This is a repository copy of *A sequential direct arylation/Suzuki-Miyaura cross-coupling transformation of unprotected 2'-deoxyadenosine affords a novel class of fluorescent analogues.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/19794/

Article:

https://doi.org/10.1039/c0cc02043e

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
This is an author produced version of a paper published in
Chemical Communications
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/19794

Published paper

A sequential direct arylation/Suzuki-Miyaura cross-coupling transformation of unprotected 2'-deoxyadenosine affords a novel class of fluorescent analogues
Chemical Communications
46 (35) 6470- 6472
http://dx.doi.org/10.1039/c0cc02043e
A sequential direct arylation/Suzuki–Miyaura cross-coupling transformation of unprotected 2′-deoxyadenosine affords a novel class of fluorescent analogues†

Thomas E. Storr,ab Johanna A. Strohmeier,b Christoph G. Baumannb and Ian J. S. Fairlamb*a

Received 23rd June 2010, Accepted 22nd July 2010
DOI: 10.1039/c0cc02043e

Novel rigid 8-biaryl-2′-deoxyadenosines with tuneable fluorescent properties can be accessed by an efficient sequential catalytic Pd0-coupling approach.

Fluorescent nucleosides are used widely as probes of enzymatic turnover and biomolecular structure, and as labels in high-throughput biotechnologies. Common organic, e.g. pyrenyl or fluorescein, and inorganic metal-containing extrinsic fluorophores can be attached to either sugar or nucleobase. Direct coupling of a conjugated aromatic group yields a more compact fluorescent analogue. Examples include aryl, heteroaryl or arylalkynyl nucleosides, but also modified nucleobase mimetics exhibiting unique fluorescent properties (Fig. 1). This communication describes the synthesis of novel 8-biaryl-2′-deoxyadenosines (e.g. II, Scheme 1) which function as Rigid Organo-fluorescent Nucleosides (RONs). These π-conjugated systems are accessible using our recently developed direct arylation methodology for unprotected adenine nucleosides, which facilitates the chemoselective installation of an aryl group at the 8-position. The use of a dihaloaromatic coupling partner would provide a secondary handle for further chemical manipulation, allowing addition of aryl groups via a classical cross-coupling (hereafter ‘coupling’) approach. Suzuki–Miyaura coupling has been used effectively with unprotected nucleosides and nucleotides, therefore it should be applicable to these substrates. This sequential coupling approach would provide a divergent synthetic route to differently substituted 8-biaryl-2′-deoxyadenosines (via I).

For the synthesis of target I, the use of diiodobenzene was dismissed as our prior findings indicated that double C–H arylation occurs. However, we rationalised that an aromatic coupling partner possessing two sites with different chemical reactivity towards Pd0 might provide an elegant solution. Therefore, as a first step towards the selective synthesis of the intermediate compounds, we evaluated iodobromo- and iodochlorobenzenes as direct arylation substrates (Scheme 2). Using our established direct arylation conditions, both 4-bromo and 4-chloro-iodobenzene reacted with 2′-deoxyadenosine to give compounds 1 and 2 in 54% and 97% yields, respectively.

Scheme 1 Proposed targets and sequential direct arylation/Suzuki–Miyaura approach (R = 2′-deoxyribose).

Scheme 2 Direct arylation of 2′-deoxyadenosine. Reagents and conditions: (i) ArI (2.0 eq.), Pd(OAc)2 (5.0 mol%), Cul (3.0 eq.), piperidine (0.4 eq.), Cs2CO3 (2.5 eq.), DMF, 80 °C, 15 h (R = 2′-deoxyribose; Z = H or F).

Fig. 1 Fluorescent nucleosides.

† Electronic supplementary information (ESI) available: Experimental details (including characterisation data for all compounds) and X-ray data for 5d and 5i, including cif files. CCDC [CCDC NUMBER(S)]. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c0cc02043e

This journal is © The Royal Society of Chemistry 2010
3-Fluoro-4-bromoiodobenzene was a robust substrate giving 3 in 53% yield, whilst 3-chloro-iodobenzene provided 4 in 87% yield.

With the 8-haloaryl-2′-deoxyadenosines (1–4) in hand we focussed on the Suzuki–Miyaura coupling methodology. We employed a Pd : TPPTS (tris-(3-sulfophenyl)phosphine trisodium salt = TPPTS) water soluble catalyst system. A slightly modified version of Shaughnessy’s protocol was employed, specifically Pd(OAc)$_2$ (1.25 mol%), TPPTS (2.5 mol%), Na$_2$CO$_3$ (2.0 eq.), MeCN : H$_2$O (2 : 1), 80 °C, 1.5 h (hereafter Conditions A).9a,b Interestingly, the employment of a catalyst preformation/preactivation step [Pd(OAc)$_2$, ligand, solvent and heating] led to a poor catalyst system resulting in incomplete reaction (Table 1; numbers in parentheses). This has implications for product isolation as it has a similar polarity to the starting material. The addition of the pre-catalyst and ligand with the solid reagents to a dry vessel (under an argon atmosphere) prior to addition of the solvent mixture worked most effectively (Table 1, all other yields).

The coupling of arylboronic acids with bromo analogue 1 using Conditions A proceeded well. Both electron-rich and electron-deficient arylboronic acids were efficient coupling partners (entries 1, 3, 5–7 and 9, Table 1). It is not surprising that chloro analogue 2 failed to serve as a substrate using Conditions A. Indeed, the difference in reactivity of C–Cl and C–Br bonds is apparent in the high yield observed for 5e (81%, entry 5). We identified Buchwald’s bulky electron-rich phosphine Xphos (2-dicyclohexylphosphino-2′,4′,6′-trisopropylbiphenyl = Xphos) as an enhancing ligand.

Table 1 Suzuki–Miyaura couplings of 1 and 2 with arylboronic acids (R = 2′-deoxyribose)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar</th>
<th>Cpd</th>
<th>Conditions A (from 1)</th>
<th>Conditions B (from 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-MeOC$_6$H$_4$</td>
<td>5a</td>
<td>71 (38)a</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>4-MeC$_6$H$_4$</td>
<td>5b</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C$_6$H$_5$</td>
<td>5c</td>
<td>89 (74)a</td>
<td>91 [81]b</td>
</tr>
<tr>
<td>4</td>
<td>4-FC$_6$H$_4$</td>
<td>5d</td>
<td>—</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>4-ClC$_6$H$_4$</td>
<td>5e</td>
<td>81c,d</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>3,5-F$_2$C$_6$H$_3$</td>
<td>5f</td>
<td>82</td>
<td>94c</td>
</tr>
<tr>
<td>7</td>
<td>4-FC$_6$H$_4$</td>
<td>5g</td>
<td>77</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td>3-FC$_6$H$_4$</td>
<td>5h</td>
<td>—</td>
<td>79</td>
</tr>
<tr>
<td>9</td>
<td>4-CC$_6$H$_4$</td>
<td>5i</td>
<td>89e</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>4-CHOC$_6$H$_4$</td>
<td>5j</td>
<td>—</td>
<td>84</td>
</tr>
<tr>
<td>11</td>
<td>2-Furyl</td>
<td>5k</td>
<td>—</td>
<td>71</td>
</tr>
<tr>
<td>12</td>
<td>2-Thienyl</td>
<td>5l</td>
<td>—</td>
<td>52f</td>
</tr>
<tr>
<td>13</td>
<td>3-Thienyl</td>
<td>5m</td>
<td>—</td>
<td>63</td>
</tr>
</tbody>
</table>

a Using a preformed catalyst (see main text for details). b Using PhBF$_3$K as a substitute for PhB(OH)$_2$. c 3 h reaction time. d Residual boronic acid starting material remaining. e 2 h reaction time. f 18 h reaction time.

Reactions were conducted using standard ‘in-house’ conditions, namely Pd(OAc)$_2$ (5 mol%), XPhos (10 mol%), aq. Na$_2$CO$_3$ (2 M), 80 °C, 3.5 h (hereafter Conditions B). Nine substituted biphen-4-yl-2′-deoxyadenosines were generated in good yields (entries 1–4, 6–10, Table 1) and three heteroaromatics were also coupled successfully (entries 11–13, Table 1). Using PhBF$_3$K as a substitute for PhB(OH)$_2$, a slightly lower yield of 5e (entry 3, Table 1) was obtained with Conditions B. The structures of compounds 5d and 5i were determined by single crystal X-ray diffraction; 5d is shown as a representative example in Fig. 2.

The crystal structure of 5d shows that this nucleoside adopts a syn-C2′-endo conformation and exhibits an intramolecular H-bond, consistent with related 8-aryl-2′-deoxyadenosines.9e

The Suzuki–Miyaura couplings using 3 (Conditions A) provided the 8-(2-fluoro-biphen-4-yl)-2′-deoxyadenosines 6a and 6b in good yields (Table 2, entries 1 and 2). 8-(Biphen-3-yl)-2′-deoxyadenosines 7a–c were accessible from 4 and ArB(OH)$_2$ using Conditions B (Table 2, entries 3–5). Finally, the chloro-substituted analogue 5c was subjected to Conditions B to give terphenyl analogue 8 in 76% yield (Scheme 3).
The photophysical properties of all RONs (5a–j, 6a, 6b, 7a–c, 8 and 9) were determined (\(\lambda_{\text{max}}\), \(\varepsilon\), \(\lambda_{\text{em}}\) and \(\Phi\) are listed in Table 3). A sequential increase in the UV fluorescence lifetime is observed as the increase in the UV absorption. The fluorescence of 8-phenyl-2-deoxyribosyl RONs decreases with increase in absorbance maxima.

In summary, a library of novel RONs has been synthesised using an efficient sequential direct arylation/Suzuki–Miyaura coupling approach. The spectroscopic properties of RONs can be tuned by changing the terminal aryl group, in most cases without adversely affecting the quantum yield. Once incorporated into oligonucleotides using solid-phase synthesis, the RONs could be exploited as thymine specific base-discriminating fluorescent probes.

EPSRC, BBSRC and Royal Society are acknowledged for funding this work. Dr A. C. Whitwood and R. J. Thatcher (York) are thanked for single crystal X-ray structural analysis. Dr A. Beeby and G. A. Rosser (Durham) are thanked for assistance with fluorescence lifetime measurements.

Notes and references

11. Absorption bands at 260 and 280 nm for nucleic acids and proteins, respectively.