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Abstract

Many enteric pathogens are equipped with multiple cell adhesion factors which are important for host tissue colonization
and virulence. Y. enterocolitica, a common food-borne pathogen with invasive properties, uses the surface proteins invasin
and YadA for host cell binding and entry. In this study, we demonstrate unique cell adhesion and invasion properties of Y.
enterocolitica serotype O:3 strains, the most frequent cause of human yersiniosis, and show that these differences are mainly
attributable to variations affecting the function and expression of invasin in response to temperature. In contrast to other
enteric Yersinia strains, invasin production in O:3 strains is constitutive and largely enhanced compared to other Y.
enterocolitica serotypes, in which invA expression is temperature-regulated and significantly reduced at 37uC. Increase of
invasin levels is caused by (i) an IS1667 insertion into the invA promoter region, which includes an additional promoter and
RovA and H-NS binding sites, and (ii) a P98S substitution in the invA activator protein RovA rendering the regulator less
susceptible to proteolysis. Both variations were shown to influence bacterial colonization in a murine infection model.
Furthermore, we found that co-expression of YadA and down-regulation of the O-antigen at 37uC is required to allow
efficient internalization by the InvA protein. We conclude that even small variations in the expression of virulence factors
can provoke a major difference in the virulence properties of closely related pathogens which may confer better survival or
a higher pathogenic potential in a certain host or host environment.
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Introduction

Yersinia enterocolitica is a common gram-negative zoonotic pathogen

that is able to grow in the environment and cause enteric diseases

(Yersiniosis), ranging from enteritis, severe diarrhea, mesenteric

lymphadenitis, hepatic or splenic abscesses to postinfectious extrain-

testinal sequelae such as reactive arthritis and erythema nodosum [1].

Infection by Y. enterocolitica is usually initiated through uptake of

contaminated food or water. Following ingestion, the bacteria first

colonize the lumen and transmigrate through antigen-sampling M

cells across the epithelial lining of the small intestine, resulting in the

colonization of the underlying lymphoid tissues (Peyer’s patches)

[2,3]. Subsequently, Y. enterocolitica can spread via the lymph and/or

blood into the mesenteric lymph nodes or to extraintestinal sites such

as liver and spleen [4,5,6]. Alternatively, the bacteria may bypass

colonization of the Peyer’s patches and spread directly from the

intestine to the systemic tissues, similar to what has been observed for

enteropathogenic Yersinia pseudotuberculosis [7,8].

Adhesion, invasion and survival in deeper tissues depend on

several Yersinia virulence factors encoded on the Yersinia

chromosome or the 65–70 kb virulence plasmid (pYV) [9]. Y.

enterocolitica produces at least three invasion factors, invasin, Ail

(attachment-invasion locus), and YadA (Yersinia adhesin A)

which were shown to promote adherence to and invasion into

mammalian cells [10,11,12]. Invasin, the primary invasion

factor, binds with high affinity to beta 1 chain integrin

receptors found on the surface of M cells but not on the apical

side of brush border cells, and mediates efficient and rapid

internalization into host cells [13,14]. As invasin is strongly

expressed at environmental temperature but only weakly at

37uC, it is assumed to support initial colonization and survival

of host tissues during the very early stages of an infection

[15,16,17]. Recent studies showed that the dimeric winged-

helix transcriptional regulator RovA controls transcription of

the invasin gene (invA) in response to temperature. For this

purpose, RovA uses an in-built thermosensor to control its
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DNA-binding activity and its susceptibility to the proteolytic

degradation by ATP-dependent proteases [18].

After the initiation of the infection, the YadA and Ail proteins

seem to be the predominant adhesins in infected tissues. Both

virulence factors mediate serum resistance and promote tight

adherence to extracellular matrix proteins, such as fibronectin

and/or collagen, but their contribution to bacterial uptake is

relatively small [19,20,21,22,23,24,25]. The yadA gene is located

on pYV and its expression, together with the plasmid-encoded

type III secretion system (Ysc proteins) and the antiphagocytic

effector proteins (Yops) is controlled by the VirF(LcrF) activator.

VirF-dependent induction of yadA, yop and ysc expression occurs

exclusively at 37uC [26,27]. Ail is also predominantly expressed at

37uC, and regulated by pH and oxygen content, but the control

mechanisms are still unclear [24].

Besides the classical pathogenicity factors, other surface factors

also contribute or are required for full virulence. Lipopolysaccha-

rides (LPS) of Y. enterocolitica serotypes O:3 and O:8 are required

for successful colonization of the gut and play an important role in

the outer membrane integrity of the bacteria [28,29,30]. LPS O

polysaccharide (O-antigen) mutants were attenuated in virulence

and impaired in their ability to colonize the Peyer’s patches, liver

and spleen [30,31]. Production of the O-antigen is also

temperature-regulated with maximal expression at moderate

temperatures [32,33]. A complex network regulates O-antigen

expression at the transcriptional level and the RosA/RosB efflux

pump/potassium antiporter system and Wzz, the O-antigen chain

length determinant, are indirectly involved in the temperature-

dependent control process [33]. In addition, flagella-dependent

motility is required to initiate host cell invasion by ensuring

migration and cell contact of the bacteria [34].

Most studies on Y. enterocolitica virulence factors and their

contribution to virulence were performed using highly mouse-

virulent bioserogroup 1B/O:8 strains, in particular Y. enterocolitica

8081v. However, several other human pathogenic Y. enterocolitica

strains which are less virulent in mice (e.g. serotypes O:3, O:9 and

O:5,27) were also frequently isolated from patients [1]. Among

these strains, Y. enterocolitica bioserotype 4/O:3 is by far the most

frequent cause of human yersiniosis in Europe and Japan (80–

90%). Y. enterocolitica infections are less common in North America.

However, since the 1980s, serogroup O:3 strains have emerged as

an occasional cause of foodborne outbreaks and replaced O:8 as

the predominant serotype of Y. enterocolitica reported to CDC

[35,36,37,38]. They mainly originate from domestic pigs (preva-

lence of 0–65% in fattening pig herds), which are often asymptotic

carriers, and in which they commonly colonize the lymphoid tissue

of the gut and oropharynx [39,40]. As only very little is known

about the pathogenicity of Y. enterocolitica bioserotype 4/O:3, we

compared host cell interactions of different human-, pig- and food-

derived Y. enterocolitica isolates and found that expression and

function of surface-exposed virulence factors of serotype O:3

strains differ significantly from other Y. enterocolitica serotypes. This

may reflect an adaptation of Y. enterocolitica O:3 to the intestine of

pigs which make them also highly pathogenic for humans.

Results

Y. enterocolitica O:3 interaction with epithelial cells differs
significantly from other Y. enterocolitica serotypes

In order to obtain information about interactions of Y.

enterocolitica serotype O:3 (YeO:3) strains with host cells, we first

investigated the adhesion and invasion efficiency of two reference

strains Y11 and YeO3 and 25 different YeO:3 strains isolated

from human patients, animals or food between 2005 and 2008 in

Germany (Table S1). None of the serotype O:3 isolates was able to

efficiently bind and invade into cultured human epithelial cells

when the bacteria were grown at standard culture conditions and

similar patterns of host-cell associated bacteria (adhesion and

invasion) were obtained when infection was performed at 22–25uC
or 37uC (Fig. 1, S1, data not shown). A prolongation of the

infection time from 30 min to 3 hours and/or use of other human,

porcine and murine epithelial cell lines did not significantly

enhance the efficiency of cell adherence (data not shown),

indicating that low-efficiency of adhesion and invasion is

independent of the cell line and host species. In contrast, all other

tested Y. enterocolitica isolates (serotypes O:5,27, O:8 and O:9)

adhered very efficiently and were able to enter all tested epithelial

cell lines after 30 min with a frequency ranging from 20–30%

depending on the serotype and the isolate (Fig. 1, data not shown).

Amotility of Y. enterocolitica O:3 affects cell invasion
efficiency

It is known that motility is an important factor enhancing the

invasion efficiency of yersiniae [34]. We tested motility of the

YeO:3 strains and found that none of the isolates was motile on

swimming and swarming agar plates in contrast to other Y.

enterocolitica serotypes, e.g. Y. enterocolitica YeO:8 8081v (Fig. 2A,

data not shown). Transmission electron microscopy further

revealed that YeO:3 strains are not flagellated (Fig. 2B, data not

shown), indicating that flagella synthesis is abolished or does not

occur under used growth conditions (LB, 25uC). This phenotype

was also observed with YeO:3 strains isolated from liver and

spleen of BALB/c mice three days post infection (data not shown).

Notably, 30–40% of the bacteria isolated from the intestine were

flagellated (Fig. S2) and motile after in vitro cultivation for 24 h

(data not shown). However, none of them remained motile and

flagellated after 48 h, indicating that the bacteria are motile within

the intestinal tract and rapidly repress flagella synthesis when

grown on agar plates.

It has been assumed that motility enhances the frequency of

bacteria-cell interaction and/or provides an additional force for

active cell entry. To investigate whether non-invasiveness of the

serotype O:3 strains was caused by a reduction of host cell contacts

due to amotility, we performed adhesion and invasion assays with

Author Summary

Bacterial infections are generally initiated by molecular
interactions that occur between the pathogen and its host
cell. These interactions are usually mediated by adhesion
and invasion factors exposed from the surface of the
bacteria which are necessary for the colonization of host
tissues and fundamental to pathogenesis. It is well known
that many bacterial species contain several different
adhesin determinants, which often vary between bacteria
of the same species, reflecting the fact that each microbe
has adapted to a distinct ecological niche. Here, we show
that also small alterations changing the expression pattern
of adhesins and virulence gene regulators in response to
environmental factors (e.g. temperature) lead to funda-
mental differences in pathogen-host cell interactions and
pathogenesis. Modulation of virulence gene expression
constitutes an ideal mechanism to adjust virulence-
associated processes of pathogens to different hosts (e.g.
with varying body temperature) as it allows the bacteria to
readjust expression of certain gene subsets of regulatory
networks controlling virulence, stress and metabolic
adaptation to their demands in individual hosts.

Y. enterocolitica O:3 Specific Cell Interactions
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or without centrifugation of the bacteria onto host cells (Fig. 3A).

When we pre-grew the bacteria at 25uC, adhesion and

internalization was slightly increased after centrifugation, but the

overall efficiency was still significantly lower compared to YeO:8

8081v. This demonstrated that amotility of the bacteria reduced

host cell contact and invasion of YeO:3 grown at 25uC. However,

this does not fully explain the observed differences. In this context,

we also analyzed host cell adhesion and invasion of bacteria grown

at 37uC (Fig. 3B). Without centrifugation, the number of adherent

YeO:8 8081v was significantly reduced and no invasion of the

bacteria was detectable at 37uC. In contrast, YeO:8 8081v

adhered tightly to HEp-2 cells after bacteria were artificially

brought into cell contact by centrifugation, but they were not

internalized (Fig. 3B). This is consistent with previous studies

showing that synthesis of the flagella and the primary internali-

zation factor invasin is repressed at 37uC in Y. enterocolitica 8081v,

whereas production of the major adhesion factor YadA is induced

at 37uC but not at moderate growth temperatures [15,41]. As

shown in Fig. 3B, pre-growth at 37uC and artificially induced host

cell contact led to a significant raise of cell adhesion of all tested

O:3 strains. Notably, only under these conditions efficient host cell

invasion of YeO:3 strains was as efficient as cell uptake obtained

with YeO:8 8081v grown at 25uC (20–30% of adherent bacteria).

Since efficient cell adhesion and internalization of YeO:3 strains

was only achieved after artificial host cell contact, in all following

experiments bacteria were centrifugated onto host cells.

Internalization of Y. enterocolitica O:3 into human
epithelial cells

Based on the previous experiments it seemed possible that an

additional thermo-regulated internalization mechanism is responsible

for host cell invasion at 37uC. To compare the invasion mechanism

used by YeO:3 and YeO:8 strains, we monitored cell entry of YeO:8

8081v grown at 25uC and YeO:3 Y1 grown at 37uC into HEp-2

(Fig. 4A) and Caco-2 (data not shown) cells by scanning electron

microscopy. We found that adherence and invasion of both Y.

enterocolitica serotypes showed very common features and were not cell

type specific. After host cell binding, the cell surface in the vicinity of

the microbes seems to be slightly drawn down, pseudopodia and

lamellipodia are formed and the eukaryotic cell membrane then

seems to enclose and surround the bacteria into a membrane-bound

vacuole. In contrast, no cell adherence of YeO:3 strain Y1 was

observed when grown at 25uC, and only simple attachment, but no

formation of membrane protrusions was detectable when YeO:8

8081v was precultivated at 37uC (data not shown). This suggested

that the internalization mechanism initiated by Y. enterocolitica serotype

O:3 and O:8 strains is similar but expressed at different temperatures.

Expression analysis of Y. enterocolitica O:3 invasin
In order to test this hypothesis, we analyzed the amount of invasin

in both Y. enterocolitica serotypes and found that high amounts of the

primary invasion factor invasin were present in all tested YeO:3

Figure 1. Y. enterocolitica O:3 interaction with epithelial cells. Ten different Y. enterocolitica serotype O:3 isolates from human patients or pigs,
Y. enterocolitica O:8 strain 8081v, Y. enterocolitica O:9 strain 4620 and Y. enterocolitica O:5,27 strain 3056 were grown at 25uC overnight in LB medium.
About 5?104 HEp-2 cells were infected with 5?105 bacteria and incubated at 22–25uC to monitor cell association or 37uC to determine the
internalization efficiency of the bacteria by the gentamicin protection assay. E. coli K-12 was used as negative control. Data are presented as means 6
standard deviations of three independent experiments performed in duplicate.
doi:10.1371/journal.ppat.1002117.g001

Y. enterocolitica O:3 Specific Cell Interactions
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strains at 25uC and 37uC, whereas in YeO:8 8081v invasin was only

detectable at 25uC, but not at 37uC (Fig. 5AB). Production of

invasin in YeO:3 strains at 37uC explains why the invasion rate is

significantly enhanced at this growth temperature. However, this

also raised the question why no internalization of the bacteria was

observed when the bacteria were grown at 25uC, although similar

amounts of the invasin protein were produced (Fig. 3, 5).

Y. enterocolitica O:3 O-antigen blocks InvA-mediated
invasion at 25uC

To decipher the differences in the host cell invasion properties

between the Y. enterocolitica O:3 and O:8 serotype, we first performed

adhesion and invasion experiments with E. coli K-12 expressing the

invAO:3 and invAO:8 genes and found a similar ability of both invasin

proteins to promote cell attachment (25%) and entry (5%) (data not

shown). This led to the hypothesis that a temperature-regulated

surface structure might block invasin function of YeO:3 strains at

moderate growth temperatures. Indeed, composition of the outer

membrane and particularly make-up of LPS was shown to be

strongly temperature-dependent in Y. enterocolitica [32]. Both the

branched outer core hexasaccharide (OC) and the homopolymeric

O-antigen (O-Ag) of the unique YeO:3 LPS are maximally produced

below 30uC, whereas only very reduced levels of these LPS

components are displayed on the bacterial surface at 37uC [32]. In

order to investigate whether they sterically block the access of invasin

to host cells, we used different mutant strains of Y. enterocolitica O:3

Figure 2. Motility and flagellation of Y. enterocolitica O:3 and O:8. (A) Swimming of Y. enterocolitica O:3 (Y1) and O:8 (8081v). Aliquots of 2 ml
of the bacterial culture were inoculated onto LB swimming plates. The plates were incubated at 25uC for 48 h. (B) Transmission electron microscopy
of Y. enterocolitica O:3 (Y1) and O:8 (8081v) grown to stationary phase. Bars indicate 2 mm and 1 mm, respectively.
doi:10.1371/journal.ppat.1002117.g002
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strain YeO3 deficient in O-Ag formation (YeO3-R2), OC biosyn-

thesis (YeO3-OC), or both (YeO3-OCR) [42]. As shown in Fig. 6A,

both O-Ag deficient mutant strains (YeO3-R2, YeO3-OCR) have an

increased capacity to interact and enter human epithelial cells,

whereas no difference was detectable with the OC knock-out mutant

(YeO3-OC). When the adhesion and uptake assays were performed

at 37uC, the overall adhesion and invasion levels of the YeO3 wild-

type strain were significantly increased and identical to that of YeO:8

8081v grown at 25uC, and no significant differences were observed in

the absence of the O-Ag or the OC (Fig. 6A). Notably, differences in

host cell interactions did not result from differences in invA or yadA

expression as identical amounts of invasin and YadA were detectable

in the Y. enterocolitica O:3 wild-type YeO3 and the O-Ag and OC

mutants grown at 25uC and 37uC (Fig. 6B). Taken together, these

data strongly suggest that the YeO:3 O-Ag reduces host cell

interactions at 25uC, most likely through steric hindrance of

adhesin/invasin host cell receptor binding. However, this does not

seem to be the only reason why YeO3 is less invasive at 25uC than

YeO8 8081v, as invasion of the O-Ag mutant strains was still lower

compared to invasion of the Y. enterocolitica O:8 strain (Fig. 6A).

Co-expression of invasin and YadA is necessary for
efficient invasion at 37uC

Besides invasin, also the virulence plasmid-encoded YadA

protein promotes tight adhesion of Y. enterocolitica to host cells

[43]. We first investigated expression of the yadA gene in response

to temperature and found that similar amounts of YadA are

produced in all tested Y. enterocolitica O:8 and O:3 strains at 37uC
(Fig. 5B, 6B) whereas no synthesis could be detected at 25uC (data

not shown). Furthermore, we analyzed cell adhesion and

internalization of Y. enterocolitica O:3 strain Y1 grown at 25uC or

37uC in the presence and absence of invasin or YadA (Fig. 7A),

and confirmed production or loss of adhesins in the equivalent Y.

enterocolitica strains (Fig. 7B). Deletion of the invA gene had no effect

on host cell binding, but eliminated the ability of the YeO:3 strains

to invade human epithelial cells independently from growth

temperature. This phenotype was fully complemented by an invA

expression plasmid. In contrast, loss of YadA had no effect on host

cell invasion and cell adherence at 25uC. However, host cell

binding and invasion were significantly reduced when yadA-

deficient bacteria were grown at 37uC. Overexpression of the yadA

gene under control of an inducible promoter (PBAD) complemented

this phenotype and increased cell binding and entry levels at 37uC.

Even more strikingly, it promoted highly efficient cell adhesion

and invasion of bacteria grown at moderate temperature, similar

to YeO:8 8081v (Fig. 7A). Thus, co-expression of both adhesins is

required to permit efficient cell binding and internalization of

serotype O:3 strains into host cells: YadA is needed to maximize

adhesion whereas invasin is necessary to initiate the internalization

process.

Figure 4. Y. enterocolitica O:3 and O:8 interaction with epithelial cells. Y. enterocolitica O:3 strain Y1 was pregrown at 37uC and Y. enterocolitica
O:8 strain 8081v was grown at 25uC. The bacteria were added to HEp-2 and incubated for 30 min at 37uC after centrifugation of the bacteria onto the
monolayer. Different stages of the internalization process are shown (initial binding, filopodia and lamellipodia formation). Bars indicate 1 mm.
doi:10.1371/journal.ppat.1002117.g004

Figure 3. Host cell interaction of Y. enterocolitica O:3 by InvA at 256C is less efficient due to amotility. Amotile Y. enterocolitica O:3 strains
YeO3, Y11, and Y1 and motile Y. enterocolitica strain O:8 8081v were grown at 25uC (A) or 37uC (B) overnight. About 5?104 HEp-2 cells were infected
with 5?105 bacteria and incubated with or without centrifugation of the bacteria onto the monolayer to monitor cell association (adhesion+invasion)
or the internalization efficiency of the bacteria by the gentamicin protection assay. E. coli K-12 was used as negative control. Data are presented as
means 6 standard deviations of three independent experiments performed in duplicate.
doi:10.1371/journal.ppat.1002117.g003
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Analysis of invA expression in Y. enterocolitica O:3
Our previous experiments clearly demonstrated that the

absence of YadA results in low invasiveness of YeO:3 strains at

25uC, despite the presence of invasin. Yet, invasin expression at

37uC is a special feature of serotype O:3 strains, as it is not

produced in other previously characterized Yersinia strains, e.g.

YeO:8 8081v (Fig. 5) [15] and Y. pseudotuberculosis [44]. Therefore,

we started to elucidate the molecular mechanisms underlying such

differences. First, the invA coding and regulatory region of all Y.

enterocolitica O:3 isolates used in this study were sequenced and an

IS1667 element inserted at position 2143 of the invA promoter

was identified (Fig. 8A). To address whether presence of the

IS1667 insertion is restricted to strains of the same geographic

region isolated over a relatively short timeframe, we also

sequenced the invA locus of 22 additional Y. enterocolitica O:3

isolates collected from all over the world between 1973 and 2008

(Table S1). All tested isolates contained the IS1667 element at the

same position within the invA regulatory region. To test the

influence of the inserted IS element, we compared the activities of

the invA promoter of YeO:8 8081v (PinvO:8) and YeO:3 Y1 wild-

type (PinvO:3) or after deletion of the IS1667 insertion (PinvO:3DIS).

We found that integration of the mobile element is accompanied

with a much stronger expression of the invA promoter. As shown in

Fig. 8B, expression of the PinvO:3DIS::luxCDABE and the PinvO:8::

luxCDABE fusions were very similar and significantly lower than

PinvO:3::luxCDABE expression at 37uC. This result is consistent with

a western blotting analysis showing that invasin production is

considerably higher in the YeO:3 strains than in YeO:8 strain

Figure 5. Expression analysis of Y. enterocolitica O:3 invasin, YadA, and RovA. Y. enterocolitica O:3 strains and the serotype O:8 reference
strain 8081v were grown overnight at 25uC (A) and 37uC (B). Whole cell extracts for analysis of the DNA-binding protein RovA and the adhesins InvA
and YadA were prepared, separated on SDS-polyacrylamid gels and analyzed by western blotting using polyclonal antibodies directed against RovA,
InvA and YadA. A molecular marker the PageRuler Prestained Protein Ladder was loaded on the left.
doi:10.1371/journal.ppat.1002117.g005
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8081v at 37uC (Fig. 5). As the luxCDABE reporter generates a non-

linear and often stronger signal than the relative change in

transcription, we also performed a quantitative RT-PCR analysis

and observed a 6.5-fold reduction of relative invA mRNA levels in

the DIS1667 mutant YE15 compared to the wild-type strain (Fig.

S3).

To find out whether higher activation of the invO:3 promoter

was due to the insertional inactivation of inhibitory sequences (e.g.

H-NS binding sites) or to the presence of specific IS sequences

different portions of the invA upstream region were deleted and

transcription of the PinvO:3::luxCDABE fusion in the Y1 wild-type

strain was analyzed. High expression of the PinvO:3::luxCDABE

fusion was obtained with deletion constructs harboring sequences

upstream of position 2448, whereas PinvO:3 promoter activity was

severely reduced with the fusions starting at or downstream from

position 2248 (Fig. 8C). This demonstrated that the PinvO:3

activity cannot solely be caused by insertional inactivation of

inhibitory sequences, and indicated that an IS-encoded function

contributes to PinvO:3 activation. In fact, insertion of the IS1667

sequences from position 2448 and 2144 upstream of the

promoterless luxCDABE operon resulted in strong expression of

the fusion construct, indicating that an additional promoter

(PIS1667) oriented outward of the IS element drives invAO:3

expression (Fig. 8B). In fact, primer extension analyses revealed

a strong IS-encoded promoter (PIS1667) with a 235 region located

upstream and the 210 region downstream of position 2248.

PIS1667 initiated transcription from position 2219 with respect to

the transcriptional start site of a second promoter (PinvA) located

within the invA regulatory region (Fig. 8D, S4). PinvA was equal to

the invA promoter of Y. enterocolitica O:8 [15] and exhibited a

similar activity when the inserted IS1667 element was deleted

(Fig. 8B).

Since the IS1667 is inserted into the 39-end of the binding site I

of the transcriptional activator protein RovA (Fig. 8A) [45,46], we

also analyzed whether invA expression in Y. enterocolitica O:3 strain

Y1 is still dependent on RovA. We found that invA mRNA levels

and the activity of all highly activated PinvO:3::luxCDABE fusions

starting from position 21830, 21169 and 2448 were significantly

reduced in the absence of the rovA gene, demonstrating that strong

enhancement of invA expression by the IS-encoded promoter still

requires the function of the transcriptional activator protein

(Fig. 8C, S3).

Previous footprint analysis revealed that RovA interacts with

two distinct binding sites of the Y. pseudotuberculosis invA promoter

[46], and sequence homology as well as RovA band shift analysis

indicated that similar binding sites are also recognized by RovA in

the invA regulatory region of YeO:8 8081v [45]. RovA-binding site

I was partially destroyed by the insertion of the IS1667 element in

the invAO:3 promoter (Fig. 9A). However, band shift analysis with

purified recombinant RovA and different DNA fragments of the

invA promoter region demonstrated that RovA still interacts

specifically with RovA sequences upstream of the IS1667 element

containing major parts of binding site I (Fig. 9B). Interestingly,

RovA was also found to specifically interact with fragments

harboring the 39-end (2342 to 2146) of the integrated mobile

element, although a slightly higher concentration was required for

RovA-DNA complex formation. This demonstrated that this

portion of the IS1667 element includes sequences, which are also

preferentially recognized by RovA.

It is very likely that RovA is needed to alleviate H-NS-mediated

repression at sites located downstream of the IS1667 insertion

(Fig. 9A) to permit maximal transcription of the invA promoter. To

test this hypothesis, we also studied the interaction of H-NS with

different fragments of the invO:3 promoter region. As shown in

Fig. 9C, H-NS was able to preferentially interact with a fragment

harboring the 39-portion of the IS1667 element (2342 to 2146),

but the affinity was slightly lower compared to H-NS binding to

the invA promoter fragment (272 to +103). This strongly suggests

that RovA is still required to eliminate H-NS mediated repression

to allow optimal expression of invasin by the PIS1667 and the PinvO:3

promoter.

Enhanced RovA production in Y. enterocolitica O:3 strains
Requirement of RovA for invA transcription in Y. enterocolitica

O:3 at 37uC was unexpected as it has been shown that rovA

expression in Y. enterocolitica O:8 and Y. pseudotuberculosis strains is

strongly thermoregulated and only expressed at moderate

temperatures [44,47]. The RovA protein was found to act as a

thermosensor which undergoes a conformational change upon a

temperature shift from 25uC to 37uC. This thermo-induced

conformational change reduces the DNA binding activity of the

regulatory protein and renders it more susceptible to proteolysis by

the Lon protease [18]. As a result, RovA activation of invA

expression is abolished at 37uC. Although RovA was shown to

activate invA expression in Y. enterocolitica O:3 (Fig. 8C), invasin

expression does not appear to be strongly temperature-regulated

compared to other Yersinia strains (Fig. 5, 6B [15,44]).

To better understand the different control mechanisms, rovA

expression in the different Y. enterocolitica isolates was analyzed. We

found that all YeO:3 isolates produced very high levels of RovA at

25uC and 37uC; whereas no RovA was detected at 37uC in other

Yersinia strains, e.g. YeO:8 strain 8081v and Y. pseudotuberculosis

(Fig. 5, data not shown [44,47]). Expression analysis of the

ProvAO:3::lacZ and ProvAO:8::lacZ fusions revealed that both rovA

promoters are not auto-activated and are either not or only very

weakly dependent on the temperature (Fig. 10A, S6). Next, we

addressed whether thermo-sensing and proteolysis varies between

the RovAO:8 and RovAO:3 proteins. We introduced low-copy

plasmids carrying the rovAO:3 gene of YeO:3 Y1 or the rovAO:8

gene of YeO:8 8081v into a Y. enterocolitica O:3 rovA mutant strain

(YE12) and compared RovA levels after growth at 25uC and 37uC
(Fig. 10B). Almost identical levels of the RovA proteins were

detected at 25uC. However, significantly lower amounts of the

RovAO:8 protein were visible at 37uC, while RovAO:3 concentra-

tions remained almost the same (Fig. 10B). This strongly suggested

that post-transcriptional mechanisms controlling RovA levels must

be different in YeO:3 strains. To test this hypothesis, we sequenced

the rovA locus of all 49 available Y. enterocolitica O:3 strains (Table

S1). We found that the rovA genes of 45 strains, including all

isolates tested in this study vary from rovA of other Y. enterocolitica

Figure 6. Influence of the Y. enterocolitica O:3 O-antigen on host cell invasion. Y. enterocolitica wildtype strains YeO3 and 8081v, and outer
core and/or O-antigen deficient derivatives (YeO3-OC, YeO3-R2, YeO3-OCR) were grown at 25uC and 37uC. (A) About 56104 HEp-2 cells were infected
with 56105 bacteria. After centrifugation of the bacteria onto the monolayer, cell association (adhesion+invasion) was monitored and internalization
efficiency of the bacteria was determined by the gentamicin protection assay. E. coli K-12 was used as negative control. Data are presented as means
6 standard deviations of three independent experiments performed in duplicate. Data were analyzed by the students t test. Stars indicate the results
that differed significantly from those of YeO3 with * (P,0.05), ** (P,0.01), and *** (P,0.001) (B) Whole cell extracts were prepared from overnight
cultures, separated on SDS-polyacrylamide gels and analyzed by western blotting using polyclonal antibodies directed against InvA and YadA. As a
molecular marker the PageRuler Prestained Protein Ladder was loaded on the left.
doi:10.1371/journal.ppat.1002117.g006
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serotypes by a single point mutation in codon 98, resulting in a

P98S change in the amino acid sequence of the translated

regulatory protein. To find out whether this substitution affects

function of RovA as a thermosensor, we overexpressed and

purified RovA of YeO:8 8081v and YeO:3 Y1 and compared their

DNA-binding capacity at 25uC and 37uC (Fig. S5). However,

interaction of both RovA variants with DNA fragments of the invA

regulatory region was still temperature-dependent. Significantly

more of both RovA proteins was required at 37uC for RovA-DNA

complex formation, indicating that the thermosensing function is

not severely affected by the P98S exchange. Next, we addressed

thermo-dependent susceptibility of the RovA variants to degrada-

tion by the Lon protease. To this aim, we reintegrated a copy of

the rovAO:3 or rovAO:8 gene into the genome of a rovA deficient

YeO:3 strain (YE12) and performed stability assays. Identical

amounts of RovAO:3 were still visible 90 min after protein

biosynthesis was stopped (Fig. 10C). In contrast, the RovAO:8

protein was rapidly degraded at 37uC, and significantly lower

amounts of the regulatory protein were detectable 90 min after

cessation of protein synthesis.

Influence of higher RovA and invasin levels in YeO:3 on
invasion and virulence

To test the effect of the IS1667 insertion in the invA promoter

and the more stable RovAO:3(S98) variant on host cell invasion, we

compared the amount of produced invasin and RovA in YeO:3

strains YE13 (rovAO:3), YE14 (rovAO:8) and YE15 (PinvO:3DIS)

(Fig. 11A) and investigated the efficiency of these bacteria to

enter HEp-2 cells (Fig. 11B). High levels of invasin were detectable

in YE13, whereas the instable RovA variant and deletion of the

IS1667 element produced lower amounts of invasin, leading to a

significant reduction of invasiveness into human epithelial cells.

It was previously shown that invasin and RovA are important to

invade the intestinal epithelium by Y. enterocolitica O:8 early after

infection. The rovA-deficient mutants were found to be attenuated

in the ability to reach and/or replicate in the deeper tissues and

organs and induce a milder inflammation of the Peyer’s patches

[48], whereas the LD50 values of the wild-type and the invA mutant

were essentially identical but the colonization of the host tissues

was delayed [4]. In order to determine whether higher invasin and

RovA levels in Y. enterocolitica O:3 also affect pathogenesis, we

tested the virulence of wild-type and mutant strains in the murine

infection model. First, single strain infections were performed and

bacterial colonization of Peyer’s patches (PPs), mesenteric

lymphnodes (MLNs), liver and spleen was assessed. Since only

minor differences could be highlighted (data not shown), we

performed co-infection experiments to determine whether pres-

ence of the wild-type affects the ability of the mutants to colonize

tissues in a single host. This minimizes inherent inter-animal

biological variations and can expose even subtle differences of the

biological fitness and virulence, e.g. in the kinetics of infection.

BALB/c mice were orally infected with 56108 bacteria in an

inoculum comprised of an equal mixture of (i) the parental KanS

wild-type strain Y1 (rovAO:3(S98)) and the KanR mutant strain YE14

(rovAO:8(P98)) or (ii) Y1 and YE15 (PinvO:3DIS) harboring a stable

vector which only differs in its antibiotic resistance cassette to

establish the ability to discriminate strains. Three days after

infection, mice were dissected and the numbers of bacteria present

in the PPs, MLNs, liver or spleen were determined (Fig. 12). The

results of the infection showed that both, the parental (YE13

rovAO:3(S98)) and the rovAO:8(P98) mutant strain (YE14) are capable

of establishing an infection, but considerably higher numbers of

bacteria encoding the less stable RovAO:3(P98) variant from YeO:8

(YE14) were recovered from all dissected tissues. About 2- to 10-

fold more bacteria of this strain were isolated from the lymphatic

tissues or the organs (Fig. 12A) compared to the parental strain

YE13 (rovAO:3(S98)). Also comparison of the relative virulence ratio

(Fig. 12B) and calculation of the competitive index of the mutant

relative to the wild-type strain (Fig. 12C) indicated that higher

concentrations of RovA during mouse infections at 37uC are

disadvantageous for the colonization and multiplication of YeO:3

in the organs. In contrast, significantly lower numbers of strain

YE15 lacking the IS1667 element in the invA promoter region

were isolated. About 10–20 times less bacteria were recovered

from the PP and MLNs (Fig. 12A). The difference in the

dissemination of the bacteria was even more striking. The IS1667

deletion strain YE15 was strongly attenuated in its ability to reach

deeper tissues. Only in some occasions it reached the liver and

spleen, but the bacterial load of the mutant in the liver and spleen

was always significantly lower compared to wild-type (Fig. 12). In

summary, these data strongly indicates that high invasin

expression levels during the course of an infection combined with

a fine-tuned control of the virulence regulator RovA are

advantageous for YeO:3 virulence in mice.

Discussion

The ability of Y. enterocolitica to bind and invade into host cells is

essential for pathogenesis and persistance in its human host.

Results of the present investigation highlight important differences

in the adhesion properties between serotype O:3 strains (respon-

sible for more than 70% of human yersiniosis cases) and other Y.

enterocolitica serotypes, e.g. serotype O:8, whose pathogenicity has

been extensively investigated. Comparative analysis of cell binding

properties demonstrated that the same repertoire of virulence

factors is implicated in host cell binding in the serotype O:3

isolates, but their interplay and expression profile in response to

environmental signals is significantly different from O:8 strains

(Fig. 13).

We show that synthesis of the primary internalization factor

invasin is highly activated and nearly constitutive in all tested Y.

enterocolitica O:3 strains. This is in contrast to O:8 serotypes in

which invasin synthesis is repressed at 37uC due to H-NS

mediated silencing and rapid degradation of the invA activator

protein RovA. Interestingly, a previous study also reported that

invA expression of a serotype O:9 strain was higher than in

serotype O:8, but it was still significantly reduced at 37uC [49].

Constitutive expression of the invA gene in the O:3 strains was

acquired by an IS1667 insertion into the invA regulatory region

Figure 7. Coexpression of invasin and YadA is necessary for efficient invasion at 376C. Y. enterocolitica strain O:8 strain 8081v, Y.
enterocolitica O:3 strain Y1 and isogenic invA and yadA deficient mutant derivatives were grown overnight at 25uC and 37uC. (A) About 5?104 HEp-2
cells were infected with 5?105 bacteria and after centrifugation of the bacteria onto the monolayer the samples cell association (adhesion+invasion)
was monitored and internalization efficiency of the bacteria was determined by the gentamicin protection assay. Data are presented as means 6
standard deviations of three independent experiments performed in duplicate. Data were analyzed by the students t test. Data were analyzed by the
students t test. Stars indicate the results that differed significantly from those of Y1 with * (P,0.05), ** (P,0.01), and *** (P,0.001). (B) Whole cell
extracts were prepared from the overnight cultures, separated on SDS-polyacrylamide gels and analyzed by western blotting using polyclonal
antibodies directed against InvA and YadA. As a molecular marker the PageRuler Prestained Protein Ladder was loaded on the left.
doi:10.1371/journal.ppat.1002117.g007
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Figure 8. Analysis of invA expression in Y. enterocolitica O:3. (A) An overview of the invA promoter region including the IS1667 insertion of Y.
enterocolitica O:3 strains is shown. The transcriptional start sites of the invA gene and from the predicted IS1667-encoded promoter are indicated by
broken arrows, the dark boxes indicate the RovA binding sites identified in the homologous invA promoter of Y. pseudotuberculosis. The thick line
represents the invA promoter sequence and the thin line illustrates the IS1667 sequence. The arrow indicates the gene encoding the putative
transposase of the IS1667 element. Sites used for the upstream deletion constructs are indicated by arrows. The numbers indicate the position of the
deletion relative to the transcriptional start site of the invA gene. (B) Overnight cultures of Y. enterocolitica O:3 strain Y1 harbouring the
PinvAO:8::luxCDABE (pFU170), PinvAO:3::luxCDABE (pFU171), PinvAO:3DIS::luxCDABE (pFU172) and PIS1667::luxCDABE (pFU202) fusion constructs were diluted
(1:100) and grown in LB at 37uC for four hours and luciferase activity was determined. (C) Expression by progressive deletion of the invA 59-regulatory
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harbouring RovA and H-NS binding sites. Gene activation by

transposons has been described for other genetic systems but the

induction mechanism of the Y. enterocolitica O:3 invA gene seems

distinct from previously reported systems. Transposable elements

usually activate gene expression by replacing a negative regulatory

element or through introduction of promoter elements [50,51].

One of the best-characterized examples of transposon-mediated

gene activation is the beta-glucoside (bgl) operon of E. coli. This

region was analyzed in Y. enterocolitica O:3 Y1 and the isogenic rovA mutant derivative Y12 harbouring the PinvAO:3::luxCDABE fusion. The numbers
indicate the 59 end points of the regulatory region of invA from Y. enterocolitica O:3 in the fusion constructs relative to the transcriptional start site
(+1). The luciferase activity determined from the cultures is given in relative light units (RLU) and represents the mean 6 standard deviation of at least
three independent experiments. (D) Sequence of the 39-end of the IS1667 inserted into invA of Y. enterocolitica O:3 at position 2143 is shown. The
210 and 235 region of the predicted IS1667-encoded promoter are indicated. Sites used for the upstream deletion constructs are indicated by
arrows. The numbers indicate the position of the deletion relative to the transcriptional start site of the invA gene.
doi:10.1371/journal.ppat.1002117.g008

Figure 9. RovA and H-NS binding to the Y. enterocolitica O:3 invA regulatory region. (A) Overview of the invA promoter region of Y.
enterocolitica O:3 strains. The transcriptional start sites of the invA promoter and of the predicted IS1667-encoded promoter are indicated by broken
arrows. The dark boxes represent the RovA and the white small boxes the H-NS binding sites identified in the homologous invA promoter of Y.
pseudotuberculosis. The thick line represents the invA promoter sequence and the thin line illustrates the sequence of the IS1667 element with the
putative transposase gene. Fragments used for the band shift experiments are shown as black lines. Competitive gel retardation assays using purified
RovA protein (B) or purified H-NS (C) of Y. enterocolitica O:3 strain Y1. DNA fragments comprising different portions of the invA regulatory region of
Y1 were incubated without or with increasing concentrations of purified RovA or H-NS. The DNA-protein complexes were separated on a 4%
polyacrylamide gene, a molecular weight standard 100 bp ladder was loaded on the left. The higher molecular weight protein-DNA complexes are
marked by an arrow and the positions of the non-shifted and control fragments are indicated.
doi:10.1371/journal.ppat.1002117.g009
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Figure 10. Analysis of RovA production and stability in Y. enterocolitica O:3. (A) Y. enterocolitica strains Y1 and the isogenic rovA mutant of
Y1 (YE12) harboring plasmids encoding the promoterless lacZ gene or the ProvAO:8-lacZ or ProvAO:3-lacZ fusions were grown at 25uC and 37uC
overnight. The beta-galactosidase activity determined from the cultures is given in mmol min21 mg21 and represents the mean 6 standard deviation
of at least three independent experiments. (B) A Y. enterocolitica O:3 DrovA mutant strain (YE12) harboring the rovA encoding plasmids pFU119
(rovAO:3) or pFU138 (rovAO:8) and YeO:8 strain 8081v were grown overnight at 25uC and 37uC. Whole cell extracts were prepared from the cultures,
separated on SDS-polyacrylamide gels and analyzed by western blotting using polyclonal antibodies directed against RovA. As a molecular marker
the PageRuler Prestained Protein Ladder was loaded on the left. (C) Isogenic Y. enterocolitica strains YE13 and YE14 expressing the RovA wildtype
protein or the RovAS98P derivative were grown to exponential phase (OD600 = 0.6–0.7) at 37uC before gentamicin (50 mg ml21) and tetracycline
(50 mg ml21) were added. The cultures were incubated at 37uC for additional 90 min. Aliquots of the cultures were removed at the indicated times
thereafter, whole cell extracts for identical numbers of bacteria were prepared and intracellular RovA was visualized by western blotting.
doi:10.1371/journal.ppat.1002117.g010
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system is usually repressed but can be activated by IS insertions

up- or downstream of the promoter in either orientation relieving

H-NS repression [52,53]. However, deletion analysis revealed that

transposon-mediated invA activation in Y. enterocolitica O:3 is not

solely due to disruption of the inhibitory H-NS binding sites, but

also requires an IS-specific activating element. One recent study

revealed a novel transposon-mediated gene activation mechanism.

An IS5 insertion at a single site and in only one orientation was

found to activate expression of the glpFK operon in a crp

background [54]. A short sequence at the 39 end of the IS5

transposon, including a permanently bent polyA-tract and an IHF

binding site, was shown to be required for glpFK induction. This

shows that unique sequences within a mobile element can act as an

enhancer or gain an activator binding function sufficient to

activate close promoters. In this study we found that IS1667-

promoted activation of invA expression in Y. enterocolitca O:3 at

25uC and 37uC is largely dependent on the presence of an IS1667-

generated promoter and alternative RovA (activator) and H-NS

(silencer) binding sites. RovA of YeO:8 was previously shown to

activate invA expression only at moderate temperatures through

antirepression of H-NS-mediated silencing [45]. A temperature

upshift to 37uC, however, results in a conformational change

within RovA that strongly reduces the DNA-binding capacity of

the regulator. It has been previously shown that the apparent

dissociation constant (Kd) of the thermoregulated RovA protein of

Y. pseudotuberculosis is about four-fold increased upon a temperature

shift from 25uC to 37uC [18]. Furthermore, it was found that the

temperature upshift renders the RovA protein more susceptible to

degradation by the Lon and ClpP proteases [18]. Comparable

studies with the RovA protein of YeO:8 8081v demonstrated

similar properties and identical function as an intrinsic thermo-

sensor (F. Uliczka, unpublished data). Here, we found that a single

proline to serine exchange at position 98 (P98S) increases the

stability of YeO:3 RovA without affecting the thermosensing

ability of the protein. As a consequence, significantly higher RovA

concentrations are present within the bacteria and this is sufficient

to compensate for the thermo-induced reduction of RovA DNA

binding. As YeO:3 strains originate mainly from boars and pigs

with a higher body temperature of about 39u–40uC, a more

temperature-stable RovA variant might be advantageous for

persistence in these animals. According to our proposed structure

model of RovA [55] the amino acid P98 is located in a surface

exposed loop structure and is as such easily accessible for the

proteases. How the P98S mutation affects proteolytic degradation

is not yet clear. However, comparative CD spectroscopy of

purified RovAO:8(P98) and a RovAO:3(S98) variant of Y. pseudotuber-

Figure 11. Influence of enhanced invasin and RovA levels on Y. enterocolitica O:3 host cell invasion. (A) Whole cell extracts were
prepared from the cultures, separated on SDS-polyacrylamide gels and analyzed by western blotting using polyclonal antibodies directed against
InvA and RovA. As a molecular marker the PageRuler Prestained Protein Ladder was loaded on the left. (B) YeO:3 strains Y1 (wt), YE13 (rovAO:3S98),
YE14 (rovAO:8P98) and YE15 (rovAO:3DIS1667) were grown at 37uC. Approximately 106 bacteria were centrifugated onto 104 HEp-2 cells. Total numbers
of intracellular bacteria were determined and are expressed relative to the invasion rate of YeO:3 strain Y1 defined as 100%. Each value represents the
mean of at least three different assays done in triplicate. Data were analyzed by the students t test, **, significantly different from Y1 or YE13 with
P,0.001.
doi:10.1371/journal.ppat.1002117.g011
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culosis indicated that no major structural changes are induced by

this amino acid substitution (N. Quade, unpublished results).

Furthermore, proteolysis is drastically reduced but not completely

blocked by the P98S mutation as a slightly higher concentration of

the regulatory protein was detected in a Yersinia lon mutant strain.

In summary, a more stable RovA variant (RovAO:3(S98)) and an

IS1667 insertion in the invA promoter region, providing an

additional promoter followed by slightly weaker RovA and H-NS

binding sites, allow high expression levels of invasin in YeO:3

strains at 37uC. How these different properties influence

pathogenesis is not fully clear, but first experiments addressing

host cell invasion and colonization of YeO:3 in the mouse model

revealed that loss of the IS1667 element reduced host cell entry

and had a severe effect on the infection process in mice.

Colonization of the PPs and the MLNs by YeO:3 strain YE15

(PinvO:3DIS) was significantly reduced and only occasionally these

bacteria were able to reach deeper organs in co-infection

experiments. This indicates that high levels of invasin are more

advantageous and/or important for YeO:3 to initiate a successful

infection than for YeO:8 in mice. In fact, a YeO:8 8081v invA

mutant strain shows a delayed but still efficient colonization of

deeper tissues [4,56].

In contrast to invasin, loss of the RovA regulator in YeO:8

8081v leads to a 70-fold increase of the LD50 and causes a much

more severe alteration of the infection kinetics, e.g. penetration of

the Peyer’s patches and mesenterial lymph nodes was much more

reduced, and dissemination into liver and spleen was abolished

[56]. Interestingly, significantly higher numbers of bacteria could

be detected in lymphatic tissues and organs of mice when the

unstable variant RovAO:3(S98) was expressed by YeO:3. This

strongly suggests that elevated RovA levels, although they lead to

higher amounts of invasin are disadvantageous for the colonization

of the organs in mice. Microarray analysis to define the RovA

regulon of Y. enterocolitica in YeO:8 revealed 40 genes to be

activated and 23 repressed by RovA [57]. Among the RovA-

repressed loci are several metabolic genes, e.g. permeases for

glutamine, glutamate and aspartate) and their upregulation due to

reduced RovA levels at 37uC might be important for the biological

fitness and survival in host tissues during infection in mice. A more

stable but still thermo-sensitive RovA variant, as found in YeO:3

Figure 12. Influence of enhanced invasin and RovA levels on Y. enterocolitica O:3 virulence. (A) BALB/c mice were co-infected via the
orogastric route with 56108 bacteria in an inoculum comprised of an equal mixture of YeO:3 strains Y1 (wt, rovAO:3) and YE14 (rovAO:8), or Y1 (wt,
rovAO:3) and YE15 (rovAO:3PinvDIS). Three days post infection, the mice were sacrificed and the numbers of surviving bacteria in the liver, spleen,
mesenterial lymph nodes (MLN), and Peyer’s patches (PP) were determined as described in Material and Methods. Data are presented as a scatter plot
of numbers of cfu per gram of organ as determined by counts of viable bacteria on plates. Each spot represents the cfu count, in the indicated tissue
samples from one mouse. The levels of statistical significance for differences between test groups were determined by the Mann-Whitney-test. Stars
indicate results that differed significantly from those of Y1 with ** (P,0.01), and *** (P,0.001). (B) Data are graphed as competitive index values for
the tissue samples from one mouse. The bars represent the means of the competitive index values. A competitive index score of 1 denotes no
difference in the virulence compared to Y1. Underlined scores denote where statistically significant differences were observed. The two strains Y1 and
Y15 used for competition assays were differentially marked with antibiotics resistances on plasmids.
doi:10.1371/journal.ppat.1002117.g012
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strains (RovAO:3(P98)), would allow similar regulatory control over

virulence and metabolic genes in pigs and boars with a higher

body temperature (39uC–40uC). In order to test whether the

IS1667 insertion in the invA promoter region and the RovAO:3(S98)

variant reflects an optimal adaptation to these host organisms we

are currently establishing a pig infection model.

Although high levels of invasin are produced by YeO:3 strains

at moderate growth temperatures, cell invasion was either not

initiated or very inefficient when the bacteria were pregrown at

25uC. This is in strong contrast to other Y. enterocolitica serotypes

or Y. pseudotuberculosis isolates which enter host cells with their

highest efficiency when cultured at moderate temperatures.

Previous analyses showed that induced flagellar-dependent

motility is required for efficient invasion of YeO:8, but flagella

production of this pathogen is repressed at 37uC [34]. Flagella are

needed to ensure migration of the bacteria to host cells, but are

not essential for the invasion process once the bacteria contact the

mammalian cells. Motility assays and electron microscopy

revealed that flagellated and motile strains of Y. enterocolitica O:3

strains can be isolated from the intestinal tract of a mouse, but

they rapidly loose their motility and become aflagellated during

growth under standard laboratory conditions. As a result, YeO:3

strains are less invasive than other motile serotypes in vitro, but cell

entry could be improved upon artificial host cell contact by

centrifugation.

However, when the bacteria were pregrown at 25uC, YeO:3

uptake after host cell contact is still less efficient compared to

YeO:8 or other serotypes, indicating that other factors repress

invasin-mediated internalization at moderate temperatures or

enhance cell entry at 37uC. Y. enterocolitica isolates grown at room

temperature generally express LPS with O-ag, whereas only very

small amounts of O-ag are present in bacteria grown at 37uC
[33,58]. The O-ag of YeO:8 is required for full virulence and plays

a major role in pathogen-host interplay by affecting the expression

Figure 13. Comparison of Y. enterocolitica O:3 and O:8 mediated temperature regulated control of host cell invasion. Model of
virulence factor expression of Y. enterocolitica O:3 and O:8 in response to temperature. (A) At moderate temperature, rovA expression is induced in Y.
enterocolitica O:8 which leads to activation of invasin expression. Furthermore, flagella production is activated and enhances host cell contact, and
LPS molecules are synthesized which do not interfere with invasin function. This leads to an efficient internalization of the serotype O:8 strains after
growth at environmental temperatures. At 37uC, RovA is rapidly degraded resulting in downregulation of invasin. In addition, flagella and O-antigen
production is repressed, whereas synthesis of the adhesin YadA is induced which allows efficient adhesion, but no internalization into epithelial cells.
(B) Y. enterocolitica O:3 produce similar and significantly higher amounts of invasin at environmental and body temperature due to an IS insertion
into the invA upstream region and a stable RovA activator protein both abolishing H-NS mediated repression. However, internalization into host cells
is strongly reduced at 25uC due to steric hindrance by the unique O-antigen and repression of YadA which strongly enhances and stabilizes host cell
interactions at 37uC. LPS+OC: lipopolysaccharides with O-antigen and outer core.
doi:10.1371/journal.ppat.1002117.g013
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and function of other Yersinia virulence factors, e.g. absence of the

O-ag reduced invA expression and internalization into HeLa cells

[31]. In contrast, O-ag deficient YeO:3 rough mutants are more

efficiently internalized by human epithelial cells. Furthermore, no

reduction of invA expression was observed in the rough mutants at

37uC when O-ag expression is fully repressed. Unlike other Yersinia

serotypes and other Gram-negative bacteria, the YeO3 O-ag

forms a long homopolymer that is linked together with the OC

hexasaccharide to the inner core forming a unique branched LPS

structure. Its formation was previously shown to prevent proper

function of some small size outer membrane proteins. For

instance, O-ag was shown to inhibit serum resistance indirectly

by masking the adhesin Ail from complement regulator C4bp

binding [59]. Therefore, reduced O-ag density in YeO:3 at 37uC
is very likely diminishing sterical hindrance thus allowing better

access and host cell receptor binding by surface adhesins such as

invasin and YadA (Fig. 13).

In fact, besides invasin, also production of the adhesin YadA

is required to promote efficient uptake of YeO:3. The

virulence plasmid encoded trimeric YadA protein is highly

and exclusively expressed at 37uC, and forms a capsule-like,

fibrillar matrix covering the bacterial surface [60]. YadA of Y.

enterocolitica O:8 strains has been shown to promote tight

binding to extracellular matrix proteins such as collagen and

laminin, but it does not contribute to epithelial cell entry

compared to invasin [19,61]. In fact, at 37uC when YadA is

highly expressed but no or only very low levels of invasin are

produced by YeO:8, no internalization of the bacteria is

initiated (Fig. 3B, 6A). Internalization of YeO:3 at 37uC also

seems to be exclusively mediated by invasin as an invA mutant

is unable to enter host cells. Yet, YadA synthesis is not

dispensable, as its absence in a yadA mutant or during growth

at 25uC results in a significantly lower cell adhesion and uptake

rate even in the presence of high amounts of invasin, whereas

yadA expression by an inducible promoter at 25uC leads to

strong adhesion and efficient invasion of YeO:3 similar to

YeO:8. YadA seems to be required to guarantee tight and

efficient host cell binding which then in turn leads to a more

efficient invasin-mediated uptake. Both invasin and YadA

promote direct or indirect binding to beta 1 integrins [13,62].

High affinity binding and ligand-induced beta 1-integrin-

clustering by invasin are required for efficient uptake by this

host cell receptor family [63,64]. However, invasin of Y.

enterocolitica does not contain a self-association domain medi-

ating receptor-clustering and uptake in contrast to invasin of Y.

pseudotuberculosis [65]. It is therefore tempting to speculate that

co-expression of the somewhat longer cell surface adhesin

YadA which promotes binding to ECM molecules bound to

beta 1 chain integrins promotes or enhances intimate direct

interaction of invasin and subsequent internalization (Fig. 13).

In summary, results in the present investigation provide

evidence that even small variations between virulence factors

and regulators are responsible for the substantial difference in host

cell interactions of Y. enterocolitica serotype O:3 in comparison to

other Y. enterocolitica serotypes. Serotype O:3 specific variations in

the surface molecule expression pattern imply that this Y.

enterocolitica subspecies varies in its dynamic capacity to adapt to

changing environments and individual niches within the host. A

particular repertoire of host interaction genes may confer a

survival advantage or pathogenic potential in a specific microen-

vironment. Thus, an individual subspecies may be better adapted

for survival in a particular host or host site, e.g. human

gastrointestinal tract or oral cavities of swine (e.g. tongue and

tonsils).

Materials and Methods

Ethics statement
All animal work was performed in strict accordance with the

German regulations of the Society for Laboratory Animal Science

(GV-SOLAS) and the European Health Law of the Federation of

Laboratory Animal Science Associations (FELASA). The protocol

was approved by the Niedersächsisches Landesamt für Verbrau-

cherschutz und Lebensmittelsicherheit: animal licensing commit-

tee permission no. 33.9.42502-04-055/09. All efforts were made

to minimize suffering.

Bacterial strains, cell culture, media and growth
conditions

The strains used in this study are listed in Table 1. Overnight

cultures of E. coli were routinely grown at 37uC, Yersinia strains

were grown at 25uC or 37uC in LB (Luria-Bertani) broth. The

antibiotics used for bacterial selection were as follows: ampicillin

100 mg/ml, chloramphenicol 30 mg/ml, kanamycin 50 mg/ml,

gentamicin 50 mg/ml and tetracycline 10 mg/ml. For infection

experiments, bacteria were grown at 25uC or 37uC, washed and

diluted in PBS prior to infection.

Human HEp-2 cells were cultured in RPMI 1640 media with

GlutaMAX (Invitrogen) supplemented with 7.5% newborn calf

serum (Sigma Aldrich) at 37uC in the presence of 5% CO2.

Human Caco-2 cells were grown in DMEM/HAM’s F-12

(Biochrom) supplemented with 10% FBS Superior (Biochrom).

DNA manipulations and construction of plasmids
All DNA manipulations, PCR, restriction digestions, ligations

and transformations were performed using standard techniques as

described previously [66,67]. Plasmids used in this study are listed

in Table 1, and primers are given in Table S2.

Plasmids pFU49 (invAO:3) and pFU182 (invAO:8) were construct-

ed by amplification of the invA gene from genomic DNA of YeO:3

Y11 and YeO:8 8081v with primers II40/II42 and the PCR-

derived fragments were subsequently integrated into the SacI/SalI

sites of pBAD33. For the overexpession of RovAO:8 the rovA gene

was amplified from genomic DNA of YeO:8 8081v with primers

II417/II418 and the generated fragment was inserted into the

NcoI/XhoI sites of pET28a, generating pFU156. Plasmid pFU157

was obtained by QuikChange mutagenesis of pFU156 using

primer II375/II376. Plasmid pFU199 was constructed by inserting

a hns+
O:3 fragment amplified with primers II726/II727 into the

EcoRI/SalI sites of pASKIBA43+. For the construction of pFU220

a BamHI/SalI fragment of pFU188 containing the yadA gene was

integrated into pBAD33. pFU188 was obtained by insertion of a

PCR fragment amplified with primers II517/II518 from genomic

DNA of YeO:3 Y11 into the NcoI/SalI sites of pBAD/Myc-HisA.

Plasmids pFU170 and pFU171 encoding the PinvAO:8::luxCDABE

and PinvAO:3::luxCDABE reporter fusions were generated by

insertion of a PCR fragment amplified with primers II177/II178

from genomic DNA of YeO:8 8081v or YeO3 Y11 in the BamHI/

SalI sites of pFU175. To construct plasmid pFU172, carrying the

PinvAO:3 DIS::luxCDABE fusion, two PCR fragments amplified with

primer pairs II177/II179 and II180/II178 were first ligated with

their blunt ends and cloned into the BamHI/SalI sites of luxCDABE

fusion vector pFU175. Plasmids pFU194–198 were constructed to

analyse the effect of promoter PinvAO:3 truncations. This was

accomplished by separate cloning of five DNA fragments

amplified with primers II542–546 and II178 from genomic

DNA of YeO:3 Y11 into the BamHI/SalI sites of pFU175.

Plasmids pFU201 and pFU202 carry the invAO:3 promoter region

from position 2248 to 2146 and from 2448 to 2146,
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Table 1. Bacterial strains and plasmids.

Strains, Plasmids Description Source and reference

Bacterial strains

E. coli K-12

DH101beta F2 endA1 recA1 galE15 galK16 nupG rpsL DlacX74 Invitrogen

w80lacZDM15 araD139 D(ara,leu)7697 mcrA

D(mrr-hsdRMS-mcrBC) l2

S17-1 lpir Tpr Smr recA, thi, pro, hsdR2M+ RP4:2-Tc:Mu:Km Tn7 [73]

lpir

BL21 CodonPlus F2 ompT hsdS(rB
2mB

2) dcm+ Tetr gall (DE3) endA Stratagene

(DE3)-RIL Hte [argU ileY leuW Camr] (DE3)- RIL

BL21 lDE3 F2 ompT gal dcm lon hsdSB(rB
2 mB

2) gal lDE3 [74]

KB4 BL21 lDE3 stpA hns hha Katja Böhme

Y. enterocolitica

YeO3 6471/76 serotype O:3, patient isolate, wild-type [75]

YeO3-OC 6471/76, D(wzx-wbcQ), outer core negative [42]

derivative of 6471/76

YeO3-OCR spontaneous rough derivative of YeO3-OC [42]

YeO3-R2 spontaneous rough derivative of YeO3 [30]

Ye 8081v bioserotype 1A/O:8, patient isolate, wild-type [15]

4620 bioserotype 3/O:9, patient isolate, wild-type A. Fruth

3056 bioserotype 3/O:5,27, patient isolate, wild-type A. Fruth

Y11 bioserotype 4/O:3, patient isolate, wild-type A. Rakin

Y1 bioserotype 4/O:3, patient isolate, wild-type E. Strauch

Y2 bioserotype 4/O:3, patient isolate, wild-type E. Strauch

Y3 bioserotype 4/O:3, patient isolate, wild-type E. Strauch

Y4 bioserotype 4/O:3, patient isolate, wild-type E. Strauch

Y5 bioserotype 4/O:3, patient isolate, wild-type E. Strauch

Y8 bioserotype 4/O:3, patient isolate, wild-type E. Strauch

Y32 bioserotype 4/O:3, patient isolate, wild-type E. Strauch

Y33 bioserotype 4/O:3, patient isolate, wild-type E. Strauch

Y34 bioserotype 4/O:3, patient isolate, wild-type E. Strauch

YE01 Y11, DrovA, CmR This study

YE12 Y1, DrovA, CmR This study

YE13 YE12, ProvAO:3::rovAS98, CmR KnR This study

YE14 YE12, ProvAO:3::rovAP98, CmR KnR This study

YE15 Y1, PinvADIS1667 This study

YE18 Y1, DyadA, TetR This study

YE21 Y1, DinvA, KnR This study

Plasmids

pASKIBA43+ overexpression vector, ApR IBA

pBAD33 overexpression vector, CmR [76]

pBADmycA-HisA overexpression vector, ApR Invitrogen

pET28a overexpression vector, KnR Novagen

pFU32 ColE1, promoterless luc, TetR lab collection

pFU49 pBAD33, invA+
O:3, CmR This study

pFU99 pSC101*, promoterless lacZ, CmR lab collection

pFU100 R6K, mobRP4, promoterless luxCDABE, CmR lab collection

pFU102 pFU100, rovA::CmR This study

pFU109 pSC101*, promoterless lacZ, KnR lab collection

pFU114 pFU100, ‘invA’ (nt 40–339), CmR This study

pFU119 pFU109, ProvAO:3::rovAO:3, KnR This study
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respectively, fused to the luxCDABE operon. For their construction

PCR fragments were amplified with primer pairs II570/II543 and

II571/II543, respectively, and integrated into the BamHI/SalI sites

of pFU175. The ProvA::lacZ fusions plasmids pFU129 and pFU130

were constructed by insertion of rovA promoter fragments,

amplified with primer pair II260/I277 from genomic DNA of

YeO:8 strain 8081v or YeO:3 strain Y11, into the BamHI/SalI

sites of pFU109.

Following plasmids were engineered for the construction of rovA,

invA and yadA mutant strains of Y. enterocolitica. For rovA

mutagenesis, plasmid pFU167 was constructed by amplification

of sacB with primers II421/II422 from pJE4 and integration into

the AvrII/NotI sites of pFU102. pFU102 was constructed by

insertion of three PCR-derived fragments into the SpeI/NotI sites of

pFU100: (i) a SpeI/SacI fragment containing 179 bp of the rovA

regulatory region amplified with primers II171/II172, (ii) a SacI/

AatII fragment encoding the chloramphenicol resistance gene of

pZA31 luc, and (iii) a AatII/NotI containing 119 bp of the

downstream region of rovA amplified with primers II173/II174.

For the invA mutagenesis, plasmid pFU213 was constructed by

insertion of the SacI/AatII fragment encoding the kanamycin

resistance gene of pZS*24MCS into pFU114. The plasmid

pFU114 was constructed by insertion of an ‘invA’ fragment into

the SalI/NotI sites of pFU100. The PCR fragment contained base

pairs 40–339 of the invA coding region, amplified from genomic

DNA of YeO:3 Y11 with primer pairs II211/II212 which

introduce stop codons at the 59 and 39 end in the open reading

frame of the ‘invA’ fragment. For yadA mutagenesis, plasmid

pFU187 was used. This plasmid was engineered by the insertion of

three PCR fragments into the SpeI/NotI sites of pFU167: (i) a SpeI/

SacI fragment which contained 150 bp of the yadA regulatory

region amplified from genomic DNA of YeO:3 Y11 with primer

pair II513/II514 (ii) a SacI/AatII fragment of pFU32 encoding the

tetracycline resistance gene, (iii) and a AatII/NotI fragment

containing the last 81 bp of the yadA gene plus 69 bp of the yadA

downstream region amplified from genomic DNA of YeO:3 Y11

with primer pair II515/II516.

For deletion of the IS1667 element in the invAO:3 regulatory

region, we used pFU190. Plasmid pFU190 was created by the

insertion of three fragments. Two fragments starting from position

21887 to 21627 and 2249 to 21 of the invA promoter region

were amplified with primer pairs II519/II522 and II523/II524,

respectively, and ligated at their blunt ends. The resulting XhoI/

NotI fragment was ligated with the SpeI/XhoI fragment from

Strains, Plasmids Description Source and reference

pFU129 pFU109, ProvAO:8::lacZ, KnR This study

pFU130 pFU109, ProvAO:3::lacZ, KnR This study

pFU138 pFU119, ProvAO:3::rovAO:8, KnR This study

pFU156 pET28a, rovA+
O:8, KnR This study

pFU157 pET28a, rovA+
O:3, KnR This study

pFU167 pFU102, rovA::CmR, sacB This study

pFU170 pSC101*, PinvO:8::luxCDABE, KnR This study

pFU171 pSC101*, PinvO:3::luxCDABE, KnR This study

pFU172 pSC101*, PinvO:3DIS::luxCDABE, KnR This study

pFU175 pSC101*, promoterless luxCDABE, KnR lab collection

pFU182 pBAD33, invA+
O:8, CmR This study

pFU184 pFU119, ProvAO:3::rovAO:3, KnR This study

pFU185 pFU138, ProvAO:3::rovAS98P, KnR This study

pFU187 pFU167, yadA::TetR This study

pFU188 pBADmycA-HisA, yadA+
O:3, ApR This study

pFU190 pFU167 PinvAO:3 (21887 to 21627/2249 to 21), TetR This study

pFU194 pFU175, 21169 bp invA upstream region, KnR This study

pFU195 pFU175, 2448 bp invA upstream region, KnR This study

pFU196 pFU175, 2248 bp invA upstream region, KnR This study

pFU197 pFU175, 2146 bp invA upstream region, KnR This study

pFU198 pFU175, 272 bp invA upstream region, KnR This study

pFU199 pASKIBA43+, hns+
O:3, ApR This study

pFU201 pSC101*, PinvO:3(2248 to 2146)-luxCDABE, KnR This study

pFU202 pSC101*, PinvO:3(2448 to 2146)-luxCDABE, KnR This study

pFU213 pFU114, ‘invA’ (nt 40–339), KnR This study

pFU220 pBAD33, yadA+
O:3, CmR This study

pJE4 R6K, sacB+, KnR J. Eitel

pZA31luc expression vector, p15A, PLtetO-1, CmR [77]

pZS*24MCS expression vector, pSC101*, Plac/ara-1, KnR [77]

doi:10.1371/journal.ppat.1002117.t001
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pFU32 harboring the tetracycline resistance cassette and was

inserted into the SpeI/NotI sites of pFU167.

Plasmids pFU184 and pFU185 were used for chromosomal

integration of a rovA wild-type and a rovAS98P mutant copy. Both

plasmids were constructed by insertion of the SacI/AvrII fragment

harboring the R6K ori and the mobRP4 mobilization region from

pFU100 into pFU119 and pFU138, respectively. For the

generation of pFU119 rovAO:3 including its regulatory region was

amplificated from genomic DNA of YeO:3 strain Y11 with primer

pair II260/II226 and cloned into the BamHI/NotI sites of pFU109.

pFU138 was obtained by QuikChange mutagenesis (Stratagene) of

pFU119 using primer II377/II378. All clones were confirmed by

sequencing (GATC, Konstanz, Germany).

Construction Y. enterocolitica mutant strains
To construct the rovA, invA, and yadA mutants, the suicide

plasmids carrying an internal fragment of invA with integrated stop

codons (pFU213), or the insertion mutations rovA::CmR (pFU167)

or yadA::TetR (pFU187) were propagated in E. coli S17-1 lpir and

introduced by mobilization into YeO:3 strain Y1 and Y11.

Transconjugants were selected on Yersinia selective agar (Oxoid)

supplemented with antibiotics, selecting for the resistance of the

plasmids. Since the suicide vectors cannot replicate in the YeO:3

strains, the obtained colonies are the result of plasmid integration

into the Yersinia chromosome at regions of homology. The

recombination event yielded merodiploid strains, which includes

a wild-type and a mutant copy. Spontaneous second site

recombinants where the integrated suicide vector and the wild-

type copy of the gene were eliminated were isolated by selecting

fast growing transconjugants on 10% sucrose plates. The rovA gene

of YeO:3 (rovAO:3) and YeO:8 (rovAO:8) were introduced into the

DrovA strain YE12 by conjugation. Loss of the gene function in

resulting mutant strains YE1 (DrovA), YE12 (DrovA), YE18 (DyadA)

and YE21 (DinvA) and regain of RovA production in strains YE13

(rovAO:3) and YE14 (rovAO:8) was verified by PCR and western

blotting analysis. Deletion of the IS1667 element in PinvAO:3 was

achieved by conjugation of plasmid pFU190 into YeO:3 strain Y1

as described above. All deletions and reintegration were verified by

PCR.

Quantitative real-time PCR
Quantitative RT-PCR was performed in triplicate with

independent RNA preparations using a Rotor-Gene Q thermo

cycler (Qiagen). RNA was prepared using the RNeasy Mini Kit

(Qiagen) according to the manufacturer’s protocol. 1 mg total

RNA was taken for cDNA synthesis using the QuantiTect Reverse

Transcription Kit (Qiagen) according to the manufacturer’s

instructions. For quantitative RT-PCR, reagents from Qiagen

QuantiTect SYBR Green PCR KIT (Qiagen) were used. Gene

specific-primers used for qRT-PCR amplification are listed in

Table S2 and were designed to produce a 120–150 bp amplicon.

The amount of PCR product was quantified by measuring

fluorescence of SYBR Green dye. Reported gene expression levels

were normalized to levels of the 5S rRNA. Standard curves were

detected during every run for each gene tested and established by

comparing transcript levels in serial dilutions of total RNA from a

control sample.

Primer extension analysis to determine the
transcriptional start sites of the invA and the IS1667-
specific promoter

Primer extension analysis was performed to determine the

transcription start points of the invA gene in strain Y1. Y.

enterocolitica Y1 was grown in LB at 25uC to an OD600 of 3.0

(stationary phase). Total RNA was extracted of the samples using

the SV total RNA purification kit (Promega) as described by the

manufacturer. Annealing was performed with 20 mg extracted

RNA and the 59-Dig-labelled oligonucleotides (primer III94 for

the IS1667 specific promoter, primer III91 for the invA promoter)

in 20 ml of 16First Strand Buffer (Invitrogen) by slow cooling of

the sample (0.01uC/sec) including 8 mM dNTPs and 56 FS

Buffer (Invitrogen). 200 U Superscript II reverse transcriptase

(Invitrogen) was added and incubated for 1 h at 42uC. The size of

the Dig-labelled reaction products was determined on a denatur-

ing 4% DNA sequencing gel by a detection procedure as described

[68].

Luciferase and beta-galactosidase assays
Optical density (OD600) of three independent cultures of the

bacteria harboring the different luciferase reporter plasmids was

determined and diluted to an OD600 of 0.1 to monitor growth of

the bacteria at indicated growth conditions (complex media, 25uC
and 37uC). In parallel, bioluminescence was detected in non-

permeabilized cells with a Varioskan Flash (Thermo Scientific)

using the SkanIt software (Thermo Scientific). Bioluminescence

was measured for 1 s every 30 min and is given as relative light

units (RLU/OD600) from three independent cultures performed in

duplicate. Beta-galactosidase activity was determined as described

[44]. The activities were calculated as follows: beta-galactosidase

activity OD420 N 6.75 OD600
21 N Dt (min)21 N vol (ml)21.

Purification of Y. enterocolitica RovA and H-NS
RovA proteins were overexpressed in E. coli BL21 CodonPlus

(DE3)-RIL, H-NS was expressed in E. coli KB4. Overnight

cultures of E. coli strains, harbouring the plasmids pFU156

(rovAO:8-his6), pFU157 (rovAO:3-his6) or pFU199 (his6-hns) were

diluted 1:100 and grown at 37uC in LB medium for 2 h.

Subsequently, protein synthesis was induced with 100 mM IPTG

(pFU156, pFU157) or 200 mg/l AHT (pFU199) and grown for

4 h. Bacteria overexpressing His-tagged RovA proteins were

purified as described [55].

Gel electrophoresis, preparation of cell extracts and
western blotting

For the analysis of invA and rovA expression bacteria were grown

under environmental conditions as described. The optical density

of the cultures was adjusted and a 1 ml aliquot was withdrawn

from each culture. The cells were collected by centrifugation, and

resuspended in 100 ml sample buffer (100 mM Tris-HCl pH 6,8,

2% SDS, 10% glycerol, 3% DTT, 0.001% bromophenol blue) and

analyzed by gel electrophoresis and western blotting. For the

immunological detection of the InvA, YadA and RovA proteins,

the cell extracts were separated on 10% or 15% SDS-

polyacrylamide gels, and the proteins were separated by

electrophoresis and transferred onto an Immobilon membrane

(Millipore). Identity and expression of the adhesins were confirmed

by westernblotting analysis using polyclonal antibodies against the

Y. enterocolitica invasin or the Y. pseudotuberculosis RovA and YadA

protein, and a second goat alkaline-phosphate antibody (Sigma)

using 5-bromo-4-chloro-3-indoylphosphate (XP) and nitroblue

tetrazolium (Boehringer Mannheim) as substrates.

In vivo stability analysis of RovA
Protein biosynthesis of bacterial cultures in exponential phase at

37uC was stopped by adding 50 mg/ml gentamycin and 50 mg/ml

tetracycline. Samples were taken at indicated time points.
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Gel retardation assays
Binding of RovA to defined PCR fragments carrying different

portions of the invA regulatory region was carried out in a 20 ml

reaction mixture containing increasing amounts of purified RovA

protein (0.5–1.5 mg) and 80 ng of DNA. The reaction buffer

contained 10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 50 mM

NaCl, 5 mM MgCl2, 5 mM dithiothreitol (DTT) and 5% glycerol.

The reaction mixture was incubated for 20 min at room

temperature or at 37uC and separated on polyacrylamide gels as

described [44]. PCR fragments encoding the invA promoter

fragments a, b and c were amplified with primer pairs II519/

II551, II546/II178 and II558/II559, and the csiD promoter

fragment was produced by PCR with primer pairs 131/132.

Motility assays
A 2 ml aliquot of an overnight culture grown at 25uC in LB

medium was spotted onto semisolid agar plates containing 0.35%

agar to evaluate motility [69]. The capacity of YeO:3 Y1 and

YeO:8 8081v to spread was monitored after 48 h at 25uC and

37uC.

Electron microscopy
YeO3 Y1 and YeO8 8081v grown at 25uC and 37uC overnight

were fixed in growth medium with 1% formaldehyde. For

transmission electron microscopy thin carbon support films were

prepared by sublimation of carbon on freshly cleaved mica. Using

300 mesh copper grids, the samples were negatively stained with

2% (w/v) aqueous uranylacetate, according to the method of [70],

and examined in a transmission electron microscope (TEM910,

Zeiss, Germany) at an acceleration voltage of 80 kV at calibrated

magnifications. Images were recorded digitally with a Slow-Scan

CCD camera (ProScan 102461024, Scheuring, Germany) with

ITEM software (Olympus Soft Imaging Solutions, Münster,

Germany). Images were corrected for brightness and contrast

applying Adobe photoshop CS3.

For field emission scanning electron microscopy glass coverslips

samples were fixed with a solution containing 5% formaldehyde

and 2% glutaraldyhde in cacodylate buffer (0.1 M cacodylate,

0.01 M CaCl2, 0.01 M MgCl2, 0.09 M sucrose pH 6.9). Dehy-

dration was carried out in a graded series of acetone (10%, 30%,

50%, 70%, 90%, 100%) on ice for 15 min for each step. Samples

were then critical-point dried with liquid CO2 (CPD 030, Balzers

Union, Liechtenstein) and covered with a gold film by sputter

coating (SCD 040, Balzers Union, Liechtenstein). For examination

in a field emission scanning electron microscope (DSM 982

Gemini, Zeiss, Germany), an Everhart Thornley SE detector was

used with the inlens SE detector in a 50:50 ratio at an acceleration

voltage of 5 kV.

Cell adhesion and invasion assay
For cell adhesion and uptake assay 56104 HEp-2 cells were

seeded and grown overnight in individual wells of 24-well cell

culture plates. Cell monolayers were washed three times with PBS

and incubated in binding buffer (RPMI 1640 medium supple-

mented with 20 mM HEPES (pH 7.0) and 0.4% BSA before the

addition of bacteria. Approximately 56105 bacteria were added to

the monolayer and incubated without or after centrifugation of the

bacteria onto the monolayer at 22–25uC to prevent bacterial

internalization and 37uC to test for cell binding and invasion as

described [62,71]. 30 min post infection, the cells were washed

extensively with PBS. The total number of host cell-associated

bacteria was determined by cell lysis using 0.1% Triton X-100 and

plating on bacterial media. Bacterial uptake was assessed 30 min

after infection as the percentage of bacteria, which survived killing

by gentamicin, as described [63]. For each strain, the relative level

of bacterial adhesion and uptake was determined by calculating

the number of colony-forming units relative to the total number of

bacteria introduced onto monolayers. Number of invaded bacteria

is given relative to the number of cell-bound bacteria. The

experiments were routinely performed in triplicate.

Mouse infection
Bacteria used for oral infection were grown overnight in LB

medium at 25uC, washed and resuspended in PBS. Female

BALB/c mice 6–8 weeks old were purchased by Janvier. Groups

of 7–10 animals were pretreated with desferal 24 h prior infection

as described previously [72]. Subsequently, mice were orally

infected with Y. enterocolitica strains Y1, YE15 or YE14 in single

infection and co-infection experiments using a ball-tipped feeding

needle. 56108 bacteria of each strain were administered

orogastrically. In co-infection experiments, mice were orally

infected with an equal mixture of 56107 (low dose) or 56108

(high dose) bacteria of Y. enterocolitica strains Y1 and YE14, or Y1

and YE15. For discrimination of strains Y1 and YE15 low-copy

vectors pFU99 and pFU109 with different antibiotic resistance

cassettes were introduced in Y1 and Y15, respectively. Presence of

these vectors had no effect on Yersinia fitness and virulence and

they were maintained in all bacteria recovered from host tissues

throughout a five days time course of infection (F. Uliczka,

unpublished results). Three or five days after infection, mice were

euthanized by CO2. Peyer’s patches, mesenteric lymph nodes,

liver and spleen were isolated. The ileum was rinsed with sterile

PBS and incubated with 100 mg/ml gentamicin in order to kill

bacteria on the luminal surface. After 30 min, gentamicin was

removed by extensive washing with PBS for three times.

Subsequently, all organs were weighed and homogenized in sterile

PBS at 30.000 rpm for 30 sec using a Polytron PT 2100

homogenizer (Kinematica, Switzerland). The numbers of bacteria

were determined by plating three independent serial dilutions of

the homogenates on LB plates with and without antibiotics. The

colony forming units (cfu) were counted and are given as cfu per g

organ/tissue. The competitive index relative to wild-type strain Y1

was calculated as described by Monk et al. 2008 [78].

Supporting Information

Figure S1 Y. enterocolitica O:3 interaction with epithe-
lial cells. Ten different Y. enterocolitica serotype O:3 isolates from

human patients or pigs, Y. enterocolitica O:8 strain 8081v, Y.

enterocolitica O:9 strain 4620 and Y. enterocolitica O:5,27 strain 3056

were grown at 25uC overnight in LB medium. About 5?104 HEp-2

cells were infected with 5?105 bacteria and incubated at 37uC to

determine cell association (adhesion+invasion) and the internali-

zation efficiency of the bacteria. E. coli K-12 was used as negative

control. Data are presented as means 6 standard deviations of

three independent experiments performed in duplicate.

(EPS)

Figure S2 Motility of YeO:3 within the intestinal tract of
infected Balb/c mice. Transmission electron microscopy of Y.

enterocolitica O:3 strain Y1 isolated from the intestine of Balb/c

mice three days after infection.

(EPS)

Figure S3 Quantitative RT-PCR of invA expression.
Quantitative RT-PCR was performed on total RNA extracted

from the Y. enterocolitica wild-type strain Y1, the isogenic rovA

deletion mutant (YE12), the reconstituted rovA+ strain (YE13), and
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the IS1667 (YE15) deletion mutant grown at 37uC to stationary

growth phase. All values are expressed as relative mRNA levels

compared to expression levels of the wild-type Y1. The calculated

ratios in the relative invA expression levels between wild-type and

the rovA or the IS1667 deletion mutant determined by quantitative

RT-PCR and invA-lux fusions are given below the graph.

(EPS)

Figure S4 Mapping of the transcriptional start sites by
primer extension analysis. Twenty mg of total RNA isolated

of Y. enterocolitica O:3 strain Y1 grown at 25uC were used as

template RNA with primers specific for the invA regulatory region.

The sequencing ladders are shown on the left. The arrows mark

the +1 transcriptional start sites within the IS1667 element (A) and

the invA promoter region (B). The putative 210 region is given in

bold letters.

(EPS)

Figure S5 Interaction of RovAO:3(S98) and RovAO:8(P98)

with the invA regulatory region at 256C and 376C. (A)

Overview of the invA promoter region of Y. enterocolitica O:3 strains.

The transcriptional start sites of the invA promoter and of the

predicted IS1667-encoded promoter are indicated by broken

arrows. The dark boxes represent the RovA and the white small

boxes the H-NS binding sites identified in the homologous invA

promoter of Y. pseudotuberculosis [46]. The thick line represents the

invA promoter sequence and the thin line illustrates the sequence of

the IS1667 element with the putative transposase gene. The

fragment used for the band shift experiments is shown by a black

line. (B) The double-stranded promoter fragment of the invA

regulatory region harbouring one RovA-binding site was incubated

without or with increasing concentrations of purified RovAO:3(S98)

or RovAO:8(P98) at 25uC and 37uC. The DNA-protein complexes

were separated on a 4% polyacrylamide gel. A non-specific probe

containing weight standard 100 bp ladder was loaded on the left.

The higher molecular weight protein-DNA complexes and the

positions of the non-shifted control fragments are indicated.

(EPS)

Figure S6 Analysis of RovA expression in Y. enterocoli-
tica O:3. Y. enterocolitica strains YeO:8 8081v, YeO3, Y11 and an

isogenic rovA mutant of Y11 (YE01) harboring the fusion plasmid

ProvAO:8::lacZ or ProvAO:3::lacZ were grown at 25uC and 37uC
overnight. The beta-galactosidase activity determined from the

cultures is given in mmol min21 mg21 and represents the mean 6

standard deviation of at least three independent experiments.

(EPS)

Table S1 Y. enterocolitica O:3 isolates. * date of first

citation found in literature/isolation before indicated time point.
#Analysis of the recently sequenced genomes of twenty Y.

enterocolitica O:3 strains isolated in Great Britain between 1999

and 2002 revealed that all of them contained an IS1667 insertion

at position 2143 with respect to the start codon of the invA gene

and the rovAS98 allele (Alan McNally, personal communication).

(DOC)

Table S2 Primers. Restriction sites used for cloning proce-

dures are underlined.

(DOC)
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