion

Recently, we reported that HIV-1 Gag assembly and budding

are regulated by the nuclear export pathway of Gag-encoding

mRNA [14]. PRE-dependent HIV-1 Gag was trafficked differ-

ently as compared to native Rev-dependent Gag resulting in a

defect in Gag assembly and budding in human cells [14]. In the

current study, we performed a mechanistic analysis of the

regulation of HIV-1 Gag assembly and budding by mRNA

nuclear export pathways. We demonstrate that PRE-dependent

HIV-1 Gag is mistargeted in human cells, evidently because the

Gag produced by PRE-dependent expression lacks the membrane

raft targeting function of HIV MA. This finding is reminiscent of

deficient Rev-dependent HIV-1 Gag assembly/budding in mouse

cells resulting from deficient MA dependent membrane targeting

[12,26,34]. As such, the current data supports the concept that

Figure 5. Substitution of HIV-1 matrix with other membrane targeting domains rescued PRE-dependent HIV-1 Gag budding in
human cells. (A) Schematic diagram of plasmids expressing HA tagged PRE-dependent HIV-1 Gag mutants (upper panel) and EIAV Gag mutants
(lower panel). (B) Budding of PRE-dependent HIV-1 and EIAV Gag mutants. 293T cells were transfected with the indicated PRE-dependent HIV-1 and
EIAV Gag mutants described in (A). At 24 h post transfection, VLPs (upper panel) and cell lysates (lower panel) were analyzed by immunoblotting
using HA antibody. Data are representative of three independent experiments.
doi:10.1371/journal.pone.0006551.g005
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Figure 6. PRE-dependent HIV-1 Gag failed to associate with lipid raft in human cells. (A) Both Rev-dependent and PRE-dependent HIV-1
Gag are membrane-associated in human cells. Postnuclear supernatants derived from 293T cells expressing Rev-dependent or PRE-dependent HIV-1
Gag, Rev-dependent or PRE-dependent G2A mutant were subjected to equilibrium flotation centrifugation. Pr55Gag, TfR and actin were detected by
Western blotting. Membrane- and non-membrane-associated fractions were shown. (B) Rev-dependent HIV-1 Gag but not PRE-dependent HIV-1 Gag
is associated with Triton X-100 insoluble lipid rafts in human cells. Postnuclear supernatants derived from 293T cells expressing Rev-dependent or
PRE-dependent HIV-1 Gag were treated with 0.5% Triton X-100 on ice for 30 min prior to membrane flotation analysis. Pr55Gag, TfR and actin were
detected by Western blotting. Raft and non-raft fractions are indicated. (C) Quantitation of Rev-dependent (left panel) and PRE-dependent (right
panel) HIV-1 Gag in each fraction with (open circles) or without (closed squares) cold Triton extraction.
doi:10.1371/journal.pone.0006551.g006
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MA-directed membrane targeting and assembly of Gag is

dependent on the pathway used for trafficking of the Gag mRNA.

It is thought that the primary function of the MA domain in

retrovirus assembly is to mediate membrane association of Gag

polyprotein. The three-dimensional structure of HIV-1 MA reveals

a globular head conformation [35,36]. The N-terminal myristic acid

and the highly basic patch formed by conserved positive charged

residues clustered on the surface of the MA globular head both

contribute to HIV-1 MA dependent membrane binding of Gag

precursors [37]. Structural studies demonstrate specific binding

interactions between myristoylated HIV-1 MA and phosphatidyli-

nositol-(4,5)-bisphosphate [PI(4,5)P2], which triggers a change in

protein conformation that flips myristate from the sequestered to the

exposed conformation, thereby promoting the stable association of

MA with the membrane [20]. Previous intracellular functional

studies also demonstrate that PI(4,5)P2 plays a key role in Gag

targeting to the plasma membrane [4] and the recent lipid analysis

of HIV-1 virions demonstrated a MA-dependent enrichment of

PI(4,5)P2 in viral lipid envelope [28]. It has been suggested that

PI(4,5)P2 may preferentially associate with lipid rafts [38,39].

Therefore the PI(4,5)P2 induced myristoyl switch could regulate

lateral targeting of PI(4,5)P2:Gag complexes to lipid rafts that play a

critical role in HIV-1 assembly and budding [31–33,40]. In addition

to lipid, HIV-1 MA also binds to RNA through its basic residues

[41,42]. Therefore it can be speculated that RNA binding might

place another layer of regulation on MA dependent membrane

targeting, possibly by regulating the PI(4,5)P2-induced myristoyl

switch of HIV-1 MA.

Our data suggest that HIV MA in the context of PRE-

dependent Gag causes unspecific membrane targeting. Promiscu-

ous membrane binding would prevent Gag association with

plasma membrane lipid rafts that support Gag assembly. Our

current studies do not address the detailed molecular mechanism

behind the mistargeting of PRE-dependent HIV-1 Gag in human

cells. At this time, we can only speculate as to how RNA export

pathways affect the membrane targeting function of HIV-1 MA.

We hypothesize that HIV MA mediated plasma membrane

rafts targeting is tightly regulated both temporally and spatially

and relies on the sequential acquisition and release of host factors.

In human cells, PRE-dependent Gag may exhibit a defect in the

PI(4,5)P2 regulated myristoyl switch that could be due to the

inability to associate with specific cellular cofactors (RNA or

proteins). This defect can be rescued by in trans by Rev-dependent

wild type HIV-1 Gag but not by myristoylation deficient G2A or

multimerization deficient DCA mutants. Importantly, the defi-

ciency of PRE-dependent HIV-1 Gag can also be rescued in cis by

replacing MA with other membrane targeting motifs, suggesting

that efficient membrane targeting by HIV MA requires Rev-

dependent trafficking. In the absence of Rev-dependent traffick-

ing, MA exhibits an inhibitory effect on Gag assembly. Retroviral

genomic RNA (gRNA) serves as the mRNA template for Gag

synthesis as well as the genetic component of infectious viruses. In

our studies, the PRE-dependent HIV-1 Gag was expressed from a

mRNA encoding no viral accessory proteins and containing no

gRNA sequence. We believe that it is unlikely that the deficiency

of PRE-dependent HIV-1 Gag would only be due to the lack of

these viral factors, because membrane binding (G2A) and

multimerization deficient (DCA) Rev-dependent Gag constructs

failed to rescue PRE-dependent Gag assembly and budding,

despite expressing all accessory proteins. In addition, although

gRNA provides the scaffold for Gag assembly, this function can be

replaced by cellular tRNA and rRNA [43].

Various studies in cell biology have demonstrated that specific

RNA localization is a widely used mechanism affecting protein

function at multiple levels [44]. For example, ,70% of mRNAs in

oocytes and early embryos of Drosophila are localized in dozens of

distinct patterns [45]. Considerable evidence suggests that retroviral

Gag trafficking and assembly/budding is regulated by both nuclear

export [12–14,46] and cytoplasmic transport [22,47] of viral gRNA.

Our results comparing trafficking and assembly of HIV-1 Gag

expressed from mRNA using Rev-dependent (Crm 1 dependent)

[48] and PRE-dependent (Crm 1 independent) [49] nuclear export

pathways provide further support for this idea. At this point, we do

not know whether localized Gag synthesis plays a role in plasma

membrane targeting or if Gag synthesized from RNA takes different

trafficking routes. Clearly, the current data argue that RNA

trafficking also regulates protein function during retrovirus assem-

bly. In closing, PRE-dependent HIV-1 Gag exhibits an MA-

dependent assembly defect in human cells. Together with assembly

deficient Rev-dependent HIV-1 Gag in mouse cells, this model can

provide a valuable tool to study how HIV assembly is temporally

and spatially regulated and coordinated with genome packing.

Materials and Methods

DNA mutagenesis
Overlapping PCR was used to construct Gag mutations and

fusion proteins. Rev-dependent and Rev-independent HIV-1

(pNL4–3 proviral clone [50]) and EIAV (pEIAVuk proviral clone

[51]) Gag expression vectors were described previously [14].

Briefly, the hepatitis B virus posttranscriptional regulatory element

(PRE) was attached to the C-terminus of EIAV or HIV-1 Gag

gene to generate Rev-independent EIAV or HIV-1 Gag

expression vectors. Rev-dependent EIAV or HIV-1 Gag con-

structs were made based on pEIAVuk or pNL4–3 proviral

constructs. For BiFC assays, gene sequences encoding the amino

(residues 1–173, VN)- or carboxyl (residues 155–238, VC)-

fragments of Venus fluorescence protein were fused to the C-

terminus of EIAV or HIV-1 Gag via a 6-alanine linker as

described previously [14]. To make hemagglutinin (HA) epitope-

tagged Gag polyproteins, the YPYDVPDYA epitope from

influenza virus HA protein was inserted into the C-terminus of

p9 or p6 protein, respectively. All plasmids were isolated using the

Qiagen Midiprep Kit (Qiagen, Valencia, CA), and the specific

mutations were confirmed by DNA sequencing.

Cell culture and transfection
HeLa SS6 and 293T cells were cultured in Dulbecco’s Modified

Essential Medium (DMEM) supplemented with 10% fetal bovine

serum (Invitrogen, Carlsbad, CA). Cells were transfected using

Lipofectamine 2000 (Invitrogen, Carlsbad, CA) following the

procedures outlined by the manufacturer.

Gag budding assays
At 24 h post transfection, cells were harvested and lysed in lysis

buffer (25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% deoxycholic

acid, 1% Triton X-100, 16 protease inhibitor cocktail) and

centrifuged at 20,8006g for 5 min to remove cell nuclei. Virus-like

particles (VLPs) released into the culture medium were pelleted by

centrifugation (20,8006g for 3 h at 4uC) and resuspended in PBS.

HA-Gag contained in cell lysates and VLPs was analyzed by

Western Blotting using rat anti-HA antibody (Roche Applied

Science, Indianapolis, IN) and HRP conjugated goat anti-rat IgG

(Invitrogen, Carlsbad, CA), as described previously [14].

Membrane flotation analysis
Membrane flotation procedures were performed as described

[22,23]. At 24 h post-transfection, 293T cells were washed twice
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with phosphate-buffered saline, collected, and homogenized in

300 ml of TE buffer (10 mM Tris [pH 7.4], 1 mM EDTA [pH 8])

containing 10% sucrose and protease inhibitor cocktail by

passaging 24 times through a 23G11/4 needle. Nuclei were

removed by centrifugation at 1,0006g. A 250 ml sample of post

nuclear supernatant (PNS) was mixed with 1.25 ml of TE 85.5%

sucrose (adjusting the concentration of sucrose to 73%) and

deposited at the bottom of a 5-ml centrifugation tube. TE 65%

sucrose (2.5 ml) and then 1 ml of TE 10% sucrose were layered

above the lysate. The samples were subjected to ultracentrifuga-

tion at 100,0006g for at least 14 h at 4uC in a SW55Ti rotor

(Beckman Coulter). To determine lipid raft association, PNSs were

treated with Triton X-100 (final concentration 0.5%) for 30 min

on ice prior to flotation centrifugation. Nine fractions of 550 ml

were collected from the top and analyzed by Western Blotting

using the rat monoclonal anti-HA antibody (Roche Applied

Science, Indianapolis, IN), mouse monoclonal anti-human trans-

ferrin receptor antibody (Invitrogen, Carlsbad, CA) and mouse

monoclonal anti-bactin antibody (Sigma-Aldrich, Saint Louis,

MO). X-ray films were scanned and analyzed by the ImageJ

1.386 software (http://rsb.info.nih.gov/ij/).

Imaging
For BiFC assays, transfected cells grown on coverslips were fixed

and permeabilized with 2% paraformaldehyde and 0.1% Triton X-

100 in PBS. Images were captured using a Leica TCS-SL

microscope and processed with Metamorph software. For live cell

imaging, cells were plated on 35-mm imaging dishes (MatTek,

Ashland, MA) and transfected with GFP tagged HIV Gag expression

vector. At 8 hr post transfection, images were captured every 20 min

using a Nikon TE2000E spinning disc confocal microscope. Single

cell tracking was performed using Volocity software tracking module

(Improvision, Lexington, MA). All time-lapse movies were edited

using Volocity software (Improvision, Lexington, MA).

Supporting Information

Video S1 Intracellular distribution and assembly dynamics of

Rev-dependent HIV-1 Gag. 293T cells were transfected with Rev-

dependent HIV-1 Gag-GFP and monitored with time-lapse

confocal microscopy from 6 hour post transfection. Three

dimensional images were taken every 20 minutes. For each time

point, images of different Z sections were overlaid to produce

single extended-focus image.

Found at: doi:10.1371/journal.pone.0006551.s001 (4.95 MB

MOV)

Video S2 Intracellular distribution and assembly dynamics of

PRE-dependent HIV-1 Gag. 293T cells were transfected with

PRE-dependent HIV-1 Gag-GFP and monitored with time-lapse

confocal microscopy from 6 hour post transfection. Three

dimensional images were taken every 20 minutes. For each time

point, images of different Z sections were overlaid to produce

single extended-focus image.For each time point, images of

different Z sections were overlaid to produce single extended-

focus image.

Found at: doi:10.1371/journal.pone.0006551.s002 (6.62 MB

MOV)
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