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Landauer's Principle asserts that there is an unavoidable cost in thermodynamic 

entropy creation when data is erased. It is usually derived from incorrect 

assumptions, most notably, that erasure must compress the phase space of a 

memory device or that thermodynamic entropy arises from the probabilistic 

uncertainty of random data. Recent work seeks to prove Landauer’s Principle 

without using these assumptions. I show that the processes assumed in the proof, 

and in the thermodynamics of computation more generally, can be combined to 

produce devices that both violate the second law and erase data without entropy 

cost, indicating an inconsistency in the theoretical system. Worse, the standard 

repertoire of processes selectively neglects thermal fluctuations. Concrete 

proposals for how we might measure dissipationlessly and expand single 

molecule gases reversibly are shown to be fatally disrupted by fluctuations. 

Reversible, isothermal processes on molecular scales are shown to be disrupted by 

fluctuations that can only be overcome by introducing entropy creating, 

dissipative processes. 

                                                
1 I thank Dan Parker for prompting me to look at LPS and for helpful discussion; Owen Maroney 

for helpful discussion on an earlier draft of this note; and an anonymous referee for detailed and 

thoughtful responses to earlier versions. 
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1.	
  Introduction	
  

 About fifty years ago, Rolf Landauer (1961) proposed that there is an unavoidable cost in 

thermodynamic entropy whenever we erase information: the thermodynamic entropy of our 

surroundings must increase by at least k ln 2 for each bit of information erased. It was then an 

interesting speculation supported by a vague plausibility argument. As the decades passed and 

efforts were put into finding a more precise justification, Landauer's speculation was promoted 

into “Landauer’s Principle.” It became a foundational proposition of the new study of the 

thermodynamics of computation; and it supplanted others to become the favored explanation for 

the supposedly necessary failure of Maxwell’s demon to reverse the second law of 

thermodynamics. 

 During the time that its centrality in this new literature was solidified and celebrated, we 

have continued to wait for a successful justification of Landauer’s speculation. Although its 

absence has been overlooked largely, a small but persistent literature has been drawing attention 

to the fact that the principle is widely presumed but has no precise grounding. (For this concern 

and broader concerns over the literature concerning Maxwell’s demon, see Earman and Norton 

(1998, 1999); Shenker (1999), Albert (2000, Ch. 5); Maroney (2005); Norton (2005);2 Shenker 

and Hemmo (2006); and, for a general survey, Maroney (2009).) 

 There have been attempts to secure more precise demonstrations of Landauer’s principle. 

My attempt (Norton, 2005, Section 2.3) gave a careful demonstration of a version of the 

principle that depends upon erasure being performed inefficiently. It suggested that the principle 

depends essentially on a poor choice of a convenient, but dissipative erasure procedure and did 

not derive from some essential feature of erasure itself. I also noted that arguments for 

Landauer’s Principle repeatedly used the same incorrect assumptions: that erasure must 

compress phase volume or that additional thermodynamic entropy derives from the probabilities 

of so-called “random” data. First rank physics journals now offer proofs of Landauer’s Principle 

                                                
2 I take this opportunity to correct an error in Norton (2005). The Landauer entropy cost of 

erasure for n bits was identified as k ln  n, whereas it should have been k ln N = nk ln 2, where N 

= 2n is the number  of states associated with n bits. The error compromises none of the analysis 

or results. I am grateful to James Ladyman for pointing out the error. 
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that employ an impressive repertoire of precise statistical mechanical theory. (See for example, 

Piechocinska, 2000, and Turgut, 2009.) However, as I shall show in an appendix, these proofs 

still depend on the same incorrect assumptions as used by earlier, simpler proofs. They are just 

more deeply hidden. 

 A notable advance came with the work of Ladyman et al. (2007, 2008) (henceforth 

“LPSG” and “LPS”). LPSG seeks to demonstrate a generalized version of Landauer’s Principle 

without using the incorrect assumptions mentioned above. The sequel, LPS, seeks to demonstrate 

a corollary with similar rigor: that the information theoretic entropy assigned to a probabilistic 

mixture of macrostates and commonly associated with “random data” may also have 

thermodynamic meaning. 

 The LPSG proof employs a novel strategy. Earlier demonstrations, including my own of 

2005, have used what I shall call a “direct” approach. These proceeded by examining directly the 

physical process of erasure. They automatically illuminate how the supposed entropy cost of 

erasure arises. LPSG seeks to establish the entropy cost of erasure indirectly. They couple a 

process that assuredly reduces thermodynamic entropy with an erasure process. They posit 

independently a statistical form of the second law of thermodynamics. That law then requires 

that the erasure process must create entropy in order to balance the entropy reduction of the first 

process. 

 The attraction of this method is that we can leave the details of the erasure process 

undefined and seek a result that will apply to all erasure procedures. The weakness is that it 

automatically precludes illumination of the origin of the entropy cost of erasure; we can only 

infer that it must be there if the suppositions obtain. And whether they do obtain will prove to be 

the weakness of the indirect proof. It also means that it cannot explain the supposed failure of a 

Maxwell demon who seeks to violate the second law of thermodynamics. We consider at the 

outset only physical systems that, by presumption, will not permit this violation. 

 In this note I will try to explain why I believe that this new, indirect proof fails. In 

positing a statistical form of the second law of thermodynamics at the outset, LPSG and LPS 

make no attempt to ground the law in the underlying physical properties of the systems to be 
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investigated.3 Rather they presume that that the physical properties of the systems investigated 

can support a statistical form of the law. Taken in its context, this presumption is mistaken. For 

the proof also adopts what has tacitly become a standard repertoire of idealized processes from 

the literature in the thermodynamics of computation to map out the admissible physical systems 

and processes. The repertoire, which I shall assemble and list explicitly, includes familiar items: 

single molecules trapped in cylinders fitted with pistons and sliding partitions; and 

dissipationless processes for locating the position of the molecule. This repertoire enables one to 

construct processes that assuredly breach even a statistical form of the second law of 

thermodynamics. Therefore the proof proceeds from inconsistent assumptions. Its methods can 

be used equally, as I shall show, to demonstrate that erasure can be carried out without entropy 

cost; or, more precisely, without an assured passing of heat to a surrounding heat bath or some 

equivalent dissipative process. 

 These same problems compromise the result of LPS concerning information theoretic 

entropy, for that analysis uses the same repertoire of processes as well as supposing a statistical 

form of the second law. In addition, the proof employs a generalized notion of reversibility that 

is incompatible with thermodynamic entropy being a state property. 

 It must be stressed that my purpose here is not to assail LPSG and LPS. On the contrary, 

their efforts are a praiseworthy attempt to bring more secure foundations to the thermodynamics 

of computation. Rather, the thoroughness of their analyses makes it possible for me to illustrate 

the sense, already articulated with my colleague John Earman in Earman and Norton (1999), that 

something has gone seriously awry in this literature. 

 Sections 2 and 3 below provide an orientation in the thermodynamics of a one-molecule 

gas and a brief review of the failed efforts to demonstrate Landauer’s Principle so far by direct 

proofs. Section 4 develops the LPSG indirect proof of Landauer’s Principle for a special case. 

Sections 5 and 6 lay out the reasons for the failure of the proof and includes my assembly of a 

standard inventory of processes from those routinely used in this literature. Section 7 explains 

how selective neglect of thermal fluctuations compromises the viability of the processes 

                                                
3 LPSG, pp. 61-62, write: “We make no assumptions about the relationship between 

phenomenological thermodynamics and statistical mechanics, but we assume that the second law 

stated in terms of thermodynamic entropy is valid.” 
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presumed in this inventory. It demonstrates the fatal disruption by fluctuations of concrete 

proposals for dissipationless measurement and reversible expansion and compression of a single 

molecule gas. It also demonstrates a general result that fluctuations preclude reversible, 

isothermal processes proceeding. Their probability of completion can be raised only by 

introducing entropy creating disequilibria that are large on molecular scales. Section 8 reviews 

the LPS result for a special case and the failure of its proof. An Appendix reviews the failure of 

two recent attempts for direct proofs of Landauer’s Principle (Piechocinska, 2000; Turgut, 2009). 

2.	
  Szilard’s	
  One-­‐Molecule	
  Gas	
  

2.1	
  Admissible	
  Processes	
  

 The origins of the present literature lie in the recognition over a century ago of the 

molecular basis of the thermal properties of ordinary matter. That recognition allowed violations 

of the second law of thermodynamics. A kinetic gas could, with very low probability, 

spontaneously recompress to a much smaller volume, in contradiction with the second law of 

thermodynamics. Other thermodynamic fluctuation phenomena, such as Brownian motion, 

provided less extreme examples of higher probability of the same sort of violation. 

 In the literature that developed, one particular illustration of these fluctuation effects has 

come to dominate the theorizing. It is a single molecule of a gas trapped in a cylindrical 

chamber, whose conception was introduced by Szilard (1929) in his founding paper. It manifests 

fluctuations in density as the molecule moves about the chamber and fluctuations in pressure 

through the momentary collisions with the chamber walls. One might imagine that this one-

molecule gas is too removed from a many molecule gas to admit ordinary thermodynamic 

analysis. That suspicion proves wrong. Averaged over time, the successive molecular impacts 

will smooth out to a pressure on a piston in the chamber that conforms to the ideal gas law. If the 

piston moves very slowly and the chamber is kept in contact with a heat bath at temperature T, 

the one-molecule gas may undergo a reversible, isothermal expansion or contraction, governed 

by the same laws as obtain for ideal gases, as shown in Figure 1.  These processes are codified 

for later reference as: 
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Process 1a. Reversible isothermal expansion to double volume. A molecule trapped in 

one or other half of the chamber by a piston undergoes a reversible, isothermal expansion 

to full volume. Heat kT ln 2 is drawn from the heat bath and work kT ln 2 is extracted. 

Process 1b. Reversible isothermal compression to half volume. A piston reversibly and 

isothermally compresses the space occupied by the molecule from full to half volume. 

Heat kT ln 2 is delivered to the heat bath and work kT ln 2 is consumed. 

 

 
Figure 1. Reversible isothermal expansion and contraction of a one-molecule gas 

 

This expansion and contraction may be achieved more rapidly by two further processes shown in 

Figure 2: 

 

Process 2a. Removal of the partition. A partition at the midpoint that traps the molecule 

on one or other side is removed. The removal involves no work or heat 

Process 2b. Insertion of the partition. A partition, inserted at the midpoint of the cylinder, 

traps the molecule on one or other side with equal probability. The insertion involves no 

work or heat. 
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Figure 2. Removal and Insertion of the Partition 

 

Processes 1a and 2a are analogous in that they both double the volume of the gas; and Process 1b 

and 2b both halve the volume of the gas.  

2.2	
  Thermodynamic	
  Entropy	
  and	
  the	
  Second	
  Law	
  

 We would normally say that the expansion Processes 1a and 2a increase the 

thermodynamic entropy of the gas by k ln2; and that the compression Processes 1b and 2b 

decrease the thermodynamic entropy by k ln 2. This follows from an application to Processes 1a 

and 1b of the Clausius definition of thermodynamic entropy: the difference in thermodynamic 

entropy ΔStherm for two states of a system is defined by 

ΔStherm = ∫ dqrev /T                                                   (1) 

where qrev is the heat gained by the system during a reversible process connecting the states 

along which the integration proceeds. 

 However the circumstances are not normal and we must proceed cautiously. The Clausius 

formula (1) can only identify thermodynamic entropy Stherm as a property of the initial and final 

states themselves, if every reversible process that connects the two states gives the same entropy 
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difference through formula (1). This sameness can fail if the second law of thermodynamics 

fails. 

 The applicable version of the law is the “Thomson” form that prohibits any process 

whose net effect is just the full conversion of a quantity of heat into work. If we take the special 

case of two states at the same temperature T connected by isothermal, reversible processes, one 

easily sees that this law is necessary if the entropy change of (1) is to depend only on the 

properties of the initial and final states, so that every isothermal, reversible process connecting 

them returns the same entropy difference. For, imagine otherwise, that the law fails for a cycle of 

isothermal, reversible processes on which the initial and final states lie as shown on the left in 

Figure 3. Then the heats q1 and q2 passed to the system in the two sections of the cycle, process1 

and process2, must satisfy q1 + q2 < 0. Therefore q1 cannot equal (-q2). Now consider the initial 

and final states connected by two processes, process1 and the reverse of process2, as shown in 

the figure on the right. The two processes pass unequal heats q1 and (-q2) to the system. 

Recalling that these are isothermal processes, it follows that the Clausius formula (1) would 

assign a different entropy difference between the states according to the process that connects 

them. 

 

 
Figure 3. A Cycle that violates the Thomson form of the second law 
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2.3	
  A	
  Possible	
  Fluctuation-­‐Derived	
  Violation	
  of	
  the	
  Second	
  Law	
  

 Caution is warranted in asserting the second law of thermodynamics, for the random 

motions of the single molecule, understood as density fluctuations, do constitute continuing 

violations of the second law. When the molecule moves to one side or other of the chamber, that 

motion is a spontaneous recompression of the one-molecule gas to one side. All that is needed, it 

would seem, is the insertion of the partition to make one of the fleeting violations permanent. 

 More carefully, combining the spontaneous compression of Process 2b with the 

reversible expansion of Processes 1a produces a cycle that assuredly violates the second law of 

thermodynamics. The first step realizes a process forbidden by the second law. The second step 

converts it into a form that explicitly breaches the Thomson form of the law: kT ln 2 of heat is 

drawn from the heat bath and converted fully to work, while the gas is returned to its original 

state. The sole effect of the cycle is to convert heat to work. It is a simple, vivid illustration of the 

sort of process a Maxwell demon seeks to realize. 

 One’s initial reaction may well be that that we must abandon the second law of 

thermodynamics if we are to consider fluctuating physical systems such as these; and that may 

well be the final decision as well. However a literature that is now eighty years old has refused to 

accept this decision. It seeks to save the second law by finding a hidden locus of entropy creation 

in the processes of the demon that operates the cycle, now naturalized as a physical device. The 

earlier tradition, associated most prominently with Brillouin, located the hidden entropy creation 

in the physical processes used by the demon to identify the position of the molecule. A later 

tradition deemed this a mistake. Rather, it urged that the demon must retain a memory of which 

side of the chamber held the molecule. Completing the cycle requires erasure of this memory 

and, following Landauer, this erasure process creates the entropy needed to preserve the second 

law. 

3.	
  Direct	
  Proofs	
  of	
  Landauer’s	
  Principle	
  	
  

 Applied to the case of one bit of information, Landauer’s Principle asserts that its erasure 

increases the thermodynamic entropy of the surroundings by at least k ln 2. In Norton (2005), I 

investigated at some length the approaches used in attempts to prove this principle and explained 

why they fail. This section will review very briefly the modes of their failure and the reader is 
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referred to Norton (2005) for more details. The proofs are direct. That is, they look at the 

physical process of erasure directly and seek to demonstrate that its implementation must create 

thermodynamic entropy. The standard model of a memory device is just the one-molecule gas 

above. A single bit of information is encoded in the trapping of the molecule in the left “L” or 

right “R” side of the chamber. Erasure is the process that assuredly moves the molecule to the 

left chamber L. While this model may seem excessively idealized, it is taken to capture the 

essential thermodynamic features of a more realistic one-bit memory device in a heat bath. Here 

are three related attempts to prove Landauer’s Principle, along with the reasons they fail. 

3.1	
  Erasure	
  by	
  Thermalization.	
  

 The molecule is trapped on one side of the partition. In the erasure procedure, the 

partition is removed by Process 2a, thermalizing the molecule. The resulting chamber-filling 

one-molecule gas is isothermally and reversibly compressed by Process 1b to the reset L state. 

This step passes heat kT ln 2 to the heat bath at temperature T, increasing its entropy by k ln 2.  

 All this proof shows is that a particular, inefficient erasure procedure creates 

thermodynamic entropy k ln 2, whose origin lies in the ill-advised initial step of removing the 

partition. It does not show that all possible erasure processes must create thermodynamic 

entropy.  

 It is sometimes suggested that the erasure must employ the thermodynamic entropy 

creating step of removal of the partition, or something like it, for the process cannot “know” 

which side holds the molecule on pain of requiring further erasure of that knowledge. Yet the 

erasure must succeed whichever side holds the molecule.4 However what this consideration does 

not show is that thermalization is the only way of satisfying this robustness condition. Indeed, in 

light of the analysis below, it cannot be shown in the standard framework, since its repertoire of 

processes admits other robust erasure procedures that do not employ thermalization. 

3.2	
  Compression	
  of	
  Phase	
  Volume.	
  

 Boltzmannian statistical physics relates the thermodynamic entropy S of a system to the 

accessible volume of the phase space it occupies according to  

                                                
4 For an example of this approach, see Leff and Rex (2003, p.21.) 
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S = k ln (accessible phase volume)                                              (2) 

Prior to the erasure, the memory device may contain either L or R data. Therefore, this approach 

asserts, the molecule is associated with a phase volume that spans both chambers. After erasure, 

the molecule is assuredly in the L half of the chamber, so that the phase volume has been halved. 

The resulting entropy reduction is k ln 2. That reduction must be compensated by at least a 

doubling of the phase volume of the surroundings and, correspondingly, an increase in its 

entropy of at least k ln 2.5 

 The error of the proof is that the molecule, prior to the erasure, is not associated with an 

accessible phase volume that spans the entire chamber. It will assuredly be in one half only. 

Which that half is will vary from occasion to occasion, but it will always be one half. As a result, 

the erasure operation does not need to reduce accessible phase volume at all; it merely needs to 

relocate the part of phase space accessible to the molecule. 

3.3	
  Illicit	
  Ensembles	
  and	
  Information	
  Theoretic	
  Entropy.	
  

 For so-called “random data,” the molecule is equally likely to be in the L or R chamber. 

That is, we have probabilities P(L) = P(R) = 1/2. After erasure, the molecule is assuredly in the L 

chamber. That is, P(L) = 1; P(R) = 0. In this approach, the “random data” state is treated as if it 

was the same as a thermalized data state, whose erasure does create k ln 2 in thermodynamic 

entropy. We arrive at the thermalized data state from the random data state by Process 2a, 

removal of the partition, so that the molecule can move freely between the two chambers. It is 

supposed that both states are thermodynamically equivalent, since, in both states the molecule is 

equally probably in either chamber. The thermodynamic equation of the two states is sometimes 

justified by considering a large set of memory devices containing random data. This set is 

                                                
5 Writing some three decades after his initial proposal, concerning a figure that shows 

information degrees of freedom vertically and environmental degrees of freedom horizontally, 

Landauer (1993, p.2) glosses the result in this way: “The erasure process we are considering 

must map the 1 space down into the 0 space. Now, in a closed conservative system phase space 

cannot be compressed, hence the reduction in the vertical  spread [of phase volume] must be 

compensated by a lateral phase space expansion, i.e. a heating of the horizontal irrelevant 

degrees of freedom, typically thermal lattice vibrations.” 
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presented as a canonical ensemble, supposedly thermodynamically equivalent to a canonical 

ensemble of thermalized memory devices. 

 The approach fails because the random data state and the thermalized state are not 

thermodynamically equivalent. In the random state, only half the phase space is accessible. In the 

thermalized state, the full phase space of the chamber is accessible to molecule. This difference 

of accessibility gives the two states different thermodynamic properties. They differ by k ln 2 in 

thermodynamic entropy. That we do no know which half of the phase space is accessible in the 

case of random data is irrelevant to the device’s thermodynamic properties. (For further 

discussion, see Norton, 2005, §3.) 

 A development of this approach calls on information theory. There one assigns an 

entropy Sinfo to a probability distribution that assigns probabilities Pi to outcomes i = 1, … n 

according to 

Sinfo = -k Σi Pi ln Pi                                                     (3) 

where units of k are chosen arbitrarily. Applying this formula6 to the probability distributions 

before and after erasure, we recover a change in entropy of k ln 2. 

 Where this argument fails is that it only establishes a change in information theoretic 

entropy Sinfo. Without further assumption, it does not establish a change in thermodynamic 

entropy Stherm as defined by the Clausius formula (1). Thermodynamic and information theoretic 

entropies have been shown to coincide in the special case in which the probability distribution is 

a canonical distribution over a volume of phase space that is everywhere accessible to the system 

point. (The demonstration is given in Norton, 2005, Section 2.2.) This condition of accessibility 

fails for the probability distribution of random data. 

 There is a second difficulty with this approach that has not, to my knowledge, been taken 

up in the literature. The input to an erasure procedure will be a memory device containing an 

indeterminate configuration of data. In the one bit case, the data to be erased may be L or R. This 

                                                
6 Invoking this information theoretic entropy, Leff and Rex (2003, p. 21) write of a memory 

device containing random L and R data: “…the initial ensemble entropy per memory associated 

with the equally likely left and right states is SLR(initial) = k ln 2.” 
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is routinely modeled by describing the data as “random,” thereby adding a probability 

distribution to the possible data. This introduction of a probability distribution is essential if 

formula (3) is to be used, for the quantity it computes is a function of that distribution.  

 The trouble is that the introduction of a probability distribution is not justified by the 

logical specification of the erasure function; the specification makes no mention of probabilities. 

It just indicates a function on the set {L,R} that cannot be inverted. This introduction of 

probability is routinely assumed benign in physical analysis when some variable has an 

indeterminate value. It is not benign since it adds non-trivial structure to the indeterminateness of 

a variable and can induce egregious inductive fallacies, as shown in Norton (2010). The real seat 

of the entropy of formula (3) is this probability distribution and, absent cogent justification of the 

introduction of the probability distribution,7 the entropy change associated with erasure by 

formula (3) is merely an artifact of a misdescription of the indeterminateness of data. 

 Attempts at direct proofs of Landauer’s Principle in the literature employ one or more of 

these three approaches and, as a result, fail. Two such failed attempts from more recent literature 

are reviewed in the Appendix. 

4.	
  An	
  Indirect	
  Proof	
  of	
  Landauer’s	
  Principle	
  

 The erasure process considered above takes a memory device that may hold either L or R 

as data and resets it to L. This is a physical implementation of a logical transformation that maps 

either of the symbols L or R always to L. It is logically irreversible in the sense that the function 

is not invertible. Informally, knowing the result is L does not tell us whether an L or an R was 

reset. Landauer’s Principle asserts that the associated physical erasure process must create k ln 2 

of thermodynamic entropy. As a result, LPSG call the process “thermodynamically irreversible.” 

LPSG seek to establish a generalized form of Landauer’s Principle according to which all 

physical implementations of logically irreversible processes are thermodynamically irreversible. 

 For present purposes, there is no need to recount LPSG’s result and proof in all 

generality. It will be sufficient to rehearse it for the simple case of one bit erasure seen so far. 

The proof employs two systems: a memory device M and a one-molecule gas G, used as a 

randomizer. We will use a second one-molecule gas as the memory device M. Its initial state will 
                                                
7 Those tempted to call upon a “principle of indifference” should see Norton (2008, 2010). 
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be the molecule in the left side of the chamber, state “ML,” and it will record one bit of 

information according to the final position of the molecule, ML or MR, with the latter state 

defined analogously. The process of interest is the erasure process that returns the memory 

device to its initial state ML. The proof proceeds by embedding that erasure process in the 

following thermodynamic cycle, where the step numbering coincides with the step numbering of 

LPSG’s more general proof: 

 

Step 1. The one-molecule gas of G occupies the full chamber. A partition is inserted at 

the midpoint so the molecule is trapped on one or other side of the chamber with equal 

probability. 

 

Step 2. The location of the molecule is measured and the memory device M is set to L or 

R according to whether the molecule of G is found in the L or R side of its chamber. 

(Since the initial state is ML, action is only triggered if the molecule is found to be on the 

right, in which case it will be shifted to the left.) The shift is performed by a reversible 

thermodynamic process. Since the thermodynamic entropies of ML and MR are the same, 

no heat passes to or from the surroundings. 

 

Step 3. According to whether the memory device is in state ML or MR, a piston is 

introduced into the chamber of G and a reversible isothermal expansion in direction R or 

L performed, returning the system G to its initial state. Heat kT ln 2 is drawn from the 

heat bath and work kT ln 2 is recovered. 

 

Step 4. The erasure process is performed. It transforms the memory device from the 

probabilistically mixed state of ML or MR with equal probability, to the initial state of 

ML. 

 

Completion of the analysis requires that we postulate a statistical version of the second law of 

thermodynamics. It is given by LPSG (p. 65, emphasis in LPSG) as: 
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It is impossible to perform a cyclic process with no other result than that on 

average heat is absorbed from a reservoir, and work is performed. 

Steps 1-4 have returned both M and G to their initial states. Step 2 has drawn kT ln 2 heat from 

the heat bath and converted it into work. Steps 1 and 3 perform no heat/work conversions. 

Therefore it follows from the statistical version of the second law that, on average, the erasure 

process of Step 4 must degrade kT ln 2 of work into heat. This is the main result of LPSG in this 

case: that the erasure of Step 4 is thermodynamically dissipative. 

 LSPG are quite explicit in asserting that the proof depends on the postulation of the 

statistical form of the second law (p. 59): 

…we do not regard [Landauer’s Principle] as more fundamental than the second 

law of thermodynamics, and so we do not follow those authors who try to show 

that Landauer’s Principle implies the impossibility of a Maxwell demon. Rather, 

we assume that second law and show that Landauer’s Principle follows. Hence we 

follow the ‘sound’ rather than the ‘profound’ horn of the dilemma that Earman 

and Norton (1998, 1999) identified. 

5.	
  Failure	
  of	
  the	
  Indirect	
  Proof	
  

 This proof fails because of this dependence on the postulation of the second law. The 

repertoire of admissible processes is sufficiently broad to allow composite processes that violate 

the second law of thermodynamics, even in its statistical form. So one cannot conjoin the law to 

a system that includes this repertoire without inducing inconsistency. 

 A difficulty with this proof is that the repertoire of admissible processes is not listed 

explicitly. Rather LSPG follow the practice of the literature in assuming tacitly that certain 

primitive processes possible and assembling composite processes from them. We can list a 

subset of these admissible processes by collecting those used in LSPG’s proof. That list was 

begun in Section 2 and is continued below to form what I shall call the “standard inventory.” 

This inventory seems to be widely, if tacitly, used.8 
                                                
8 Turgut (2009) is distinctive for its rich use of the statistical physics of Hamiltonian systems in 

its proof of its Theorem 1. The proof of its theorem 2, however, proceeds entirely with processes 

in the inventory introduced as primitive. A “Szilard’s one-molecule gas” in a chamber is 
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5.1	
  Inventory	
  of	
  Admissible	
  Processes	
  

Step 2 of LPSG’s proof allows: 

Process 3a. Detection. Whether the molecule is trapped by the partition in the left or right 

half of the chamber can be ascertained by a measurement process that passes no heat to 

the heat bath. 

That this detection proceeds dissipationlessly is important to Process 1a. Reversible isothermal 

expansion to double volume. For it is routinely assumed in this literature that one cannot 

undertake Process 1a unless the operator already knows which half of the chamber holds the 

molecule.9 Hence any composite process that seeks to effect this doubling in volume can employ 

Process 1a without further dissipation, for, if the position of the molecule is not known, one 

simply inserts Process 3a. Detection as the immediately prior step.  

 From Step 2 and Step 3, we see that detection can also be used to initiate other processes 

conditionally 

Process 3b. Detect and Trigger. According the whether the outcome of a detection is L or 

R, processL or processR respectively may be initiated, without the initiation passing heat 

to the heat bath, where these are any two admissible processes. 

Finally, from the setting of the memory device M in Step 2 we have:10 

                                                

manipulated by the insertion and removal of walls and by the thermodynamically reversible 

expansion and compression of its compartments. 
9 I presume that, for this reason, Step 3 requires the antecedent measuring of the state of the 

memory device M before the gas expansion proceeds, since the memory device records the 

location of the gas molecule of G. 
10 This step is a special case of a step from the full proof of LPSG (p. 66). In their step 2(a), a 

memory device D a memory device of otherwise unspecified constitution is allowed to have 

states Dout(y) and Din(x1) with corresponding entropies Sout(y) and Sin(x1) and transforming 

from the first to the second of these states is associated with a passing of heat to the surroundings 

of T(Sout(y) - Sin(x1)). 
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Process 4. Shift. If a system has states M1 or M2 of equal thermodynamic entropy, then a 

shift process moves the system from one state to the other without passing heat to the 

heat bath. 

The full repertoire is the set of Processes 1a, 1b, 2a, 2b, 3a, 3b and 4. 

5.2	
  A	
  Process	
  that	
  Violates	
  the	
  Second	
  Law	
  of	
  Thermodynamics	
  

 It is straightforward to check that the Steps 1-4 of the proof of Section 4 employ 

processes from the inventory of Section 5.1. It is equally straightforward to check that we can 

devise an alternative to Step 4* that also only employs admissible processes:11 

 

Step 4*. Dissipationless erasure. If the memory device is measured to be in state MR, a 

shift process is initiated that moves the molecule from state MR to state ML with equal 

thermodynamic entropy by a process that passes no heat to the heat bath. 

 

This alternative step employs Process 3b. Detect and Trigger. and Process 4. Shift. The shifting 

of state MR to state ML is the same shift as described in Step 2. One can readily conceive 

processes akin to those already employed that would achieve it. For example, the molecule might 

be enclosed in a box that is slowly moved from its position in the right of the chamber to the left, 

as shown in Figure 4. 

 

                                                

11 The inclusion of a new detection process in Step 4* is not the most efficient implementation, 

but is convenient for exposition. One could merge Step 3 and Step 4* so that the detection 

process of Step 3 is all that is needed. If Step 3 detects MR, for example, it initiates a single 

process that both expands the gas of G and then resets state MR to state ML. A further 

economization would employ only the detection operation of Step 2. 
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Figure. Shifting a Memory Device from State MR to State ML 

 

The net effect of a process with Steps 1, 2, 3, 4* is the return of the one-molecule gas G to its 

initial, fully expanded state, the return of the memory device M to its initial state ML and the full 

conversion of heat kT ln 2 to work, in direct contradiction with the Thomson form of the second 

law of thermodynamics. Since the cycle can be repeated indefinitely, it also contradicts the 

statistical form of the law. 

 As the labeling of Step 4* indicates, the step by itself embodies a dissipationless erasure 

process, in contradiction with the assertion of Landauer’s principle. While the repertoire is 

limited, it is not the only dissipationless erasure process admitted by this repertoire of processes. 

Here is another. The goal is to reset the memory device, provided in state MR or state ML, back 

to its neutral state ML. The process detects whether the molecule is trapped in the right side of 

the chamber. If it is, the partition is removed and replaced. This detect-remove-replace process is 

repeated until the molecule is no longer found in the right side. The probability rapidly 

approaches one that the erasure is complete upon repetition of the detect-remove-replace process. 

(There is a probability greater than 0.999 of shifting of the molecule from R to L after 10 

repetitions.) 

6.	
  Dissipationless	
  Erasure	
  and	
  the	
  No-­‐erasure	
  Demon	
  

 The second law violating process comprised of Steps 1, 2, 3, 4* is not new. It just a 

version of the “no-erasure” demon described in Earman and Norton (1999, pp. 16-17) and 

Norton (2005, pp.404-405). (The label “no erasure” was used to indicate only that the process 

does not perform a dissipative erasure of the type traditionally described.) Proponents of 

Landauer’s Principle have challenged this demon. However, I believe that the challenges have 

failed. 
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 The dissipationless erasure processes described here and in the no-erasure demon are not 

intended as positive proposals. Rather they are introduced as the final stages of a reductio 

argument. That argument seeks to establish the pointlessness of trying to establish Landauer’s 

Principle or the necessary failure of Maxwell demon in a system that employs processes listed 

here. For those processes admit construction of both dissipationless erasure routines and a 

Maxwell demon. 

6.1	
  Challenge	
  from	
  an	
  Augmented	
  Landauer	
  Principle	
  

 Bennett (2003) suggested that the no-erasure demon is subject to an extended form of 

Landauer’s Principle.  The no-erasure demon must merge computational paths in order to restore 

the gas and memory device to their original states. This merging, the augmented principle states, 

is accompanied by a compensating entropy increase in the surroundings.  In Norton (2005, 

Section 5), I have explained in more detail why this augmentation of Landauer’s Principle fails 

to compromise the no-erasure demon. Briefly, the notion of computational path and the 

computational space it suggests is vague, making any precise determination of the grounding of 

the claim unclear. The intention seems to be that this merging must create entropy in the same 

way as the failed “reduction of phase volume” argument of Section 3.2 for the unaugmented 

Landauer’s Principle. There is no reason to expect this vaguer rendering of a failed argument to 

fare any better. 

 Finally, the no-erasure demon is constructed from the inventory of admissible processes 

routinely presumed in the thermodynamics of computation. Bennett’s response does not dispute 

that. Hence his challenge merely worsens the mismatch of Landauer’s Principle with the 

standard inventory by expanding the range of processes admitted by the inventory but prohibited 

by the now extended Landauer’s Principle. 

6.2	
  Challenge	
  from	
  the	
  Notion	
  of	
  A	
  Control	
  Bit	
  

 LPSG (p. 72, n.8) have suggested the no-erasure demon fails for different reasons.  They 

write 

[the no-erasure demon] does not really achieve the implementation of a logically 

irreversible process because, since the same bit cannot be both the control and the 

target of a controlled operation, the system must have a ‘memory’ (our M) of 
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which program it has run, which amounts to the system keeping a copy of the 

original bit; hence, in our terminology it implements [a logically reversible 

transformation] L2. 

The claim, apparently, is that a detection process conducted on a memory device cannot be used 

to trigger a process that alters that same memory device, unless some record is left elsewhere of 

the content of the memory device. The claim is unsustainable. The triggered process can proceed 

without the continued existence the triggering data; all that it needs is for the data to exist at the 

time of the triggering and the presumption that the processes can proceed independently once 

triggered. If it helps, imagine that the process triggered is carried out by a physically distinct 

robotic machine. The device’s sole function is to perform this one process without needing any 

further data input; it operates autonomously once triggered; and it is programmed to return itself 

to its unique ready state as its last step. 

7.	
  Arbitrariness	
  of	
  the	
  Standard	
  Inventory	
  

 In Section 5, I assembled what I called the standard inventory of process employed in this 

literature. I argued that this inventory admits composite processes that violate the second law of 

thermodynamics and also effect dissipationless erasure. My point is not to urge that such 

processes are possible. Rather my point is one that has been central to my earlier papers on the 

subject: that the literature in the thermodynamics of computation is incoherent. Its basic 

principles--versions of the second law of thermodynamics and Landauer’s Principle--contradict 

the processes it admits. 

 I have no interest in defending the standard inventory. My view is that it has been 

assembled myopically in order to enable a few favored composite processes to be constructed, 

but without proper attention to the fuller ramifications of the selection. It can be challenged and 

should be. 

7.1	
  Neglect	
  of	
  Fluctuations	
  

 The principal difficulty for this inventory comes from its selective neglect of fluctuation 

phenomena. This neglect reflects the discarding of an earlier tradition in which fluctuations 

played a central role. When the molecular basis of thermodynamics was accepted over a century 

ago, fluctuation phenomena were recognized to be small violations of the second law of 
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thermodynamics. The open question was whether these small violations could be accumulated 

into larger ones. The early consensus was that they could not. The operation of devices that 

sought to accumulate them, it was decided, would be disrupted fatally by fluctuations within 

their components. 

 This view was elaborated in the 1910s by Marian Smoluchowski through many 

examples. One is well known. One might try to realize something close to the demon system 

Maxwell originally imagined by placing a spring-loaded trapdoor over a hole in a wall separating 

two gases, each initially at the same temperature and pressure. Molecular collisions can open the 

trapdoor in one direction only, as shown in Figure 4, to allow molecules to pass from left to right 

only, creating a disequilibrium in pressure that violates the second law. 

 The proposal fails because the trapdoor will itself carry thermal energy, fluctuating 

around the equipartition mean of kT/2 per degree of freedom. Since it must be light-weight 

enough for a collision with a single molecule to open it, its thermal energy will lead the trapdoor 

to flap about wildly and allow molecules to pass in both directions. (For a short survey, see 

Earman and Norton, 1998, pp. 442-48.) 

 

 
Figure 4. Smoluchowski Trapdoor 

 

7.2	
  Reversible,	
  Isothermal	
  Expansion	
  and	
  Contractions	
  

 Fluctuations will disrupt processes in the inventory of Section 5.1. Consider the pair, 

Process 1a. Reversible isothermal expansion to double volume. and Process 1b. Reversible 

isothermal compression to half volume. They are carried out by a piston connected by linkages to 
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a weight. Work is extracted from or converted to the thermal energy of the molecule when its 

collisions with the piston lead it to raise or lower the weight. If the process is to approximate a 

reversible process, the mean force exerted by the molecular collisions must almost exactly be 

matched by the mean force of the piston and weight, so the system is as close as possible to a 

delicate equilibrium of forces. Now each component of the system will have its own mean 

thermal energy of kT/2 per degree of freedom, comparable in magnitude to the energy of the 

molecule. That includes the piston, the weight and each component of the linkages that connects 

them. As a result the entire system of molecule, piston and weight will be bouncing wildly to and 

fro. If the very slight disequilibrium of forces favors expansion and the raising of the weight, that 

expansion will not be realized stably. For fluctuation motions will be superimposed upon it, so 

that the statistical equilibrium state will consist of random motions through some portion of the 

cylinder. The same holds for compression. 

 A simple but revealing implementation of the process arises when the cylinder, carrying 

the single molecule, is oriented vertically with the piston resting on the gas pressure, as shown in 

Figure 5. The work of expansion and compression arises in the raising and lowering of the 

weight of the piston by the gas pressure. If the process is to be reversible, the piston must have 

just enough mass so that, absent fluctuations, the expansion or compression sought is only just 

favored by the balance of forces.12 That means that we will have a light molecule repeatedly 

colliding with a very light piston and that very light piston will have thermal motions comparable 

to those of the molecule. As a result, the equilibrium state for the piston will consist of random 

motions spread over the cylinder. 

                                                
12 This condition will require adjustments to the mass of the piston as the one-molecule gas 

expands and contracts and the gas pressure changes. While machinery that adjusts the mass is 

possible, it will greatly complicate analysis. A better approach is to replace the gravitational field 

by another force field that pulls the piston down with a force —2kT/h, as developed in Section 

7.5 below. We also presume that this force does not act upon the molecule, thereby avoiding the 

complication of a gravitationally induced pressure gradient. 
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Figure 5. A Piston Reversibly Compressing a One-Molecule Gas 

 That thermal fluctuations in the piston’s position will be of the size of the cylinder as a 

whole follows from a rough estimate of the size of the thermal fluctuations in the piston’s 

position. Consider the piston as a thermal system at temperature T, independently of the single 

molecule of the gas. Its energy will be canonically distributed in conformity with the Boltzmann 

distribution. The distribution of its energy of height E = Mgh, for height h above the cylinder 

floor and acceleration due to gravity g, will scatter the piston thermally over different heights 

according to the probability density 

p(h)  =  (Mg/kT) exp ( -Mgh/kT) 

for h ≥ 0. The mean of this distribution is kT/Mg and its standard deviation is also kT/Mg. This 

standard deviation kT/Mg measures the scale for the size of thermal fluctuations in height of the 

piston. The mass M is chosen so that the weight of the piston, Mg, exactly balances the force 

from the pressure P = kT/V exerted by the one-molecule gas, when it occupies volume V.13 The 

force exerted on the piston by the gas pressure is just PA, where A is the area of the piston, so 

that V = hA. The equilibrium height heq of the piston is determined by setting these two forces 

equal: Mg = PA = (kT/heqA) . A. Solving 

                                                
13 The fuller analysis of Section 7.5 will show that this is an inexact condition for equilibrium. It 

neglects the effects of the piston’s thermal motion on the mean force it exerts on the gas. 
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heq = kT/Mg 

Hence the scale of thermal fluctuations in the position of the piston will be of the size of the 

displacement of the piston sought in doubling or halving of the cylinder volume. 

 One might try to arrest fluctuating motions of the compression process at the midpoint or 

the expansion process at full volume by including a stop that obstructs further motion of the 

piston. However in both cases the piston will simply bounce off the stop and continue its random 

motion. One might try to arrest the motion in a more sophisticated way. Perhaps one locates a 

spring-loaded pin in the wall of the chamber that will release and lock the piston as it passes. We 

assume our components are governed by a non-dissipative Hamiltonian mechanics that has no 

friction term. Therefore the pin and spring system will have its own thermal energy and the pin 

will bounce in and out in a way that defeats its purpose of arresting the piston. We are now 

replicating Feynman’s et al.’s (1963, §46) famous analysis of the ratchet and pawl that itself lies 

within the Smoluchowski tradition. 

 Finally, even if we could arrest the motion, it is only by chance that the arrested motion 

would have realized the reversible process sought. The piston may arrive at the end of the 

cylinder as a result of being raised by work done by the gas pressure. But it may also arrive there 

through a random fluctuation. 

7.3	
  Dissipationless	
  Detection	
  

 A second casualty of the neglect of fluctuations is Process 3a. Detection. It is presumed 

possible without dissipation, thereby enabling the localization of the entropy costs of 

computation into the erasure process. This presumption contradicts an earlier tradition that 

asserted a necessary entropy cost of k ln 2 for any measurement that ascertained one bit of 

information, such as the position of a molecule distributed over two chambers. The history of 

this tradition was recounted in Earman and Norton (1999, especially Section 2.1), where the 

assertion of this entropy cost was called “Szilard’s Principle.” The newer tradition asserted that 

the earlier tradition was mistaken. However the proposals for procedures that could measure 

without entropy cost were defective. Their operation would be disrupted fatally by fluctuation 

processes. (See Earman and Norton, 1999, pp. 13-14; p. 16.) 

 One celebrated example was offered by Bennett (1987, p.14). To determine which side of 

a divided chamber holds a molecule, a keel shaped device is slowly lowered onto the chamber. It 
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is connected by two pistons to the two sides of the chamber, so that, as it is lowered, one piston’s 

motion is resisted by the single molecule’s gas pressure. This tips the keel and reveals the 

molecule’s position. The difficulty is that the keel is a thermal system with mean thermal energy 

kT/2 per degree of freedom. It must be very light if the pressure of a single molecule can tip it. 

The process of lowering the keel onto the chamber is quite similar to the compression of a one-

molecule gas by a weight described in the last section. Hence, its thermal energy will cause the 

keel to rock wildly, just as comparable thermal energies are able to scatter the molecule through 

the chamber. The resulting rocking motion will preclude the keel from settling into a 

configuration that reveals the molecule’s position.  

 In another example, Bennett (1982, p. 307-309) describes a dissipationless measurement 

performed by a ferromagnet. It is initially in a “soft mode” so that it can transform freely 

between the “up” and “down” states. It couples with the system to be measured and adopts that 

state’s up or down mode. On manipulating the external magnetic field, the ferromagnet reverts to 

a bistable state in which it can no longer transform freely between the up and down states, 

completing the measurement process. Once again fluctuations will disrupt the measurement. 

Each of its steps must be performed reversibly, so they are, at every stage, in a delicate 

equilibrium upon which fluctuations are superimposed. The part of the detection process that 

couples the detector ferromagnet to the target data ferromagnet is familiar. It is a two-to-one  

compression of the magnetic degrees of freedom of the detector space. Hence it is 

thermodynamically similar to the compression of a one-molecule gas by a piston. This suggests 

that this coupling process will be disrupted in an analogous way. More generally, since all the 

processes of the detection are isothermal, reversible processes, we can know that fluctuations 

will disrupt them, for the general result of the next section applies to them. 

7.4	
  A	
  General	
  Result:	
  Fluctuation	
  Disruption	
  of	
  All	
  Reversible,	
  Isothermal	
  

Processes	
  at	
  Molecular	
  Scales	
  

 The processes of the last two sections admit a simple, general characterization. Each is an 

isothermal, reversible process in a system at thermal equilibrium with its surroundings. During 

this process, the system may exchange heat with its surroundings, but it exchanges no work with 

the surroundings. In the case of the reversible expansions and contractions of Section 7.2, the 

system consists of the totality of the gas and the machinery that gains or supplies work, such as 



 26 

the raised or lowered, weighted piston. In the case of dissipationless detection of Section 7.3, the 

system consists of a target whose state is measured, a detector and a driver, which couples and 

decouples the detector from the target. 

 No process with this general characterization can proceed reversibly on molecular scales; 

its operation is fatally disrupted by fluctuations. Here is the demonstration. Throughout, the 

system is in thermal equilibrium at temperature T. Hence, it is canonically distributed over a 

phase space admitting all its possible configurations. Its probability density is 

p (x, π) = exp(-E (x, π)/kT)/ Z 

Z is the normalizing partition function. The multi-component x and π  are generalized 

configuration and momentum coordinates. They may be familiar positions and momenta. But 

they may equally be canonical quantities associated with the magnetization of the ferromagnet 

detector and target of the last section. 

 We will take λ to parameterize the stage of the process, which starts at λ= λ1 and ends at 

λ= λ2. The different stages λ of the process correspond to different subvolumes of this phase 

space. For example, an initially compressed state of a one-molecule gas will correspond to a 

subvolume of the phase space in which the molecule accesses a portion of its configuration space 

only and the compressing piston accesses the complementary portions of its configuration space. 

 The system will spontaneously fluctuate among the different stages. The probability of 

these fluctuations can be recovered from Einstein’s analysis of fluctuations in a form 

summarized by Tolman (1938, pp. 637-38). The probability density p(λ) that the system will be 

found in stage λ is proportional to the integral Z(λ): 

p(λ) = constant. Z(λ) 

where the Z(λ) is given by 

Z(λ) =  ∫λ  exp(-E(x, π)/kT) dxdπ  

The integral extends over the subvolume of phase space corresponding to stage λ.  

 The essential idea behind the Einstein-Tolman analysis is to describe this stage λ as if it 

were an equilibrium state, even though it can arise through a fluctuation. Then we can use the 

familiar results of equilibrium statistical thermodynamics to assign thermodynamic quantities to 

the state. Its partition function is Z(λ). Each stage will also have a free energy F(λ) = E(λ) – 

TS(λ) assigned to it, where E(λ) and S(λ) are the mean energy and the entropy also assigned to 
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stage λ. For canonically distributed systems, this free energy is related to the partition function 

by 

F(λ) = -kT ln Z(λ) 

Combining the last three equations, we have 

p(λ) = C exp(-F(λ)/kT) 

for C some constant; and the result that relates the probability density for the system fluctuating 

to states λ1 and λ2: 

p(λ2)/ p(λ1) = exp(-(F(λ2)- F(λ1))/kT) 

 The process is thermodynamically reversible. That means that, at each stage λ, the 

process satisfies the condition of thermal equilibrium on mean quantities. That is, dF(λ)/dλ = 

0,14 so that F(λ) is a constant in λ and F(λ2) = F(λ1). It now follows that p(λ2)/ p(λ1) = 1, so that 

p(λ2) = p(λ1). In general, this means that  

p(λ) = constant,  for all λ 

That is, fluctuations are equally likely to carry the process from any stage to any other. If we try 

to set up the process in its initial stage, it is as likely to remain there as to fluctuate to any 

intermediate stage or the final stage. If the process has arrived at its final stage, it is as likely to 

remain there as to fluctuate back to any earlier stage. 

 A thermodynamically reversible process is required to proceed infinitely slowly. Hence, 

all efforts to realize this infinitely slow progress will be disrupted by these fluctuations. This 

completes the demonstration. 

 What does it take to bring the process reliably from start to end?  It is easy to see that it 

requires entropy creation in excess of the k ln 2 of Landauer’s Principle. For we need to create a 

gradient in the probability density that will favor completion. Since the probability density of the 

various stages p(λ) are fixed by their free energies F(λ), we need to reduce the free energy of the 

                                                
14 If the process is in equilibrium at λ, the entropy of the system Ssys and the entropy of the 

environment Senv satisfy (d/dλ)(Ssys(λ)+ Senv(λ)) = 0. Since the system exchanges no work with 

the environment, but may exchange heat with it in a reversible process, we have dSenv(λ)/dλ = -

(1/T) dEsys(λ)/dλ. Combining we have 0 = (d/dλ)(Esys(λ) – T. Ssys(λ)) = dFsys(λ)/dλ. 
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end stages. For example, we might introduce a disequilibrium over the process of F(λ1) > F(λ2) 

+ 3kT, for which:15 

p(λ2)/ p(λ1) > exp(3) = 20 

This probability gradient discourages, but does not preclude, a fluctuation-driven reversion of the 

process from the end stage λ2 to the initial stage λ1. Nonetheless it comes at a heavy 

thermodynamic cost. Recalling that F=E-TS, this disequilibrium is equivalent to 

S(λ2) - S(λ1) - (E(λ2) - E(λ1))/T > 3k  

During this process, the energy change in the surroundings is -(E(λ2) - E(λ1)). Hence the second 

term of this relation is a lower bound for the entropy increase in the surroundings. Thus, the 

relation asserts that the entropy of the system and its surroundings increases by at least 3k during 

the process. This entropy creation of 3k greatly exceeds the k ln 2 = 0.69k of thermodynamic 

entropy that arises in Landauer’s principle. 

 In sum, these results show us that all the reversible, isothermal processes we might seek 

to use in computation are fatally disrupted by fluctuations. We can overcome these fluctuations 

and drive the processes to completion only by introducing disequilibria that create quantities of 

entropy that greatly exceed those tracked by Landauer’s Principle. This is catastrophic for the 

idea that entropy creation can be restricted ideally to erasure processes alone. The disequilibria 

needed to complete each step in the idealized computation will be creating quantities of entropy 

that will swamp the Landauer limit. 

 The problem only arises for processes that proceed at molecular scales. For ordinary, 

macroscopic processes, a disequilibrium corresponding to a 25kT difference in the free energy is 

negligible. This quantity of 25kT is the mean thermal energy of just ten oxygen molecules. 

However it is sufficient to produce a probability density ratio of exp(25) = 7.2 x 1010. 

                                                
15 This modest intervention is quite violent. If we wish to encourage a one-molecule gas to 

expand to twice its volume, even removing the piston completely provides a free energy 

difference of merely -kT ln 2 = -0.69kT.  
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7.5	
  An	
  Illustration	
  of	
  the	
  General	
  Result	
  	
  

 The results of the last section are stated at a general level. To understand them better, it is 

helpful to instantiate the various quantities in an example. Consider the reversible compression 

or expansion of a one-molecule gas under a piston, as in Section 7.2. We will replace its 

gravitational force field by another field that acts only on the piston and not on the gas molecule. 

It exerts a downward force on the piston of magnitude 2kT/x, where x is the height of the piston 

above the cylinder floor. This particular force has been chosen since it will turn out that, under it, 

the piston can remain in equilibrium with the gas at all heights. Thus the energy of the piston will 

vary as 

Epist(x, π) = 2kT ln x + π2/2M, 

where M is the piston’s mass and x = (x,y,z) and π  = (πx, πy, πz) are the piston’s canonical 

position and momentum variables. The energy of the gas is 

Egas(x’, π’) = π’2/2m, 

where m is the mass of its molecule and x’ = (x’,y’,z’) and π’ = (π’x, π’y, π’z) are its canonical 

position and momentum variables. 

 When the compression or expansion is at stage h, the system is restricted to the following 

subvolume of its phase space: the one-molecule gas occupies the region of the cylinder from 

x’=0 to x’=h; and the piston fluctuates through the region x=h to x=∞.16 The probability density 

pgas(h) that the gas extends to height h is proportional to the partition function 

Zgas(h) =  ∫all π ',y’,z’ ∫x’=0,h exp(-π’2/2mkT) dx’dπ ' = const(T). ∫x’=0,hdx’ = const(T).h 

The term const(T) is a constant that is a function of T but not h. Since differences between the 

constants that enter analogously into the formulae below will not affect the final result, I will use 

“const(T)” as a generic symbol for all such constants. The gas free energy is 

Fgas(h) = -kT ln Zgas(h) = -kT ln h + const(T) 

                                                
16 The interaction of the molecule and piston requires a short-range interaction term in the 

Hamiltonian that would ensure that the molecule bounces off the piston, rather than passing 

through it. This interaction is idealized here by the assumption that that the piston can never be 

found at a lower altitude than the molecule. 
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The pressure force exerted by the gas is 

Xgas(h) = - ∂/∂h|T Fgas(h) = kT/h 

which is the force generated according to the ideal gas law by the pressure of a one-molecule 

gas. 

 The corresponding probability ppist(h) for the piston is proportional to the partition 

function 

Zpist(h) =  ∫all π ,y,z ∫x=h,∞ exp(-(2kT ln x + π2/2M)/ kT) dxdπ  

= const(T). ∫ x=h,∞(1/x2) dx = const(T).(1/h) 

The piston free energy is 

Fpiston(h) = -kT ln Zpiston(h) = kT ln h + const(T) 

The mean force exerted by the piston on the gas is 

Xpiston(h) = - ∂/∂h|T Fpiston(h) = -kT/h 

We can now see that the system is at equilibrium at all h, for the mean forces exerted by the gas 

and piston balance 

Xgas(h) + Xpiston(h) = kT/h – kT/h = 0 

Since X(h) = - ∂/∂h|T F(h), this is equivalent to requiring constancy of the sum of their free 

energies, Ftot(h), which does obtain 

Ftot(h) = Fgas(h) + Fpiston(h) = -kT ln h + kT ln h + const(T) = const(T) 

Finally, we should expect the probability of the combined system to be uniformly distributed 

over all values of h. This also obtains, for the combined probability density ptot(h) is 

ptot(h) = pgas(h). ppiston(h) = const(T). Zgas(h). Zpiston(h) = const(T).h.(1/h) = const(T). 

Hence, through fluctuations, the system is equally likely to be at any stage of the compression or 

expansion process. This precludes the possibility of an infinitely slow expansion or contraction 

proceeding, as required by a reversible process. 

 The analysis of this case illustrates how these large fluctuations arise. Initially, it may 

seem odd that a gas-piston system, half expanded to stage h=H/2, may fluctuate so freely to a 

fully expanded stage h=H. That oddness derives from a mistaken assumption about the 
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microscopic dynamics. We expected erroneously that the dynamics would tend to keep the 

microstates within each stage, only slowly letting them evolve into later stages. However the 

dynamics allows the molecule and piston to move about so much in each stage that they are 

dynamically very close to and often coincide with the positions associated with other stages. 

Indeed, the phase volumes of the two stages overlap substantially. This is shown in Figure 6, 

which displays the equiprobable volumes corresponding to the various stages in configuration 

space. 

 
Figure 6. Configuration space for the gas-piston system 

 Thus, a microstate in stage h=H/2 is as likely to evolve into another microstate in stage h=H/2 as 

to a microstate in stage h=H. The apparent oddness of the ease of fluctuation derives from the 

artificiality of dividing up the system microstates into the stages of different h values. 

 The moral is general. Figure 7 shows the phase space divided into subvolumes 

corresponding to the stages λ of a general process. The representation on the left shows the 

expected time evolution in which the system remains for a longer time in each stage before 
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passing to the next. The representation on the right shows what actually happens: the system 

bounces indifferently over all stages. 

 
Figure 7. Intended and Actual Time Evolution for a Reversible Process 

 

7.6	
  Insertion	
  of	
  the	
  Partition	
  

 It is not hard to see that analogous problems will afflict the remaining processes once we 

try to make their details concrete. For example, Process 2b. Insertion of the partition, must 

terminate with the partition locked in place. But what arrests its motion? Since its physics is 

governed by a conservative Hamiltonian, what will prevent it bouncing off the stop at the end of 

its intended motion; and what will prevent fluctuations from rattling it loose from the mechanism 

that holds it? As before, a spring-loaded pin will fail. We cannot call up a tight fit into a groove, 

wedges, screws, nuts and bolts or ropes with knots, for all these devices depend upon friction and 

are incompatible with a conservative Hamiltonian. Perhaps the most promising approach is to set 

a very heavy weight over the partition. But now we must find a process that can deliver the 

weight to the right spot with no residual energy, else it will bounce off. As before, we cannot 

bleed off excess energy with friction, for that would be just the dissipative conversion of work to 

heat.  

 The analysis of this Section 7 overall show that we cannot construct an inventory of 

admissible microscopic processes by taking familiar macroscopic processes and assuming that 

they scale down to equally well-behaved microscopic processes. At ordinary scales, we may be 

able to build a delicately balanced house of cards on a tabletop. At microscopic scales, the 

tabletop is shuddering as if in a powerful earthquake and the cards are flapping about as if alive. 
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8.	
  Assigning	
  Thermodynamic	
  Entropy	
  to	
  Probabilistic	
  Mixtures	
  

8.1	
  The	
  Result	
  Claimed	
  and	
  its	
  Proof	
  

 A sequel to LPSG seeks to revive the possibility of employing information theoretic 

entropy, as given by formula (3), as a way of assigning thermodynamic entropy. Ladyman et al. 

(2008) [LPS] consider the case in which the probabilities Pi of formula (3) are distributed over 

distinct macrostates. The goal is to demonstrate that a statistical form of the second law entails 

that thermodynamic entropy must be attached to this probability distribution according to the 

information theoretic formula. 

 The result claimed and proof offered is presented at a greater level of generality than 

needed for the present analysis. So I will proceed as before by restricting both to the simple case 

of Section 4 above. The set-up will be the same, except that the one-molecule memory device M 

will be replaced by a huge cavern with a boulder that can be rolled to the left or right, where it 

occupies equal thermodynamic entropy macrostates ML and MR. This device emphasizes the 

macroscopic character of the memory device. The proof proceeds by carrying out Steps 1-3. and 

then halting. At the end of Step 3., the system G has been returned to its original state. The 

totality of changes has been to pass heat kT ln 2 to the heat bath and transform the boulder 

memory device from its initial macrostate ML to an equally weighted, probabilistic mixture of 

the two macrostates ML and MR. 

 LPS follow the Landauer Principle literature in describing all the processes of Steps 1 to 

3 as reversible, including the insertion of the partition. LPS now propose a definition of entropy 

that can assign a thermally based entropy to probabilistic mixtures of macrostates. For a 

reversible, isothermal process the entropy change ΔS is given by a version of Clausius’ formula 

(1) adapted to the probabilistic environment 

ΔS = <Δqrev >/T                                                               (1’) 

where <Δqrev > is the mean quantity of heat passed to the system, assuming all heat flows are at 

one temperature T.  

 In the course of the reversible process of Steps 1-3, the total system of G, M and the heat 

bath exchanges no heat with a larger system. If follows from (1’) that the entropy of the total 

system remains constant. The heat bath has lost heat kT ln 2. By (1’) its entropy has reduced by 
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(kT ln 2)/T = k ln 2. This reduction must be compensated by the only other component of the 

system that has changed, the boulder system M, whose entropy must increase by k ln 2. That is, 

the boulder system M has gained an entropy of k ln 2 by virtue of being transformed into a 

probabilistic mixture of states, where the probabilities of the two states are PL = PR = 1/2. This 

additional entropy turns to out to equal the information theoretic entropy computed by formula 

(3): 

Sinfo = -k (PL ln PL + PR ln PR) = k ln 2 

In sum, we have a boulder system probabilistically distributed over two positions L and R in a 

great cavern; and there is a thermodynamically defined entropy of k ln 2, computed by the 

information theoretic formula (3), associated with the probability distribution. 

 It is important to note that the proof of this result depends essentially on the holding of 

the statistical form of the second law of thermodynamics already mentioned in Section 4. For, by 

the argument sketched in Section 2.2 above, this law is necessary if the entropy differences 

among states and mixtures is to be independent of the reversible process connecting them. Only 

then will the entropy computed by formula (1’) be a property of the probabilistic mixture, 

independent of the path taken by the process that created it. 

8.2	
  Why	
  it	
  Fails	
  

 There are two difficulties, each sufficient to defeat the proof. The first is the same 

problem that affected the attempted indirect proof of Landauer’s Principle. It employs an 

inventory of processes that is incompatible with the statistical form of the second law of 

thermodynamics.17 Hence, inferences to contradictory conclusions are possible in the system and 

the result is unreliable. 

                                                
17 In the context of the LPS proof, we may challenge the inventory along lines similar to those 

indicated in Section 7. The inventory is supposed to include processes that can take fluctuations 

at the molecular level—the differing positions of a single molecule in a chamber—and amplify 

them into differences of macrostates. Of course an electron microscope can do this. But it does 

not operate reversibly in the thermodynamic sense. We are to suppose the amplification can be 

done reliably by thermodynamically reversible processes; that is, by processes that approach 
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 The second difficulty is the description of the process of insertion of the partition as 

“reversible.” As I have argued at some length in Norton (2005, Section 3.2), this is a ruinous 

misuse of the term “reversible” if it is applied in the Clausius definition of thermodynamic 

entropy. The justification for the use of the term is, I believe, that inserting and removing the 

partition switches one between a fully expanded gas and a probabilistic mixture of states of the 

molecule trapped on one or other side of the partition. In that sense, each process is the reverse of 

the other. However it is the wrong sense of reversible if the entropy defined through the Clausius 

formula (1’) is to be a state property. 

 To see why, consider a chamber holding a single molecule and insert a partition at the 

midpoint. We now have a one-molecule gas in the familiar probabilistic mixture of states ML 

and MR. Drawing only on admissible processes in the inventory, we can construct two processes 

that restore the probabilistic mixture to the fully expanded state. 

Expansion Process 1. We detect18 which side of the partition holds the molecule and 

insert a piston accordingly. We then perform a reversible, isothermal expansion of the 

one-molecule gas, so that the gas, in each case, absorbs heat kT ln 2 from the heat bath. 

That quantity is the mean heat <Δqrev > for formula (1’), from which we infer that the 

entropy difference between the mixture and the fully expanded state is (kT ln 2)/T = k ln 

2.  

Expansion Process 2. We remove the partition. The one-molecule gas expands to fill the 

chamber without any exchange of heat with the heat bath. If we concur with LPS that this 

is also a reversible process, then we can apply formula (1’) and conclude that the mixture 

and the fully expanded state differ in entropy by 0/T = 0. 

                                                

equilibrium processes arbitrarily closely. Should we not expect such processes to be fatally 

disrupted by thermal fluctuations in their own mechanisms?  
18 That Process 1 only has a detection does not affect the argument since LPS assume that 

detection is possible reversibly and without passing heat to or from the gas. In any case, we can 

add a detection to the start of Process 2, even though its outcome is not exploited, to assure that 

they processes do not differ in this regard. 
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It now follows that the entropy of (1’) is not a path-independent property, for we have two 

reversible processes that connect the same end points, but are associated with different entropy 

differences. 

 This mischaracterization of the insertion of the partition as a reversible process enables 

the proof to overlook the fact that the process is actually one that reduces the entropy of the one-

molecule gas G by k ln 2. The omission of this reduction from the entropy accountancy leaves an 

entropy surfeit of k ln 2 that is then erroneously attributed to the probabilistic mixture. 

9.	
  Conclusion	
  

 We expect thermal problems to place limits on what we can achieve with computing 

machines. As the machines become smaller, the practical challenge of separating a computed 

signal from background thermal noise increases. When we try to make our computing machines 

thermodynamically more efficient by bringing their processes closer to thermodynamically 

reversible processes, this same thermal noise, manifested as fluctuations in the machinery, 

threatens to disrupt their intended operation. 

 It remains an open question, as far as I can see, whether these thermal problems are 

anything more than challenging practical problems whose effects can be minimized but never 

eliminated; or whether their limits can be reduced to some simple, sharp and principled 

expression. The present literature on the thermodynamics of computation has sought such a 

reduction by localizing these limits into just one type of process, logically irreversible 

computation of which erasure is a special case; and to give these limits principled expression as 

Landauer’s Principle. 

 The central claims of this paper are that we still await a cogent justification of Landauer’s 

Principle and that present efforts to demonstrate it are proceeding in an incoherent framework. 

Its proponents seek to assert both a statistical form of the second law of thermodynamics and 

Landauer’s Principle. Yet the demonstrations associated with them employ a repertoire of 

processes through which both can be violated. It is an awkwardly constructed repertoire. 

Extraordinary attention is lavished on the thermal fluctuations of selected systems, most 

commonly, a single molecule in a chamber. That system is measured, expanded, contracted and 

more by a collection of further processes. Yet the inventory ignores the same thermal 

fluctuations in each component of these processes that threaten to defeat their operation. 
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 The inventory seems to have been constructed so that it can enable certain predetermined 

results to be established. We should like to see an entropy cost associated with erasure. So we 

focus on the thermal character of a single molecule whose position encodes our data. If we wish 

to restrict its position in an erasure operation, its thermal motions mean that, when we compress 

it, we pass heat to a reservoir creating thermodynamic entropy in the reservoir. But if we are 

interested only in reading our data by determining the molecule’s position, we ignore the same 

thermal fluctuations in the processes used. Hence we preclude discovery of further 

thermodynamic costs that might compromise the core idea to be protected: that ineliminable 

dissipation only arises through processes that physically implement logically irreversible 

functions.  

 The concern that something is fundamentally awry in this literature has already been 

expressed in my earlier papers, including those with John Earman (Earman and Norton, 1998, 

1999; Norton 2005). We found a literature based on unsound principles and methods. More 

recent work in that literature has not improved matters. It takes that same unsound foundation 

and adds layers of more elaborate theorizing. Those efforts may produce analysis that is rigorous 

and even ingenious in its smaller parts. However the totality remains incoherent, with its 

unsound foundations now obscured by the sheer mass of the new theorizing. 
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Appendix:	
  Some	
  Recent	
  Attempts	
  to	
  Prove	
  Landauer’s	
  Principle	
  

By	
  An	
  Illicit	
  Canonical	
  Ensemble	
  

 Piechocinska’s (2000) considers the erasure process for three analogous systems, arriving 

at Landauer’s Principle for each. Here I will consider the first system. In it, the memory device is 

modeled as classical particle trapped in one side of a symmetric double well potential field. The 

device is in thermal equilibrium with a heat reservoir at temperature T throughout the erasure 

process. In the initial state, the molecule is equally likely to be trapped in either well and its 

probability density in its phase space is ρinit. During the erasure process, work is supplied to the 

memory device and a quantity of heat ΔE is passed to the reservoir. The device with its particle 

in the reset state then has a probability density ρfinal. 

 A principal burden of the analysis is to derive Piechocinska’s equation (9): 

<ln ρfinal> - <ln ρinit> ≤ < ΔE >/kT                                         (A1) 

where angle brackets represent phase averages. This inequality will likely appear unfamiliar until 

one recognizes the quantities. Since the molecule is canonically distributed, we have 

ρ  =  exp(-E(x)/kT)/Z 

where E is the energy of the molecule when at generalized phase space coordinate x. Z is the 

normalizing partition function 

Z  =  ∫exp(-E(x)/kT) dx 

Thus 

<ln ρ> =  -<E>/kT  -  ln Z 

which is merely a rescaled expression of the canonical thermodynamic entropy S of the Gibbs 

approach: 

S = - k <ln ρ> 

Hence inequality (A1) asserts a relation familiar in the Gibbs approach and in no need of a new 

derivation.  For an isothermal process  

Sfinal  -  Sinit    ≥  -< ΔE >/T 



 39 

where  -< ΔE > is the heat supplied to the system. In words, the entropy increase of a system in 

an isothermal process is at least equal to (heat gained)/T. Equality obtains for a reversible 

process. 

 All that remains is to show that the erasure process passes heat < ΔE > = k ln 2 to the heat 

reservoir thereby creating thermodynamic entropy k ln 2. To arrive at this, we note that the single 

particle before and after the process has the same mean energy, <Einit> = <Efinal>. Hence 

<ln ρfinal> - <ln ρinit>  =  ln Zinit  -   ln Zfinal  = ln (Zinit / Zfinal) 

Everything in this derivation thus far is correct. Now the error enters. Piechocinska presumes (p. 

1) an “ensemble of bits” with “half the bits to be in the ‘one’ state and the other half to be in the 

‘zero’ state.” This initial state is represented by a canonical probability distribution that is spread 

over both wells of the double potential well, even though each particle can access only one of the 

wells. Since the double wells are symmetric in their phase spaces, it then follows that 

Zinit  =    ∫two wells exp(-E(x)/kT) dx  =  2 Zfinal  =   2 ∫one well exp(-E(x)/kT) dx 

Hence ln (Zinit / Zfinal) = 2. Combining we conclude that the heat passed to the reservoir, <E>, is 

greater than or equal to kT ln2 as Landauer’s Principle requires. 

 The error of this proof is to represent the ensemble of bits carrying equally many zeros 

and ones by a canonical distribution spread over both wells. It is precisely the illicit canonical 

ensemble described above in Section 3.3. The canonical distribution spread over two wells 

represents the memory devices after they have been thermalized so that the particles can access 

both wells and, as a result, each device’s thermodynamic entropy has been increased by k ln 2. 

 The correct analysis represents the initial state of each device individually by a canonical 

distribution restricted to the relevant well. As a result, for each device we have Zinit = Zfinal and 

the proof can no longer assure that heat must be passed to the reservoir since in erasure, since 

(A1) reduces to 0 ≤ < ΔE >. 

By	
  Compression	
  of	
  Phase	
  Volume	
  

 Turgut’s (2009) attempted demonstration of Landauer’s Principle is a sophisticated and, 

in places, elegant, version of the direct proofs that represent erasure as a compression of the 

phase space. Landauer’s Principle arises as a special case in the analysis of stochastic processes 

in the statistical physics of Hamiltonian systems. The input to the process is a system in 
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equilibrium with a heat bath. The system’s phase space is divided into cells labeled α  = 1, …, n, 

one of which is occupied by the system point. The process transforms this to a new system in 

equilibrium with a heat bath. The new system phase space is divided into cells labeled β = 1, …, 

m. P(β|α) is the probability of a transition from initial state α to final state β. The case of erasure 

arises if we regard the system as a memory device and take a transformation that assuredly sends 

all input states α to a nominated reset state, β = 1. That is, P(β|α) = δβ1. 

 The generality of Turgut’s result makes the proof very complicated and, as a result, 

difficult to follow. So I will restrict discussion here to the simplest case of erasure for which the 

basic of idea of the proof is easily seen. In that simple case, the initial and final systems are the 

same system S and their phase space is divided into the same set of n identical cells. They are at 

equilibrium with the same heat bath B at the same temperature T. The process is effected by 

performing work on the system. For example, the phase space may be divided into cells by walls 

comprising fields. Alterations in these fields correspond to raising, lowering or moving of these 

walls. These changes are represented formally by the time dependence of the total system 

Hamiltonian. 

 The origin of Landauer’s Principle is explained in terms of phase space compression 

(p.1): 

LEP [Landauer’s Principle] follows from the constancy of the phase space measures: 

as the process necessarily reduces the phase space of the device by requirement (B) 

[that requires the process to reset the memory device], it must expand that of the 

environment, which leads to the Landauer bound. 

That erasure compresses the phase space is not posited directly but is derived from a further 

assumption upon which the paper based (p. 1): 

(A) The process is carried out in the same way independent of the initial logical state 

(i.e. the information stored) or the microstate of the device… 

This informal conditions is rendered more precisely as (p. 1) 

…feature (A) is equivalent to the statement that the time dependence of the 

microstate during the process is governed by a single logical-state-independent 

Hamiltonian. 

In the special case of erasure, this condition requires a process that compresses the phase space 

of all the n input states α  = 1, …, n to the single cell β = 1 of the final reset device. This follows 
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since we do not know which input cell will contain the system point, but the time evolution has 

to be such that, whichever cell that may be, the system will end up in the reset state β = 1. So the 

Hamiltonian flow must map all n cells—“many-to-one”—into the single reset cell. Since the 

time evolution is Hamiltonian, Liouville’s theorem applies and total phase volume is conserved. 

The compression of phase volume in the phase space of the memory device S is compensated by 

an increase in the phase volume of the heat bath B that is at least as great. Hence:19 

Sum of phase volume for 

all possible input states of 

S, including heat bath B. 

 

≤ 

Phase volume of reset 

cell in S, including 

heat bath B. 

In the course of the process, some amount of work W will be communicated to the system S and 

an amount of heat Q will be passed from S to the heat bath B at temperature T. For this 

simplified case, the initial cell α and the final cell β = 1 are assumed to be identical in physical 

properties. Hence their mean energies are the same. So we have Q = W. The entropy s (in units 

of Boltzmann’s constant k) created by the erasure process is due to this heat Q passed to the heat 

bath B and is 

k s   =  Q/T  =  W/T 

Since all memory device cells are the same physically, this entropy will be the same no matter 

which memory state is erased. 

 The phase volume nB(E) of the heat bath B will vary with its total energy. We set this 

energy at E initially and it becomes E+W after the heat bath has gained heat Q=W. This increase 

in phase volume corresponds to the entropy created by erasure. If the phase volume of the input 

cells are each Ziα and of the single reset cell is Zf1, the above condition on phase volumes 

becomes 

Σα nB(E) Ziα ≤ nB(E+W) Zf1 

                                                
19 This condition is a simplification of Turgut’s equation (20), p. 4, whose positing is the 

essential step in the proof of Turgut’s Theorem 1. Liouville’s Theorem would require exact 

equality for the special case of erasure described, since the mapping of states is “onto.” I retain 

the inequality of the general case for consistency with Turgut’s text. 



 42 

Since the initial and final cells are the same in physical properties, we have Ziα = Zf1 for each α. 

For a large heat bath of many components with W very much less than E, so that T remains 

unchanged, we have 

nB(E+W) = nB(E) exp(W/kT) 

Combining and cancelling equal quantities we have 

n  ≤ exp(W/kT) 

Recalling that s = W/k we arrive at the principal result of Turgut’s Theorem 1 (p. 1), specialized 

to the case at hand 

n exp(-s)  ≤ 1 

Rewritten in a more familiar form, it tells us that erasing a memory device with n cells produces 

entropy ks that is no less than k ln n 

 Promising as this demonstration may seem, it fails to establish that erasing the n state 

memory device necessarily creates at least k ln n of thermodynamic entropy. The proof does not 

establish that erasure must compress the memory device phase space. The initial and final states 

occupy the same phase volume, that of a single occupied cell. Thus erasure need only rearrange 

the phase space volumes, not compress them. Turgut argues otherwise on the basis of condition 

(A), which is unnecessarily restrictive. It is justified by a familiar argument (p.1): 

Although it is conceivable that the process can read the information and take different 

actions depending on it, this can be done only by recording the information somewhere 

else. In that case, the process must also erase the recorded information. 

This mistaken view persists, as far as I can see, because it is easy to anthropomorphize the 

erasure device as a little man who must always record what he is doing and then erase his records 

at the end. Absent that anthropomorphism, it is hard to see how the mistake can be sustained. 

 Similar to the suggestion of the main text (Section 6.2), one might imagine that each 

memory cell is attached to its own erasure device. To erase, all the devices are activated. Only 

one, the α-device attached to cell α, is triggered by its detection that the input state is α. The 

remaining devices detect nothing and do nothing. Then independently of whether that triggering 

data continues to exist, the α-device mechanically executes its sole function, the erasure routine 

specifically tailored to cell α. It is programmed to terminate in its initial state automatically once 

its steps are completed. It has no memory registers that replicate the data of cell α. It has no need 

of them. It does the same thing whether the cell to which it is attached is one of ten cells or one 
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of a thousand cells. When triggered, it goes blindly through the action of moving the content of 

cell α to cell β = 1. 
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