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Abstract: Recent successful discoveries of potentially
causal single nucleotide polymorphisms (SNPs) for com-
plex diseases hold great promise, and commercialization
of genomics in personalized medicine has already begun.
The hope is that genetic testing will benefit patients and
their families, and encourage positive lifestyle changes
and guide clinical decisions. However, for many complex
diseases, it is arguable whether the era of genomics in
personalized medicine is here yet. We focus on the clinical
validity of genetic testing with an emphasis on two
popular statistical methods for evaluating markers. The
two methods, logistic regression and receiver operating
characteristic (ROC) curve analysis, are applied to our age-
related macular degeneration dataset. By using an
additive model of the CFH, LOC387715, and C2 variants,
the odds ratios are 2.9, 3.4, and 0.4, with p-values of 10213,
10213, and 1023, respectively. The area under the ROC
curve (AUC) is 0.79, but assuming prevalences of 15%,
5.5%, and 1.5% (which are realistic for age groups 80 y,
65 y, and 40 y and older, respectively), only 30%, 12%,
and 3% of the group classified as high risk are cases.
Additionally, we present examples for four other diseases
for which strongly associated variants have been discov-
ered. In type 2 diabetes, our classification model of 12
SNPs has an AUC of only 0.64, and two SNPs achieve an
AUC of only 0.56 for prostate cancer. Nine SNPs were not
sufficient to improve the discrimination power over that
of nongenetic predictors for risk of cardiovascular events.
Finally, in Crohn’s disease, a model of five SNPs, one with
a quite low odds ratio of 0.26, has an AUC of only 0.66.
Our analyses and examples show that strong association,
although very valuable for establishing etiological hy-
potheses, does not guarantee effective discrimination
between cases and controls. The scientific community
should be cautious to avoid overstating the value of
association findings in terms of personalized medicine
before their time.

Introduction

Recent successes in the discoveries of potentially causal single

nucleotide polymorphisms (SNPs) for complex diseases hold great

promise, and commercialization of genomics in personalized

medicine has already begun. A number of companies now offer,

for relatively modest fees, personalized genomics services that

provide individualized disease-risk estimates based on genome-

wide SNP genotyping. Most companies offering such profiling

make it clear that they are not a clinical service and that their

calculations are not intended for diagnostic or prognostic

purposes. They typically advise their clients to consult their health

care provider for more information. In most cases, people would

turn to their general physician [1]. However, as noted by others

[2,3], few doctors currently have enough genetics training to

actually make sense of the risk calculations now commercially

offered. Many physicians seem to feel the same way. In surveys in

five European countries, physicians ranked the disciplines in which

they felt they needed more training to overcome future challenges

[4,5]. In all countries, the top ranked area was ‘‘genetics of

common disease,’’ and ranked second was ‘‘approaching genetic

risk assessment in clinical practice.’’

Not only are risk results likely to be often poorly understood by

the tested individuals and their physicians, but also these results

are often based on risk models, such as logistic regression models,

that may not be good classification models [6]. Therefore, the

disclaimer made by the companies that their services are not

intended as medical advice cannot be overemphasized. Current

knowledge of the role of most genes in complex diseases is at the

group level of correlations of disease status with SNPs. Most of

these SNPs were discovered via genetic association studies aimed

at finding variants correlated with disease risk. It is hoped that

these discoveries will provide insights into the pathogenesis and

etiology, and ultimately lead to developments of new treatments or

preventive therapies. Assuming these SNPs will also be effective

classifiers, they are now being used in individual-level risk

estimation, classification, and clinical decision-making. However,

for many complex diseases, such as the ones discussed here (age-

related macular degeneration [AMD], type II diabetes, inflam-
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matory bowel disease [Crohn’s disease], and cardiovascular

disease), it is arguable whether the era of genomics in personalized

medicine is here yet. In this article, we discuss and explore how

useful highly associated SNPs might be for individual-level risk

estimation and prediction. Our focus will be on the classification

accuracy of genetic testing, with an emphasis on two popular

statistical methods for evaluating biomarkers. We give realistic

real-data examples that illustrate that, currently, the genetic

information is of limited value for personalized medicine. We also

discuss and apply risk-based and classification-based analysis

approaches to our AMD data.

Two Statistical Methods

There are two basic statistical approaches for evaluating

markers. The risk-based approach models the risk as a function

of marker(s), often with adjustment for covariates, and is

commonly applied in genetic studies. In case-control studies, this

is done with logistic regression, and the markers with the strongest

effect on disease risk are those associated with the smallest p-values

and most extreme odds ratios (ORs). The other method, the

classification-based approach, evaluates markers based on how

well they can discriminate between cases and controls. The

performance is evaluated by various measures, such as the

proportion of positive test results among cases or the true positive

fraction (TPF, or sensitivity) and the proportion of positive test

results among controls or the false positive fraction (FPF, or

12specificity). A perfect classifier will assign a positive test result to

everyone with the condition (TPF = sensitivity = 1) and a negative

test result to everyone without the condition (FPF = 0, specifici-

ty = 1). Often more than one possible grouping into cases and

controls is possible based on a classifier. The receiver operating

characteristic (ROC) curve is a plot of all (FPF, TPF) pairs for each

possible grouping. The area under the ROC curve (AUC) is a

popular measure of the discrimination power of a classifier. It is

the probability that given two random individuals, one who will

develop the disease and the other who will not, the classifier will

assign the former a positive test result and the latter a negative

result. Theoretically, the AUC can take values between 0 and 1,

but the practical lower bound is 0.5; a perfect classifier has an

AUC of 1. Classifiers with an AUC significantly greater than 0.5

have at least some ability to discriminate between cases and

controls. However, for screening of individuals with an increased

risk of disease, it is suggested that the AUC be .0.75, and for

presymptomatic diagnosis of the general population, the AUC

should be .0.99 [7]. When prognosis is the goal, one typically also

evaluates the classification model by two additional measures: (1)

the proportion of individuals who will develop the disease among

those with a positive test result, or the positive predictive value

(PPV), and (2) the proportion of individuals who will not develop

the disease among those with negative test result, or the negative

predictive value (NPV) (Box 1). We note in passing that there are

other methods that model classification performance and have

been applied in genetic studies, including, for example, genetic

algorithms, generalized multifactor dimensionality reduction, and

random forests [8–10]. However, to keep our discussion focused,

we do not discuss these other methods here.

Although the risk-based (logistic regression) and classification-

based (ROC theory) methods do not yield contradictory results

in terms of directionality, they can and often will differ in terms

of size or importance. For example, a marker strongly related to

risk may very well be a poor classifier; and vice versa, a good

classifier may only be weakly associated with risk [6].

Furthermore, neither method directly measures calibration,

which is how well the predicted risks agree with the underlying

true risks [11] (Box 2).

In a diagnostic setting in which discrimination between cases

and controls is most important, it only matters that the cases have

higher estimated risk, accurate or not, than the controls. However,

when prognosis or risk stratification is the goal, both discrimina-

tion and calibration are important. We then need a model that

both discriminates well between future cases and those who will

remain controls, and also accurately estimates the exact risk of

developing disease in the future.

The Odds Ratio, Classification, Calibration, and
Prediction

The OR is widely used to evaluate markers, and it is assumed

the markers associated with the most extreme OR are effective

predictors. However, as we mentioned above, a marker strongly

related to risk may very well be a poor classifier, and vice versa, a

good classifier may only be weakly associated with risk [6]. In

addition, a marker associated with risk may be well or poorly

calibrated, that is, the predicted risk may agree well or poorly with

the true risk [11].

For a strongly associated marker to be effective in classification,

the associated OR must be of an extreme magnitude rarely (if ever)

seen in genetic association studies. As illustrated in Figure 1, if one

wants to be able to detect 80% of cases with a binary marker, such

as the presence or absence of a risk allele, with ORs of 1.5, 10, or

50, then about 73%, 29%, and 7% of the controls would be

mislabeled as cases, and the AUC achieved by the binary marker

would be 0.54, 0.76, and 0.86, respectively. Even a huge OR of 50

does not guarantee that a marker will have acceptable prediction

accuracy; for example, the TPF may be unacceptably low

(TPF = 55%, FPF = 2.4%, and AUC = 0.76) or the FPF unaccept-

ably high (TPF = 97.6%, FPF = 45%, and AUC = 0.76) (Figure 1).

Let us examine the achievable AUC as a function of risk allele

frequency under an additive genetic model in which the genotypes

are coded 0, 1, and 2 (Figure 2 and Table 1). In Figure 2, we have

plotted the AUC for fixed values of the OR, as a function of risk

allele frequency in cases (pca) under the assumption of Hardy-

Weinberg equilibrium in both cases and controls. We clearly see

Box 1. Classification performance measures—
definitions

TPF = probability that a diagnostic test (e.g., a marker or a
risk model) classifies an individual as a case given that this
person is truly affected = P(test positive | affected)

FPF = probability that a diagnostic test classifies an
individual as a case given that the person is actually
unaffected (a control) = P(test positive | unaffected).

PPV = probability that a person who tests positive is
actually a case = P(affected | test positive)

NPV = probability that a person who tests negative is
actually a control = P(unaffected | test negative)

Box 2. Association versus classification versus
risk prediction and calibration

Strong association (low p-value) does not guarantee
effective discrimination between cases and controls
(classification). Excellent classification (high AUC) does
not guarantee good prediction of actual risk. A model that
accurately predicts risk is well calibrated.
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that markers with a reasonably high OR of 3 have a maximum

possible AUC of less than 0.70, and markers with an OR of 5 do

not even reach an AUC of 0.80. For each OR, the risk allele

frequency in controls (pco) corresponding to the maximum possible

AUC is given on the plot, and not surprisingly, to reach the

maximum possible AUC for each OR, the risk allele frequency

difference between cases and controls has to be quite large

(Table 1). For example, to reach an AUC of 0.80 using a marker

with an OR of 10, the allele frequencies in cases and controls

would be quite different (pca = 0.49 and pco = 0.09) (Table 1).

The Odds Ratio, Relative Risk, and Risk

In retrospective studies, the relative risk or risk ratio (RR)

cannot be estimated unless the prevalence is known, and therefore,

the OR is used as a proxy. Theoretically, the OR will give a good

approximation for the RR if the prevalence is low, but otherwise it

tends to overestimate the RR [12,13]. RRs, which are the ratio of

two risks (probabilities), are correctly interpreted as an estimate of

how much more likely people sharing the same genotype

combination are to develop the condition of interest when

compared to a group without this genotype combination. The

numerator of the RR is the risk of the condition given the

genotype combination of interest, but clearly, the RR (or the OR)

itself is not an estimate of individual-level risk and certainly not a

diagnostic test or classifier.

Statisticians should easily understand this relationship between

OR, RR, and risk, but a person not trained in statistics (or science

in general) may not make the same distinction as easily. Numerous

studies in the genetic counseling literature have investigated what

people make of risk estimates. For example, in a study of women’s

perceived risk of breast cancer, 98% of women overestimated their

risk of dying from breast cancer in 10 y by half to 8-fold when

asked to quantify risk as a number out of 1,000. Interestingly, only

10% of those women thought they were at higher risk than an

average woman their age [14].

Clinical Validity and Utility of Predictive Genetic
Testing

The clinical validity is measured by the discrimination ability of

the marker, or its ability to classify people as cases or controls. The

AUC, though imperfect, is a popular and easily interpretable

measure of classification accuracy. It can be interpreted as the

probability that predicted risk is higher for a case than a control.

Various TPF and FPF pairs and various values of the AUC can

correspond to the same OR (Figure 1). Thus, the OR by itself

cannot give a meaningful indication of the probability of being

correctly classified as case (TPF) or of the probability of being

wrongly classified as a case (FPF), and alone its value is essentially

useless to the individual.

The clinical utility of predictive genetic profiling for complex

diseases rests on at least two conditions: (1) preventive means with

high efficacy in the general population are available, and (2) these

preventive means will also be effective in the genetically high-risk

cohorts. Additionally, it is worth noting that for many complex

diseases, known preventive lifestyle changes are broadly beneficial:

weight loss, smoking cessation, blood pressure control, regular

Figure 2. AUC for additive risk models of SNP markers as
function of risk allele frequency in cases. The AUC is estimated for
all risk allele frequencies in controls assuming additive ORs 1.5, 3, 5, 10,
and 50 (the ORs are marked on the curves). The numbers in gray are the
risk allele frequencies in controls corresponding to the maximum AUC
for each OR. The dotted horizontal line in gray marks an AUC of 0.7 and
0.8. The black diamonds highlight the points (pca, AUC) = (pca, 0.80) for
markers with additive ORs 10 and 50 (see Table 1).
doi:10.1371/journal.pgen.1000337.g002

Table 1. AUC, Risk Allele Frequencies in Cases (pca) and
Controls (pco) for Specific ORs in an Additive Model
(Genotypes Coded 0-1-2 According to Number of Risk Alleles).

OR Maximum AUC pca pco
AUC = 0.80

pca pco

1.5 0.58 0.55 0.45 NP NP

3 0.70 0.63 0.36 NP NP

5 0.77 0.69 0.31 NP NP

10 0.85 0.76 0.24 0.49 0.09

50 0.96 0.88 0.13 0.39 0.01

NP, not possible.
doi:10.1371/journal.pgen.1000337.t001

Figure 1. Accuracy curves for binary markers. The curves of
accuracy points (FPF, TPF pair) for binary markers with ORs 1.5, 10, and
50 are plotted. The black diamonds and horizontal dotted line highlight
the points (FPF, TPF) = (FPF, 80%) on the accuracy curves. The ORs are
marked on the curves.
doi:10.1371/journal.pgen.1000337.g001
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exercise, diets enriched with fruits and vegetables, etc., so to many

individuals, it might be wasteful to spend $1,000 to find out they

are genetically at increased risk for some condition only to have

their doctor tell them all they can do is to lose weight and stop

smoking. On the other hand, if the person is more likely to make

lifestyle changes and stick to them, then the benefits can be great,

both for the individual and the population as whole. Of course, the

flip side is what the actions will be if the genetic test suggests lower

than average risk for one or more specific conditions.

Reclassification

The AUC attempts to measure the ability of a model to

discriminate between cases and controls for a set of cutoff values

that separate the two groups. However, on an individual basis, we

also want the model to provide the best possible estimation of that

person’s risk. One way to compare the accuracy of individual-level

risk estimates of different risk models is to use the reclassification

table approach [11,15]. In this approach, one measures how often

subjects are estimated to be in different risk strata when different

risk models are applied and whether the reclassification more

accurately stratifies individuals into higher or lower risk strata. A

marker that has a modest or no effect on the AUC can improve

risk classification [11]. For example, suppose we are comparing

two risk models that differ regarding a single individual’s

membership in the 20%–30% risk stratum versus the 10%–20%

risk stratum. If both models achieve the best discrimination by

classifying everyone below the 40% risk threshold as controls and

everyone above as cases, then the TPF and FPF will not be altered

due to this person’s reclassification, but one model is more

accurate than the other in terms of the true value of the

individual’s risk estimate.

Examples

We now provide several examples, from the literature as well as

from our own data, illustrating that although a set of SNPs can be

strongly associated with disease risk with extremely small p-values,

that same set of SNPs may not necessarily have high discrimina-

tion ability or may not dramatically improve the discrimination

ability of a classification model constructed using ‘‘conventional’’

nongenetic risk factors without the SNPs.

Risk of Cardiovascular Events
In a recent replication study of nine SNPs associated with

levels of either low-density lipoprotein (LDL) or high-density

lipoprotein (HDL) cholesterol, Kathiresan et al. [16] created a

genotype score on the basis of the total number of unfavorable

alleles at these risk SNPs, and investigated the classification

accuracy of the genotype score and the effect on reclassification

beyond standard risk factors for cardiovascular events. The

authors found that accounting for the effect of the nine SNPs did

not improve the classification accuracy of their model. The ROC

curves with and without the genotype score lined up almost

perfectly, and both had an AUC of 0.80 despite the SNPs having

p-values as low as 10229, with six out of nine SNPs having p-

values,1026 (Text S1 and Table S1 in Text S1). Adding the

genotype score to the model did, however, modestly improve the

reclassification. Unfortunately for this dataset, the classification

accuracy of the genotype score alone was not estimated.

Nevertheless, these data provide an example of highly associated

variants that do not markedly improve the discrimination ability

of a model, yet at the same time, they give hope that genetic

variants may become valuable prognostic tools.

Risk of Type 2 Diabetes
In type 2 diabetes, 12 SNPs [17–19] with p-values as low as

10234 (Text S1 and Table S2 in Text S1) reach an AUC of 0.64,

suggesting only fair discrimination power. We arrived at this AUC

of 0.64 using only published allele frequencies; we did this using

the method of Lu and Elston [20] (Text S1, Estimating the AUC

from meta-data). Lu and Elston [20] also applied their method to a

model of the same 12 SNPs and four additional environmental

factors, and got a slightly improved AUC of 0.67.

Risk of Prostate Cancer
A genetic classification model of two prostate cancer risk SNPs

in low linkage disequilibrium with each other [21] has an AUC of

0.56, based on the method of Lu and Elston [20]. An AUC of this

magnitude suggests that the model has a very poor discrimination

power. The SNPs have p-values of 10213 and 10214, but the

genotype-specific ORs are not extreme and range from 1.3 to 2.2

(Text S1 and Table S3 in Text S1).

Risk of Inflammatory Bowel Disease
A genetic classification model of five well-replicated genetic

associations [22–26] in inflammatory bowel disease (Crohn’s

disease) has an AUC of only 0.66. This suggests only fair

discrimination power for Crohn’s disease despite the variants

being highly significant (p-values range from 1027 to 10214) and

one SNP having quite an extreme OR of 0.26 (,1/4). Again, the

method of Lu and Elston was used to estimate the AUC [20]. For

more details, see Text S1 and Table S4 in Text S1.

Risk of Age-Related Macular Degeneration
Using our previous published AMD data [10] on the CFH,

LOC387715, and C2 variants, we plotted the ROC curves and

estimated the AUC and positive predictive values of one-, two-,

and three-factor models (detailed methods are in Text S1). Figure 3

displays the ROC curves for the null model and for five genetic

risk models: the three-factor model of CFH, LOC387715, and C2

SNPs, the two-factor model of CFH and LOC387715, and all of the

one-factor models. We see that to correctly identify about 74% of

the cases using the three-factor model, we would wrongly classify

31% of the controls, and for the TPF to be around 80%, the FPF

needs to be unacceptably high (.40%). The AUC for the three-

Figure 3. ROC curves for AMD classification models. The black
diamond highlights the point (FPF, TPF) = (31%, 74%) on the ROC curve
of the three-factor model of CFH, LOC387715, and C2. The gray line for
reference gives the ‘‘chance’’ classification rule: the farther the ROC
curve is from the chance line, the better the classification rule.
doi:10.1371/journal.pgen.1000337.g003
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factor model is quite high, 0.79, and significantly different from 0.5

(95% confidence interval [CI] 0.74–0.83) (Table 2). Table 2 also

gives the results of logistic regression analysis: the ORs for additive

inheritance of CHF and LOC387715 risk alleles are about 3 with p-

values of around 10213.

We also plotted the integrated predictiveness and classification

plot, which combines information from both the risk- and

classification-based analysis approaches discussed above [27]. In

the integrated plot (Figure 4), there are two aligned plots: in the

top plot, ordered individual risks are plotted as function of the risk

percentile, and in the bottom plot, the TPF and FPF are plotted as

a function of the risk percentile such that at each point, the TPF

and FPF are calculated for the risk threshold equal to the risk

associated with the corresponding risk percentile. If we now look at

the integrated predictiveness and classification plot for the three-

factor model, we see that the TPF and FPF pair 74% and 31%

corresponds to the 35% risk percentile (Figure 4, bottom panel),

which then corresponds to choosing an AMD risk of 4% as the

cutoff point for classifying individuals (Figure 4, top panel). Those

with risk greater than 4% are assumed to be at high risk and are

classified as cases, and those with lower risk are classified as

controls. To illustrate this, suppose we have a population of size

1,000 and a prevalence of 5.5% (which is the prevalence of

advanced AMD in the U.S. in white individuals 65 y or older

according to Friedman et al. [28] and the U.S. 2000 census data—

see Text S1 for further details). If the prevalence is 5.5%, there

would be 55 cases in our population. Of those 55 cases, 74%, or

41, would be correctly considered to be at high risk of AMD, and

31%, or 293, of the true 945 controls would be wrongly assumed

to be at high risk. Therefore, out of the 334 (41+293) individuals in

the high-risk group, 88% should actually be in the low-risk group,

or in other words, the PPV would be only 12% (i.e., 100%288%).

When designing a clinical trial to test preventive therapies in high-

risk cohorts based on genotyping alone, it may or may not be cost

effective to have 12% (instead of 5.5%) of the study cohort as true

cases. However, as a clinical test, it may be considered unethical to

needlessly alarm 88% of the high-risk cohort, especially when

limited treatment and preventive options are available [29].

To lower the proportion of controls in the high-risk cohort, a

more stringent threshold for calling someone high risk, say 25%,

can be used instead of the 4% threshold used above. However,

using this higher risk threshold only lowers the proportion of

controls in the high-risk group from 88% to 84%, as can be seen in

this manner: the plot (Figure 4, top panel) shows that the risk

threshold of 25% corresponds to the 85% risk percentile. Looking

at the classification curve (Figure 4, bottom panel), we see that the

85% risk percentile corresponds to a TPF of 17% and FPF of 5%.

Again, to put these numbers in perspective, let us again assume we

have a population of size 1,000. Nine (17%) out of 55 true cases

would then be correctly classified as high risk, and 47 (5%) out of

945 controls would be incorrectly classified as high risk. Therefore

84% (47/56 = 47/(9+47)) of those classified as ‘‘high risk’’ would

actually be controls (PPV = 100%284% = 16%).

When applied to case-control data, the integrated predictiveness

and classification plot depends on the assumed prevalence of the

disease, which may not be known with precision or may, as in the

case of AMD, depend strongly on age. Note that as the prevalence

changes, the bottom plot does not change, only the top plot does:

although it still will look essentially the same, the risks will be more

spread out between 0 and 1 as the prevalence gets higher and less

spread out otherwise.

Second, it is worth noting how the results of our AMD example

change if different values for the prevalence are used. The

prevalence of AMD is highly age-dependent, and in Table 3, we

calculate the PPV using prevalence estimates for different age

groups. If the prevalence increases, the results are less disappoint-

ing (PPV increases) but are even worse if it decreases (Table 3).

Clearly, the ability to discriminate between current cases and

controls, based on genotype data from CFH, LOC387715, and C2

alone, changes with age. A crude estimate of the lifetime risk at age

80 y, given a genetically high-risk score based on the three

variants, is 30% compared to 15% baseline lifetime risk at age 80

(Table 3).

Discussion of the AMD Example

If the primary goal of genetic diagnostic tests for AMD were to

identify those who are at high risk before they show irreversible

degenerative changes to maximize the effectiveness of long-term

preventive strategies, then we would want to test individuals 40–

55 y old (or younger) to predict whether they will develop AMD

before age 80 y. Our case-control data presented here do not fully

measure the ability of genetic data to predict future disease status

(prognosis) for several reasons: (1) AMD prevalence increases with

age, (2) females have higher prevalence in all age groups compared

to males, (3) females live longer, (4) the FPF derived from case-

control data is overestimated because some controls will develop

AMD as the cohort ages, (5) the case/control counts are

unbalanced, so our sample may not be optimal for estimating

the classification accuracy of the markers [30], and (6) the

estimates of the ORs, and estimates from most other AMD case-

control studies, are based on the comparison of extreme

phenotypes: a group of individuals with advanced AMD are

contrasted with a control group of individuals with no or very

minimal clinical findings. Therefore, they very likely overestimate

the RR and the discrimination power for individuals with

intermediate clinical findings. Even accounting for all these issues

in an optimistic manner, the overall conclusions of our analysis are

unlikely to change dramatically. Proper analyses of longitudinal

cohort data using survival analysis techniques could lead to a more

precise assessment of the potential value of genetic data in

predicting lifetime AMD status [31,32].

The major achievements that have been made in understanding

the genetics of AMD are well known, and the AMD discoveries

[33–38] are widely mentioned as the first ‘‘proof’’ that genome-

wide association analysis works (although the majority of the AMD

Table 2. Results of Logistic Regression and ROC Analysis.

Model Factors Logistic Regression ROC Analysis

OR p-Value AUC 95% CI

Model 1 CFH 2.89 9.1610213 0.79 0.74–0.83

LOC387715 3.42 2.3610213 0.79 0.74–0.83

C2 0.39 1.361023 0.79 0.74–0.83

Model 2 CFH 3.00 9.1610214 0.77 0.73–0.82

LOC387715 3.38 2.5610213 0.77 0.73–0.82

Model 3 CFH 2.77 2.1610213 0.69 0.64–0.73

Model 4 LOC387715 3.11 6.2610213 0.69 0.65–0.74

Model 5 C2 0.33 1.961025 0.56 0.53–0.60

The OR for each variant is for an additive model in which the genotypes are
coded 0-1-2.
The confidence intervals (CIs) for the AUC are asymptotic and derived using
DeLong’s estimator [48] for the variance.
doi:10.1371/journal.pgen.1000337.t002
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studies were not genome-wide association studies, but rather

targeted searches following up regions of linkage). The results have

been so exciting that perhaps all of us who study AMD are guilty

of overstating our results. Here are just a few examples:

‘‘Nevertheless, with all the genetic findings, it may soon be

possible to provide pre-symptomatic diagnosis with reason-

able accuracy, leading to better disease management

strategies for high-risk individuals.’’—Swaroop et al. [39]

‘‘The continued support for these genes in ARM susceptibility

will hopefully bring us closer to being able to utilize the

information in these genes to identify at risk individuals and

provide a rational basis for future clinical trials to test

preventive therapies in high-risk cohorts.’’—Conley et al. [40]

‘‘Expressed another way, these genotypes apparently identify

individuals whose lifetime risk of AMD ranges from less than

1% to more than 50%; however, longitudinal studies are

needed to define the true risk attributable to these loci and the

ways in which these might interact with the known

environmental and lifestyle risk factors.’’—Maller et al. [41]

All these statements are scientifically valid, they are carefully

worded, and it is clear the investigators are talking about

‘‘potential,’’ ‘‘future,’’ and ‘‘hope.’’ Nevertheless, they can and

have been overinterpreted. For example, a recent review [42] cites

Maller et al. [41] and states:

‘‘SNPs in complement factor H (CFH) and PLEKHA1/

ARMS2/HtrA1 capture a substantial fraction of AMD risk

Table 3. Positive Predictive Values (PPVs) for Different Values
of the Prevalence.

Prevalence Age Group Risk Threshold PPV

15% 80 y and older 10% 30%

5.5% 65 y and older 4% 12%

1.5% 40 y and older 1% 3%

The risk threshold corresponds to TPF = 74% and FPF = 31% (as in the first
example in the text).
PPV = proportion of cases in the high-risk group.
12PPV = proportion of controls in the high-risk group.
doi:10.1371/journal.pgen.1000337.t003

Figure 4. Integrated predictiveness and classification plot for the three-factor model. The light-gray lines show how the plots are used in
the examples given in the text: the dashed lines are for the first example with TPF = 74%, FPF = 31%, risk percentile = 35%, and AMD risk
threshold = 4%; and the dotted lines are for the second example with AMD risk threshold = 25%, risk percentile = 85%, TPF = 17%, and FPF = 5%. On
the top panel, the risks for cases are marked with a dot in black while the risks for controls are marked with a vertical line segment in dark-gray.
doi:10.1371/journal.pgen.1000337.g004
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and permit the identification of individuals at high risk of

developing AMD.’’

Even Nature Genetics appears to also overstate the potential

impact of AMD genetics. In the December 2007 issue [43], the

editors discuss the new hype about personalized genomics and ask:

‘‘With the possible exception of age-related macular degeneration,

how much can we say with confidence about the spectrum of

risk?’’ However, as we have shown here, we cannot yet make an

exception for AMD. We should, however, not let this discourage

us. The discoveries of the AMD risk genes are truly amazing, and

they should of course encourage and guide future research. In fact,

the discovery of the likely involvement of the CFH gene gave

firmer footing to the hypothesis that the abnormal function of

complement pathway can cause AMD and has resulted in

discoveries of other AMD genes in this pathway [9,44–46].

Conclusions

Genetic association studies have identified many susceptibility

variants for complex diseases and, in many cases, added to the

understanding of the etiology of the diseases. However, as we

discuss here using real data and theoretical examples, strong

association does not necessarily guarantee good classification or

discrimination ability. Before using association results for classifi-

cation and risk estimation purposes, we need to establish their

effectiveness formally using appropriate measures and, ideally,

appropriate study designs. Additionally, when evaluating the

improvement in the predictive value by adding a marker to a

prediction model, we may need to use additional measures besides

the AUC, such as reclassification tables.

In our examples, we saw that the addition of nine highly

significant risk SNPs to the risk model could not improve the

discrimination power for cardiovascular events beyond standard

risk factors. For type 2 diabetes, the classification rule based on 12

SNPs gave an AUC of only 0.64, a value that is well below the

guidelines of 0.75 and 0.99 cutoffs for screening and prognosis

purposes, respectively. For Crohn’s disease, a classification model

based on five SNPs gave an AUC of only 0.66, and for prostate

cancer, a model of two SNPs achieves an AUC of only 0.56. Both

values are well below the 0.75 and 0.99 cutoffs. For AMD, the

AUC of a model with three SNPs was 0.80, but the proportion of

positive test results among affected individuals was only 30%,

12%, and 3%, depending on assumed prevalence (15%, 5.5%, and

1.5%, respectively). The results of these four examples, although

somewhat disappointing, are not surprising given the theoretical

results of Janssens et al. [7,47] that indicate that achieving a high

AUC requires a much larger number of genetic variants than we

have to date. For example, Janssens et al. demonstrated that for

genetic profiling, on average 80 common variants with ORs of

1.25 each were needed to develop a model useful for identification

of high-risk individuals (AUC.0.80).

Even though our examples illustrate that highly associated SNPs

may not be effective as classifiers, it should not be concluded that

the association findings are not important nor that association

studies are not valuable. In many cases, the association discoveries

have and will continue to result in new etiological hypotheses

previously not considered. For example, in the case of AMD, the

CFH discovery [33–35,37] resulted in a new focus on the

complement pathway and subsequent identification of additional

novel disease genes in that pathway [9,44–46]. The scientific

community should be very cautious to avoid overhyping

association findings in terms of their ‘‘personalized medicine’’

value before their time, lest we lose the goodwill and support of the

general public.

Supporting Information

Text S1 Supporting text and tables.

Found at: doi:10.1371/journal.pgen.1000337.s001 (0.08 MB PDF)
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