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Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on
intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying
the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease
traits has the potential to provide the functional information required to not only identify and validate the
susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in
which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we
profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in
more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a
metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and
atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000
associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes
identified have already been implicated in a number of human diseases. The utility of these data for elucidating the
causes of common human diseases is demonstrated by integrating them with genotypic and expression data from
other human and mouse populations. This provides much-needed functional support for the candidate susceptibility
genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from
genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene
RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus
recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate
susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein
cholesterol levels in the process.
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Introduction

Recent large-scale, genome-wide association studies have
now delivered a number of novel findings across a diversity of
diseases, including age-related macular degeneration [1–3],
heart disease [4,5], host control of HIV-1 [6], type I and II
diabetes [7,8], and obesity [9]. However, despite this astonish-
ing rate of success, the major challenge still remains to not
only confirm that the genes implicated in these studies are
truly the genes conferring protection from or risk of disease,
but to elucidate the functional roles that these implicated
genes play with respect to disease. Most of the genetic
association studies reporting novel, highly replicated associ-
ations to disease traits do not provide experimental data
supporting the putative functional roles a given candidate
susceptibility gene may play in disease onset or progression.
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Even in cases where susceptibility genes are well studied, with
well known functions, nailing down how these genes confer
disease susceptibility can linger for years, or even decades, as
has been the case for genes like ApoE, an Alzheimer disease
susceptibility gene identified more than 15 years ago [10].

Complex networks of molecular phenotypes—gene expres-
sion (mRNA, ncRNA, miRNA, and so on), protein expression,
protein state, and metabolite levels—respond more prox-
imally to DNA variations that lead to variations in disease-
associated traits. These intermediate phenotypes respond to
variations in DNA that in turn can induce changes in disease
associated traits. Because a majority of single nucleotide
polymorphisms (SNPs) detected as associated with disease
traits from the recent wave of genome-wide association
studies (GWASs) do not appear to affect protein sequence, it
is likely that these SNPs either regulate gene activity at the
transcript level directly or link to other DNA variations
involved in this type of regulatory role. Therefore, to uncover
the genetic determinants affecting expression in a metabol-
ically active tissue that is relevant to the study of obesity,
diabetes, atherosclerosis, and other common human diseases,
we profiled 427 human liver samples on a comprehensive
gene expression microarray targeting more than 39,000
transcripts, and we genotyped DNA from each of these
samples at 782,476 unique SNPs. The relatively large sample
size of this study and the large number of SNPs genotyped
provided the means to assess the relationship between genetic
variants and gene expression with more statistical power than
many previous studies allowed [11–13]. A comprehensive
analysis of the liver gene expression traits revealed that
thousands of these traits are under the control of well-defined
genetic loci, with many of the genes having already been
implicated in a number of human diseases. Here we
demonstrate directly how integrating genotypic and expres-
sion data in mouse and human can provide much-needed
functional support for candidate susceptibility genes identi-

fied in a growing number of genetic loci that have been
identified as key drivers of disease from GWASs. Specifically,
we highlight how the gene RPS26 and not ERBB3 is most
strongly supported by our data as a susceptibility gene for a
novel type 1 diabetes (T1D) locus that was recently identified
in a large-scale GWAS [14] and subsequently extensively
replicated in a number of cohorts [15]. We also identify
SORT1 and CELSR2 as candidate susceptibility genes for a
locus recently associated with coronary artery disease [16]
and plasma low-density lipoprotein (LDL)-cholesterol levels
[17,18].

Results

To characterize the genetic architecture of gene expression
in human liver, we compiled a tissue-specific human liver
cohort (HLC), which comprised 427 Caucasian subjects (Table
S1). DNA and RNA were isolated from all liver tissue samples.
Each RNA sample was profiled on a custom Agilent 44,000
feature microarray composed of 39,280 oligonucleotide
probes targeting transcripts representing 34,266 known and
predicted genes, including high-confidence, noncoding RNA
sequences. Each DNA sample was genotyped on the Affyme-
trix 500K SNP and Illumina 650Y SNP genotyping arrays.
Analysis was restricted to those SNPs that had a genotyping
call rate greater than 75%, a minor allele frequency greater
than 4%, and that did not deviate significantly from Hardy-
Weinberg equilibrium in the HLC. A total of 310,744 and
557,240 SNPs met these criteria from the Affymetrix and
Illumina sets, respectively, resulting in a set of 782,476 unique
SNPs (85,508 SNPs were in the intersection), referred to here
as the analysis SNP set.

Genome-Wide Screen for Putative cis- and trans-Acting
Expression Quantitative Trait Loci
To identify expression quantitative trait loci (eQTL) that

have putative cis and trans [19] regulatory effects on the liver
gene expression traits, we tested all expression traits for
association with each of the SNPs in the analysis SNP set typed
in the HLC. The strongest putative cis eQTL for a given
expression trait was defined as the SNP most strongly
associated with the expression trait over all of the SNPs typed
within 1megabase (Mb) of the transcription start or stop of the
corresponding structural gene. The association p-values were
adjusted to control for testing ofmultiple SNPs and expression
traits using two different methods: (1) a highly conservative
Bonferroni correction method to constrain the study-wise
significance level, and (2) an empirical false discovery rate
(FDR) method that constrains the overall rate of false positive
events. For cis eQTL, we only test for associations to SNPs that
are within 1 Mb of the annotated start or stop site of the
corresponding structural gene. To achieve a study-wise
significance level of 0.05, the Bonferroni adjusted p-value
threshold was computed as 0:0 5=

P3 9;2 8 0
i¼1 Ni ¼ 3:9 53 1 0�8,

whereNi denotes the number of SNPs tested for trait i, over all
39,280 expression traits tested. At this threshold, 1,350
expression traits corresponding to 1,273 genes were identified.
The Bonferroni adjustment method can be conservative

when there is dependence among the expression traits and
among the SNP genotypes. Given that strong correlation
structures exist among expression traits and among SNP
genotypes in a givenlinkage disequilibrium (LD) block, the
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Author Summary

Genome-wide association studies seek to identify regions of the
genome in which changes in DNA in a given population are
correlated with disease, drug response, or other phenotypes of
interest. However, changes in DNA that associate with traits like
common human diseases do not lead directly to disease, but instead
act on intermediate, molecular phenotypes that in turn induce
changes in the higher-order disease traits. Therefore, identifying
molecular phenotypes that vary in response to changes in DNA that
also associate with changes in disease traits can provide the
functional information necessary to not only identify and validate
the susceptibility genes directly affected by changes in DNA, but to
understand as well the molecular networks in which such genes
operate and how changes in these networks lead to changes in
disease traits. To enable this type of approach we profiled the
expression levels of 39,280 transcripts and genotyped 782,476 SNPs
in 427 human liver samples, identifying thousands of DNA variants
that strongly associated with liver gene expression. These relation-
ships were then leveraged by integrating them with genotypic and
expression data from other human and mouse populations, leading
to the direct identification of candidate susceptibility genes
corresponding to genetic loci identified as key drivers of disease.
Our analysis is able to provide much needed functional support for
these candidate susceptibility genes.



Bonferroni adjustment may be overly conservative. There-
fore, we used an empirical FDR method based on permuta-
tions that accounts for the correlation structures among the
expression traits and among the SNP genotypes. We con-
strained the empirically determined FDR to be less than 10%
(see Methods). At this level, we identified 3,210 expression
traits corresponding to 3,043 genes that were significantly
associated with at least one SNP near the corresponding gene
region (referred to here as a putative cis eQTL). The full list of
association results are provided in Table S2. The magnitude
of the effects ranged from SNPs that explained roughly 2% of
the in vivo expression variation (p ; 0.003) to those that
explained roughly 90% of the expression variation (p ,

10�65).
Several recent studies have been published that examine

the extent of genetic control in blood [20–22], brain [23], and
adipose [21] gene expression via genetic association testing.
In one of these studies [21], we performed the study on
human blood and adipose tissues profiled on the same
expression platform as the HLC, providing a straightforward
way to compare the extent of cis eQTL overlap between
blood, adipose, and liver tissues. In our characterization of
blood and adipose tissue eQTL, there were 2,573 and 2,789
expression traits, respectively, represented on the microarray
used to profile the HLC samples and that gave rise to cis
eQTL. Of these, 752 blood and 881 adipose cis eQTL
overlapped the set of 3,210 cis eQTL detected in the HLC.
Therefore, in both adipose and blood, roughly 30% of the cis
eQTL detected in these tissues were also detected in the HLC,
confirming that there is significant, common genetic control
between tissues. However, these overlaps also highlight that a
majority of cis eQTL detected in one tissue may be specific to
that tissue, potentially reflecting the genetic control of tissue-
specific biological functions.

The significance of the trans eQTL in the HLC were also
assessed by the Bonferroni method and by constraining the
empirically determined FDR to be less than 10%. In the case
of trans eQTL, all 782,476 SNPs were tested for association to
each of the 39,280 expression traits. Therefore, the Bonfer-
roni adjusted p-value threshold was computed as 0.05/
(782,476 3 39,280) ¼ 1.6 3 10�12. At this threshold, 242
expression traits corresponding to 236 genes were signifi-
cantly associated with a SNP in trans (referred to here as a
trans eQTL). On the other hand, by constraining the FDR to
be less than 10%, 491 expression traits corresponding to 474
genes were identified as significantly associated with a SNP in
trans. For the FDR-computed cis and trans eQTL signatures,
the trans eQTL signature was only 15% the size of the cis
eQTL signature, consistent with findings in other human
genetics of gene expression studies [12,13]. The smaller trans
eQTL signature likely reflects a lack of power to detect the
small-to-moderate eQTL effects, given the sample size of this
study in the context of testing 782,476 SNPs and profiling
39,280 expression traits. Other studies have noted strong
heritability estimates for a majority of the expression traits
that, when taken together with the small number of
associations detected, suggests that expression in general is
a complex trait under the control of many loci [21]. With the
more stringent threshold required to constrain the FDR in
searching for trans eQTL, the magnitude of the trans eSNP
effects (mean R2 ¼ 0.19) was larger than the cis eSNP effects
(mean R2 ¼ 0.14).

In this study we used both the Affymetrix and Illumina
genotyping platforms, providing for increased power to
detect cis and trans eQTL in the HLC compared to the
detections achieved using the Affymetrix and Illumina sets
independently [49]. Conditional on the sample size and FDR,
the Illumina SNP set provided for roughly 15% more eQTLs
than the Affymetrix SNP set, corresponding to a 15%
increase in the relative power. This increase in power is
primarily due to the higher genetic coverage of the Illumina
SNP set compared to the Affymetrix SNP set. Further, given
the ;40,000 expression traits profiled in the HLC, we were
able to estimate the genetic coverage of the Illumina and
Affymetrix SNP sets on a cohort that is independent of the
HapMap CEU (Utah residents with ancestry from Northern
and Western Europe) subjects. Interestingly, we observed
significantly lower genetic coverage (78%) than previously
reported (90%) (electronic database: http://www.cidr.jhmi.
edu/download/HumanHap650Y_info.pdf). Finally, in com-
paring whether more samples or more SNPs enhanced power
most dramatically, we found that a modest increase in sample
size (19%) had a more profound impact on the power to
detect gene expression associations (a 21% increase in this
case) than increasing the genetic coverage. These power and
genetic coverage issues are fully detailed in a separate report
[49].
The cis and trans eQTLs identified from the first pass

analysis provide a significantly reduced set of SNPs on which
to focus (;3,700 versus 782,476). The set of SNPs associated
with expression (eSNPs) can be considered a functionally
validated set, given that the SNPs in this set have been found
to associate with biologically relevant control of gene
expression. In fact, many of the gene expression traits
associated with eSNPs correspond to genes that have
previously been associated with many different human
diseases (Table S3). For example, BRCA1, a well-known
susceptibility gene for breast cancer, and CFH, a susceptibility
gene for age-related macular degeneration identified in one
of the first published GWASs, are each strongly associated
with an eSNP (p¼9.73310�17 for BRCA1 and p¼ 6.94310�22

for CFH) that falls within 1Mb of the corresponding structural
gene (Table S3). Genes associated with drug response are also
represented in this set. For example, VKORC1, a gene recently
associated with warfarin dosing [24], has liver gene expression
values that are significantly associated with an eSNP near the
39 end of the gene (p ¼ 1.66 3 10�23).
To characterize further the effect that this set of eSNPs has

on the liver transcriptional network, we re-analyzed the
association results by restricting attention to this panel of
SNPs. We again constrained the FDR to be less than 10% with
respect to the eSNP set and identified an additional 3,053
expression traits, corresponding to 2,838 genes that were
significantly associated with at least one of the eSNPs (Table
S2). We assessed the significance of this new set of expression
traits by randomly sampling five sets of SNPs from the full set
of SNPs typed in the HLC, such that the size and minor allele
frequency distribution matched that of the eSNP set. For each
of the randomly selected SNP sets, we analyzed the
associations between all expression traits and SNPs in this
set. The maximum number of associations detected in any of
the five sets at a 10% FDR was only 20, and the mean
detection rate over all sets was 12. This demonstrates well the
biological utility of the eSNP set, given that this set is
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significantly enriched for SNPs that associate with expression
traits, beyond the initial set of expression traits that defined
the eSNP set, compared to comparable sets of randomly
selected SNPs. A number of eQTL hot spots emerged as well
in this full set of expression traits, where a given locus was
identified as a hot spot if greater than 20 expression traits
linked to a single eSNP at the locus. The significance of these
hot spots was assessed by permuting the genotypes and
examining the distribution of associations in the permuted
sets. In each permutation set, we identified the maximum
number of traits associated with a single marker over all
markers. The mean of the maximum counts over 10
permutation sets was only 12, compared to a maximum of
283 in the observed data (Table S2).

Integrating Genetic and Network Data across Species to
Inform GWA Discoveries

Identifying candidate susceptibility genes in regions
associated with disease using the proximity of the candidate
genes to SNPs in that region may be misleading a lot of the
time. For example, from Table S2, for the 3,210 expression
traits giving rise to cis eQTLs, only 627 of the corresponding
cis eSNPs are located within the corresponding gene region,
whereas 1,282 are located downstream of the 39 untranslated
region (UTR) and 1,301 are located upstream of the 59 UTR.
Further, of the cis eSNPs located up- and downstream of the
corresponding genes, 490 and 526, respectively, are .100 kb
away. That is, greater than 30% of all cis eSNPs fall greater
than 100 kb away from the transcription start and stop sites
of the corresponding gene. Therefore, at least for expression
traits, the nearest SNP rule for inferring genes given an
association finding would result in an unacceptably high miss-
call rate. Genes with expression values that are strongly
associated with variations in DNA provide a different path to
elucidate the gene or genes and their respective functions

underlying genetic loci associated with disease in a more
objective fashion.
Identifying candidate susceptibility genes for T1D. In one

of the largest GWASs carried out to date, the Wellcome Trust
Case Control Consortium (WTCCC) studied 14,000 cases and
3,000 shared controls with respect to seven common diseases
[14]. T1D was one of the key disease focuses of this study, with
a number of replications reported simultaneously in a
separate follow-up study [15]. In addition, a number of T1D
susceptibility genes identified prior to the WTCCC study have
been identified and more thoroughly replicated, including
the HLA class II genes INS, CD25, CTLA4, PTPN22, and IFIH1.
Given that the SNPs genotyped in the WTCCC study were
also genotyped in the HLC, we examined the extent to which
the T1D SNPs identified in the WTCCC study were associated
with the expression traits corresponding to the genes
implicated in the study.
Table 1 highlights nine genes previously identified as T1D

susceptibility genes or inferred as T1D susceptibility genes
from the WTCCC study. The expression levels for five of these
genes (CTLA4, HLA-DRB1, IL2RA, LONRF2, and CHST10) in
the HLC were associated with the corresponding T1D-
associated SNP. For IL2RA and the four other genes (AFF3,
ADAD1, PTPN2, and IL2), the expression levels were
associated with other SNPs in the region of the T1D-
associated SNPs. We also examined whether other genes in
the vicinity of the T1D-associated SNPs had expression levels
that were also associated with these SNPs. An additional four
genes highlighted in Table 1 (RPS26, CLECL1, IGF2AS, and
Hct1837134) were identified in this way, in addition to two
HLA class II genes highlighted in Table 2 (HLA-DQB1 and
HLA-DQA2). Given the role that HLA class II genes are known
to play in T1D, we also examined the 14 HLA class II gene
expression traits represented on the array used in this study,

Table 1. Expression Traits Corresponding to Genes Implicated in the T1D WTCCC Study [14,15] or Close to Genes Associated with
Either SNPs That Were Associated with T1D in the WTCCC Study or with SNPs Close the T1D-Associated SNPs

WTCCC

DBSNP ID

WTCCC SNP

Chromosome

WTCCC SNP

Position

Expression

Trait

Gene

Position

Best

DBSNP ID

Best DBSNP

Position

Expression

p-Valuec

rs12061474 1 201120971 hCT1837134a 201061029 rs12061474 201120971 0.0059

rs9653442 2 100283885 LONRF2 100277122 rs9653442 100283885 0.019

AFF3 99528760 rs6542920 b 100303606 4.59 3 10�4

CHST10 100374753 rs9653442 100283885 0.018

rs3087243 2 204564425 CTLA4 204440753 rs3087243 204564425 0.0033

rs17388568 4 123686967 IL2 123592263 rs4833253 b 123936455 6.32 3 10�4

ADAD1 123519617 rs4833253 b 123936455 9.04 3 10�4

rs9270986 6 32682038 HLA-DRB1 32656454 rs9270986 32682038 1.14 3 10�36

rs2104286 10 6139051 IL2RA 6093511 rs2104286 6139051 0.015

IL2RA 6093511 rs7916931 b 6640274 9.74 3 10�5

rs3741208 11 2126350 IGF2AS a 2118312 rs3741208 2126350 0.015

rs3764021 12 9724895 CLECL1 a 9766358 rs3764021 9724895 5.78 3 10�17

rs2292239 12 54768447 RPS26 a 54721952 rs2292239 54768447 4.03 3 10�22

rs2542151 18 12769947 PTPN2 12778069 rs3848468 b 12888367 5.51 3 10�4

See Table 2 for other HLA class II genes.
a The gene was not implicated by the WTCCC study, but had expression values in the HLC that were associated with the indicated T1D SNP identified in the WTCCC study.
b The SNP identified as associated with the gene expression trait was not identified in the WTCCC T1D study as associating with T1D, but was in the neighborhood of the implicated gene
and associated with that gene’s expression in the HLC.
c Expression p-values represent the p-value for the association detected between the indicated expression trait and SNP. These results were pulled from Table S2.
DBSNP ID, SNP database identification.
doi:10.1371/journal.pbio.0060107.t001
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and we found that 11 of them gave rise to significant genetic
associations (Table 2). Some of the associations were striking
and highlight additional SNPs that may be of interest in
genetic disease association studies. For example, greater than
50% of the HLA-DRB5 expression variation observed in the
HLC could be explained by a single cis eSNP (rs9271366).

The absence of an association between a T1D-associated
SNP and the HLC expression values corresponding to a
candidate susceptibility gene for that SNP cannot be taken as
strong evidence against the gene’s candidacy as a suscepti-
bility gene. The underlying causal change in DNA may not
affect expression levels of the gene in question, or the
variation in expression may be specific to a given tissue not
profiled or to conditions not reflected in the HLC. However,
strong associations between T1D-associated SNPs and ex-
pression levels of genes near the SNP provide direct
functional support for a gene’s involvement in disease
susceptibility. For example, rs3764021 was identified as a
T1D susceptibility locus in the WTCCC study and then
extensively replicated [15]. CLEC2D was inferred as the most
likely susceptibility gene at this locus. However, CLEC2D
expression in the HLC data was not associated with this SNP;
but a flanking gene, CLECL1 was significantly associated (p ¼
5.783 10�17; Table 1). Given that CLEC2D and CLECL1 are in
the same gene family, the strong association between the T1D
SNP and CLECL1 expression data suggest that CLECL1 may
be a better candidate susceptibility gene to examine.

In cases where disease-associated traits and expression
traits are scored in the same cohort, there is the potential to
directly infer causal relationships between genes and disease
[25]. However, even without disease trait data in tissue-
specific cohorts like the HLC, an integrative genomics
approach can be used to identify the most likely candidate
susceptibility gene for a given locus. For example, one of the
more novel regions associated with T1D from the WTCCC
study was Chromosomes 12q13 (rs2292239). ERBB3, a
receptor tyrosine-protein kinase with a presumed role in
immune signaling, was identified as the most plausible

susceptibility gene at this locus. While ERRB3 expression in
the HLC was not associated with this SNP, the expression of a
flanking gene, RPS26, was significantly associated with this
SNP (p ¼ 4.03 3 10�22; Table 1). In fact, 40% of the in vivo
expression variation for RPS26 in the HLC was explained by
this single T1D associated SNP, and this SNP was the most
strongly associated with RPS26 expression out of the greater
than 800,000 SNPs genotyped in the HLC, .
The association to RPS26 expression suggests that this gene

warrants further study in the context of T1D. However, these
data on their own are still far from conclusive, given there
may be DNA variants that affect RPS26 expression inde-
pendently of T1D, but where these variants are in strong LD
with the DNA variants explaining the T1D susceptibility.
Therefore, to further explore the role RPS26 and ERBB3 may
play in T1D, we examined the expression data for these genes
in an expression atlas for human, monkey, and mouse, where
for each species, between 45 and 60 tissue samples were
profiled [26,27]. Although both genes are expressed in mouse,
monkey, and human tissues, the expression of RPS26 is .1–2
log units higher in the pancreas and islets of Langerhan
compared to ERBB3 (Figure S1), with ERBB3 observed as
lowly expressed in islets as measured in the mouse body atlas.
Given the central role that pancreas and islets play in T1D,
these results further suggest RPS26 as a candidate suscepti-
bility gene for T1D.
What the genetic association and atlas data lack is a more

refined context within which to assess the functional role a
given gene plays in a system. We have previously described a
method to reconstruct probabilistic, causal networks by
integrating genetic and gene expression data [25,28–30].
Examining candidate susceptibility genes in the context of
these networks can provide insights into the pathways in
which they operate. We constructed whole-gene networks
from three F2 intercross populations constructed from the
B6, C3H, and CAST strains (see Methods for details). Liver
and adipose expression data were generated from these
populations and integrated with the genotypic data also

Table 2. Significant Associations Detected in the HLC for 11 of the 14 HLA Class II Gene Expression Traits Represented on the
Microarray Used in This Study

Expression

Trait

Gene

Position

DBSNP

ID

SNP

Chromosome

SNP

Position

Common Allele

Homozygote

Expressionb

Heterozygote

Expressionb
Minor Allele

Homozygote

Expressionb

Expression

p-Valuea

HLA-DRA 32515624 rs7194 6 32520458 0.062 (166) –0.031 (191) –0.141 (64) 8.28 3 10�8

HLA-DRB5 32593138 rs9271366 6 32694832 –0.224 (270) 0.851 (95) 1.280 (7) 5.06 3 10�39

HLA-DRB1 32654526 rs9272723 6 32717405 –0.441 (165) 0.157 (176) 0.397 (65) 2.43 3 10�39

HLA-DRB4 32654847 rs9270986 6 32682038 –0.055 (298) 0.128 (105) 0.279 (10) 2.27 3 10�14

HLA-DQA1 32713160 rs9272346 6 32712350 –0.085 (151) 0.047 (197) 0.136 (74) 2.46 3 10�30

HLA-DQA1 32713160 rs4985534 16 69160721 –0.030 (105) –0.034 (223) 0.018 (95) 2.43 3 10�6

HLA-DQB1 32740565 rs9270986 6 32682038 –0.084 (298) 0.076 (105) 0.237 (10) 5.95 3 10�14

HLA-DQA2 32817140 rs9271568 6 32698441 –0.019 (173) 0.014 (162) 0.025 (36) 1.44 3 10�12

HLA-DQB2 32831853 rs1573649 6 32839236 –0.047 (106) 0.010 (189) 0.076 (77) 1.06 3 10�14

HLA-DMA 33039049 rs1810472 6 33191099 –2.21 3 10�5 (193) –0.00035 (135) 0.020 (44) 0.0034

HLA-DOA 33079933 rs4925663 1 243940658 –0.040 (130) –0.036 (220) 0.134 (64) 2.15 3 10�6

HLA-DPA1 33140771 rs2071295 6 32146678 0.008 (167) –0.00062 (163) –0.143 (42) 0.0026

a Expression p-values represent the p-value for the association detected between the indicated expression trait and SNP.
b Expression values represented in each genotype group reflect the mean of the mean-log ratios over all individuals in the genotype group, where the number of individuals in a genotype
group is given in parentheses.
doi:10.1371/journal.pbio.0060107.t002
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generated in these populations to reconstruct the networks as
previously described [28,30]. We then examined RPS26 and
ERBB3 in the context of these networks (Figure 1).

Figure 1A highlights how RPS26 is directly connected to a
number of known T1D genes. For example, RPS26 is directly
connected to a mouse ortholog of HLA-DRB1, a gene
previously associated with T1D and highlighted in this
present study as having liver expression values that are
strongly associated with a highly replicated T1D SNP (Table
1). In fact, the genes comprising the local network structure
around RPS26 are enriched for genes annotated as T1D
genes, in addition to being enriched for genes operating in a
number of pathways commonly associated with T1D (Table
3). On the other hand, whereas ERBB3 also resided in the
context of a well defined subnetwork (Figure 1B), the genes
comprising this subnetwork were not enriched for any T1D
associated pathways.

Identifying candidate susceptibility genes for coronary
artery disease and LDL cholesterol levels. Another GWAS
involving the WTCCC resulted in the identification of seven
loci associated with coronary artery disease (CAD) [16]. The
seven top-hitting SNPs associated with CAD at each of the
seven loci in this study were represented on the Affymetrix
500K array. Therefore, we examined the HLC data to identify
expression traits that were significantly associated with any of
the seven CAD-associated SNPs. Given the roughly 40,000
expression traits examined at each of the seven SNPs (280,000
tests in all), we set a nominal p-value threshold of 0.05/280,000
¼ 1.79 3 10�7 for significance. Only one of the seven SNPs
identified in the WTCCC CAD study, rs599839 on Chromo-
some 1p13.3, was significantly associated with any of the HLC
expression traits (Figure 2). Four different expression traits
were identified as significantly associated with rs599839
(Table 4). One of the four expression traits corresponded to

Figure 1. Local Networks for Rps26 and Erbb3 Derived from Causal, Probabilistic Whole-Gene Networks Constructed from the Liver, Adipose, Muscle,

and Brain Gene Expression Data Generated from the BXH/wt and BXC Mouse Crosses

(A) The Rps26 subnetwork includes a number of known T1D associated genes (green nodes), and RPS26 in this subnetwork is directly linked to H2-Eb1, a
mouse ortholog of HLA-DRB1, a previously identified T1D susceptibility gene that is also strongly associated with a cis eSNP in the HLC (Table 2). The
known T1D genes annotated by the Gene Ontology are significantly enriched in this subnetwork (Table 3).
(B) The Erbb3 subnetwork is not associated with any pathways known or predicted to be involved in T1D.
doi:10.1371/journal.pbio.0060107.g001
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Table 3. GO Biological Process Categories Enriched in the RPS26 Subnetwork Depicted in Figure 1A

GO Biological Process Category GO Set Size Overlap (Enrichmenta) Nominal p-Valueb Corrected p-Valueb

Ribosome 88 13 (61.4) 2.87 3 10�20 1.02 3 10�16

Major histocompatibility complex antigen 63 10 (65.9) 3.82 3 10�16 1.36 3 10�12

Antigen processing and presentation 82 10 (50.7) 6.18 3 10�15 2.20 3 10�11

T-cell mediated immunity 226 13 (23.9) 8.43 3 10�15 3.00 3 10�11

MHCII-mediated immunity 21 7 (138.5) 3.88 3 10�14 1.38 3 10�10

Structural constituent of ribosome 198 13 (14.5) 3.73 3 10�13 1.33 3 10�9

Antigen processing and presentation 193 10 (26.6) 1.33 3 10�12 4.72 3 10�9

Type I diabetes mellitus 329 8 (55.4) 1.72 3 10�12 6.11 3 10�9

Antigen processing and presentation of peptide antigen 83 8 (45.3) 2.99 3 10�12 1.06 3 10�8

a The enrichment value in parentheses represents the fold-change of enrichment defined as the observed overlap fraction divided by the expected overlap fraction.
b Nominal p-values represent the significance of the Fisher exact test statistic under the null hypothesis that the frequency of the indicated gene set is the same between a reference set of
28,661genes and the set of 69 genes comprising the RPS26 subnetwork. The corrected p-values represent the Bonferroni-corrected p-values (nominal
p-value multiplied by the number of gene sets searched).
doi:10.1371/journal.pbio.0060107.t003

Figure 2. PSRC1, CELSR2, and SORT1 Liver Expression Is Associated with a CAD Risk Allele and Plasma LDL Cholesterol Levels

The CAD risk allele for SNP rs599839 was established in a previous WTCCC study [16] (lilac panel). In the HLC, this same SNP is strongly associated with
PSRC1, CELSR2, and SORT1 expression, with the CAD risk allele associated with lower relative expression (pink panel). In the BXH/wt cross designed to
study metabolic traits that increase cardiovascular risk (green panel), all three of these expression traits were strongly correlated with plasma LDL
cholesterol levels, a major CAD risk factor (scatter plots associated with the green panel). Given the association of these genes to plasma LDL-
cholesterol levels, we examined whether rs599839 was associated with LDL cholesterol in a previously published GWAS [35] and found this SNP was
significantly associated with LDL cholesterol levels, where the CAD risk allele was associated with higher LDL cholesterol levels in this cohort. Lower
levels of CELSR2 and SORT1 expression were associated with the risk allele in humans, and with higher LDL cholesterol levels in mouse, making them
ideal candidate susceptibility genes for the CAD and LDL cholesterol associations to this locus. On the other hand, lower levels of PSRC1 expression
were associated with the risk allele in humans, but with lower LDL cholesterol levels in mouse, suggesting that PSRC1 is not the gene increasing CAD
risk, but instead may be acting to protect against it.
doi:10.1371/journal.pbio.0060107.g002
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a gene, PSRC1, that had been identified as a candidate
susceptibility gene in the WTCCC CAD study [16].

To further characterize the association of these four
expression traits with CAD-associated traits, we examined
the activity of these genes in the BXH/wt cross (see Methods
for details), a cross designed specifically to study metabolic
traits that increase risk of cardiovascular disease. The liver
expression levels of Psrc1, Sort1, and Celsr2, but not Sypl2, in
the BXH/wt cross were significantly associated with plasma
LDL cholesterol levels (Table 4), a major CAD risk factor.
However, while Psrc1 expression levels were positively
correlated with plasma LDL cholesterol levels, Sort1 and
Celsr2 expression levels were negatively correlated. In
addition, for liver expression traits in the BXH/wt cross
significantly correlated with these three genes, the Sort1 and
Celsr2 correlation signatures were most significantly enriched
for the GO Biological Process category ‘‘cell surface receptor
linked signal transduction’’ (1.4-fold enrichment, p ¼ 1.91 3

10�5, and 1.6-fold enrichment, p¼ 4.57 3 10�10, for Sort1 and
Celsr2, respectively), while the Psrc1 correlation signature was
most enriched for the ‘‘cell cycle’’ category (3-fold enrich-
ment, p ¼ 0.00044), suggesting that Sort1 and Celsr2 may be
involved in similar biological processes that are distinct from
processes involving Psrc1.

To further elucidate the involvement of these genes in
metabolic phenotypes associated with CAD, we examined
Psrc1, Celsr2, and Sort1 in the context of the probabilistic,
causal network constructed as described above for the Erbb3/
Rps26 example. All three genes not only fell in the same
subnetwork, they were all directly connected to the same
gene, 2010200O16Rik, demonstrating that these genes are
tightly co-regulated, possibly driven by common regulatory
factors (Figure 3A). This same subnetwork also included genes
like Tgfbr2, Pparg, Lpl, Ppm1l, and Alox5ap, all of which have
been previously identified and validated as being associated
with traits related to obesity, diabetes, cholesterol levels, and
cardiovascular disease [25,31–33]. More generally, Psrc1 and
Sort1 participate in a previously defined macrophage-
enriched metabolic (MEM) subnetwork validated as causal
for obesity-, diabetes-, and atherosclerosis-related traits [34].
In fact, the subnetwork depicted in Figure 3A is composed of
1,346 genes, with 226 of these genes overlapping the set of

1,406 genes composing the MEM subnetwork (82 would have
been expected by chance). This 2.76-fold enrichment in this
case is highly significant, with a Fisher exact test p ¼ 8.20 3

10�47.
To establish whether PSRC1, CELSR2, and SORT1 are

closely connected in human transcriptional networks as they
are in mouse, we constructed a probabilistic, causal network
from the HLC and from a previously published adipose and
blood tissue cohort [21], using previously described methods
[25,28–30]. As depicted in Figure 3B, PSRC1, CELSR2, and
SORT1 fall in the same subnetwork and are closely connected,
as in the mouse network. In addition, the genes comprising
this human subnetwork are enriched for genes that fall in the
mouse network depicted in Figure 3A (Fisher exact test p ¼
1.78 3 10�8). Further, the human subnetwork is also enriched
for genes falling in the MEM module (Fisher exact test p ¼
5.03 3 10�8), confirming the association to metabolic
phenotypes detected in the mouse network. These data
combined suggest that PSRC1, CELSR2, and SORT1 operate
in a conserved subnetwork causally associated with choles-
terol levels, obesity, diabetes and atherosclerosis.
Given the strong association between plasma LDL choles-

terol levels and the expression of Psrc1, Sort1, and Celsr2
expression in the BXH/wt cross, we examined a recent GWAS
available in the public domain in which LDL cholesterol
levels were monitored [35]. A significant association was
detected between rs599839 genotypes and LDL cholesterol
levels in this human cohort (p¼ 9.0 3 10�8)[35]. Interestingly,
the common allele for rs599839 was associated with higher
LDL cholesterol levels [35], consistent with the association of
this allele with increased CAD risk. Low SORT1, CELSR2, and
PSRC1 expression levels in the HLC are also associated with
the rs599839 common allele. However, given low Sort1 and
Celsr2 expression levels in the BXH/wt cross are associated
with increased LDL cholesterol levels (whereas low Psrc1
expression levels are associated with low LDL cholesterol
levels), SORT1 and CELSR2 are the most logical candidate
susceptibility gene in the 1p13.3 locus (Figure 2), although
direct experimental manipulation of these two genes would
be required to provide more direct functional support that
these genes are involved in modulating LDL cholesterol
levels. The association of this locus with LDL cholesterol

Table 4. Significant Associations Detected between Liver Expression Traits in the HLC and the CAD-Associated SNP, rs599839, on
Chromosome 1p13.3

Expression

Trait

Gene Start

Position

(Distance

to SNPa)

Gene End

Position

Common Allele

Homozygote

Expression

(n ¼ 273)

Heterozygote

Expression

(n ¼ 123)

Minor Allele

Homozygote

Expression

(n ¼ 23)

Association

p-Valueb
Expression-LDL-

Cholesterol Levels

Correlationc

Correlation

p-Valuec

SORT1 109,653,714 (119,506) 109,742,086 –0.155 0.278 0.504 1.53 3 10�36 –0.50 ,10�16

PSRC1 109,623,701 (89,493) 109,627,294 0.532 0.364 –0.188 2.17 3 10�53 0.40 3.23 3 10�13

CELSR2 109,594,163 (59,955) 109,619,895 –0.037 0.106 0.275 4.31 3 10�23 –0.42 8.16 3 10�15

SYPL2 109,824,613 (290,405) 109,826,277 –0.201 0.330 0.581 1.08 3 10�7 0.06 0.30

a The SNP rs599839 is located at position 109,534,208 on chromosome 1, which is upstream of the start position for each of the genes in the table. The distance in parentheses represents
the number of nucleotides between the SNP and the gene start position.
b The association p-value for each of the expression traits was taken from Table S2.
c The correlations reported are between the indicated liver gene expression trait and plasma LDL cholesterol levels scored in the BXH/wt cross (Methods). The correlation p-values are the
p-values corresponding to the Pearson correlation coefficients.
doi:10.1371/journal.pbio.0060107.t004
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levels as well as liver expression levels of SORT1, CELSR2, and
PSRC1 were recently reported in multiple independent
studies [17,18].

Discussion

Previous studies on the genetics of gene expression in
humans have focused primarily on lymphoblastoid cell lines
or other blood-derived samples [13,14,17]. We have provided
a large-scale assessment of the genetics of gene expression in
human liver, a metabolically active tissue that is critical to a
number of core biological processes and that plays a role in a
number of common human diseases. After profiling 427
human liver samples on a comprehensive gene expression
microarray and genotyping the DNA from these samples at
greater than one million SNPs, we identified a significant
genetic signature underlying the expression of more than
6,000 genes, with many of these genes already implicated as
causal for a number of different diseases, including heart
disease, breast cancer, inflammatory bowel disease, age-
related macular degeneration, schizophrenia, and Alzheimer

disease. This set of data highlights the utility of monitoring
molecular phenotypes that underlie the higher order clinical
states of a system.
Whereas the eQTL data in the human liver cohort is

valuable in its own right, when integrated with other GWAS
data and with genetics of gene expression and clinical data in
segregating mouse populations, there is the potential to
directly identify experimentally supported candidate suscept-
ibility genes for disease. We demonstrated directly how
genetics of gene expression data can complement multiple
GWAS datasets by highlighting SORT1 and CELSR2 as
candidate susceptibility genes for CAD and LDL cholesterol
levels at a recently identified locus associated with CAD [16].
In this instance, the association to LDL cholesterol levels is
novel and based on publicly available GWAS data and a
mouse cross designed specifically to study lipid and other
metabolic syndrome traits.
In addition to the CAD locus, we highlighted RPS26 as a

candidate susceptibility gene for T1D from a novel, highly
replicated T1D locus on Chromosome 12q13, which was
identified in a separate GWAS [15]. Not only was the

Figure 3. Local Networks for PSRC1, CELSR2, and SORT1 Derived from Causal, Probabilistic Whole-Gene Networks in Mouse and Human

(A) Mouse network for Psrc1, Celsr2, and Sort1 derived from the liver, adipose, muscle, and brain gene expression data generated from the BXH/wt and
BXC mouse crosses.
(B) Human network for PSRC1, CELSR2, and SORT1 derived from the HLC and from a previously published adipose and blood tissue cohort [21].
doi:10.1371/journal.pbio.0060107.g003
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expression of this gene in the HLC strongly associated with
the T1D SNP at this locus, but it was observed to operate in a
part of the molecular network that is significantly enriched
for genes associated with T1D (like HLA-DRB1), whereas the
gene inferred as the most likely susceptibility gene at that
locus (ERBB3) [15] was not supported by any of our
experimental data. Recent studies have demonstrated that
ribosomal proteins may be involved in auto-immune diseases
like systemic lupus erythematosus [36]. In addition, recent
work has demonstrated a connection between endoplasmic
reticulum (ER) stress in the cytoplasm and diabetes, where
protein unfolding in response to ER stress is hypothesized to
disrupt processes associated with diabetes [37]. Given RPS26’s
protein translation role as part of the ribosomal complex on
the ER, its association to T1D is particularly intriguing. The
unfolded protein response has also been linked to inflamma-
tion and oxidative stress [38], hence the putative connection
between RPS26 and an auto-immune disease like T1D is
worthy of further consideration. Cells with high secretory
capacity like pancreatic beta cells are also more likely to be
susceptible to ER stress, making the link between RPS26 and
T1D even more plausible. In fact, previous work has indicated
higher ER stress levels in T1D patients [39].

It is important to note that a lack of association between
expression traits in the HLC and disease-associated SNPs is
not a valid filter for excluding a gene as a candidate disease
susceptibility gene, given that variation in a gene leading to
disease may affect protein function and not expression, or it
may affect expression in a different tissue or under different
environmental conditions. However, the approach of analyz-
ing the genetics of gene expression in human populations
does provide a more objective view into the functioning of
genes in a given disease-associated region. This view has the
potential to lead to higher confidence candidates in the
absence of direct functional support for any one gene, which
is typically the case in GWASs where the SNPs identified have
no known functional role. Given the potential that genetics of
gene expression studies have to affect our understanding of
common human diseases, generating even larger-scale mo-
lecular profiling datasets in segregating populations may
provide a path to more rapidly elucidating not only the
genetic basis of disease, but the impact the genetic basis of
disease has on molecular networks that in turn induce
variations in disease associated traits.

Materials and Methods

HLC and tissue collection. The HLC was assembled from a total of
780 liver samples (1–2 g) that were acquired from Caucasian
individuals from three independent liver collections at tissue
resource centers at Vanderbilt University, the University of Pitts-
burgh, and Merck Research Laboratories (Table S1). The Vanderbilt
samples (n ¼ 504) included both postmortem tissue and surgical
resections from organ donors and were obtained from the Nashville
Regional Organ Procurement Agency (Nashville, Tennessee), the
National Disease Research Interchange (Philadelphia, Pennsylvania),
and the Cooperative Human Tissue Network (University of Pennsyl-
vania, Ohio State University, and University of Alabama at Birming-
ham). The Pittsburgh samples were normal postmortem human liver
and were obtained through the Liver Tissue Procurement and
Distribution System (Dr. Stephen Strom, University of Pittsburgh,
Pittsburgh, Pennsylvania). The University of Pittsburgh samples (n ¼
211) were all postmortem, as were the Merck samples (n¼ 65), which
collected by the Drug Metabolism Department and reported
previously [40].

All samples were stored frozen at �80 8C from collection until

processing for RNA and DNA; some samples had been stored for over
a decade before being processed for this study. Demographic data
varied across centers for these samples and were missing in many
cases. In cases where age, sex, or ethnicity data were not available in
the patient records, we imputed it from the gene expression and/or
genotype data (see below). Of the 780 samples collected, high-quality
DNA was isolated on 548 samples, and 517 of these were successfully
genotyped on the Affymetrix genotyping platform (see Methods
below). Of the 517 successfully genotyped samples, high-quality RNA
was isolated and successfully profiled on 427 samples. This set of 427
genotyped and expression profiled samples comprised the HLC.
Table S1 gives a summary of the demographics and other annotations
on the 427 individuals that were successfully genotyped and
expression profiled. All counts and descriptive statistics include the
imputed data. All samples and patient data were handled in
accordance with the policies and procedures of the participating
organizations.

Mouse crosses and tissue collection. C57BL/6J (B6) mice were
intercrossed with C3H/HeJ (C3H) mice to generate 321 F2 progeny
(161 females, 160 males) for the BXH wild type (BXH/wt). C57BL/6J
(B6) mice were intercrossed with Castaneus (CAST) mice to generate
442 F2 progeny (276 females, 166 males) for the BXC cross. All mice
were maintained on a 12 h light–12 h dark cycle and fed ad libitum.
BXH mice were fed Purina Chow (Ralston-Purina) containing 4% fat
until 8 wk of age. From that time until the mice were killed at 20 wk,
mice were fed a western diet (Teklad 88137, Harlan Teklad)
containing 42% fat and 0.15% cholesterol. BXC mice were fed
Purina Chow until 10 wk of age, and then fed western diet (Teklad
88137, Harlan Teklad) for the subsequent 8 wk. Mice were fasted
overnight before they were killed. Their livers were collected, flash
frozen in liquid nitrogen, and stored in �80 8C prior to RNA
isolation.

The BXH cross on an ApoE null background (BXH/apoE) was
previously described [41]. Briefly, C57BL/6J ApoE null (B6.ApoE–/–)
were purchased from Jackson Laboratory. C3H/HeJ ApoE null
(C3H.Apo E–/–) were generated by backcrossing B6.ApoE–/– to C3H
for ten generations. F1 mice were generated from reciprocal
intercrossing between B6.ApoE–/– and C3H.ApoE–/–, and F2 mice
were subsequently bred by intercrossing F1 mice. A total of 334 (169
female, 165 male) were bred, and all were fed Purina Chow containing
4% fat until 8 wk of age, and then transferred to western diet
containing 42% fat and 0.15% cholesterol for 16 wk. Mice were killed
at 24 wk, and liver, white adipose tissue, and whole brains were
immediately collected and flash-frozen in liquid nitrogen.

All procedures of housing and treatment of animals were
performed in accordance with Institutional Animal Care and Use
Committee regulations.

Microarray design, RNA sample preparation, hybridization, and
expression analysis. Array design and preparation of labeled cDNA and
hybridizations to microarrays for the human liver cohort. RNA preparation
and array hybridizations were performed at Rosetta Inpharmatics.
The custom ink-jet microarrays used in this study were manufactured
by Agilent Technologies and consisted of 4,720 control probes and
39,280 noncontrol oligonucleotides extracted from mouse Unigene
clusters and combined with RefSeq sequences and RIKEN full-length
cDNA clones (Table S4).

Liver samples extracted from the 427 Caucasian individuals were
homogenized, and total RNA extracted using TRIzol reagent
(Invitrogen) according to manufacturer’s protocol. Three micro-
grams of total RNA was reverse transcribed and labeled with either
Cy3 or Cy5 fluorochrome. Purified Cy3 or Cy5 complementary RNA
was hybridized to at least two single microarrays with fluor reversal
for 24 h in a hybridization chamber, washed, and scanned using a
laser confocal scanner. Arrays were quantified on the basis of spot
intensity relative to background, adjusted for experimental variation
between arrays using average intensity over multiple channels, and
fitted to an error model to determine significance (type I error), as
previously described [42]. Gene expression is reported as the mean-
log ratio relative to the pool derived from 192 liver samples selected
for sex balance from the Vanderbilt and Pittsburgh samples, because
the RNA from the Merck samples had been amplified at an earlier
date. The error model used to assess whether a given gene is
significantly differentially expressed in a single sample relative to a
pool composed of a randomly selected subset of samples has been
extensively described and tested in a number of publications [42–44].

The age, sex, race, center, alcohol use, drug use, and steatosis
variables presented in Table S1 were tested for association to the
gene expression traits. Only age, sex, race, and center were
significantly associated with the expression traits beyond what would
be expected by chance. As a result, all gene expression traits were
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adjusted for these covariates. The lack of association between the
expression traits and alcohol use, drug use, and steatosis was
somewhat surprising, but may be due to the sparseness of these data,
resulting in a lack of power to detect significant associations.

Array design and preparation of labeled cDNA and hybridizations to
microarrays for the mouse liver and adipose tissue samples. RNA preparation
and array hybridizations were again performed at Rosetta Inphar-
matics. The custom ink-jet microarrays used in the BXH/wt, BXH/
apoE, and BXC crosses were manufactured by Agilent Technologies.
The array used for the BXH/apoE and BXH/wt samples consisted of
2,186 control probes and 23,574 noncontrol oligonucleotides
extracted from mouse Unigene clusters and combined with RefSeq
sequences and RIKEN full-length cDNA clones (Table S5). The array
used for the BXC cross consisted of 39,280 noncontrol oligonuceo-
tides again extracted from the mouse Unigene clusters and combined
with RefSeq sequences and RIKEN full-length cDNA clones (Table
S6).

Mouse adipose and liver tissues from all of the crosses were
homogenized, and total RNA extracted using Trizol reagent
(Invitrogen) according to manufacturer’s protocol. Three micro-
grams of total RNA was reverse transcribed and labeled with either
Cy3 or Cy5 fluorochrome. Labeled complementary RNA (cRNA) from
each F2 animal was hybridized against a cross-specific pool of labeled
cRNAs constructed from equal aliquots of RNA from 150 F2 animals
and parental mouse strains for each of the three tissues for each
cross. The hybridizations for the BXH/apoE cross were performed in
fluor reversal for 24 h in a hybridization chamber, washed, and
scanned using a confocal laser scanner. The hybridizations for the
BXH/wt and BXC crosses were performed to single arrays (individuals
F2 samples labeled with Cy5 and reference pools labeled with Cy3
fluorochromes) for 24 h in a hybridization chamber, washed, and
again scanned using a confocal laser scanner. Arrays were quantified
on the basis of spot intensity relative to background, adjusted for
experimental variation between arrays using average intensity over
multiple channels, and fitted to a previously described error model to
determine significance (type I error) [42]. Gene expression measures
are reported as the ratio of the mean log10 intensity (mlratio).

DNA processing. DNA isolation. DNA isolation was performed at
Rosetta Inpharmatics. DNeasy tissue kits from QIAGEN were used to
carry out all DNA extractions. For each liver sample, 20–30 mg of
liver was placed in a 1.5-ml microcentrifuge tube along with 80 ll
buffer ATL and 20 ll proteinase K. The contents of each tube were
then mixed thoroughly by vortexing, followed by incubation at 55 8C
until the tissue was completely lysed. Transcriptionally active tissues
such as liver and kidney contain high levels of RNA, which will co-
purify with genomic DNA. Because RNA-free genomic DNA was
required for processing, 4 ll RNase A (100 mg/ml) was added and
mixed by vortexing, followed by incubation for 2 min at room
temperature before continuing. Samples were then vortexed and 200
ll buffer AL was added to the sample and mixed thoroughly. After 10
min incubation at 70 8C, 200 ll ethanol (96%–100%) was then added
and mixed again. The mixture was placed into the DNeasy Mini
column and centrifuged at 6,000g (8,000 rpm) for 1 min. The DNeasy
Mini spin column was then placed in a new 2-ml collection tube, and
500 ll buffer AW1 was added, followed by placement in a centrifuge
for 1 min at 6,000g (8,000 rpm). The DNeasy Mini spin column was
then placed in a new 2-ml collection tube again, and 500 ll buffer
AW2 was added and centrifuged for 3 min at 20,000g (14,000 rpm) to
dry the DNeasy membrane. Then the DNeasy Mini spin column was
placed in a clean 1.5-ml or 2-ml microcentrifuge tube and 200 ll
buffer AE was pipetted directly onto the DNeasy membrane. This was
incubated at room temperature for 1 min and then centrifuged for 1
min at 6,000g (8,000 rpm) to elute. Two 200-ll elutions were
performed followed by ethanol/sodium acetate precipitation and
resuspension of the resultant pellet with TE buffer.

Genotyping data from the Affymetrix 500K panel. SNP genotyping was
performed with the commercial release of the Affymetrix 500K
genotyping array. The genotyping was carried out at the Perlegen
genotyping facility in Mountain View, California. Genotyping was
attempted on 548 samples. 18 samples were unable to be genotyped
because of poor DNA quality, and an additional 13 samples were
removed after genotyping because their overall call rate did not
exceed the 90% cutoff we required. We then applied SNP-wise
quality checks on the 517 samples that were successfully genotyped.
The Affymetrix 500K array consisted of 500,568 SNPs in total,
429,545 SNPs provided quality data from the genotyping assay, and
we rejected those SNPs with a call rate , 75%, resulting in a final
panel of 393,494 SNPs. We further filtered out SNPs with minor allele
frequencies , 4% (81,646 SNPs) or SNPs that deviated from Hardy-
Weinberg equilibrium (p , 10�4; 1,104 SNPs). The resulting set of

310,744 SNPs were used to carry out tests for association to the liver
gene expression traits in the HLC.

Genotyping data from the lllumina 650Y panel. SNP genotyping was
performed on the same set of samples that were genotyped on the
Affymetrix 500K panel using the Sentrix humanHap650Y genotyping
beadchip from Illumina. The genotyping was carried out at the
Illumina genotyping facility in La Jolla, California. This chip consists
of 655,352 tag SNP markers derived from the International HapMap
Project (http://www.hapmap.org) on a single BeadChip, with ;100,000
Yoruba-specific tag SNPs to provide more comprehensive coverage in
African and African-American populations. Genotyping was attemp-
ted on 517 samples. A total of 497 samples were genotyped
successfully, and 654,069 SNP assays genotyped successfully. The
same genotype quality control measures applied to the Affymetrix
500K dataset were applied to Illumina HumanHap 650Y dataset to
determine the analysis set. The sample set for analysis (n ¼ 397) was
restricted to those identified or imputed as Caucasian. Of the 397
samples we attempted to genotype, 13 failed the Illumina genotyping
assay (overall call rate , 75%), resulting in a set of 384 genotyped
samples carried forward for the expression analysis. In total, 652,648
SNPs were called, with only two SNPs rejected because the call rate
was ,75%. We then sequentially removed 94,915 SNPs with MAF
,4% and 491 SNPs that deviated from the Hardy-Weinberg
equilibrium (p , 10�4). The resulting set of 557,240 SNPs was used
to carry out tests for association to the liver gene expression traits in
the HLC.

A total of 85,508 SNPs were represented in both the Illumina and
Affymetrix SNP sets. Therefore, there were 782,476 unique SNPs
successfully genotyped in the HLC such that the call rate was greater
than 75%, the MAF .4%, and there was not significant deviation
from Hardy-Weinberg equilibrium at the 0.0001 significance level.
The sample set for analysis was restricted to the 427 HLC samples
that had both genotype and gene expression data available, passed
the criteria outlined above and those that were identified as
Caucasian, or imputed to be Caucasian when data was missing (see
below).

Data preprocessing. Sex confirmation. Sex identifiers were available
for most of the liver samples obtained from the three study centers.
We independently confirmed the sex of each individual providing a
liver sample by two methods. First, we looked for expression of Y-
specific genes in the liver gene expression based on three probes
representing three distinct transcripts. Second, we scored hetero-
zygosity of X-chromosome markers. We excluded any individual for
which there was a discrepancy in any of the three measures of sex in
order to ensure a coherent data set for analysis and that we had
excluded as many potential cases of annotation or sample-handling
errors as possible. For samples where sex was not noted in the
records, we imputed the sex call if both the genotype and gene-
expression data were concordant.

Ethnicity. Ethnicities were confirmed or imputed using STRUC-
TURE [45]. A panel of 106 autosomal markers was randomly selected
from around the genome to be unlinked and ancestry informative.
Markers were selected from the HapMap data [46] that were present
on the Affy 500K panel such that the minor allele frequency was
.0.05 and the absolute allele frequency difference in the Caucasians
and African Americans ;0.5, with average minor allele frequency 0.5
(standard deviation¼ 12). Several K were tested (K¼ 1–6) with burn-
in 100,000 and 100,000 reps of MCMC before any information was
collected. In all cases, the greatest support was for K¼ 2. Admixture
was detected for some individuals in some runs and some individuals
were reclassified. For those unknown and reclassified, population
reassignment was made if the probability of group membership was
.0.9 for that individual. This resulted in 469 individuals assigned to
the Caucasian group, 28 individuals assigned to the African descent
or African American group, and 18 individuals assigned as
‘‘unknown’’. The data set for further analysis was restricted to
Caucasian samples.

Age. Ages were imputed using the Elastic Net method [47]. This
method performs model selection and parameter estimation in a
manner that is a combination of ridge-regression and the lasso. The
prediction method is also explained in [47]. For computational
reasons, k was set to zero, in which case the Elastic Net method
reduces to the lasso method. For most applications, experience
demonstrates that the optimal value for k is zero or quite near zero.

Ages were imputed using separate models for each data source,
due to evidence of a source effect, and each sex separately. In cases
where the sex was missing or the reported sex was different from the
sex implied by the expression data, the sex implied by the expression
data was used. This was done so that in the case the annotation data
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and expression data were mismatched, the imputed age would
correspond to the data used to predict it.

The 5,000 genes with the highest correlation to age were used as
potential regressors. Cross-validation was used to select the number
of steps in the model selection procedure. The number of predictors
in the model was between 67 and 76 for the four different models.
The percentage of variation explained in the training set is quite high
(97%–99%) for three of the models. For the fourth, the model for
Vanderbilt females, the percentage of variation explained was slightly
lower, 0.92. This is a vast improvement over more naı̈ve imputation
methods that are used when adjusting for covariates with missing
data, where mean values of the nonmissing data are used to fill in the
missing values. Very few of the predictors we constructed were
common between the different models. Given the number of
predictors with high correlation to age, this is not surprising.
Nonetheless, within a given data source (i.e., Pittsburgh or Vanderbilt
samples), the male model is a reasonable predictor for the ages of the
females and vice-versa. This same trend did not hold for predicting
the ages of same-sex individuals across data sources.

Statistical and data visualization methods. Expression trait processing.
Expression traits were adjusted for age, sex, and medical center.
Residuals were computed using rlm function from R statistical
package (M-estimation with Tukey’s bisquare weights). In examining
the distributions of the mean log ratio measures for each expression
trait in the HLC set, we noted a high rate of outliers. As a result, we
used robust residuals and nonparametric tests to carry out the
association analyses in the HLC. For each expression trait, residual
values deviating from the median by more than three robust standard
deviations were filtered out as outliers.

Genome-wide eQTL association analysis. The Kruskal-Wallis test
was used to determine association between adjusted expression traits
and genotypes. We chose this nonparametric method because of its
robust nature to underlying genetic model and trait distribution.
p-Values were computed using nag_mann_whitney (for loci with two
observed genotypes) and nag_kruskal_wallis_test (for loci with
three observed genotypes) routines from NAG C library (http://www.
nag.co.uk). We used FDR for multiple-test correction. FDR was
estimated as the ratio of the average number of eQTLs found in
datasets with randomized sample labels to the number of eQTLs
identified in the original data set. Since the number of tests was large
(;1,010), we found the empirical null distribution was very stable and
three permutation runs were sufficient for convergence to estimate
FDR. FDR computation was performed separately for cis (,1Mb probe
to SNP distance) and trans associations resulting in nominal p-value
cutoffs of 5.0310�5 and 1.0310�8 for cis and trans eQTLs, respectively.

Targeted set association analysis. The 3,346 SNPs identified in the first
round of analysis as associating with expression traits in cis at an FDR
, 0.1 were picked for a second round of analysis. To assess the
significance of the resulting set of expression traits detected as
associated with this set of SNPs, sets of randomly selected SNPs of size
3,346 with MAF distributions identical to the original set were
generated. All sets of SNPS were then analyzed using the same
method described above for genome-wide associations.

Identifying differentially expressed genes. To assess whether a gene in a
given sample was differentially expressed, we used a previously
described and validated error model for testing whether the mean
log ratio of the intensity measures between the experiment and
reference channels was significantly different from zero [42,43,48].
Based on this error model we obtained p-values for each of the
individual gene expression measures in each sample as previously
described [33]. We then computed the standard deviation of –log10 of
the p-value for each gene expression measure over all samples profiled
for a given tissue, and then rank ordered all of the genes profiled in
each tissue based on this standard deviation value (rank ordered in
descending order). Genes that fall at the top of this rank ordered list
can be considered as the most differentially expressed or variable
genes in the study. We have previously shown that this type of ordering
approach well captures the most active genes in a set of samples [33].
For demonstrating the number of genome-wide significant eQTLs and
eSNPs as a function of differential gene expression, we binned the
expression traits into quartiles (Q1-Q4) based on the rank-ordered
gene list, with each bin containing 10,025 genes and the bins increasing
in significance with respect to differential expression, from Q1 to Q4.

Visualization of networks. Networks were visualized using the Target
Gene Information (TGI) Network Analysis and Visualization (NAV)
desktop application developed at Rosetta Inpharmatics. This tool
enables rapid, real-time, graphical analysis of pathway network
models built from a comprehensive and fully integrated set of public
and proprietary interaction databases available through a back-end
central database, described in detail in a separate report. Addition-

ally, the TGI NAV tool supports experimentally generated systems
biology data such as the statistical associations and causal relation-
ships described here. TGI NAV enables integration and visualization
of orthogonal data sets using network models as a framework and
facilitates dissection of networks into smaller, functionally significant
subnetworks amenable to biological interpretation.

To construct the local networks for H2-Eb1, Erbb3, and Rps26,
the whole-gene probabilistic causal networks were loaded into the
database and the TGI NAV tool was used to extract all edges from this
network involving the central gene of interest. In the case of the Erbb3
network, the local network was expanded by extracting all additional
edges involving any genes directly connected to Erbb3. Note that while
the underlying networks describe causal relationships between tran-
scripts, TGI NAV was used to translate this network into the space of
genes using an integrated mapping database that clusters transcripts
into gene models utilizing their genomic coordinates. As a result,
multiple causal relationships between gene pairs can be observed in
cases where multiple transcripts for a single gene were profiled.
Visualization properties of nodes (e.g., color) are specified in TGI NAV
either for individual nodes, or in a data-driven manner by associating
attributes, such as KEGG pathway membership, with groups of nodes
and mapping visualization properties to these attributes.

Supporting Information

Figure S1. Atlas of Gene Expression for Rps26 and Erbb3
For all panels, the horizontal bar for each row represents the mean
expression value and the horizontal line indicating the standard
deviation. The red arrow off to the left highlights the pancreas tissue.
(A) Expression levels of Rps26 in 60 murine tissues and cell lines. The
tissues and cell lines are given along the y-axis, and the mean relative
transcript abundances are given along the x-axis.
(B) Expression levels of Erbb3 in 60 murine tissues and cell lines. The
tissues and cell lines are given along the y-axis, and the mean relative
transcript abundances are given along the x-axis.
(C) Expression levels of Rps26 in 46 monkey tissues and cell lines. The
tissues and cell lines are given along the y-axis, and the mean relative
transcript abundances are given along the x-axis.
(D) Expression levels of Erbb3 in 46 monkey tissues and cell lines. The
tissues and cell lines are given along the y-axis, and the mean relative
transcript abundances are given along the x-axis.
(E) Expression levels of RPS26 in 50 human tissues and cell lines. The
tissues and cell lines are given along the y-axis, and the mean relative
transcript abundances as determined by each of six individual
reporters on the microarray that target RPS26 are given along the
x-axis.
(F) Expression levels of Erbb3 in 50 human tissues and cell lines. The
tissues and cell lines are given along the y-axis, and the mean relative
transcript abundances are given along the x-axis.
Found at doi:10.1371/journal.pbio.0060107.sg001 (441 KB PDF ).

Table S1. Population Demographics of the HLC

Found at doi:10.1371/journal.pbio.0060107.st001 (81 KB XLS).

Table S2. Association Results for HLC Expression and Genotyping
Data

Found at doi:10.1371/journal.pbio.0060107.st002 (1.64 MB XLS).

Table S3. Expression Traits Corresponding to Genes Associated with
Human Diseases Are under Significant Genetic Control in the HLC

Found at doi:10.1371/journal.pbio.0060107.st003 (172 KB DOC).

Table S4. Genes Represented on the HLC Microarray Described in
the Main Text

Found at doi:10.1371/journal.pbio.0060107.st004 (7.97 MB XLS).

Table S5. Genes Represented on the BXH/apoE Microarray
Described in the Main Text

Found at doi:10.1371/journal.pbio.0060107.st005 (9.33 MB XLS).

Table S6. Genes Represented on the BXH/wt and BXC Microarray
Described in the Main Text

Found at doi:10.1371/journal.pbio.0060107.st006 (6.58 MB XLS).

Accession Numbers

Allmicroarraydata associatedwith theHLChavebeendeposited intothe
Gene Expression Ominbus database under accession number GSE9588.
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Note Added in Proof

Reference 49 is cited out of order in the article because it was added
during the proof stage.
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