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Abstract

Background: The essential purine salvage pathway of Trypanosoma brucei bears interesting catalytic enzymes for
chemotherapeutic intervention of Human African Trypanosomiasis. Unlike mammalian cells, trypanosomes lack de novo
purine synthesis and completely rely on salvage from their hosts. One of the key enzymes is adenosine kinase which
catalyzes the phosphorylation of ingested adenosine to form adenosine monophosphate (AMP) utilizing adenosine
triphosphate (ATP) as the preferred phosphoryl donor.

Methods and Findings: Here, we present the first structures of Trypanosoma brucei rhodesiense adenosine kinase (TbrAK):
the structure of TbrAK in complex with the bisubstrate inhibitor P1,P5-di(adenosine-59)-pentaphosphate (AP5A) at 1.55 Å,
and TbrAK complexed with the recently discovered activator 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine
(compound 1) at 2.8 Å resolution.

Conclusions: The structural details and their comparison give new insights into substrate and activator binding to TbrAK at
the molecular level. Further structure-activity relationship analyses of a series of derivatives of compound 1 support the
observed binding mode of the activator and provide a possible mechanism of action with respect to their activating effect
towards TbrAK.
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Introduction

Human African Trypanosomiasis (HAT), also known as

sleeping sickness, belongs to the most neglected diseases. It is

distributed throughout sub-Saharan Africa [1,2] and affects about

0.5 million people on the African continent, causing 509000 to

709000 deaths per year [3]. The therapy for this fatal disease relies

on a few drugs which are associated with severe side effects.

Moreover, an increase of resistance to these drugs has been

observed in several foci particularly in central Africa. Thus, novel

targets and new efficacious chemotherapeutic agents are urgently

needed [4].

To develop a rational approach for chemotherapeutic inter-

vention of HAT, it is crucial to find differences within the

biochemical pathways of the parasite with respect to the host.

Therefore, parasite purine salvage offers attractive opportunities

due to the fact that, unlike mammalian cells, trypanosomes lack de

novo purine synthesis and completely rely on salvage from their

hosts [5,6]. The trypanosomal salvage pathway is very versatile

and is capable of incorporating any physiological purine base and

nucleoside, and of interconverting the corresponding nucleotides

[7]. However, nucleoside uptake in T. brucei is most efficient for

adenosine and occurs via high affinity transporters that accumu-

late adenosine in the cell [8,9]. Moreover, adenosine is

incorporated faster than any other nucleoside [7]. Recently T.

brucei adenosine kinase (TbAK) was identified as a key enzyme

mediating high affinity adenosine salvage in the purine salvage

pathway [10].

Adenosine kinase (EC 2.7.1.20, ATP:adenosine 59-phospho-

transferase) catalyzes the phosphorylation of adenosine to

adenosine monophosphate (AMP) in presence of Mg2+ and

utilizing ATP as the preferred phosphoryl donor. A common

property of adenosine kinases from various organisms is their

control via substrate-inhibition to prevent non-physiologically

high intracellular purine nucleotide levels [11,12,13,14], and

recently it has been shown that TbrAK activity is strongly

inhibited by its substrate adenosine [10,15]. Adenosine kinases

belong to the phosphofructokinase B family of carbohydrate

kinases, which includes ribokinase, inosine-guanosine kinase,

fructokinase, and 1-phosphofructokinase. The members of this

family are characterized by the presence of two sequence motifs

which are a highly conserved di-glycine switch positioned near
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the N-terminus and a DXNGAGD peptide sequence located near

the C-terminus [16].

To date, adenosine kinases from several sources have been

described and the structures of three organisms have been

reported: (Homo sapiens [17,18], Toxoplasma gondii [19,20,21,22],

Mycobacterium tuberculosis [23,24]). The available structures include

the apo forms as well as complexes with substrates and inhibitors.

The corresponding adenosine kinase of T. b. rhodesiense (TbrAK) is

a 345-residue (37.9kDa) enzyme that functions as a monomer, a

common characteristic of other adenosine kinases analyzed to

date, including the enzyme in T. gondii (TgoAK) and the human

homologue (HsaAK). Interestingly, the adenosine kinase of M.

tuberculosis (MtuAK) is reported to form a functional dimer [13].

In general, the sequence identity among adenosine kinases of

different species is moderate (17% to 40%), however their

structures are remarkably similar. The enzyme consists of two

domains of which the small lid domain is formed by a five-

stranded a/b motif, whereas the large domain is composed of a

mixed a/b structure reminiscent of the Rossmann fold [25]. The

active site of the enzyme is located at the domain interfaces, with

adenosine binding in a deeply buried cavity and covered by the

small lid domain. The ATP binding site is located at an adjacent

site in the large domain with the c-phosphate group pointing near

the 59-end of the ribose moiety of adenosine.

Recent crystallographic studies of TgoAK in presence and

absence of substrate [20] have revealed that adenosine kinases

appear in two different conformations. The apo form of the

enzyme is found to be in the open conformation, which upon

binding of adenosine, closes by a rotation of 30u of the lid domain

relative to the large domain. This will sequester adenosine and at

the same time initiate the formation of the ATP binding site in the

large domain. Binding of ATP further induces local structural

changes and leads to the formation of the anion hole. Once ATP

has bound, the completely closed conformation is achieved and

the catalytically important residues are positioned in the correct

orientation for catalytic transformation. This catalytic mechanism

is consistent with most recent studies postulating an ordered bi-bi

kinetic mechanism [14,26,27,28].

Recently, we described 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-

yl]morpholine (compound 1) as a potent trypanocidal exhibiting

an IC50 of 1 mM towards Trypanosoma brucei rhodesiense (T. b.

rhodesiense) while exhibiting low cytotoxicity [15,29]. Using a

chemical proteomics approach we identified adenosine kinase of

T. b. rhodesiense (TbrAK) as its putative target [15]. This finding was

confirmed by RNA interference experiments and drug sensitivity

tests, and further biochemical validation demonstrated that

compound 1 interacts specifically and tightly with TbrAK. Kinetic

analysis revealed that compound 1 enhanced enzyme activity by

abolishment of the intrinsic substrate-inhibition, suggesting that

uncontrolled activity (hyperactivity) of TbrAK may be the putative

mechanism of action leading to cell toxicity [15].

Understanding the mechanism of action on a molecular level of

substrate and activator binding is important for the development

of this novel trypanocidal strategy and for future improvement of

compound 1 in terms of pharmacokinetic and pharmacodynamic

aspects. To this end, we have solved the structure of TbrAK in

complex with the bisubstrate inhibitor P1,P5-di(adenosine-59)-

pentaphosphate (AP5A) at 1.55 Å resolution, and TbrAK

complexed with the activator 4-[5-(4-phenoxyphenyl)-2H-pyra-

zol-3-yl]morpholine (compound 1) at 2.8 Å resolution. In addition,

we have analyzed the activating effects of a series of derivatives of

compound 1. We discuss the results in terms of structure-activity-

relationship and conclude that it supports the observed binding

mode of compound 1.

Methods

Materials and instrumentation
HPLC separations were performed using a RP-18e (5 mm)

cartridge (LiChroCART 250-4) protected with a guard column on

a Merck instrument. CD and ITC measurements were accom-

plished on Jasco J-815 CD spectrophotometer and the VP-ITC

microcalorimeter (Microcal Inc., Northampton, MA), respectively.

Proteins were concentrated using Amicon ultra centrifugal filter

devices from Milipore. Diadenosine pentaphosphate (AP5A) and

all other chemicals were obtained from Sigma unless otherwise

noted. Crystal screen solutions were from Hampton Research.

Crystallization
The protein was cloned, expressed and purified exactly as

described elsewhere [15]. The protein was concentrated to 10–

15 mg/ml, mixed with an equal volume (2 ml) of precipitant

solution and crystallized using the sitting drop vapor diffusion

technique. Crystals of TbrAK in complex with AP5A were grown

at 16uC in presence of 1 mM AP5A in 0.2 M sodium acetate

trihydrate, 0.1 M sodium cacodylate, pH 6.0, and 24% w/v

polyethylene glycol 8000 (crystal form 1), or in 0.1 M tri-sodium

citrate dihydrate, pH 5.6, 20% v/v iso-Propanol, and 20% w/v

polytethylene glycol 4000 (crystal form 2). Crystals grew to the

maximum dimension of 150650650 mm within two to three

weeks.

Crystals of apo TbrAK were grown at 4uC in 0.1 M Tris,

pH 9.0 and 60% MPD and reached their maximum size of

50620620 mm after one to two weeks. Crystals of TbrAK

complexed to compound 1 were prepared by directly adding

compound 1 dissolved in mother liquor to drops containing apo

TbrAK crystals.

Data collection, structure solution and refinement
All data were collected from crystals flash frozen in a nitrogen

stream at 100 K as consecutive series of 0.5u rotation images on

beam line X06SA at the Swiss Light Source, SLS, in Villigen,

Switzerland. The AP5A-TbrAK data were collected on a

MAR225 CCD whereas data related to TbrAK crystals soaked

Author Summary

Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-
pyrazol-3-yl]morpholine (compound 1) and its derivatives
exhibit specific antitrypanosomal activity toward T. b.
rhodesiense, the causative agent of the acute form of HAT.
We found that compound 1 would target the parasite
adenosine kinase (TbrAK), an important enzyme of the
purine salvage pathway, by acting via hyperactivation of
the enzyme. This represents a novel and hitherto
unexplored strategy for the development of trypanocides.
These findings prompted us to investigate the mechanism
of action at the molecular level. The present study reports
the first three-dimensional crystal structures of TbrAK in
complex with the bisubstrate inhibitor AP5A, and in
complex with the activator (compound 1). The subsequent
structural analysis sheds light on substrate and activator
binding, and gives insight into the possible mechanism
leading to hyperactivation. Further structure-activity rela-
tionships in terms of TbrAK activation properties support
the observed binding mode of compound 1 in the crystal
structure and may open the field for subsequent
optimization of this compound series.
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with compound 1 were collected using the Pilatus 6 M detector.

The AP5A data sets were processed with XDS [30] and the

compound 1 data with MOSFLM [31]. Crystals of apo TbrAK

did not afford interpretable diffraction patterns under any

circumstances. In contrast, crystals of the TbrAK-compound 1
complex displayed non-merohedral twinning that rendered data

processing possible by indexing one lattice via manually picking

reflections in MOSFLM. After integration, the data were scaled

with SCALA [32], leading to reasonable statistics considering the

low I/sigma(I) (3.6 overall) of the data and the potential for overlap

with other lattices (Table 1).

The crystal structure of TbrAK bound with AP5A was initially

solved by molecular replacement using the data set of crystal form

1 (Table 1). The results from the self-rotation function and from

the native Patterson function were consistent with the hypothesis

of a tetramer in the asymmetric unit with its fourfold non-

crystallographic axis oriented parallel to the monoclinic b-axis. A

BLASTP search of the TbrAK amino acid sequence against the

Protein Data Bank [33] gave a top hit with p = 6?10269 and a

sequence identity of 40% for the human adenosine kinase, PDB

entry code 1BX4 [17]. A search model for molecular replacement

was constructed from PDB entry 1BX4 using CHAINSAW [32]

with the option to keep different amino acids in the BLASTP

sequence alignment up to the last common atom. Molecular

replacement with PHASER [34] found four molecules in the

asymmetric unit. The four molecules in the asymmetric unit form

a tetramer with its fourfold axis parallel to the b-axis consistent

with the self-rotation function and an x,z-displacement consistent

with the native Patterson peak, confirming the initial tetramer

hypothesis.

Iterative rounds of model building with COOT [35] and

restrained maximum-likelihood refinement with REFMAC [36]

resulted in a partially refined model for which most amino acids

and the bound AP5A could be built into the electron density maps.

One protein monomer with bound AP5A was used as search

model for molecular replacement using the higher resolution data

set of crystal form 2. A molecular replacement search with

MOLREP [37] gave a clear solution with two molecules in the

asymmetric unit. Iterative rounds of model building with COOT

and TLS-refinement and restrained maximum-likelihood refine-

ment with REFMAC resulted in the final model at 1.55 Å

resolution described in Table 1.

To solve the structure of the TbrAK-compound 1 complex

chain A from the TbrAK-AP5A structure was used as a model for

the molecular replacement search in MOLREP. One molecule

was located above the background signal. However, the statistics

were not as good as would be expected for a search with the

identical structure. Inspection of the electron density maps

Table 1. Crystallographic data and refinement statistics.

TbrAK-AP5A TbrAK-compound 1

Crystal form 1 Crystal form 2

Space group P21 (No. 4) P21 (No. 4) P41212 (No. 92)

Unit cell dimensions

a, b, c (Å) 88.4, 86.4, 89.4 68.9, 70.5, 72.4 61.2, 61.2, 193.8

a, b, c (u) 90, 90.1, 90 90, 90.8, 90 90, 90, 90

Radiation wavelength 0.95 Å 1.00 Å 1.00 Å

Resolution range (Å) 80-2.3 (2.4-2.3)e 80-1.55 (1.60-1.55)e 58-2.8 (2.95-2.8)e

No. of unique reflections 56629 97047 9747

Redundancy overall 1.8 (1.7)e 3.8 (3.8)e 3.2 (3.3)e

Rsym overalla 0.065 (0.45)e 0.054 (0.44)e 0.17 (0.41)e

Rmeas overallb 0.090 (0.62)e 0.063 (0.51)e 0.20 (0.48)e

Completeness overall 0.95 (0.98)e 0.97 (0.95)e 0.98 (0.98)e

No. of protein monomers in AU 4 2 1

No. of refined atoms

Protein _f 5319 2600

AP5A / compound 1 _f 114 24

Na+ _f 2 0

Water _f 626 24

R-factor / Free R-factorc _f 0.18/0.21 0.23/0.29

RMSD bond lengths / anglesd _f 0.012 Å /1.5u 0.006 Å /1.0u

Ramachandran plot

Preferred / allowed / outlier _f 96.1% /3.6% /0.3% 94.9% /4.5% /0.6%

aRsym = ghgi |Ii(h) 2 ,I(h).| / ghgi Ii(h) , where Ii(h) and ,I(h). are the ith and mean intensity over all symmetry-equivalent reflections h.
bRmeas = gh (nh/nh21)K gi |Ii(h) 2 ,I(h).| / ghgi Ii(h) , where Ii(h) and ,I(h). are the ith and mean intensity, and nh is the multiplicity over all symmetry-equivalent

reflections h [42].
cR = g||FO |2 |FC|| / g|FO|, where |FC|is the calculated structure factor amplitude of the model, and |FO|is the observed structure factor amplitude; the Free R-factor was
calculated against a random 5% test set of reflections that was not used during refinement.

dRMSD, root-mean-square deviation from the parameter set for ideal stereochemistry [43].
eValues in parentheses refer to the highest resolution shell.
fThe model was only partially refined against this data set, but provided the search model for the refinement of the data set of crystal form 2 (see text for details).
doi:10.1371/journal.pntd.0001164.t001
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revealed that a region of the protein had moved relative to the

majority of the structure. Manual repositioning of this small

domain into the electron density was unambiguous and removed

the observed clashes in the crystal contacts. The model was refined

as before and the density for compound 1 was clearly visible in the

adenosine binding site as the highest signal in the mFo-DFc map

(5.5s). Despite the moderate resolution of 2.8 Å, the orientation of

compound 1 was unambiguously deduced by considering a) the

better fit into the density without adopting sterically unfavorable

conformations of the phenoxyphenyl moiety, and b) that only with

the morpholine moiety pointing toward the protein could

important hydrogen bonds between protein and compound be

formed.

Activity assay
The activation potential of a series of compound 1 derivatives

(compounds 2–7) was measured using a recently developed HPLC

method [15]. The resulting ADP/ATP ratios were calculated and

used as a measure of activity. For comparative reasons the activity

recorded in absence of compound was set to 100%. The mean of

three independent measurements is reported.

Thermal stability assay
Thermal unfolding of TbrAK was studied by CD spectroscopy

as outlined elsewhere [15]. Briefly, all measurements were done in

a 0.5 mm cell and contained 0.1% DMSO for solubility reasons as

well as 2.5 mM EDTA to prevent enzyme activity. TbrAK in a

buffer containing 20 mM Hepes and 150 mM NaCl (pH 7.0) was

kept constant at a final concentration of 0.5 mg/ml (13 mM).

Thermal stability was analyzed in presence AP5A, adenosine,

ATP (all at 500 mM), and compounds 1–7 (50 mM). For evaluation

of the CD spectra, the buffer spectrum was subtracted from the

protein CD spectrum. All thermal unfolding curves were fitted to a

two-state model that had been published recently [38]. The mean

of three independent experiments is reported.

Isothermal titration calorimetry
Binding affinity constants for adenosine and ATP were

determined using isothermal titration calorimetry (ITC). To this

end, TbrAK was dialyzed into a buffer consisting of 20 mM Tris,

150 mM NaCl, and 5% glycerol (pH 7.5) and used at concentra-

tions around 90 mM. The ligands were dissolved directly into the

dialysis buffer to give a final concentration of around 2 mM. All

solutions were filtered and thoroughly degassed before use. A

typical titration experiment consisted of a first control injection of

1 ml followed by 50 to 60 injections, each of 5 ml (20 s duration),

using a 4 min interval. Raw data were collected, corrected for

ligand heats of dilution, integrated and fitted to the appropriate

binding model using the Microcal Origin software supplied with

the instrument. The measurements were performed in duplicate.

Results and Discussion

Crystallization and structure solution
Purified TbrAK [15] co-crystallized with the bisubstrate

inhibitor AP5A in space group P21 in two crystal forms which

diffracted to 2.3 Å and 1.55 Å resolution (see Table 1 for

crystallization statistics). The crystal structure of TbrAK was first

solved by molecular replacement using the initial data set (2.3 Å) of

crystal form 1 and human adenosine kinase (HsaAK; PDB entry

code 1BX4) [17] as a search model. After the partially refined

model was created, i.e. most amino acids and the inhibitor AP5A

were built into the electron density map, the crystal form 2 became

available and afforded a high resolution data set (1.55 Å).

Subsequently, one subunit of the partially refined model was

considered the most appropriate search model to solve the

structure of the new high resolution data set. The two molecules

(A and B) found in the asymmetric unit were not related by proper

non-crystallographic symmetry and exhibited a mixed hydrophil-

ic/hydrophobic contact interface typical for crystal contacts.

Apparently, the molecules do not form a functional dimer and

thus could be considered as two separate monomers. Further

inspection of neighboring molecules in the crystal lattice also did

not reveal any contacts other than typical crystal contacts. Based

on its higher resolution and reduced complexity, only the structure

of crystal form 2 was refined to completion and used for all

subsequent discussions.

The crystals of apo TbrAK appeared to be single crystals but

their diffraction was of very bad quality due to inherent defects

that gave rise to many overlapping lattices. Despite extensive

screening of crystals and handling conditions, we could not get

interpretable data for the apo crystals. However, the diffraction

from one of the apo crystals that had been soaked with compound

1, while still exhibiting several overlapping lattices indicative of

non-merohedral twinning, was of sufficient quality to allow

indexing of a single lattice, yielding data of sufficient quality for

model refinement to at resolution of 2.8 Å. Integration and scaling

led to reasonable statistics considering the low I/sigma(I) (3.6

overall) of the data and the potential for overlap with other lattices.

The crystal system was found to be tetragonal with space group

P41212 with one molecule in the asymmetric unit and without any

contacts other than typical crystal contacts with neighboring

molecules in the crystal lattice.

Overall structure of TbrAK and its complexes
The overall structures of both TbrAK in complex with AP5A

(Figure 1, panel A) and compound 1 (Figure 1, panel B) contain a

mixed fold and consist of 12 a-helices and 14 b-strands that form

two distinct domains. The smaller lid domain appears as a/b two

layer structure formed by a 5-stranded b-sheet (b2, b3, b4, b7, b8)

and two solvent exposed a-helices (a1 and a2) located on top of it.

The large domain is an a/b-domain built of a 9-stranded b-sheet

(b1, b5, b6, b9-b14), of which only b13 is anti-parallel. The b-

sheet is surrounded by 10 a-helices (a3-a12) exposed to the solvent

(Figure 1, panel C). The overall structure of TbrAK is similar to

recently described structures of adenosine kinases from human

(HsaAK) [17,18], T. gondii (TgoAK) [19,20,21,22], and M.

tuberculosis (MtuAK) [23,24], although the sequence identity is

moderate (HsaAK, sequence identity 38%; TgoAK, 33%;

MtuAK, 17%). However, the most pronounced differences are

found with MtuAK that acts as a dimer, and are located within the

lid domain. MtuAK is comprised of two additional helices in the

lid domain which acts as an interaction interface for creating the

active MtuAK dimer while TbrAK, HsaAK and TgoAK appear

exclusively as monomers. A comprehensive summary of all AK

structures available in the PDB database with their corresponding

conformational states, and the TbrAK structures presented here is

given in Table S1.

Superposition of TbrAK with HsaAK and TgoAK clearly

shows that TbrAK co-crystallized with the bisubstrate inhibitor

AP5A adopts a closed conformation similar to the one observed

in most adenosine kinase crystal structures where both binding

pockets are occupied, e.g. TgoAK in complex with adenosine

and the non-hydrolysable ATP analog AMP-PCP (PDB code

1LII [20]), and HsaAK in complex with two adenosines (PDB

code 1BX4 [17] (RMSD 0.99 Å, Figure 2, panel A). This

finding is not unexpected as AP5A mimics the two substrates

adenosine and ATP involved in the enzymatic reaction. In

Crystal Structures of TbrAK
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contrast, the complex of TbrAK with compound 1 overlays

very well (RMSD 1.20 Å) with the apo structure of TgoAK

(1LIO) [20], thus exhibiting an open conformation (Figure 2,

panel B). Indeed, most recent crystallographic studies have

revealed that adenosine kinases undergo large conformational

changes during substrate binding, and it was observed that

the lid domain can adopt an open or a closed conformation,

depending on the ligand bound. Apparently, similar structural

transitions are possible and found for TbrAK (Figure 2,

panel C).

Figure 1. Ribbon diagram of TbrAK complexes and structural alignment. Panel A: Structure of TbrAK in complex with AP5A. Helices and b-
sheets of the large domain are shown in red and orange, respectively while helices and b-sheets of the lid domain are shown in blue and light blue,
respectively. Loops are depicted in gray, and AP5A is represented as stick model colored by atom type. Panel B: Overall structure of TbrAK complexed
with compound 1. The same coloring scheme is applied as in panel A. Panel C: Amino acid sequence alignment of TbrAK with HsaAK and TgoAK.
Green indicates completely conserved residues, yellow indicates two or more highly conserved residues, and blue indicates at least one similar amino
acid residue. The highly conserved di-glycine switch is marked with black triangles. The P-loop heptad (amino acids 293–299) is indicated by the red
line. The catalytically important residues (R132 and D299) are marked with a pound (#) sign. The secondary structure elements of TbrAK, deduced
from the TbrAK-AP5A structure, are schematically drawn above the amino acid sequences and depicted in panel A. As not all adenosine kinase
structures exhibit 3/10 helices in the loop regions between b8/a5 and b9/a6, they are labeled with an asterisk (a*) in order to remain consistent with
standard numbering applied to adenosine kinases. TbrAK exhibits 38% and 33% sequence identity compared to HsaAK and TgoAK, respectively.
doi:10.1371/journal.pntd.0001164.g001
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Adenosine and ATP binding site in TbrAK
The bisubstrate inhibitor AP5A was co-crystallized with TbrAK

which adopts the closed conformation in presence of this

compound. The electron density of AP5A was clearly resolved in

the structure and provides a detailed view into the adenosine and

the ATP binding site (Figure 3, panel A). AP5A exhibits an

extensive hydrogen bonding pattern with the protein either

through direct or water-mediated interactions (Figure 3, panel B).

The interactions in the adenosine binding pocket are mainly

water-mediated, apart from the side chain NH2 group of N13

which makes a hydrogen bond with nitrogen N1 of adenosine and

the side chain of D17 which forms bidentate interactions with the

two OH-groups of the ribose. The side chains of L15, L39, V125,

C123, L134, L138 and F169 are involved in hydrophobic contacts

with the adenine moiety in the adenosine binding site. The

phosphate groups of AP5A are stabilized by water mediated

interactions and by the side chain NH2 groups of R132 and N222

and the backbone nitrogen of A297 (Figure 3, panel B).

The adenosine part of AP5A in the ATP-binding pocket shows

hydrogen bonds to the side chains of Q288 (to the free NH2 group

of adenine) and Q327 (to a nitrogen atom of the pyrimidine ring of

adenine), and the ribose moiety is stabilized by backbone

interactions with D266 and T270. Hydrophobic contacts with

the adenosine moiety in the ATP binding pocket are formed by

I267, V283, L286, V291, F301, H323 and I330 (Figure 3, panel

B). All other interactions with the bisubstrate inhibitor in this

pocket are water-mediated involving residues N13, I38, S64, F169,

T172, D299 (adenosine binding pocket), R132, N222, T264,

G296, A297 (pentaphosphate moiety) and R265, E268, T270

(ATP binding pocket). The residues in the adenosine binding

pocket directly involved in polar interactions with the adenosine

moiety are completely conserved between HsaAK and TbrAK,

while residues forming the ATP binding pocket are less conserved.

Residue D266 in TbrAK is replaced by a glycine in HsaAK,

however only the backbone of this residue is involved in polar

interactions with the adenosine moiety of AP5A.

The binding site of compound 1 in TbrAK
As outlined above, TbrAK in complex with compound 1 adopts

an open conformation, and the location of compound 1 was

unambiguously identified by its well-defined electron density

(Figure 3, panel C) localized in part in the adenosine binding site

in the adenine moiety binding area, but pointing away from the

ribose binding region towards the solvent. The elongated shape of

the compound initially suggested two possible orientations in the

mFo-DFc and the 2mFo-DFc density maps: with the morpholine

moiety being solvent exposed (see Figure S1, panel A) or, after a

rotation by 180u, pointing toward the protein (Figure S1, panel B).

However, the first binding mode could be excluded as the two

phenyl rings of the phenoxyphenyl moiety would need to be

coplanar in order to fit the flat density. This conformation is

sterically inaccessible as shown by large clashes in the MolProbity

[39] analysis (Figure S2, panel A). In contrast, compound 1 fits

very well into the observed density with only minor clashes (Figure

S2, panel B) between the morpholine and the pyrazole moiety.

Moreover, only this orientation satisfies a number of hydrogen

bonds to the protein (Figure 3, panel D; Figure S1, panel C),

supporting the conclusion that compound 1 binds to TbrAK with

the phenoxyphenyl moiety pointing towards the outside and the

morpholine being buried in the active site.

Compound 1 forms three hydrogen bonds with the protein,

namely with the side chain NH2 groups of N13 and N142 (water-

mediated) and the main chain nitrogen of S64. The phenoxy

moiety of compound 1 interacts mainly via hydrophobic contacts

formed by F169, F200, F204 and F205 (Figure 3, panel D). The

observed binding mode is very similar to the one found for an

alkynylpyrimidine inhibitor bound to HsaAK (2I6B) [18].

Moreover, in presence of this inhibitor the lid domain adopts

Figure 2. Comparison of TbrAK overall structures. Panel A: Superposition of TbrAK-AP5A (3OTX, shown in red) and HsaAK (1BX4, yellow) shows
that TbrAK co-crystallized with the bisubstrate inhibitor adopts a closed conformation as found for HsaAK in complex with two adenosines (RMSD
0.99 Å). Panel B: In contrast, the complex of TbrAK and compound 1 (2XTB, cyan) adopts an open conformation and overlays very well with the apo
structure of TgoAK (1LIO, purple; RMSD 1.20 Å). Panel C: The superposition of both TbrAK structures with respect to the large domain reveals a
compact protein conformation for the TbrAK-AP5A complex (3OTX, red), while a more open conformation, by a rotation of around 30u of the small
domain with respect to the large domain, can be observed for the TbrAK-compound 1 complex (2XTB, cyan).
doi:10.1371/journal.pntd.0001164.g002
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the open conformation. However, despite their overlapping

binding modes, compound 1 is an activator of TbrAK while the

alkynylpyrimidine inhibits the enzyme (see below for a detailed

discussion).

The TbrAK structures and implication on the
hyperactivation mechanism

The recent crystallographic studies of adenosine kinases in

presence and absence of substrates revealed the catalytic

mechanism. It is assumed that adenosine binds first to the

adenosine binding site, thereby inducing a 30u hinge bending

motion that closes the lid domain to a pre-catalytic conformation

by means of the highly conserved Gly-Gly (G62 and G63; TbrAK

numbering, see Figure 1, panel C) conformational switch. Once

the conformational change has occurred, subsequent ATP

binding induces additional local structural changes via the

adenine moiety and the b and c phosphates, creating an

extensive anion hole formed by the P-loop heptad DMNGAGD

located at the N-terminal part of helix a11 (amino acids 293–299,

see Figure 1, panel C). Once the structure is completely closed,

adenosine and the c phosphate of ATP are entirely sequestered

from the solvent and the direct phosphate transfer from ATP to

adenosine can take place. Moreover, it was found that substrate

inhibition, which is a common property of adenosine kinases

including TbrAK [10,15], occurs by competitive binding of

adenosine to the ATP binding site.

Typically, ATP induces the formation of the anion hole which is

created via a helix to coil transition to stabilize the negative charge

of the phosphate residues. Surprisingly, although the lid domain in

the structure of TbrAK with compound 1 adopts the open

conformation, the anion hole is identical to the anion hole found in

adenosine kinases adopting the closed conformation like in

TgoAK in complex with adenosine and the non-hydrolysable

ATP analog AMP-PCP (1LII) [20]. For comparison, the apo form

of TgoAK (1LIO) does not form the anion hole due to the absence

of ATP, which can be seen by the fact that the anion hole motive

DTNGAGD (312–318) in TgoAK is still integrated in the a11

helix and therefore not able to stabilize negative charges of

phosphate residues (Figure 4, panels A and C). Thus compound 1
is able to induce the formation of the anion hole also in absence of

ATP, which could favor ATP rather than adenosine binding in the

ATP binding pocket due to favorable interactions with the b and c
phosphate groups. As a result, the intrinsic substrate inhibition

would be abolished, which corresponds exactly to the recent

observation of abolishment of substrate inhibition conferred by

compound 1 towards TbrAK [15]. Interestingly, the anion hole

formed is largely distorted in the TbrAK-AP5A complex when

compared to the closed conformations of other adenosine kinases

(e.g. TgoAK in 1LII), which may be explained by the two

additional phosphate groups linking the two adenosine moieties of

AP5A (Figure 4, panel B).

The above findings give rise to the question of how the

catalytic reaction can still take place with compound 1
occupying part the adenosine binding pocket. There are several

possible answers including that adenosine replaces compound 1
in the adenosine binding site after ATP binding (ATP binding

prior to adenosine binding), or that adenosine joins compound 1
in the adenosine binding site thereby widening the adenosine

binding pocket in such a way that the two compounds stabilize

each other by aromatic stacking interactions, or that compound

1 is forced to move to a second lower affinity binding site while

adenosine could occupy the adenosine binding site. Indeed, a

recent ITC study has revealed two binding sites for compound 1
on TbrAK [15].

Figure 3. View on the binding site of both TbrAK complexes. Panel A: The electron density map of AP5A at 1.55 Å after refinement (2mFo-
DFc), contoured at s = 1. Panel B: Stereo picture of the AP5A binding site. For the sake of clarity, only hydrophilic interactions are depicted. Amino
acids are presented as sticks with carbon atoms colored in gray. Oxygen atoms are red, nitrogen atoms blue, and phosphor atoms orange. Carbon
atoms of AP5A are shown in blue. Hydrogen bonds are shown as yellow dotted lines, and water molecules forming water-mediated hydrogen bonds
are indicated as red spheres. For the sake of clarity further amino acids interacting with water molecules were omitted. Panel C: The electron density
around compound 1 calculated at 2.8 Å resolution before its inclusion in the model (mFo-DFc, contoured at s = 1, map colored in red), and after
refinement with compound 1 (2mFo-DFc, contoured at s = 1, map shown in blue). Panel D: Stereo picture of the compound 1 binding site. The
same color scheme is applied as in panel B.
doi:10.1371/journal.pntd.0001164.g003
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TbrAK complex stability analyzed by the thermal
denaturation assay and ITC

In order to better understand the binding mechanism of

compound 1 and TbrAK substrates, we analyzed adenosine and

ATP binding in absence and presence of the activator. The

presence of a ligand stabilizes a protein conformation, which

results in increased thermal stability reported as a higher melting

point (Tm) for the complex compared to the apo structure [40]. As

shown in Table 2, apo TbrAK melted at 43.160.4uC while the

maximum stability was achieved either by adenosine alone (DTm

7.6uC) or by adenosine and ATP (DTm 7.4uC). Interestingly, ATP

combined with adenosine seems not to increase further the Tm of

apo TbrAK which is in agreement with the fact that ATP alone

does not shift Tm of apo TbrAK (DTm 20.3uC). This corresponds

very well to the observation that adenosine triggers structural

conformations that initiate the formation of the ATP binding site,

and is in agreement with the suggested ordered bi-bi mechanism of

substrates binding involved in the enzymatic reaction [20].

Interestingly, the bisubstrate inhibitor AP5A also increased Tm

(DTm 7.4uC) at the same level as adenosine and adenosine/ATP,

reflecting the fact that AP5A binds to both binding sites at the

same time.

Compound 1 alone increased the thermal stability (DTm 4.8uC)

compared to apo TbrAK, whereas the combination of compound

1 and ATP did not further improve thermal stability (DTm of

3.9uC) compared to compound 1 alone. The melting point of

TbrAK in presence of adenosine or both adenosine and ATP was

slightly increased by 0.4uC and 0.7uC, respectively, when

compound 1 was added.

Further binding experiments of adenosine toward TbrAK by

means of ITC revealed that adenosine binds to two binding sites

(Figure 5, panel A), yielding a high affinity binding site with a KD

of 1.360.3 mM and a DHbind of 211.0560.65 kcal/mol, while the

low affinity site exhibited a KD of 27.661.1 mM and DHbind of

216.4160.33 kcal/mol. This is in agreement with recent crystal

structures showing two adenosines bound to adenosine kinase

[17,20]. It is likely that the high affinity site corresponds to the

Figure 4. Anion hole formation in TbrAK. Panel A: Superposition
of apo TgoAK (1LIO, open conformation, brown) and the complex of
TbrAK and compound 1 (2XTB, open conformation, orange) showing
the area involved in the formation of the anion hole. The P-loop heptad
(D293-D299) forming the anion hole is shown in white for TbrAK-
compound 1 and in gray for TgoAK. Although exhibiting an open
conformation, the P-loop heptad in the TbrAK-compound 1 complex is
not integrated anymore in helix a11. Panel B: Superposition of TgoAK in
complex with adenosine and AMP-PCP (1LII, closed conformation, rust-
red) and TbrAK-AP5A (3OTX, closed conformation, light orange)
focusing on the area of the anion hole. The P-loop heptad is shown
in white for TbrAK-AP5A and in gray for TgoAK. Both P-loop heptads are
integrated in helix a11, however, the heptad in TbrAK-AP5A is distorted,
most likely due to the presence of the additional phophates in AP5A.
Panel C: Superposition and close-up view on helix a11 and the
corresponding P-loop heptad of selected adenosine kinases. For the
sake of clarity only the first amino acid of the TbrAK heptad (D293) and
the last amino acid of helix a11 in TbrAK (Y309) are labeled. The
selected structures are TbrAK-compound 1 (2XTB, open conformation,
orange), TgoAK in complex with adenosine and AMP-PCP (1LII, closed
conformation, rust-red), the apo TgoAK (1LIO, open conformation,
brown), and the structure of HsaAK in complex with the alkynylpyr-
imidine inhibitor (2I6B, open conformation, olive). The black square
indicates the area of anion formation at the N-terminus of helix a11.

Table 2. Thermal stability assay regarding TbrAK in absence
and presence of AP5A, adenosine, ATP and compound 1.

Tm [6C] ± SDa D Tm [6C]

TbrAK 43.160.4 2

TbrAK + compound 1 47.960.1 4.8

TbrAK + AP5A 50.560.2 7.4

TbrAK + AP5A + compound 1 50.160.1 7.0

TbrAK + adenosine 50.760.2 7.6

TbrAK + adenosine + compound 1 51.160.1 8.0

TbrAK + ATP 42.860.1 20.3

TbrAK + ATP + compound 1 47.060.1 3.9

TbrAK + adenosine + ATP 50.560.1 7.4

TbrAK + adenosine + ATP + compound 1 51.260.1 8.1

aValues represent the average of three experiments.
doi:10.1371/journal.pntd.0001164.t002

With the exception of TbrAK-compound 1, the structures exhibiting an
open conformation have their P-loop heptads integrated in helix a11,
while upon substrate binding the first turn of helix a11 unfolds to form
the anion hole.
doi:10.1371/journal.pntd.0001164.g004
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adenosine binding site (adenosine as substrate) while the second

adenosine would bind to the ATP binding site with lower affinity,

thus leading to the intrinsic substrate inhibition due to competitive

inhibition of ATP binding as observed in TbrAK [15] and other

adenosine kinases [11,12,13,14]. When carrying out the experi-

ment in presence of compound 1, adenosine changes its binding

properties (Figure 5, panel B). Only a single binding site can be

observed, and the KD is found to be 53.260.8 mM (DHbind =

215.560.2 kcal/mol). Due to the fact that the formation of the

anion hole alone would not be sufficient to completely abolish

adenosine binding at the ATP binding site, and that the adenosine

binding site is occupied by the high affinity activator, the observed

single and increased KD is likely to present adenosine binding to

the ATP binding site, in particular in absence of competing ATP.

This finding supports the hypothesis that the release of compound

1 and the subsequent substrate binding at the adenosine binding

site may first require ATP binding at the ATP binding site as

suggested above.

Structure-activity relationships of compound 1 and
derivatives

A very interesting aspect of TbrAK in complex with compound

1 is the fact that the binding mode is very similar to the one of the

alkynylpyrimidine inhibitor in HsaAK (2I6B) [18], and in both

structures the lid domain remains in the open conformation

(Figure 6, panel A). However, compound 1 is an activator of

TbrAK while the alkynylpyrimidine inhibits the enzyme despite

the overlapping binding mode. On the one hand, these different

modes of action could be explained by the fact that the

alkynylpyrimidine inhibitor is not able to induce the anion hole

(Figure 4, panel C) needed for abolishment of substrate inhibition

and for the improved accommodation of ATP. On the other hand,

the dimethylaminophenyl moiety of the alkynylpyrimidine inhib-

itor, which has no overlapping counterpart in compound 1, is

strongly interacting with the lid domain stabilizing its open

conformation of the adenosine kinase and thus acts as an inhibitor

of the enzyme (Figure 6, panel B). As compound 1 is not strongly

interacting with the lid domain, it is most probably not able to

interfere with the hinge bending motion to close the lid domain.

Besides a lack of interaction with the lid domain, however,

above findings raise the question regarding the structural elements

making compound 1 work as an activator of TbrAK. To address

this issue, we have analyzed the potency and efficacy of a series of

derivatives [29]. The activation conferred by compound 1 and its

derivatives (compounds 2–7, Figure 7, panel A) is illustrated in

Figure 7 (panel B), and corresponding values are summarized in

Table 3. Compound 2 that consists of a tetrahydropyran ring

instead of the morpholine ring in the original compound 1, is still

able to activate TbrAK at similar potency (EC50 25.460.2 mM)

but at lower efficacy (2.0 fold) compared to compound 1 (EC50

38.960.9 mM and efficacy 3.5 fold, respectively). Replacing the

phenoxy moiety of compound 2 by an ethyl group (compound 3),

leads to a significantly decreased activation potency (EC50

168.461.1 mM), while efficacy remains 2.5 fold. Compound 4,
which harbors an intact morpholine/pyrazole moiety and has the

phenoxy moiety substituted with a chlorine atom, still performs

with an EC50 of 134.7611.6 mM and an efficacy of 2.0 fold. An

additional methylene group between the morpholine and pyrazole

moiety (compound 5) lowers the potency substantially (EC50 of

195.466.0 mM), while activation efficacy is reduced to 1.5 fold.

The replacement of the pyrazole by an isoxazol ring (compound 6)

or substitution of the phenoxy moiety by a nitro group in para

position (compound 7) loses all activation capacity. Taken

together, these results indicate the importance of an accessible

morpholine and pyrazole moiety in immediate coexistence, and a

non-substituted phenoxyphenyl moiety for hyperactivation of

TbrAK.

The investigation of the specific interactions of compound 1 in

the active site enables a consistent structure activity relationship.

As shown in Figure 3 (panel B) compound 1 makes a direct

Figure 5. Binding of adenosine to TbrAK measured by ITC.
Panel A: The top panel shows a representative ITC experiment for the
injection of adenosine (2.17 mM) into the sample cell containing TbrAK
(87 mM). The binding isotherm obtained by integration and normaliza-
tion of the raw data and by correction for the heat of ligand dilution is
shown on the lower panel. The solid line represents the non-linear least
square fit based on a two-sites non-interacting binding model. As
indicated by the molar ratio two molecules of adenosine bind to TbrAK,
one via a high affinity binding site with a KD of 1.360.3 mM and a DHbind

of 211.160.7 kcal/mol, and one via a low affinity site exhibiting a KD of
27.661.1 mM and a DHbind of 217.960.3 kcal/mol (n1 and n2 equaling
0.960.1 and 0.860.1, respectively). Panel B: The binding isotherm
obtained by the titration of adenosine (2.0 mM) into TbrAK (90 mM) in
presence of compound 1 (150 mM) was fit applying a single-site binding
model. One molecule of adenosine binds to the enzyme with a KD of
53.260.8 mM and a DHbind of 215.560.2 kcal/mol (n = 0.960.1). The
mean of two independent experiments is reported.
doi:10.1371/journal.pntd.0001164.g005
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hydrogen bond with the oxygen of its morpholine moiety to the

backbone nitrogen of S64, a direct hydrogen bond with nitrogen

N1 of the pyrazole ring to N13, and a water-mediated hydrogen

bond with nitrogen N2 of the pyrazole ring and the side chain of

N142. Due to low resolution it is not known which tautomer

conformation of the pyrazole ring is present, but the tautomers

may induce a switch of the side chain amide of N13 and perhaps

N142 to put the electron acceptors and donors in the correct

positional arrangement. Both possible tautomers are conceivable,

however, experimental results and the SAR outlined strongly

suggest that the NH of the pyrazole ring is pointing toward the

oxygen atom of N13, resulting in a hydrogen bond interaction. In

addition, there are hydrophobic interactions of the morpholine

moiety with the parallel situated F169 and the terminal phenyl

ring with the hydrophobic patch formed by F200, F204, and F205

at the surface of TbrAK.

Compound 2 exhibits similar potency but is less efficient than

compound 1. The only difference between both activators is that

in compound 2 the nitrogen of the morpholine ring is replaced by

a carbon atom. While the carbon atom will maintain the chair

conformation, it may have a significant influence on the pKa value

Figure 6. Binding mode of compound 1 in TbrAK and of the
alkynylpyrimidine inhibitor in HsaAK. Panel A: Superposition of
HsaAK (2I6B) and TbrAK (2XTB) shows that the alkynylpyrimidine
inhibitor (pink) binds in a very similar orientation to HsaAK as
compound 1 (green) to TbrAK. Panel B: The same superposition
showing the binding modes of activator and inhibitor in context of
TbrAK. The dimethylaminophenyl moiety of the inhibitor points
towards strand b3 of the lid domain (light blue), thus stabilizes the
open conformation by hindering the domain closure movement. The
residues colored in cyan are involved in compound 1 binding and are
the same as presented in panel A. For the sake of clarity only the TbrAK
chain is shown, and parts of the loop connecting b8 and a5 (including
N142) have been omitted.
doi:10.1371/journal.pntd.0001164.g006

Figure 7. Structure and activity of phenoxyphenyl-pyrazoles.
Panel A: Structure of the title compound 4-[5-(4-phenoxyphenyl)-2H-
pyrazol-3-yl]morpholine (compound 1) and its derivatives 3-(4-phenox-
yphenyl)-5-(tetrahydropyran-4-yl)-1H-pyrazole (2), 3-(4-ethylphenyl)-5-
(tetrahydropyran-4-yl)-1H-pyrazole (3), 4-[5-(4-chlorophenyl)-2H-pyra-
zol-3-yl]morpholine (4), 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-ylmethyl]-
morpholine (5), 4-[3-(4-phenoxyphenyl)isoxazol-5-yl]morpholine (6),
and 4-{5-[4-(4-nitrophenoxy)phenyl]-2H-pyrazol-3-yl}morpholine (7).
Panel B: Concentration dependence of the activation effect on TbrAK
of compounds 1 to 7 in the range of 1–2000 mM. Increasing
concentrations of compound 1 (black circle) gives a sigmoid saturation
curve for TbrAK activation, yielding an EC50 value of 38.960.9 mM.
Similar sigmoid saturations showing their potency are observed for
compound 2 (black square), 3 (black diamond), 4 (black star), and 5
(black triangle), yielding in EC50 values of 25.460.2 mM (2),
168.461.1 mM (3), 134.7611.6 mM (4), and 195.466.0 mM (5), respec-
tively. Values represent the average of three independent experiments.
doi:10.1371/journal.pntd.0001164.g007
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of nitrogen N1 in the pyrazole moiety by rendering it more acidic

due to smaller electronegativity of a carbon atom. The subsequent

reduction of the hydrogen bond strength may account for the loss

of efficacy with respect to TbrAK activation. A similar effect may

explain the low activation efficacy of compound 5 where a

methylene group separates the pyrazole and the morpholine

moiety. In addition, the methylene group most likely disrupts the

hydrogen bond pattern of the pyrazole and could thus lead to the

observed unfavorable effect on both potency and efficacy of the

compound. For compounds 3 and 4 the situation is more complex

as, at similar potency, the tetrahydropyran ring in compound 3
leads to higher efficacy than the morpholine ring in compound 4.

However, their loss of the phenoxy moiety and replacing it by an

ethyl group and a chlorine atom, respectively, makes it difficult to

estimate their influence on the acidity of N1 in the pyrazole ring.

The loss of activation capacity observed for compound 6 can be

explained by the exchange of the pyrazole with an isoxazole ring.

The oxygen of the isoxazol ring leads to a repulsive oxygen-oxygen

interaction and eliminates the favorable hydrogen bond interac-

tion found experimentally for compound 1. This supports the

presence of the tautomer form and the hydrogen bond pattern

depicted in the crystal structure (Figure 3, panel D). Interestingly,

compound 7 loses activity completely due to the para-substitution

on the phenoxyphenyl moiety. With the nitro group pointing to

the solvent, steric hindrance can be excluded as the source of this

observation. However, the strong electron-withdrawing substituent

in para-position will change the electrostatic potential on the

surface of the phenoxy-moiety [41] which may induce repulsive

interactions with respect to the hydrophobic patch formed by

F200, F204, and F205, possibly leading to unfavorable confor-

mational changes that interfere with binding.

Based on the structural and biochemical data we conclude that

potency is related to interaction of the compounds within the

binding site via morpholine, pyrazole and phenoxy moiety, with

the consequence that the interaction with N13 may be directly

involved in more or less pronounced anion hole formation.

Interestingly, both hydrogen bonding partners of compound 1,

amino acids N13 and N142, are located within two flexible linkers

connecting the small lid domain with the large domain.

Considering that domain closing upon adenosine binding during

the catalytic cycle may initiate the formation of the anion hole via

N13 and N142 and long range effects, we may assume that

compound 1 while binding to the active site and forming strong

hydrogen bonds to N13 and N142 could trigger anion hole

formation without domain closure as shown by the crystal

structure.

Conclusion
The present study reports the first three-dimensional crystal

structures of T. b. rhodesiense adenosine kinase, an important

enzyme in the parasite purine salvage pathway, in complex with

the bisubstrate inhibitor AP5A (1.55 Å resolution), and in complex

with the recently discovered activator 4-[5-(4-phenoxyphenyl)-2H-

pyrazol-3-yl]morpholine (compound 1) at 2.8 Å resolution. The

subsequent structural analysis sheds light on substrate and

activator binding, and very importantly, gives insight into the

possible mechanism of the abolishment of the intrinsic substrate

inhibition in presence of compound 1 [15] that leads to

hyperactivation. The ultimate link between hyperactivation and

cell toxicity is currently under investigation.

The structure-activity relationships in terms of TbrAK activa-

tion properties support the observed binding mode of compound 1
in the crystal structure and give hints about anion hole formation

independent of domain closure. These results may open the field

for subsequent optimization of this compound series with respect

to pharmacodynamics and pharmacokinetics, which will be

essential for developing this novel trypanocidal strategy.

Supporting Information

Figure S1 Binding mode analysis of compound 1. While

the location of compound 1 was unambiguously identified by its

well-defined electron density, the nature of the compound suggests

two possible orientations. Panel A: Stereo picture of the 2mFo-

DFc map calculated from the model before including compound 1
in the refinement showing compound 1 modeled with the

morpholine moiety exposed to the solvent. In order for the

compound to fit into the flat density, the two phenyl rings of the

phenoxyphenyl moiety need to be in a sterically inaccessible

coplanar conformation. Panel B: The same view with compound 1
rotated by 180u and fit into the flat density. In this orientation the

morpholine moiety points toward the protein without adopting

sterically unfavorable conformations within the phenoxyphenyl

moiety. Panel C: The same model as in B with the 2mFo-DFc map

calculated from the final model including compound 1 and

showing the distinct hydrogen bonding pattern which is only

possible with compound 1 bound in this orientation. The panels

show amino acids that are within 5 Å of compound 1, with the

addition of N142 as it is involved in the hydrogen bonding

network with the bridging water. All maps are contoured at s = 1.

(PDF)

Figure S2 MolProbity analysis of two possible binding
modes of compound 1. Panel A: When compound 1 is bound

to TbrAK with the morpholine moiety pointing toward the

solvent, the two phenyl rings of the phenoxyphenyl moiety need to

be coplanar in order to fit the flat density. However, this

conformation is sterically inaccessible as shown by large clashes

in the MolProbity analysis (red and pink, Clashscore of 69.77) [1],

which excludes this binding mode. Panel B: In contrast,

compound 1 bound to TbrAK with the phenoxyphenyl moiety

pointing towards the solvent while exhibiting a sterically favorable

conformation, only minor clashes (yellow and orange, Clashscore

of 23.26) between the morpholine and the pyrazole moiety are

observed. This supports the conclusion that compound 1 binds to

TbrAK with the phenoxyphenyl moiety pointing towards the

outside and the morpholine being buried in the active site.

(PDF)

Table 3. Activity data with respect to TbrAK inhibition by
AP5A and activation by compounds 1–7.

potencya efficacy increaseb

TbrAK + AP5A IC50 29.460.2 mM

TbrAK + compound 1 EC50 38.960.9 mM 3.5 fold

TbrAK + compound 2 EC50 25.460.2 mM 2.0 fold

TbrAK + compound 3 EC50 168.461.1 mM 2.5 fold

TbrAK + compound 4 EC50 134.7611.6 mM 2.0 fold

TbrAK + compound 5 EC50 195.466.0 mM 1.5 fold

TbrAK + compound 6 n.e.c n.e.c

TbrAK + compound 7 n.e. n.e.c

aValues represent the average of three experiments.
bThe efficacy of TbrAK in absence of compound was taken as reference.
cno effect, i.e. compounds neither act as activator nor as inhibitor.
doi:10.1371/journal.pntd.0001164.t003
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Table S1 A comprehensive summary of all adenosine
kinase structures published as of 2010, including the
TbrAK structures presented in this work.
(PDF)
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