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Abstract

Yersinia pestis, the etiologic agent of the disease plague, has been implicated in three historical pandemics. These include
the third pandemic of the 19th and 20th centuries, during which plague was spread around the world, and the second
pandemic of the 14th–17th centuries, which included the infamous epidemic known as the Black Death. Previous studies
have confirmed that Y. pestis caused these two more recent pandemics. However, a highly spirited debate still continues as
to whether Y. pestis caused the so-called Justinianic Plague of the 6th–8th centuries AD. By analyzing ancient DNA in two
independent ancient DNA laboratories, we confirmed unambiguously the presence of Y. pestis DNA in human skeletal
remains from an Early Medieval cemetery. In addition, we narrowed the phylogenetic position of the responsible strain
down to major branch 0 on the Y. pestis phylogeny, specifically between nodes N03 and N05. Our findings confirm that Y.
pestis was responsible for the Justinianic Plague, which should end the controversy regarding the etiology of this pandemic.
The first genotype of a Y. pestis strain that caused the Late Antique plague provides important information about the history
of the plague bacillus and suggests that the first pandemic also originated in Asia, similar to the other two plague
pandemics.

Citation: Harbeck M, Seifert L, Hänsch S, Wagner DM, Birdsell D, et al. (2013) Yersinia pestis DNA from Skeletal Remains from the 6th Century AD Reveals Insights
into Justinianic Plague. PLoS Pathog 9(5): e1003349. doi:10.1371/journal.ppat.1003349

Editor: Nora J. Besansky, University of Notre Dame, United States of America

Received December 19, 2012; Accepted March 24, 2013; Published May 2, 2013

Copyright: � 2013 Harbeck et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a PhD scholarship from the Bavarian graduate scholarship program, the US Department of Homeland Security (2010-ST-
108-000015; HSHQDC-10-C-00139), and the Deutsche Forschungsgemeinschaft (DFG Br 2965/1-2). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: M.Harbeck@lrz.uni-muenchen.de (MH); holger1scholz@bundeswehr.org (HCS); bramanti@uni-mainz.de (BB)

Introduction

In 541 AD, eight centuries before the Black Death, a deadly

infectious disease hit the Byzantine Empire, reaching Constanti-

nople in 542 and North Africa, Italy, Spain, and the French-

German border by winter 543 [1]. The so called ‘‘Plague of

Justinian’’, named after the contemporaneous emperor, led to

mass mortality in Europe similar to that of the Black Death. It

persisted in the territory of the Roman Empire until the middle of

the 8th century and likely contributed to its decline, shaping the

end of antiquity [1]. Based on historical records, this disease has

been diagnosed as bubonic plague although discrepancies between

historical sources and the progression of Y. pestis infections have led

some authors to suppose that the Plague of Justinian was caused by

a different pathogen (as discussed in [2]). This vivacious discussion

was recently reinforced by an ancient DNA study of the second

pandemic that also questioned whether Y. pestis was truly the

causative agent of the first pandemic [3,4].

Western scientists have traditionally subdivided Y. pestis strains

into three biovars: Antiqua, Medievalis, and Orientalis; depending

on their abilities to ferment glycerol and reduce nitrate [5].

However, this system ignores many other Y. pestis biovars that have

been designated and described by other scientists [see 6,7,8].

Biovars, which are based upon phenotypic properties, do not always

correspond directly to specific molecular groups because the same

phenotype can result from different mutations [9]. As a result, it has

been suggested that groupings within Y. pestis, or assignment of

unknown strains to specific populations should be based upon

molecular signatures and not phenotypes [9]. Fortunately, the

recent construction of highly-accurate rooted global phylogenetic

trees for Y. pestis [10,11] (reproduced in Figure 1) have facilitated the

assignment of isolates to distinct populations. The most recent

global phylogeny is based upon single nucleotide polymorphisms

(SNPs) identified from the genomes of 133 global strains [11]. All

clones that caused the third pandemic belong to populations

assigned to the molecular group 1.ORI [10,11]; the basal node for

this group is N14 (Figure 1).

Two recent studies [3,12] have queried key SNPs in DNA

samples obtained from victims of the second pandemic (14th

century AD), facilitating the phylogenetic placement of these

samples in the most recent global phylogeny [11]. These samples

are along the branch between nodes N07 and N10 (Figure 1) close
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to the ‘‘big bang’’ polytomy at node N07, where major branches

1–4 split from major branch 0 [11]. Specifically, ancient Y. pestis

DNA samples from two of these studies [3,12], which were

obtained in England and France, are along branch N07-N10 – just

one SNP away from the polytomy at N07 [11]. An additional

sample from one of these studies [12], which was obtained in the

Netherlands, occurs farther along this same branch – three SNPs

away from the polytomy at N07 [11].

Only a few previous studies [13–15] have described the isolation

of Y. pestis DNA from victims of the Late Antique pandemic and

only one work group [13,14] attempted to genotype the samples,

assigning them to biovar Orientalis, which is now also designated

molecular group 1.ORI [9]. However, the authenticity of these

results has been questioned repeatedly because current stringent

ancient DNA anticontamination protocols (e.g. independent

replication) were not utilized [16,17]. In addition, the robustness

of the genotyping approach utilized in one of these studies [13] has

been questioned [18]. Finally, it has been suggested [12,19] that

the resulting phylogenetic assignment (i.e. membership in the

1.ORI group) could not have existed at the time of the Justinianic

Plague. Indeed, it seems impossible that isolates from the 1.ORI

group caused the first pandemic as this group likely evolved only

over the last ,200–210 years [10,11].

Against this background, we analyzed and genotyped new

material from putative Justinian plague victims dated to the 6th

century A.D. from an Early Medieval graveyard in Bavaria,

Germany. This cemetery, called Aschheim, contained 438

individuals in total and is characterized by a striking number of

double and multiple burials clustering in the second half of the

sixth century [20]. In an earlier study [15], we reported isolation of

Y. pestis DNA from two individuals from Aschheim. However, this

previous study failed to utilize all of the contamination controls

and authentication of results that has been recommended for

studies that describe the detection of pathogen DNA in human

remains from archeological sites [12,21].

In this current study we utilized these more stringent

approaches and our results confirm that Y. pestis was indeed

responsible for the Justinianic Plague. More importantly, we were

able to genotype the Y. pestis DNA present in samples from one

individual using five key SNPs from the recent global Y. pestis

phylogenies [10,11]. The genotyping results confirm that the Y.

pestis strain from the Ascheim victim is more basal on the global

phylogeny than the Y. pestis populations that caused the Black

Death and the third pandemic (Figure 1).

Results

Screening for Y. pestis specific DNA
Assuming that plague victims might have been buried together,

we collected teeth from 19 individuals originating from 12 multiple

burials from the 6th century at Aschheim (Table 1). All samples

were tested for Y. pestis specific DNA in a newly built specialized

aDNA laboratory in Munich using both quantitative Real-Time

PCR (qPCR) and a conventional PCR approach; these approach-

es targeted a 70 nt portion and a 133 nt portion of the Y. pestis-

specific plasminogen activator gene (pla), respectively. This gene, which

is located on the multi-copy plasmid pPst that is specific to Y. pestis,

has been used in several previous studies to test samples from

plague skeletons dating to the time of the Black Death [e.g. 12,22].

Using qPCR, we repeatedly obtained a specific pla amplification

fragment from samples obtained from eight individuals although,

with the exception of sample A120, the target copy number was

extremely low in most of the analyzed DNA extracts (Table 1). In

addition, via conventional PCR we repeatedly obtained a longer

pla amplification fragment from samples from two of these

individuals (A82 and A120; Table 1). These amplicons contained

pla sequences (GenBank accession number KC170159) that were

100% identical to the type strain CO92.

Concurrently, four samples obtained from intact teeth from four

different individuals were independently analyzed in a second DNA

laboratory (Mainz; Table 1). This analysis involved amplification of

a 148 nt pla fragment by conventional PCR [12]. Only one of the

four samples (from individual A120) produced an amplicon

(Table 1). The observable differences in pla amplification success

across the three PCR approaches utilized in this study (Table 1) are

likely a function of the target PCR amplicon sizes. In agreement

with typical ancient DNA behavior [23], our amplification success

decreased with increasing target length (Table 1).

Genotyping analysis
We attempted to genotype all of the positive samples. However,

likely due to differences in DNA preservation among the samples

we were only able to gain reproducible results from samples from

one individual, A120 (Table 2). Note that this was the only

individual that was found to be Y. pestis-positive with all three PCR

approaches (Table 1). We queried multiple samples from

individual A120 with assays targeting five key SNPs from the

most recent global phylogenies for Y. pestis [10,11] and determined

whether these samples possessed the ancestral or derived states for

these five SNPs (Table 2). These five SNPs occur along specific

branches in the Y. pestis phylogeny: s545 occurs along the branch

between nodes N06 and N07; s87 and s89 occur along the branch

between N04 and N05, s82 occurs along the branch between the

phylogenetic branching point of Mongolian strain MNG 2972 (see

below) and N04, and s463 occurs along the branch between the

phylogenetic branching point of strain MNG 2972 and N03

(Figure 1). In the Munich aDNA laboratory we determined that Y.

pestis DNA samples obtained from individual A120 possess

ancestral states for SNPs s545, s87, and s89; and derived states

for SNPs s82 and s463 (Table 2). In the second aDNA laboratory

(Mainz) we confirmed these results for s82 and s87 (Table 2);

assays for the other SNPs were not utilized in this laboratory.

Partial alignments of selected SNP regions of sample A120 in

Author Summary

Plague is a notorious and fatal human disease caused by
the bacterium Yersinia pestis that is endemic in many
countries around the world. Three of the most devastating
pandemics in human history have been associated with
plague. The second pandemic originated in central Asia
and peaked in Europe between 1348 and 1350 (a period of
time known as the Black Death). The third pandemic
began in the Yunnan province of China in the mid-1850s
and subsequently spread to Africa, the Americas, Australia,
Europe, and other parts of Asia. The second and third
pandemics are well documented and scientifically proven.
However, the first pandemic, which began in the 6th

century and is also known as Justinianic Plague, is still a
matter of controversy. Recently it has been suggested that
Justinian’s plague was not caused by Y. pestis. We detected
Y. pestis DNA in samples obtained from multiple 6th

century skeletons from Germany. This confirms that
Justinianic Plague crossed the Alps and affected local
populations there, including current day Bavaria. Further-
more, we used DNA fingerprinting approaches to deter-
mine Asia as the likely geographic origin for these strains.

Yersinia pestis DNA from the Justinianic Plague
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comparison to the reference sequences of Y. pestis type strain CO92

and strain 91001 (var microtus) are shown in Table 3. In all cases,

extraction and PCR negative controls never produced an

amplicon when tested with Y. pestis specific primers. These results

indicate that the phylogenetic position of sample A120 in the

global Y. pestis phylogeny is along the branch between the

phylogenetic branching point of strain MNG 2972 and N04, along

branch N04-N05, along the branch from N04 to 0.ANT1, or

along one of the sub-branches within 0.ANT.1 (Figure 1).

Discussion

Our analyses conducted in two separate aDNA laboratories

independently confirmed our previous results [15] that some

Figure 1. Global phylogeny for Y. pestis. This global phylogeny for Y. pestis is based upon figures 1A and S3B in Cui et al. [11]. It includes four
major branches (0–4) and is rooted with Y. pseudotuberculosis, the ancestor of Y. pestis [28]. The identities of many of the major nodes defined by Cui
et al. [11] are presented in blue text. Circles represent specific populations; populations highlighted in gray have, to date, only been found in Asia
[10,11]. Note that the location where strain Angola was isolated, which is the sole representative of population 0.PE3, is unknown. The phylogenetic
position of Mongolian strain MNG 2972 is indicated with the blue box (see text). Five previously identified [10,11] key SNPs were utilized in the
current study: s545, which occurs along the branch between nodes N06 and N07 (not shown); s87 and s89; which occur along the branch between
N04 and N05; s82, which occurs along the branch between the branching point of strain MNG 2972 and N04; and s463, which occurs along the
branch between the branching point of strain MNG 2972 and N03. It is known that these SNPs occur along these specific branches but the exact
position and order of these SNPs along each branch is unknown. Sample A120 possesses ancestral states for SNPs s87, s89, and s545; and derived
states for SNPs s82 and s463. Thus, the position of sample A120 in this phylogeny is along the branch between the branching point of strain MNG
2972 and N04, along branch N04-N05, along the branch from N04 to 0.ANT1 (red branches), or along one of the sub-branches within 0.ANT.1 (not
shown). The phylogenetic positions of strains from the second pandemic [3,12] are indicated with the yellow boxes according to Cui et al. [11]. The
basal node for the 1.ORI group, which caused the third pandemic, is N14 [11].
doi:10.1371/journal.ppat.1003349.g001

Yersinia pestis DNA from the Justinianic Plague
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humans buried in the 6th century Ascheim cemetery were infected

with Y. pestis. These findings confirm that Y. pestis was the causative

agent of the Justinianic Plague and should end the controversy

over the etiological agent of the first plague pandemic. This

outcome is contrary to a recent study [3] that questioned whether

Y. pestis was indeed the causative agent of the first pandemic based

upon the assumption that only strains from major branches one

and two are pathogenic to humans, which they estimated to have

emerged only in the 13th century AD. However, Cui et al. [11]

recently determined that most Y. pestis lineages are capable of

causing human plague and suggested that this capability has been

present since Y. pestis evolved from its Y. pseudotuberculosis ancestor

approximately 1,500–6,400 years ago. Thus, they concluded that

Y. pestis strains pathogenic to humans already existed long before

the beginning of the first pandemic.

Another important issue resolved by our study concerns the

geographic origin of the Plague of Justinian. The phylogenetic

position of our Y. pestis samples from the first pandemic (Figure 1)

suggests all three plague pandemics were caused by Y. pestis strains

that originated in Asia. Two recent studies placed the origin of the

1.ORI strains that caused the first pandemic in China [10,11], and

recent phylogenetic placement of samples from the second

pandemic [3,12] near extant strains from China [11] (Figure 1)

suggests that strains that caused the second pandemic also

Table 1. Individuals from the Early Medieval Cemetery Aschheim-Bajuwarenring (Germany) that were analyzed in this study and
corresponding results of screening for a portion of the Y. pestis specific plasminogen activator gene (pla).

pla-screening results

Multiple burial
Number of
individuals Estimated age Individual

70 nt approach (Munich)
[maximal pla copy number]3

133 nt approach
(Munich)3

143 nt approach
(Mainz)3

I 3 530–5701 A49 neg. neg. -

II 5 580–6001 A56 neg. neg. -

431–5442 A58 pos. [7] neg. neg.

A59 neg. neg. -

A60 neg. neg. -

III 2 530–5701 A66 pos. [1] neg. -

IV 2 570–6301 A72 neg. neg. -

V 5 443–5662 A76 pos. [3] neg. neg.

530–5701 A77 pos. [1] neg. -

A82 pos. [1] pos. -

VI 3 590–6301 A105 pos. [6] neg. neg.

VII 3 525–5501 A119 neg. neg. -

435–6312 A120 pos. [314] pos. pos.

VIII 2 530–5701 A166 pos. [1] neg. -

A167 neg. neg. -

IX 2 590–6301 A197 neg. neg. -

X 2 590–6301 A205 neg. neg. -

XI 2 530–5701 A278 neg. neg. -

XII 2 600–6801 A295 neg. neg. -

1estimated age by archaeological evidence [20] for the multiple burial,
2estimated age by radiocarbon dating determined for the particular individual (cal 2 sigma),
3neg = no amplicon, pos = amplification results, - = not tested.
doi:10.1371/journal.ppat.1003349.t001

Table 2. Results of molecular assays carried out on samples from individual A120 in two independent aDNA laboratories.

aDNA laboratory pla qPCR pla s545 qPCR s87 qPCR s87 s89 s82 s463

Munich

1st tooth, 1st extract pos pos - anc neg - - -

2nd tooth, 1st extract pos pos anc anc anc - der -

2nd tooth, 2nd extract pos - anc - anc anc der der

2nd tooth, 3rd extract pos - - - - anc - der

Mainz

3rd tooth, 1st extract - pos - - anc - der -

Abbreviations: anc: ancestral, der: derived, pos: positive, pla: plasminogen activator gene, -: not tested, neg: no amplicon.
doi:10.1371/journal.ppat.1003349.t002

Yersinia pestis DNA from the Justinianic Plague
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originated in this region. The only extant Y. pestis strains assigned

to the same portion of the global phylogeny (Figure 1) as our

Justinian samples from individual A120 are members of group

0.ANT1, which has only been reported from western China

[10,11], and strains from Mongolia [8], such as MNG 2972

(Figure 1). Although multiple historical sources have pointed to an

African origin for the Justinian Plague [1,5,24], including

speculations based on genealogies of Y. pestis [11], they have not

discussed the original sources of where the bacteria arose. Our

results document that those original sources were in Asia.

Cui et al. [11] recently raised the possibility that the Angola

strain (sole representative of group 0.PE3; Figure 1) might have

spread from Africa to all of Europe and been involved in the first

pandemic. They based this hypothesis on several points. First, the

Angola strain contains more SNPs than any other known strain of

Y. pestis, which is consistent with a history of involvement in

epidemic waves. Second, their 95% confidence intervals for the

age estimates of the nodes that flank Angola (0.PE3) in the global

phylogeny, nodes N01 and N03 (Figure 1), are 2,775 BC – 590 AD

and 932 BC – 806 AD, respectively, which overlap with the 541

AD date given for the beginning of the first pandemic. Third, they

assume that the strain named Angola was actually isolated in

Africa in the country of Angola. We do not dispute their first two

points. However, we know of no published studies that describe

the original isolation of strain Angola making its origins

apocryphal. Additional contemporary Angola-like isolates would

add insights into this single unique strain type. Although it remains

possible that Angola-like strains (ancestors), regardless of its

geographic origin, may have been involved in the first pandemic,

this remains just a hypothesis until additional samples from the

first pandemic are genotyped and found to be closely-related to the

Angola strain.

Multiple independent age estimates for our samples are

consistent with the timing of the first pandemic. The duration of

occupancy of the row burial cemetery at Aschheim-Bajuwarenring

has been determined by strong archaeological evidence to range

from approximately 500–700 AD [20]. Radiocarbon dating,

which has been carried out on three individuals analyzed in this

study, including A120 (Table 1), is consistent with this range.

Finally, the phylogenetic position of our samples on the global Y.

pestis phylogeny is on main branch 0 between nodes N03 and N05,

with node N04 occurring in between (Figure 1). In their Figure S8,

Cui et al [11] provide the 95% confidence intervals for the age

estimates for these three nodes. The date given for the beginning

of the first pandemic, 541 AD, overlaps with the confidence

intervals for nodes N03 and N04, although not with the confidence

Table 3. Partial (Munich) and total (Mainz) alignment of amplified consensus sequences regarding several SNPs.

Source Position Sequences Position

s463 Y.p. CO92
(AL590842.1)

373625 CGCCGCCGCTGGATCAGCATCCAATGGCGGATAATATGATAGACCACTAA 373674

A120, Munich
(KC170160)

CGCCGCCGCTGGATCAGCATCCAATGGCGGATAATATGATAGACCACTAA

Y.p. 91001
(AE017042.1)

553941 CGCCGCCGCTGGATCAGCATCCAACGGCGGATAATATGATAGACCACTAA 553990

************************.*************************

s82 Y.p. CO92
(AL590842.1)

3639849 TATCTTCTTCCGCGTTATCCAGGGTCTGGTCGCTGGGCCATTGATCCCA 3639897

A120, Munich
(KC170161)

TATCTTCTTCCGCGTTATCCAGGGTCTGGTCGCTGGGCCATTGATCCCA

A120, Mainz TTCCGCGTTATCCAGGGTCTGGTCGCYGAACCATTGATCCCA

Y.p. 91001
(AE017042.1)

718460 TATCTTCTTCCGCGTTATCCAGGGGCTGGTCGCTGGGCCATTGATCCCA 718412

************************.************************

s89 Y.p. CO92
(AL590842.1)

3210077 TGAACGACGGAAATAGTTCATCAGATAGCGTTTGTAAGAATCTGACAGGT 3210126

Individual A120
(KC170163)

TGAACGACGGAAATAGTTCATCAGGTAGCGTTTGTAAGAATCTGACAGGT

Y.p. 91001
(AE017042.1)

3041058 TGAACGACGGAAATAGTTCATCAGGTAGCGTTTGTAAGAATCTGACAGGT 3041107

************************.*************************

s87 Y.p. CO92
(AL590842.1)

2721852 CTATCATGATATTGGTTGCGTGGGGCTAAACGCATTAGCAGAGGCGGGTTACGAT 2721798

A120, Munich
(KC170162)

CTATCATGAtATtGGTTgCGTgGGTCTAAACGCATTAGCAGAGGCGGGTTACGAT

A120, Mainz GATATTGGTTGCGTGGGTCTAAACGCATTAGCAGAGGCGGGTTACGAT

Y.p. 91001
(AE017042.1)

2458381 CTATCATGATATTGGTTGCGTGGGTCTAAACGCATTAGCAGAGGCGGGTTACGAT 2458327

************************.************************

DNA sequences longer than 50 nt are deposited in GenBank (accession numbers are given), SNP positions are indicated by bold letters and a dot in the bottom line. The
Y in s82 indicates that either a C or a T was observed at this position, a common artifact attributable to DNA degradation [23], whereas lower case letters indicate poor
quality nucleotides.
doi:10.1371/journal.ppat.1003349.t003

Yersinia pestis DNA from the Justinianic Plague
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intervals for N05. Collectively, these various age estimates for our

samples provide convincing evidence that they are of the correct

age to have been involved in the first plague pandemic.

Our results also provide new stimulus to the discussion about

simultaneous multiple inhumations in Europe during the Early

Medieval period [25,26]. It is often presumed that only mass

graves are suggestive of a highly infectious disease [27], whereas

our results indicate that epidemics can also be indicated by a

clustering of simultaneous inhumations involving only two or three

individuals (Table 1). This observation may help to identify

additional potential victims of the Justinianic Plague. Genetic

studies of additional skeletal remains from other plague sites in

different geographic regions would not only enhance our

knowledge regarding the evolution of the pathogen, but also

improve our understanding of the epidemics and spread of the

Justinianic Plague. In addition, as there is no known historical

source indicating that the Justinianic Plague reached current day

Bavaria, our results provide the only evidence that the disease

crossed the Alps and affected local populations there [1].

Materials and Methods

Material
The burial date of the individuals tested for Y. pestis in this study

were previously estimated by archaeological methods [20] to fall in

a range from 525 to 680 AD (Table 1). To confirm this, we carried

out radiocarbon dating on three samples. For individual A58,

calibration indicated cal. 431–544 AD (95.4% probability) as the

most likely range. Individual A76 from a second burial pit was

dated to cal. 443–566 AD (95.4% probability), and individual

A120 from a third burial pit was dated to cal. 435–631 AD.

(95.4% probability).

From all 19 individuals (Table 1) two or more teeth were taken

and analyzed at the aDNA laboratory in Munich. For four

individuals (A58, A76, A105, and A120), another intact tooth was

sent directly to a second aDNA laboratory in Mainz where they

were analyzed independently and blindly.

Sample preparation and DNA extraction
In Munich the pre-PCR DNA analyses, including the decon-

tamination procedure, DNA extraction, and assembly of the

reactions for PCR amplification; were carried out in the new

aDNA laboratories at the ArchaeoBioCenter (Ludwig-Maximil-

lians-University, Munich). This aDNA laboratory is located

several kilometers from the laboratory used for the post PCR

analyses, which included the actual amplification process and

sequencing; the post PCR laboratory is situated at the Bundeswehr

Institute of Microbiology in Munich. Movement of samples

between the laboratories was always unidirectional: from the

aDNA laboratories to the post PCR laboratory. The pre-PCR

laboratories are dedicated solely to aDNA analysis and have

specialized equipment, such as airlocks, HEPA filtered air, positive

air pressure, and UV air flow cleaner. In addition, extensive

cleaning protocols using bleach and UV irradiation are in place.

All possible further methodological precautions were also taken,

such as mock extractions, PCR blanks, and independent

replications of extractions and amplifications.

In the first step, samples were subjected to decontamination

procedures consisting of cleaning the outer surface with a 1%

NaOCl solution and exposure to 15 min of UV irradiation on

each side, with subsequent powdering using a ZrO2-coated mill.

DNA extraction in Munich was performed as described previously

[15] on powder aliquots of 0.4 g. In Mainz precautions for

preventing contamination, pre-treatment of the samples and

extraction protocols were as published previously [12].

Table 4. Design of molecular assays carried out in the Munich laboratories (conc = concentration).

Molecular
assay Primers

Conc
(mM) Probes1

Conc
(mM)

Annealing

temperature (6C)

pla qPCR fwd_GACTGGGTTCGGGCACATG 0.25 FAM-TGATGAGCACTA+TAT+G+A+GAG-BBQ 0.1 60

rev_CGGATGTCTTCTCACGGA 0.25

pla fwd_GACTGGGTTCGGGCACATG 0.2 64–60 (touch down)

rev_AGACTTTGGCATTAGGTGTG 0.2

s545 qPCR fwd_ATGCAGACCTGCTTCCTGAAAG 0.9 FAM-CAGCGCAGTCTCCCCG-BBQ 0.4 62

rev_CCAGATAGTTAAGAAAGCTGTACGTG 0.9 YAK-TCAGCACAGTCTCCCCGACT-BBQ 0.45

s87 qPCR fwd_AAAATAATCAGGATGTAGAAAAATGAAAG 0.9 FAM-TTAGCCCCACGCAACCAA-BBQ 0.2 62

rev_CGTAACCCGCCTCTGCTA 0.9 YAK-TTAGACCCACGCAACCAATATCAT-BBQ 0.4

s87 fwd_AAAATAATCAGGATGTAGAAAAATGAAAG 0.2 56

rev_GGTAAATACCGCCTGAATATCG 0.2

s89 fwd_CTGAATGCGGATTGGCGTC 0.2 58

rev_GCCAATTGTAGTGATTCACGG 0.2

s82 fwd_GTGCGGCTGTTCTTGTGGTC 0.2 64

rev_GGCGGATAGTTGTTGAGTAGCAGGC 0.2

s463 fwd_GGCGCGATCAAAGGCAATAC 0.2 60

rev_CTCACCACCTCACAAGCGCTG 0.2

1To minimize the size of PCR amplicons and maximize specificity, we utilized short locked nucleic acid (LNA) probes in our assay. These probes are modified TaqMan
probes that were developed by Exiqon (Vedbaek, Denmark) and can be used when high affinity probes as specific as possible are required. The ‘‘+’’ in the sequence of
the probe indicates the positions of the LNA labeling.
doi:10.1371/journal.ppat.1003349.t004

Yersinia pestis DNA from the Justinianic Plague

PLOS Pathogens | www.plospathogens.org 6 May 2013 | Volume 9 | Issue 5 | e1003349



Amplification
Every sample analyzed in the Munich laboratory for Y. pestis

specific DNA (pla) was tested at least for three times using the qPCR

and conventional PCR approach before considering it negative.

Samples that yielded amplification products in any of these PCR

reactions were submitted to genotyping assays targeting five key

SNPs from the most recent global Y. pestis phylogenies [10,11]: s545

(qPCR approach); s87 (both qPCR and conventional PCR

approach); and s82, s89, and s463 (conventional PCR approaches).

For qPCR assays (pla), or qPCR SNP endpoint genotyping

assays (s87 and s545), we used 16 Platinum Quantitative

SuperMix-UDG (Invitrogen), 6 mM MgCl2, (Applied Biosystems),

0.4 mg/ml BSA (Ambion/Life Technologies), assay specific

primer and probe concentrations (Table 4) (TibMolbiol), and 2.0

to 4.0 ml of template DNA in a final reaction volume of 12 to

24 ml. Primer sequences are listed in Table 4. Cycling conditions

comprised an initial step at 50uC for 2 min, an activation step at

95uC for 10 min, 50 cycles at 95uC for 10 sec, and an assay

specific annealing temperature for 1 min (Table 4). Final cooling

was carried out at 4uC for 30 sec. QPCR assays were carried out

on a LightCycler 480 II platform (Roche, Mannheim, Germany).

Quantification of pla-qPCR assays was possible by determination

of the copy numbers per reaction by generating a standard curve

using synthetic oligonucleotide constructs. Data analysis was

performed using the LightCycler 480 II software version 1.5

(Roche, Mannheim, Germany).

For conventional PCR assays (pla, s82, s87, s89, s463), we used

16Qiagen Multiplex PCR Master Mix, 0.4 mg/ml BSA, and 2 or

4 ml of DNA in a final volume of 50 ml. Primer sequences are listed

in Table 4. The experiments were run on an Eppendorf

Mastercycler Pro instrument. Cycling conditions started with an

initial activation step at 95uC for 15 min. This was followed by 50

cycles at 94uC for 30 sec, an assay specific annealing temperature

(Table2) for 30 sec, and 72uC for 1 min, ending with a final

elongation step at 72uC for 10 min. Final cooling was carried out

at 8uC until analysis.

Results (pla or SNPs) were only considered valid if they could be

repeated at least three times from different extracts. Protocols for

pla, s82, and s87 analysis in the second aDNA lab (Mainz) were

carried out as previously published [12].

Sequencing and alignments
All amplified products were verified by DNA sequencing and

BLASTN-analysis.

For the sequencing reactions in Munich we used 16 BigDye

terminator v.3.1 Cycle Sequencing Ready reaction Mix (Applied

Biosystems), 1 pmol/ml of the respective primers, and 3–5 ml of

purified DNA template in a final volume of 10 ml. The reaction

was run on a GeneAmp 9700 (Applied Biosystems) instrument,

starting with an initial denaturation step for 1 min at 96uC,

followed by 25 cycles at 96uC for 10 sec, 50uC for 5 sec and 60uC

for 2 mins, and ending with cooling at 4uC until further

processing. After purification using the Dye Ex 2.0 Spin Kit

(Qiagen) sequences were generated on a Genetic Analyzer 3130

(Applied Biosystems) instrument. Sequences were further analyzed

using the program CodonCodeAligner version 4.0. Analyses of the

results of the SNPs assays were carried by aligning the amplicons

to Y. pestis type strain CO92 (AL590842.1), which possessed the

derived state for all of the queried SNPs, and Y. pestis microtus

strain 91001 (AE017042.1), which possessed the ancestral state for

all of the queried SNPs. Sequencing in Mainz was carried out as

previously described [12]. If long enough, sequences were

deposited in GenBank (Accession numbers KC170160-

KC170162) and the alignments are shown in Table 3 (only partial

sequences are shown for longer sequences).

Global phylogeny
The global Y. pestis phylogeny in Figure 1 is reconstructed from

Figures 1A and S3B in Cui et al. [11]. Their phylogeny was

constructed using SNPs discovered from the genomes of 133

modern isolates. We have indicated the main branches and

molecular groups identified by Cui et al. [11] but not all of their

sub-branches and sub-groups. The phylogenetic branching point for

Mongolian Y. pestis strain MNG 2972 was determined using SNP

information provided for this strain in Riehm et al. [8]. Note that,

based upon the five SNPs queried in this study, this contemporary

Mongolian strain possesses a distinct genotype when compared to

the ancient Y. pestis DNA samples utilized in this study; the

Mongolian strain possesses the ancestral state for s82.

Accession numbers
The GenBank (http://www.ncbi.nlm.nih.gov) accession num-

bers for DNA sequences longer than 50 nt determined in this

paper are KC170159-KC170163.
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