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Abstract

Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease
(ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single
nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci
with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based
cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR ,60ml/min/1.73m2 at
follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at
11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were
associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline
eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1).
SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the
majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have
modest associations with ESRD in individuals of European descent. Additional work is required to characterize the
association of genetic determinants of CKD and ESRD at different stages of disease progression.

Citation: Böger CA, Gorski M, Li M, Hoffmann MM, Huang C, et al. (2011) Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD. PLoS
Genet 7(9): e1002292. doi:10.1371/journal.pgen.1002292

Editor: Stuart K. Kim, Stanford University Medical Center, United States of America

Received February 21, 2011; Accepted July 22, 2011; Published September 29, 2011

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: The Atherosclerosis Risk in Communities Study (ARIC) was supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-
55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022, R01HL087641, R01HL59367, and R01HL086694; National Human Genome
Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. Infrastructure was partly supported by grant
number UL1RR025005 from NIH Roadmap for Medical Research. AK was supported by the Emmy Noether Programme of the German Research Foundation. The

PLoS Genetics | www.plosgenetics.org 1 September 2011 | Volume 7 | Issue 9 | e1002292



Cardiovascular Health Study (CHS) research was supported by contract numbers N01-HC-85079 through N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC-
55222, N01-HC-75150, N01-HC-45133, grant numbers U01 HL080295 and R01 HL087652, and R01 AG027002 from the National Heart, Lung, and Blood Institute,
with additional contributions from the National Institute of Neurological Disorders and Stroke. DNA handling and genotyping was supported in part by National
Center for Research Resources grant M01RR00425 to the Cedars-Sinai General Clinical Research Center Genotyping Core and National Institute of Diabetes and
Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The CoLaus study received financial
contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, the Swiss National Science Foundation (33CSCO-122661, 3200BO-111361/2,
3100AO-116323/1, 310000-112552), the Swiss School of Public Health Plus, the Giorgi-Cavaglieri Foundation, and the European Framework Project 6 (EuroDia,
AnEuploidy and Hypergenes projects). The Framingham Heart Study (FHS): This research was conducted in part using data and resources from the Framingham
Heart Study of the National Heart Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine. The analyses reflect
intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe)
project. This work was partially supported by the National Heart, Lung, and Blood Institute’s Framingham Heart Study (N01-HC-25195) and its contract with
Affymetrix for genotyping services (N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert
Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. KORA cohorts: The genetic
epidemiological work was funded by the NIH subcontract from the Children’s Hospital, Boston, US (HEW, IMH; prime grant 1 R01 DK075787-01A1), the German
National Genome Research Net NGFN2 and NGFNplus (HEW, 01GS0823; WK, project A3, number 01GS0834), the Munich Center of Health Sciences (MC Health) as
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Introduction

Chronic kidney disease (CKD) and end stage renal disease

(ESRD) are associated with significant cardiovascular morbidity

and mortality, with substantial economic burden [1–4]. Diabetes

and hypertension are the primary risk factors for CKD and ESRD

[5–8] but do not fully account for CKD and ESRD risk [9–11].

Studies indicate familial aggregation of ESRD [12]. In African

Americans, high risk common variants in the MYH9/APOL1 locus

account for much of the excess genetic risk for non-diabetic ESRD

compared to their counterparts of European descent. In contrast,

comparable genetic risk loci of severe renal phenotypes have not

been identified in individuals of European ancestry [13–15].

Recently, 16 genetic risk loci associated with estimated glomerular

filtration rate (eGFR) and prevalent CKD were identified and

replicated by genome wide association studies (GWAS) in about

70,000 individuals of European ancestry in the CKDGen consor-

tium [16,17]. Two of these loci were also identified by an

independent consortium [18]. However, these studies focused on

eGFR and prevalent CKD (defined as eGFR ,60 ml/min/1.73m2)

at one time point, which encompasses the entire spectrum of CKD,

and does not does not address the question of whether these genetic

factors are involved in the initiation of CKD or in the progression to

ESRD, the most advanced stage of CKD. We thus sought to analyze

the association of the previously identified 16 eGFR-associated loci

with the development of CKD and with ESRD in a total of over

34,000 individuals of European descent.

Results

Association of SNPs with Incident CKD
Overall, 26,308 individuals of European descent, from eight

population-based prospective studies, who were free of CKD at

baseline were included in the incident CKD analysis (Table 1). At

baseline, mean age ranged from 40.5 to 71.7 years. After a median

follow-up of 7.2 years, 2122 participants developed incident CKD.

Of the 16 SNPs analyzed, 11 were associated with incident

CKD (Table 2): SNPs in UMOD, PRKAG2, ANXA9, DAB2,

SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2

and GCKR showed p-values ranging from p = 4.161029 in UMOD

to p = 0.03 in GCKR. The odds ratios (OR) for incident CKD of

the minor alleles at each of the 11 loci ranged from 0.76 per copy

of the T allele (allele frequency 18%) at the UMOD locus to 1.19

per copy of the A allele (allele frequency 22%) at PRKAG2. After

additional adjustment for baseline eGFR, 6 SNPs (at the UMOD,

PRKAG2, ANXA9, DAB2, DACH1 and STC1 loci) remained

significantly associated with incident CKD, with minimal

attenuation of effect size (Table 2).

At each of the significant loci, the direction and the magnitude

of the association was similar to those from the discovery analyses

Genetic Loci for Incident CKD and ESRD

PLoS Genetics | www.plosgenetics.org 2 September 2011 | Volume 7 | Issue 9 | e1002292



of eGFR and prevalent CKD [17]. For example, at the UMOD

locus, each copy of the minor T allele at rs12917707 was

associated with a 24% reduced risk for incident CKD, while in the

CKDGen consortium the same allele was associated with higher

eGFR [17]. Though the associations between incident CKD and

SNPs in SLC7A9, ATXN2, PIP5K1B and VEGFA were not

significant, the direction and magnitude of associations were

consistent with our previous findings for the phenotypes eGFR

and prevalent CKD [16,17]. TFDP2 was the only locus where we

did not observe association with incident CKD. Of the 16 SNPs

tested, 15 had the same direction of association with incident CKD

as their original associations with prevalent CKD. The probability

of observing this many SNPs with consistency in direction of

associations is 0.0002. We did not observe evidence for

heterogeneity between studies at any of the 16 loci (test for

heterogeneity p.0.05 for all SNPs).

Association of SNPs with ESRD
For the ESRD analysis, we included four case-control studies

with a total of 3775 ESRD patients and 4577 controls of European

descent without CKD (Table 3). Mean age ranged from 50.7 to 66.2

years in cases and from 47.7 to 62.1 years in controls. Although

the direction and magnitude of association for 8 SNPs (at the

UMOD, GCKR, PIP5K1B, PRKAG2, STC1, VEGFA, SHROOM3, and

ALMS1/NAT8 loci) were consistent with our previous findings

for eGFR and prevalent CKD [16,17], only two SNPs showed

nominally significant associations with ESRD (Table 2): rs1260326

in GCKR (OR = 0.93; p-value = 0.03) and rs12917707 in UMOD

(OR = 0.92; p-value = 0.04). The lack of association was not likely

due to heterogeneity of ESRD cases as only two SNPs showed

moderate heterogeneity in their associations with ESRD (Table 2):

rs4744712 at the PIP5K1B locus (p = 0.04 for heterogeneity) and

rs626277 at the DACH1 locus (p = 0.02 for heterogeneity).

Discussion

Among individuals of European Ancestry, most genetic loci

associated with the quantitative trait eGFR are also associated

with risk for initiation of CKD, with more than half of these

associations independent of eGFR at the baseline examination. In

contrast, only two SNPs were nominally associated with ESRD.

To date, the genetic loci showing significant and replicated

associations with ESRD are limited [13–15,19–26], and genetic

studies for incident CKD or for renal function decline in

established kidney disease are only recently emerging [27–29].

The loci we analyzed were identified in association with renal

function cross-sectionally and with prevalent CKD by GWAS in

the general population. Typical of many SNPs uncovered in

GWAS, the majority of these SNPs reside in intronic regions with

unknown functional consequences, although several are associated

with cis expression levels in liver tissue or leukocytes (Table S3)

[16,17]. These newly identified loci are non-overlapping with

those previously identified in individuals of European or Asian

descent with advanced diabetic nephropathy [19–26], or in

African Americans with non-diabetic ESRD [13–15].

For the ESRD analysis, we had adequate power to detect effects

that were similar to those for prevalent CKD in the discovery

GWAS, where odds ratios ranged from 0.8 to 1.19 [16,17]. In the

Table 1. Cohort characteristics of the incident CKD analysis (n = 26,308).

n
Incident CKD
cases, % (n)

Mean
Age
(yrs)

Women
(%)

DM
(%)

HTN
(%)

eGFR
(baseline)

eGFR
(follow-up)

Duration
between
baseline and
follow-up
(Years)

ARIC 8735 8.3 (728) 54.2 52.7 8.4 26.3 90.8 82.0 7.6

CHS 2389 12.3 (295) 71.7 60.8 11.4 33.2 86.2 83.9 5.9

CoLaus 1842 4.1 (75) 53.4 54.2 5.7 34.0 93.1 86.1 5.6

FHS incl original cohort 2313 10.5 (244) 57.6 54.0 7.9 27.9 92.0 81.2 10.9

KORA S3/F3 GWAS 1588 9.6 (153) 52.3 50.1 4.3 38.2 92.6 84.6 10.0

KORA S4/F4 GWAS 1737 5.3 (92) 53.4 51.2 3.4 33.4 90.8 86.1 7.1

KORA S3/F3 denovo 1235 3.3 (40) 40.5 51.7 1.6 22.7 99.4 94.2 9.7

KORA S4/F4 denovo 1149 4.1 (47) 41.1 52.6 1.7 20.7 98.9 93.9 7.2

Rotterdam Study 2236 12.6 (283) 66.6 58.6 7.9 49.5 79.5 74.5 6.4

SHIP 3084 5.3 (165) 49.2 51.8 11.2 53.1 92.4 90.6 5.3

doi:10.1371/journal.pgen.1002292.t001

Author Summary

Chronic kidney disease (CKD) affects about 6%–11% of the
general population, and progression to end stage renal
disease (ESRD) has a significant public health impact.
Family studies suggest that the risk for CKD and ESRD is
heritable. Unraveling the genetic underpinning of risk for
these diseases may lead to the identification of novel
mechanisms and thus diagnostic and therapeutic tools. We
have previously identified 16 genetic markers in associa-
tion with kidney function and prevalent CKD in general
population studies. However, little is known about the
relevance of these SNPs to the initial development of CKD
or to ESRD risk. Therefore, we have now analyzed the
association of these markers with the initiation of CKD in
more than 26,000 individuals from the general population
using serial estimations of kidney function, and with ESRD
in four case-control studies in subjects of European
ancestry (3,775 cases, 4,577 controls). We show that many
of the 16 markers are also associated or show a strong
trend towards association with initiation of CKD, while only
2 markers are nominally associated with ESRD. Further
work is required to characterize the association of genetic
determinants of different stages of CKD progression.

Genetic Loci for Incident CKD and ESRD
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present study, where associations were observed, the odds ratios

for ESRD tended to be smaller and ranged from 0.92 to 1.11.

There are several potential explanations for this effect dilution.

First, the mechanisms involved in the initiation of CKD, the

progression of CKD, and the incidence of ESRD may differ [30–

33]. Experimental animal data and gene expression profiling in

human kidney biopsies suggest differential biological pathways

contributing to kidney disease initiation and progression [34–36].

Second, the majority of patients with CKD die of cardiovascular

disease before developing ESRD [37–39]. Thus, the genetic

findings for kidney function in the general population may not

apply to the highly selected group of dialysis populations. Finally,

the process of progression from CKD to ESRD often involves

repeated insults including episodes of acute kidney injury by

diagnostic and operative procedures and therapies [40–43],

cardiac function deterioration [44], variation in access to adequate

health care [45,46] and other non-genetic factors [47]. Jointly,

these factors may further decrease the relative impact of the small

effects of SNPs derived from GWAS of eGFR in the general

population at the earliest stage of disease initiation.

The observed small effect sizes for ESRD in our study are in

contrast to the large effect sizes observed in relatively small cohorts

of individuals of African descent for variants in the MYH9/APOL1

locus, where odds ratios for ESRD ranged from 7.3 for the G1–G2

haplotype at the APOL1 locus to 2.38 for the E1 haplotype in the

MYH9 locus [13–15]. However, the strong effect at this locus is an

exceptional case and may be a consequence of a pronounced

positive selection against vulnerability for Trypanosoma brucei

rhodesiense infection at the price of a higher susceptibility for non-

diabetic ESRD in African Americans not observed in other

ethnicities. The establishment of large cohorts is thus needed for

performing GWAS of CKD initiation and progression as well as

ESRD to overcome the challenge of identifying novel loci

significantly associated with these phenotypes with small effect sizes.

The strength of our work lies in the large number of individuals

studied. Further, we exclusively analyzed candidate SNPs identified

by the unbiased method of GWAS [16,17]. However, some

limitations warrant mention. First, seven of the eight cohorts used

for the incident CKD analysis were also part of the CKDGen

discovery effort; thus the two samples are not entirely ‘‘independent’’.

However, the phenotype studied differs substantially: in Köttgen et al

[17], we used prevalent eGFR data including those with CKD, while

follow-up data in those without CKD at the baseline examination

was used for the present incident CKD analysis. In the present work,

we demonstrate robustness of our findings independent of baseline

GFR. Second, we relied on only two serum creatinine measurements

to define incident CKD, which may have introduced misclassifica-

tion and biased our findings towards the null. Third, we did not

account for pharmacological treatment with inhibitors of the renin-

angiotensin-aldosterone system. Since these drugs may affect kidney

function independently of kidney damage, their use may have diluted

observable genetic effects [48]. Fourth, our study was not designed to

detect fluctuations in eGFR. Furthermore, the etiology of ESRD in

the cases we examined may vary between studies, though we

observed a low degree of heterogeneity. Finally, our sample consisted

of individuals of European ancestry; findings may not be

generalizable to other ethnicities.

SNPs associated with eGFR in population-based studies are

associated with incident CKD, whereas modest associations were

observed with ESRD. Additional work is necessary to characterize

the genetic underpinnings across the full range of kidney disease

phenotypes, which could ultimately lead to novel diagnostic and

therapeutic strategies.

Materials and Methods

Ethics statement
In all studies, all participants gave informed consent. All studies

were approved by their appropriate Research Ethics Committees.

Study design and phenotype definition
In population based cohorts, serum creatinine measurements

were calibrated to the National Health and Nutrition Examination

Study (NHANES) standards in all studies to account for between-

laboratory variation across studies, as described previously

[10,16,17]. Using calibrated serum creatinine, we calculated the

estimated glomerular filtration rate (eGFR) with the 4-variable

MDRD equation [49].

For incident CKD, we analyzed studies of incident CKD in

eight population-based cohorts in the CKDGen consortium with

follow-up available: ARIC, CHS, CoLaus, FHS, KORA S3/F3,

KORA S4/F4, the Rotterdam Study and SHIP. Each study’s

design is shown in Text S1. Incident CKD cases were defined as

those free of CKD at baseline (defined as eGFR$60 ml/min/

1.73m2) but with a follow-up eGFR,60 ml/min/1.73m2. Con-

trols were those free of CKD at baseline and at follow-up.

Table 3. Characteristics of the ESRD case-control studies (n = 3,775 cases, n = 4,577 controls).1

n Mean Age (yrs) Women (%) DM (%) HTN (%)

ESRD cases GENDIAN 453 64.8 45.9 100.0 11.0

4D 1148 65.7 45.7 100.0 89.0

ArMORR 1244 66.2 47.8 23.6 39.9

CHOICE 518 59.0 42.5 45.8 13.3

FHKS 331 58.3 37.8 34.7 95.0

MMKD 81 50.7 37.0 0.0 96.3

Controls GENDIAN 326 62.1 43.3 100.0 32.2

KORA F3 denovo 1407 50.4 52.7 4.4 27.8

KORA F4 denovo 1130 47.7 52.3 3.2 12.2

SAPHIR 1714 51.3 36.6 3.3 56.0

1The four case-control studies comprised the following comparisons: GENDIAN cases versus GENDIAN controls, 4D versus KORA F3 denovo, ArMORR and CHOICE versus
KORA F4 denovo, FHKS and MMKD versus SAPHIR.

doi:10.1371/journal.pgen.1002292.t003
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For the ESRD analysis, we performed four case control studies

of ESRD. Cases were ESRD patients from six cohorts of ESRD

patients: CHOICE, ArMORR, GENDIAN, 4D, MMKD and

FHKS. Controls were those free of CKD (defined as

eGFR$60 ml/min/1.73m2) in three population-based cohorts

(KORA F3, KORA F4, SAPHIR) and one type 2 diabetes cohort

(GENDIAN). Each study’s design is shown in Text S1.

Statistical methods
In each study, we performed age- and sex adjusted logistic

regression of incident CKD, with and without additional adjusting

for baseline eGFR, or ESRD status with each SNP. In multicenter

studies further adjustment for study-center was performed to

account for possible differences between recruiting centers. For

family-based studies, we applied logistic regression via generalized

estimating equations (GEE) to account for the familial relatedness.

Study-specific results were then combined by meta-analysis using a

fixed effects model, using METAL (http://www.sph.umich.edu/

csg/abecasis/Metal/index.html) [50]. When significant heteroge-

neity between studies was observed (p for heterogeneity between

studies ,0.05) we used the random effects model [51]. Statistical

significance was defined as a one-sided p-value ,0.05 for each

SNP without adjustment for multiple testing since all SNPs

examined had strong prior probabilities of being associated with

the outcomes and the same alleles were hypothesized to be

associated with lower eGFR, incident CKD, and ESRD.

Power estimation
We used the QUANTO software for power estimation,

assuming an additive genetic model (http://hydra.usc.edu/GxE)

[52]. For the ESRD analysis and for SNPs with minor allele

frequency ranging from 0.2 to 0.4 we had 80–100% power to

detect an OR $ 1.10, whereas power was borderline for an OR of

1.05 to 1.09. For example, for the SNP rs12917707 at UMOD, we

had 100% power to detect an association with ESRD in the 3775

ESRD cases and 4577 controls assuming that the effect in ESRD

would be the same or larger than the effect observed for prevalent

CKD previously [16,17].

Genotyping methods and quality control
For the incident CKD analysis, we used the allele dosage

information of each of the 16 SNPs from each study’s genome

wide data set imputed to HAPMAP CEU samples described

previously [17,18]. Imputation provides a common SNP panel

across all studies to facilitate a meta-analysis across all contributing

SNPs. Information on each study’s genotyping and imputation

platform and quality control procedures are shown in Table S1.

Table S2 summarizes each SNPs imputation quality.

De novo genotyping of the 16 SNPs was performed in each of

the ESRD case-control studies as described previously [17].

Briefly, genotyping was performed either on a MassARRAY

system using Assay Design v.3.1.2 and the iPLEXTM chemistry

(Sequenom, San Diego, USA) at the Helmholtz Zentrum in

Munich, Germany (ArMORR, GENDIAN, 4D, MMKD, FHKS,

KORA S3/F3-subset without GWAS data, KORA S4/F4-subset

without GWAS data, SAPHIR); by using 59 nuclease allelic

discrimination assays on 7900HT Fast Real-Time Taqman PCR

genotyping systems (Applied Biosystems, Foster City, CA, USA) at

the Innsbruck Medical University (ArMORR, GENDIAN, 4D,

MMKD, FHKS, KORA F3-subset without GWAS data, KORA

F4-subset without GWAS data, SAPHIR); or as part of a larger

panel of 768 SNPs genotyped on the Illumina Bead Station

(CHOICE). The SNPs rs347685, rs11959928, rs4744712 and

rs12460876 were not available for de novo genotyping on the

Sequenom platform, thus the proxy SNPs rs6773343, rs11951093,

rs1556751 and rs8101881, with pairwise r2 of 1.0, 0.87, 0.87 and

1.0 respectively [53], were included in the MassARRAY multiplex

PCR.

For the obtained duplicate genotypes (9–22% of the subjects in

GENDIAN, 4D, MMKD, FHKS, KORA F3-subset without

GWAS data, KORA F4-subset without GWAS data, and

SAPHIR; no duplicate genotyping possible due to limited DNA-

availability in CHOICE and ArMORR) concordance was 96–

100% (median: 100%). SNPs with a per-study call rate ,90% or

with a per-study HWE p value ,0.0001 were excluded from

further analysis (rs6773343 and rs653178 in GENDIAN cases;

rs13538, rs267734, rs10109414, rs1394125 in ArMORR,

rs6773343, rs10109414, rs1556751, rs653178, rs8101881 in

CHOICE). In addition, individual samples with ,80% success-

fully genotyped SNPs were excluded from further analysis. After

these exclusions, call rates ranged from 91–100% (mean: 98%)

across all studies and all SNPs.

Supporting Information

Table S1 Genotyping and Imputation Platforms Used by

Studies in the incident CKD analysis.

(DOC)

Table S2 Imputation quality scores of SNPs across incident

CKD cohorts.

(DOC)

Table S3 Location and function of analyzed SNPs.

(DOC)

Text S1 Study-specific details.

(DOC)
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