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Abstract

Objective: To characterise the influence of the fat free mass on the metabolite profile in serum samples from participants of
the population-based KORA (Cooperative Health Research in the Region of Augsburg) S4 study.

Subjects and Methods: Analyses were based on metabolite profile from 965 participants of the S4 and 890 weight-stable
subjects of its seven-year follow-up study (KORA F4). 190 different serum metabolites were quantified in a targeted
approach including amino acids, acylcarnitines, phosphatidylcholines (PCs), sphingomyelins and hexose. Associations
between metabolite concentrations and the fat free mass index (FFMI) were analysed using adjusted linear regression
models. To draw conclusions on enzymatic reactions, intra-metabolite class ratios were explored. Pairwise relationships
among metabolites were investigated and illustrated by means of Gaussian graphical models (GGMs).

Results: We found 339 significant associations between FFMI and various metabolites in KORA S4. Among the most
prominent associations (p-values 4.75610216–8.95610206) with higher FFMI were increasing concentrations of the
branched chained amino acids (BCAAs), ratios of BCAAs to glucogenic amino acids, and carnitine concentrations. For various
PCs, a decrease in chain length or in saturation of the fatty acid moieties could be observed with increasing FFMI, as well as
an overall shift from acyl-alkyl PCs to diacyl PCs. These findings were reproduced in KORA F4. The established GGMs
supported the regression results and provided a comprehensive picture of the relationships between metabolites. In a sub-
analysis, most of the discovered associations did not exist in obese subjects in contrast to non-obese subjects, possibly
indicating derangements in skeletal muscle metabolism.

Conclusion: A set of serum metabolites strongly associated with FFMI was identified and a network explaining the
relationships among metabolites was established. These results offer a novel and more complete picture of the FFMI effects
on serum metabolites in a data-driven network.
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Introduction

The skeletal muscle mass is a major determinant of energy

requirement of the body. It is a predictor of basal metabolic rate

and energy turn-over during physical activity. In addition, it has

recently been identified as an endocrine organ; producing and

releasing myokines which exhibit various biological effects on the

muscle tissue itself and beyond [1]. Among the most important

effects of muscle mass and activity with respect to chronic diseases

are enhanced fat oxidation, improved insulin sensitivity, and a

reduced body fat mass. The effects of myokines may also be one

explanation for the favourable effects that physical activity exerts
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on human health, e.g. by modulating the immune response. The

skeletal muscle mass accounts for one-third to one-half of total

body protein, depending on gender, age, and health status, and

represents the largest fraction of the fat free body mass [2]. As pure

skeletal muscle mass is difficult to measure in epidemiological

studies, data on fat free mass was used as a proxy instead. Similar

to the body mass index (BMI, kg/m2), the fat free mass index

(FFMI, kg/m2) allows for height-independent interpretations and

comparisons between studies [3].

So far, with an enormous effort over 4000 serum and plasma

metabolites belonging to more than 50 different chemical classes

have been identified, validated and characterised in the Serum

Metabolome Database [4]. As this number exceeds the scope of

most studies, a targeted metabolomics approach was chosen for

our studies. The concept of targeted metabolomics is the

quantification of a defined set of metabolites in a body fluid,

representing an image of the current metabolic state of the

organism [5]. It has been shown previously that this method has

the power to identify perturbations of the body’s metabolic

homeostasis and allows for the identification of and access to

biomarkers of metabolic pathways that are impacted for example

by diseases [6–11].

In this study, we took a targeted quantitative metabolomics

approach to identify fat free mass/muscle mass related changes on

human metabolism. To this end, the associations between FFMI

and up to 190 serum metabolite concentrations including amino

acids, acylcarnitines, phosphatidylcholines (PCs), sphingomyelins

as well as hexose and biogenic amines measured by means of two

different kits, were investigated in participants of the population-

based studies KORA S4 and its seven-year follow-up KORA F4.

As the biogenic amines are not part of the KORA F4

metabolomics dataset, the KORA S4 results were not discussed.

However, they are shown in the Table S2. Furthermore, we

computed Gaussian graphical models (GGMs), which have

previously been shown to detect directly related metabolites in

metabolomics data [12]. The resulting partial correlations in

combination with the results from the linear regression models

then provide a comprehensive picture of FFMI effects in a data-

driven metabolic network.

Materials and Methods

Ethics Statement
The study was approved by the ethics committee of the

Bavarian Medical Association. Written informed consent was

obtained from each participant in accordance with institutional

requirements and the Declaration of Helsinki Principles.

Study Design and Population
The present analyses are based on subsamples of the

metabolically characterised participants of the KORA S4 study

and its seven-year follow-up KORA F4 study. KORA (Cooper-

ative Health Research in the Region of Augsburg) is a research

platform performing population-based surveys and subsequent

follow-ups in the region of Augsburg in Southern Germany and

has been described extensively [13]. The metabolic profiles of

1614 subjects in KORA S4 (ageing 54–75 years at the time of

examination) and 3061 subjects in KORA F4 (ageing 31–82 years)

were determined. The bioelectrical impedance analysis measure-

ments of the participants’ body composition (fat free mass and

body fat mass) which are part of the present analyses were only

conducted in KORA S4. In order to account for this, only weight-

stable participants of the KORA F4 population were included in

the present study sample. A person was defined as weight-stable if

their weight gain or loss did not exceed more than 0.5% per year

since their body weight was measured in KORA S4 [14]. Further,

subjects with a known history of myocardial infarction, stroke,

diabetes or cancer were excluded as well as subjects taking ACE

inhibitors or anti-lipidemic drugs. This resulted in a sample size of

n = 965 for KORA S4 and n = 890 for KORA F4 with an overlap

of n = 725 subjects.

Blood Sampling
In both studies, fasting serum samples for metabolic analysis

were collected during study centre visits. For KORA S4, the blood

drawing occurred after a period of overnight-fasting (minimum of

8 hours) using S-MonovetteH serum tubes (SARSTEDT AG &

Co., Nümbrecht, Germany). Tubes were inverted two to three

times, spent five minutes on the universal shaker (SARSTEDT AG

& Co., Nümbrecht, Germany) before being allowed to rest for 40

minutes at 4uC for total coagulation. Later on, tubes were

centrifuged for 15 minutes at 2,660 g, serum was separated and

filled into synthetic straws which were stored in liquid nitrogen

(2196uC) until analysis. The collection and procedure for the

KORA F4 samples has previously been described [15].

Metabolite Quantification
Metabolic characterisation of the KORA F4 serum samples was

done in 2009 in three batches of approximately 1000 samples at

three different time points with a recalibration of the equipment in

between; whereas the complete KORA S4 set was characterised in

2011 in one batch.

The targeted metabolomics approach for KORA F4 and S4 was

based on ESI-(LC-) MS/MS measurements by the Absolute-

IDQTM p150 kit and p180 kit (BIOCRATES, Life Sciences AG,

Innsbruck, Austria), respectively. The assays allow simultaneous

quantification of 163 (kit p150; F4) or 186 (kit p180; S4)

metabolites out of 10 ml serum in each case. The AbsoluteIDQTM

p150 kit has previously been described in detail [15,16]. The p180

kit is an extension of it, using additional LC-MS/MS separation.

For both kits, sample handling was performed by a Hamilton

Micro Lab Star robot (Hamilton Bonaduz AG, Bonaduz,

Switzerland) and a nitrogen evaporator (Porvair, Ultravap). Mass

spectrometry (MS) analyses were done on a 4000 QTRAP mass

spectrometer (AB Sciex) coupled to Promincence HPLC (Shi-

madzu) apparatus (F4) and an API 4000 LC-MS/MS System (AB

Sciex Deutschland GmbH, Darmstadt, Germany) equipped with

an Agilent 1200 Series HPLC and a HTC PAL auto sampler

(CTC Analytics, Zwingen, Switzerland) (S4) controlled by the

software Analyst 1.4 for kit p150 (F4) 1.5.1 for kit p180 (S4). Data

evaluation for quantification of metabolite concentrations and

quality assessment was performed with the MetIQTM software

package, which is an integral part of the AbsoluteIDQTM kits.

Internal standards serve as reference for the calculation of

metabolite concentrations. The methods of the AbsoluteIDQTM

p150 and p180 kits have been proven to be in conformance with

the FDA Guideline [17], which implies proof of reproducibility

within an given error range. Measurements were performed as

described in the manufacturer manuals. Concentrations are

reported in mmol/l.

Metabolite Spectrum
In total, up to 190 different metabolites were quantified. Kit

p150 (KORA F4; 163 metabolites) contains 14 amino acids (13

proteinogenic + ornithine), hexose (sum of hexoses – about 90–

95% glucose), free carnitine and 40 acylcarnitines (Cx:y), 15

sphingomyelins (SMx:y), 77 phosphatidylcholines (PCs, aa = diacyl,

ae = acyl-alkyl) and 15 lyso-phosphatidylcholines (lysoPCs). The

Metabolomics and Fat Free Mass
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lipid side chain composition is abbreviated as Cx:y, with x denoting

the number of carbons in the side chain and y denoting the

number of double-bonds. Kit p180 (KORA S4; 186 metabolites)

includes 21 amino acids (19 proteinogenic + citrulline + ornithine),

hexose, free carnitine, 39 acylcarnitines, 15 sphingomyelins, 90

phosphatidylcholines (14 lysoPC and 76 PCs) as well as 19

biogenic amines. The overlap of both kits is 159 metabolites. Full

biochemical names and abbreviations are provided in Table S1.

Quality Control of the Metabolomics Dataset
The quality control of the metabolomics dataset of KORA F4

was done in a two-step procedure. First, the quality of all

metabolites was assessed using a reference blood which was

measured five times on ten plates. With this data, a coefficient

of variation was calculated for every metabolite and plate. All

metabolites having a mean coefficient of variation over all ten

plates bigger than 25% were removed from the dataset (eleven

in total). One further metabolite was excluded as the number of

missing values exceeded 5%. In the second step, the dataset was

controlled for outliers. A subject’s metabolite concentration was

defined as an outlier if the concentration was greater or less

than the mean 6 five standard deviations of the particular

metabolite over the whole population. All subjects having more

than three independent outlying metabolite concentrations were

excluded from the dataset. An outlier was defined as

independent if the correlation with all other outliers was less

than 70%. If there were three or less independent outliers, only

the data points were removed. All missing values were imputed

with the R package ‘‘mice’’ which uses a linear regression

approach. For the quality control of the KORA S4 metabolite

dataset, a new coefficient of variation was calculated using the

reference blood which was on all KORA S4 plates. The same

quality criteria were applied to the KORA S4 sample, resulting

in 20 metabolites being excluded from the dataset. This left us

with 151 metabolites for the KORA F4 dataset and 166

metabolites for KORA S4, with an overlap of 141 metabolites.

As the metabolic profile in KORA F4 samples was assessed in

three batches a so called batch variable was included in all

analyses of the F4 metabolomics dataset in order to avoid

possible effects due to technical issues or different time points of

analyses. This step was not necessary for the KORA S4 dataset.

Anthropometric and Body Composition Assessment
Height and weight were measured to the nearest 0.1 cm and

0.1 kg, respectively. Waist circumference was measured to the

closest 0.1 cm at the smallest position between the lower rip and

the upper margin of the iliac crest. Hip size was determined

exactly to 0.1 cm as the widest circumference measured between

the upper margin of the iliac crest and the crotch. For the

assessment of body composition, two bioelectrical impedance

analysis measurements of resistance (R), reactance (Xc) and the

phase angle (a) were taken between the dominant hand wrist and

dorsum and the dominant foot angle and dorsum (placement of

the electrodes) by means of a body impedance analyser (BIA 2000-

S; Data Input GmbH, Frankfurt, Germany) while subjects were

spreading their arms and legs and lying in a relaxed and supine

position on a nonconductive surface with 50 kHz. Fat free mass,

fat mass, and the appendicular skeletal muscle mass were then

calculated by means of Kyle’s equations [18,19] on which the

following indices are based: FFMI (fat free mass in kg/(height in

m)2), body fat mass index (body fat mass in kg/(height in m)2) and

the appendicular skeletal muscle mass index (appendicular skeletal

muscle mass/(height in m)2.

Genotyping, Imputation and SNP Selection
In KORA F4, genotyping was done by means of Affymetrix

Human SNP Array 6.0. HapMap CEU version 22 was used as

population reference and as reference for the imputation of the

genotyped SNPs with IMPUTE v0.4.2. The complete procedure

has been described in more detail [15]. The present analysis

includes 170 SNPs. The selection of these SNPs is based on an

extensive literature research of genome-wide association studies

with an anthropometric characteristic as outcome. A list of the

selected SNPs can be found in Table S4.

Statistical Analyses
The descriptive data is presented as mean and standard

deviation for the continuous variables and as absolute quantities

and percentages for the discrete parameters. Sports activity was

defined by the amount of regular leisure time exercise per week;

more than one hour equals active; less equals inactive. The KORA

S4 and F4 samples were analysed as independent cross-sectional

studies. Besides the absolute metabolite concentrations, all pairs of

intra-metabolite class ratios (n = 4629 for KORA S4 and n = 4518

for KORA F4) were part of the metabolomics datasets.

Associations between metabolite concentrations or metabolite

ratios and the FFMI were assessed by means of linear regression

models. First, metabolite variables (absolute concentrations and

ratios) were standardised with an inverse log-normal transforma-

tion to allow for comparison of the estimates derived from the

linear regression models. Then, linear regression models were

applied with the metabolite variables as dependent variables and

the FFMI as explanatory variable. The models for the KORA S4

metabolomics data were adjusted for sex and age, whereas the

models for KORA F4 were adjusted for age, sex, and batch. To

control for multiple testing and with regard to the dependencies

among the various metabolites and ratios, a p-value of 3.12610204

for KORA S4 and a p-value of 3.5610204 for KORA F4 were

considered statistically significant at a= 5%. For an association

with a metabolite ratio to be regarded as statistically significant, an

additional criterion (the p-gain) had to be fulfilled next to a

significant p-value. The p-gain is defined as the fold decrease in

the p-value of association for the pair of metabolites compared to

the lowest of the two p-values for the single metabolites [6]. Thus,

an association between a metabolite ratio (M1/M2) and FFMI is

considered to be significant, if the p-value of this association is

significant and the p-gain exceeds a certain value. To calculate the

p-gain we first have to determine the minimum p-value of the

associations between metabolite M1 and FFMI as well as

metabolite M2 and FFMI. The p-gain is the quotient of this

minimum to the p-value of the association between the metabolite

ratio and FFMI. This p-gain had to exceed 170 for KORA S4 and

150 for KORA F4. These cut-offs are seen as Bonferroni-related

corrections in order to identify metabolite concentration pairs for

which the strength of association improves considerably by using

ratios [6].

Stratified analyses. Different sub-analyses were performed.

First, a different main explanatory variable was used. Instead of

FFMI, the appendicular skeletal muscle mass index was included

in the linear regression models with the same adjustments. Second,

stratified analyses were conducted with age, sex, sports activity and

BMI as potential confounders or effect modifiers.

GGMs. In addition to the linear regression analyses, we

investigated the relationships between metabolites as well as the

propagation of FFMI effects through the metabolic network by

means of Gaussian graphical modelling. In order to obtain a GGM,

the partial correlation coefficients between all pairs of metabolites

were calculated [12]. For KORA S4 each partial correlation

Metabolomics and Fat Free Mass
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coefficient was controlled for age, sex, FFMI, and the other 164

metabolites and tested for significance. Bonferroni correction was

applied, maintaining a significance level of alpha = 0.01. In order to

focus on particularly strong effects between metabolites a cut-off of

r = 0.3 (partial correlation coefficient) was applied to the network.

Each node represents a metabolite, whereas edges represent

significant partial correlations. Nodes were coloured according to

the b-estimate and the p-value from the linear models (red =

positive estimate; blue = negative estimate; white = not significant

estimate). The same procedures were applied to the KORA F4

metabolite concentrations including the batch variable as a

confounder.

Genetic analyses. The associations between serum metabo-

lite concentrations or ratios and SNPs which are found to be

associated with anthropometric characteristic were analysed using

linear models with the assumption of additive genetic effects. For

the metabolite concentrations of the genotyped KORA S4 subjects

(n = 668), models were adjusted for age and sex. For the analysis

with KORA F4 metabolic data (n = 890), adjustments were made

for age, sex and batch. A p-value of 4.73610206 for S4 and

5.3610206 for F4 was considered as statistically significant at

a= 5%.

All statistical analyses were performed with the R software version

2.12.0 [R Development Core Team, 2010, http://www.r-project.

org]. The GGMs were visualised by the yEd graph editor version

3.6.1.1 [yWorks Gmbh, http://www.yWorks.com].

Results

Table 1 summarises anthropometric data of the KORA S4 and

F4 participants. Selected statistically significant associations of

FFMI with different metabolite concentrations for the KORA S4

population are given in Table 2. Different parameters such as the

direction of the beta estimate derived from the adjusted linear

model are given, as is the agreement between the KORA S4 and

F4 results. The full list of statistically significant associations

obtained in KORA S4 and F4 can be found in Tables S2 and S3,

respectively. The GGMs established in KORA S4 and F4 are

displayed in Figure 1, 2, and S1, completing the results of the

linear regression models by illustrating the underlying relationships

between the metabolite concentrations.

Amino Acids
With higher FFMI, increasing serum concentrations of the

branched chained amino acids (BCAAs) valine, isoleucine, and

leucine as well as of the sum of BCAAs were observed.

Furthermore, other serum amino acids increased with higher

FFMI, including the glucogenic amino acid alanine, and the

aromatic amino acids tyrosine and phenylalanine. With respect to

metabolite ratios, strong positive associations were found between

FFMI and the ratios of isoleucine/glycine and leucine/glycine. In

addition, the ratio of all BCAAs/all glucogenic amino acids (sum

of alanine, glycine, and serine) was positively related to FFMI,

supporting the notion of increasing BCAAs concentrations in

relationship to glucogenic amino acids in serum samples of

subjects with higher FFMI. Inspecting the GGM results (Figure 1),

we also observe these strong correlations between BCAAs. Based

on these results, we illustrated the association between the sum of

BCAAs and FFMI (by FFMI quintiles) in Figure 3, and described

the anthropometric characteristics of the S4 participants by

BCAAs quintiles (Table 3). We were able to replicate these

findings in the KORA F4 sample (Table S3).

Acylcarnitines
Serum concentrations of free carnitine and short-chain odd-

numbered acylcarnitines, such as propionylcarnitine (C3) and

valerylcarnitine (C5), were found to be positively associated with

FFMI while octadecanoylcarnitine (C18) decreased with increas-

ing FFMI. This is also reflected in the results for the ratios of C18

to C0, C3, or C5. These findings in S4 are supported by the

KORA F4 results. The acylcarnitines form a separate group

within the partial correlation networks and a particularly strong

correlation exists between the metabolites C0 and C3.

Phosphatidylcholines
The group of phosphatidylcholines consists of different PC

diacyl (aa), PC acyl-alkyl (ae), and lysoPC acyl (a) compounds.

Numerous associations between FFMI and PCs or PC ratios could

be observed. An increase in FFMI was associated with (i) a higher

serum concentration of PC aa in relation to PC ae, (ii) a decrease

in chain length of the fatty acid residues, and (iii) a decrease in

saturation (i.e., a higher number of double bonds) of the fatty acid

moieties. Significant results for single PC compounds were all

negatively associated with FFMI, such as PC ae C42:3 or PC ae

C36:2, lysoPC a C18:2 or lysoPC a C18:1; the only exception is

PC aa C38:3 which increased with higher FFMI. Ratios within

subgroups (aa/aa, ae/ae, lyso/lyso) demonstrated that increasing

FFMI is associated with a shift towards shorter fatty acids and fatty

acids with more double bonds. Examples are ratios of PC aa

C38:3/PC aa C42:6, PC aa C38:3/PC aa C42:2, PC aa C38:3/

PC aa C42:0, PC ae C36:4/PC ae C40:1 or lysoPC a C14:0/

lysoPC a C18:2. This is most likely a consequence of the

associations observed for the single compounds (e.g., PC aa C38:3

increased and lysoPC a C18:1 decreased with increasing FFMI).

Ratios of PC aa to PC ae were significantly associated with FFMI,

e.g., PC aa C38:3/PC ae C42:3 or PC aa C38:3/PC ae 42:2.

There are two very large groups of PCs which were identified in

the network analyses (Figure 2). PC aa C38:3 is the centre of one

cluster which includes mainly PC aa and shorter PC ae; the other

cluster consists of mostly long-chain PCs.

These findings are also supported by the results obtained in the

KORA F4 sample.

Sphingomyelins
With higher FFMI an increased concentration of sphingomy-

elins (SM) as compared to hydroxysphingomyelins (SM (OH)) was

observed. This is reflected e.g., by the ratios of SM (OH) C16:1/

SM C18:1, SM (OH) C16:1/SM C18:0 or SM (OH) C22:2/SM

C18:1. Also, the results of SM ratios, such as SM C16:0/SM

C16:1 or SM 16:0/SM C18:1, demonstrate a decrease in

saturation of the fatty acids with increasing FFMI. The same

associations are found in KORA F4. The GGM results show that

almost all SM are interrelated and the strong relationship between

SM (OH) C16:1 and SM (OH) C14:1 is present in both GGMs

(Figure 2 and Figure S1).

Appendicular Skeletal Muscle Mass Index
For both, KORA S4 and F4, the results for the appendicular

skeletal muscle mass index were largely comparable to the results

with FFMI (data not shown). However, the p-values in the linear

regression models did not decrease and also the adjusted R2 did

not improve as compared to the FFMI-based results. Therefore,

FFMI remained as primary explanatory variable.

Metabolomics and Fat Free Mass
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Stratifications
In stratified analyses, very similar results could be observed for

men and women. With respect to sports activity, there was only a

slight difference between both groups (active versus inactive

participants) for the acylcarnitine metabolites. Most of the

statistically significant associations with FFMI and the acylcarni-

tines were not present in the inactive group. Regarding age (.65

years vs. #65 years; S4), there were no distinct differences between

groups.

With respect to the associations between FFMI and the

metabolites in obese and non-obese subjects in KORA S4 we

did observe significant differences. Most associations described for

the whole population and also noted for the non-obese subgroup

are not present in obese subjects (Table 4).

Genetic Analyses
No significant associations were found between the selected

genetic variants (Table S4) and the serum metabolite concentra-

tions (KORA S4 or KORA F4).

Discussion

In this population-based study, strong associations between

FFMI and serum metabolite concentrations were found in KORA

S4 and reproduced in KORA F4. With higher FFMI, BCAA

serum concentrations and the ratio of BCAAs to glucogenic amino

acids increased. Free carnitine levels were also positively associated

with FFMI, and for the various PCs we found a decrease in chain

length and/or saturation of the fatty acid residues in combination

with higher concentrations of PC aa in expense of PC ae and

lysoPC. In obese subjects of KORA S4, however, these

associations were lacking.

The human serum metabolome is currently characterised in

many studies using different analytic approaches [4], including the

method applied here. To the best of our knowledge, the

association of FFMI/fat free mass and serum metabolites was

not explored before in an epidemiologic setting. Rather,

metabolomics signatures of exercise (before, during and after-

wards) in human plasma were investigated showing that subjects

who were in better shape exhibited more lipolysis during and after

exercise than did the less fit participants [20]. This leads to the

Table 1. Characteristics (mean 6 SD; % or n absolute) of male and female subjects in the analysed samples of KORA S4 and F4.

KORA S4 (n = 965) KORA F4 (n = 890)

Men Women Men Women

(n = 485) (n = 480) (n = 423) (n = 467)

Parameter Unit mean ± SD mean ± SD mean ± SD mean ± SD

Age years 63.2165.53 63.3465.30 53.82612.02 54.66612.48

Weight kg 83.19611.36 71.59612.03 83.19611.37 69.04613.11

Height cm 172.2666.35 159.3365.96 176.6967.03 162.8666.58

Body Mass Index kg/m2 28.0463.61 28.2364.68 26.6463.25 26.0464.72

Waist cm 100.0169.39 89.60611.05 95.8969.91 85.19612.63

Hip cm 104.7066.49 107.1969.90 104.1766.15 104.1969.37

Waist to Hip Ratio 0.9560.05 0.8360.06 0.9260.06 0.8260.07

Fat Free Massa kg 58.4865.74 43.1165.06 60.8266.05 43.5865.39

Body Fat Massa % 29.2564.66 39.1964.79 26.3264.95 35.9565.66

FFMIa, b kg/m2 19.7161.66 16.9961.85 19.5961.55 16.5061.76

BFMIa, c kg/m2 8.3462.29 11.2463.08 7.1762.07 9.6163.15

Parameter Category % (n absolute) % (n absolute) % (n absolute) % (n absolute)

Body Mass Index ,18.5 0 (0) 0 (0) 0.24 (1) 0.64 (3)

18.5–,25 17.11 (83) 25.62 (123) 30.50 (129) 45.82 (214)

25–,30 56.49 (274) 43.33 (208) 52.72 (223) 34.90 (163)

$30 26.19 (127) 30.63 (147) 16.55 (70) 18.63 (87)

Sports Activityd active 38.76 (188) 46.67 (224) 59.81 (253) 61.24 (286)

inactive 60.41 (293) 52.92 (254) 40.00 (169) 38.76 (181)

Age Groups 31–40 y – – 14.66 (62) 15.42 (72)

41–50 y – – 29.55 (125) 24.2 (113)

51–60 y 38.14 (185) 35.42 (170) 23.88 (101) 26.98 (126)

61–70 y 48.45 (235) 52.08 (250) 21.99 (93) 21.2 (99)

71–80 y 13.4 (65) 12.5 (60) 9.46 (40) 11.56 (54)

$81 y – – 0.47 (2) 0.64 (3)

aParameters derived from the bioelectrical impedance analysis measurements which were only conducted in KORA S4;
bFat Free Mass Index;
cBody Fat Mass Index;
dSports (active: .1 h leisure time of sports per week on a regular basis; inactive: less than 1 h sports per week).
doi:10.1371/journal.pone.0040009.t001
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Table 2. Selected metabolic traits significantly associated with FFMIa in a linear regression model adjusted for age and sex in the
KORA S4 sample.

Trait Mean SD Dir.b adj. P-valuec R2 adj.d P-gaine F4f

(mmol/l)

Val 227.26 53.13 pos. 4.75610216 0.16 *

Glu 80.13 32.04 pos. 1.22610215 0.11 n.a.

Ile 72.14 20.22 pos. 1.96610211 0.22 #

Leu 160.51 44.33 pos. 2.57610208 0.18 #

Ala 417.99 101.4 pos. 8.95610206 0.03 n.a.

Tyr 72.09 20.06 pos. 4.77610210 0.06 *

Phe 76.73 17.19 pos. 2.53610207 0.05 n.s.

S aromatic AAs 208.98 43.75 pos. 3.37610209 0.07 *

SBCAAs 459.91 113.06 pos. 2.07610213 0.19 *

Ile/Gly 0.29 0.11 pos. 1.61610214 0.30 1.22610+03 #

Leu/Gly 0.65 0.25 pos. 1.46610212 0.29 1.75610+04 #

S BCAAs/S glucogenic AAs 0.58 0.14 pos. 1.49610208 0.26 *

C5 0.16 0.06 pos. 3.49610205 0.17 *

C3 0.47 0.15 pos. 4.85610205 0.13 *

C0 40.52 8.49 pos. 1.19610202 0.13 *

C18 0.06 0.01 neg. 3.96610202 0.10 n.s.

C18/C5 0.37 0.14 neg. 1.44610209 0.08 2.42610+04 n.s.

C18/C3 0.13 0.05 neg. 3.65610209 0.05 1.33610+04 n.s.

C18/C0 0.001 0.0004 neg. 5.44610207 0.05 2.19610+04 n.s.

PC aa C38:3 57.77 14.01 pos. 7.02610206 0.06 *

PC ae C42:3 0.85 0.19 neg. 5.10610218 0.10 *

PC ae C36:2 15.33 3.88 neg. 2.42610215 0.19 *

lysoPC a C18:2 28.46 9.04 neg. 8.19610216 0.16 *

lysoPC a C18:1 21.61 6.1 neg. 2.30610210 0.11 *

S PC ae 181.45 30.52 neg. 1.38610204 0.10 *

S lysoPC 229.29 47.21 neg. 4.36610204 0.07 *

PC aa C38:3/PC aa C42:6 97.71 21.87 pos. 1.04610217 0.09 6.73610+11 *

PC aa C38:3/PC aa C42:1 228.35 80.97 pos. 6.09610215 0.07 1.15610+07 *

PC aa C38:3/PC aa C42:0 111.66 41.58 pos. 1.06610215 0.07 3.68610+06 *

PC aa C38:3/PC aa C42:2 297.65 96.51 pos. 1.72610216 0.10 1.69610+09 *

lysoPC a C14:0/lysoPC a C18:2 0.24 0.08 pos. 1.04610220 0.18 7.88610+04 n.s.

PC ae C36:4/PC ae C40:1 12.99 3.34 pos. 1.70610207 0.04 3.57610+02 *

PC aa C38:3/lysoPC a C18:1 2.27 0.99 pos. 3.37610220 0.19 2.43610+04 *

PC aa C38:3/lysoPC a C18:2 2.87 1.03 pos. 1.38610219 0.17 1.66610+09 *

PC aa C38:3/PC ae C42:3 70.43 21.88 pos. 3.12610226 0.12 1.63610+08 *

PC aa C38:3/PC ae C36:2 3.98 1.36 pos. 8.17610225 0.13 2.96610+09 *

PC aa C38:3/PC ae C42:2 93.08 24.28 pos. 3.73610223 0.11 7.97610+15 *

SM C16:0/SM C16:1 6.4 0.76 neg. 1.52610211 0.29 3.13610+08 *

SM (OH) C16:1/SM C18:1 0.31 0.06 neg. 3.51610210 0.05 4.94610+07 *

SM C16:0/SM C18:1 9.36 1.83 neg. 5.71610208 0.24 8.33610+04 *

SM (OH) C16:1/SM C18:0 0.16 0.03 neg. 3.28610210 0.10 5.27610+07 *

SM (OH) C22:2/SM C18:1 1.00 0.19 neg. 4.14610207 0.05 2.93610+05 *

aFat Free Mass Index;
bdirection of the association (positive or negative);
cfor multiple testing adjusted p-value;
dadjusted R2 of the linear model;
ep-gain, fold decrease in the p-value of association for the pair of metabolites, compared to the lowest of two p-values for the single metabolites;
fconfirmed in KORA F4, for * significance and direction; # confirmed for xLeu in F4, n.a., metabolite was not available in F4; AAs, amino acids; S aromatic amino acids,
sum of tyrosine, phenylalanine, and tryptophan; S BCAAs, sum of valine, isoleucine, and leucine; S glucogenic amino acids, sum of alanine, glycine, and serine.
The full results are given in Tables S2 (KORA S4) and S3 (KORA F4).
doi:10.1371/journal.pone.0040009.t002
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Figure 1. Gaussian graphical model of serum amino acids and acylcarnitine metabolite concentrations in KORA S4. Each node
represents a metabolite, whereas edges represent significant partial correlations. Nodes were coloured according to the b-estimate and the p-value
from the linear models (red = positive association with FFMI; blue = negative association with FFMI; white = not significant association with FFMI).
doi:10.1371/journal.pone.0040009.g001

Figure 2. Gaussian graphical model of serum glycerophospholipids and sphingolipid metabolite concentrations in KORA S4. Each
node represents a metabolite, whereas edges represent significant partial correlations. Nodes were coloured according to the b-estimate and the p-
value from the linear models (red = positive association with FFMI; blue = negative association with FFMI; white = not significant association with
FFMI). Yellow highlights both large clusters within the glycerophospholipid metabolites.
doi:10.1371/journal.pone.0040009.g002
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Figure 3. Boxplot of serum BCAA concentrations (mmol/l), by quintiles of the FFMI, for the KORA S4 population.
doi:10.1371/journal.pone.0040009.g003

Table 3. Different characteristics of the KORA S4 population stratified by quintiles of the serum BCAAa concentration, given as
mean and SD as well as percentage and absolute quantity.

Quintiles of the sum of BCAAs

Quintile 1 2 3 4 5

(mmol/l) (163.5–363.7) (364.1–418) (418.2–476.9) (477–542.2) (542.3–963)

Age 63.0865.41 63.2765.38 63.565.62 63.665.42 62.9465.29

Weight 69.45611.77 75.562.72 76.11611.18 81.64612.39 84.32611.93

Height 161.3567.48 164.6568.73 165.7769.13 168.8668.77 168.5168.38

Body Mass Index 26.6464.08 27.8564.27 27.7564 28.6363.75 29.7964.15

Fat Free Mass (kg) 44.1367.34 49.4169.08 50.1968.72 54.7568.83 55.7268.12

Body Fat Mass (%) 36.166.34 34.3766.88 3467.15 32.7366.82 33.7466.68

FFMIb 16.8762.02 18.1162.25 18.1562.05 19.0961.89 19.5561.89

BFMIc 9.7762.88 9.7463.08 9.663.15 9.5462.97 10.2563.24

FFM/BFMd 1.8960.81 2.0560.73 2.0860.69 2.1960.67 2.0960.66

Male 19.69% (38) 42.49% (82) 49.74% (96) 67.88% (131) 71.5% (138)

Female 80.31% (155) 57.51% (111) 50.26% (97) 32.12% (62) 28.5% (55)

Sports activitye 47.15% (91) 35.75% (69) 52.33% (101) 40.93% (79) 37.31% (72)

aBCAAs, sum of valine, isoleucine, and leucine;
bFat Free Mass Index;
cBody Fat Mass Index;
dFat Free Mass divided by Body Fat Mass;
eSports (active: .1 h leisure time of sports per week on a regular basis; inactive: less than 1 h sports per week).
doi:10.1371/journal.pone.0040009.t003
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hypothesis that a sedentary lifestyle leads to derangements of

skeletal muscle metabolism that favour the development of obesity

and metabolic diseases. In fact, our observation that associations

found between FFMI and serum metabolites were largely missing

in obese subjects at baseline (S4) fits well to the hypothesis of a

deranged skeletal muscle metabolism. As observed by Lewis et al.

[20], a decreased capability to stimulate lipid oxidation during

exercise could be reflected in the missing associations between

FFMI and the various lipid metabolites in obese subjects. For the

non-obese participants, we find evidence for an enhanced ß-

oxidation with higher FFMI which is reflected in the carnitine and

PC metabolite results.

In contrast to a study with physical activity intervention, it was

not clear how strong associations between FFMI and serum

concentrations of amino acids, acylcarnitines, glycerophospholi-

pids, and sphingolipids could be in a cross-sectional study with

collection of serum samples after short-term fasting of at least eight

hours. However, our results fit well to biological pathways that are

related to skeletal muscle metabolism, namely amino acid

Table 4. Selected metabolic traits significantly associated with FFMIa in a linear regression model adjusted for age, and sex for the
non-obese and obese participants in the KORA S4 sample.

Obese (BMI $30 kg/m2)
(n = 274)

Non-obese (BMI,30 kg/m2)
(n = 691)

beta adj. P-valueb R2 adj.c beta adj. P -valueb R2 adj.c

Val 0.08 1.00 0.03 0.14 1.70610204 0.17

Ile 0.06 1.00 0.12 0.13 3.94610204 0.25

Leu 0.04 1.00 0.08 0.13 3.77610204 0.22

Ala 0.02 1.00 0.00 0.12 0.0409 0.02

Tyr 0.04 1.00 0.00 0.14 2.09610203 0.05

Phe 0.06 1.00 0.00 0.10 0.2377 0.04

S aromatic AAs 0.05 1.00 0.02 0.12 0.014 0.06

S BCAAs 0.06 1.00 0.07 0.15 5.10610205 0.21

Ile/Gly 0.03 1.00 0.26 0.13 2.42610204 0.30

Leu/Gly 0.02 1.00 0.22 0.13 9.29610205 0.30

S BCAAs/glucogenic AAs 0.05 1.00 0.15 0.10 0.0353 0.30

C5 0.06 1.00 0.13 0.14 1.34610204 0.19

C3 0.06 1.00 0.06 0.13 2.52610203 0.16

C0 0.06 1.00 0.08 0.09 0.255 0.16

PC aa C38.3 0.00 1.00 0.02 0.08 1.00 0.04

PC ae C42.3 20.14 0.31 0.04 20.16 7.30610205 0.06

PC ae C36.2 20.07 1.00 0.13 20.09 0.418 0.17

lysoPC a C18.1 20.08 1.00 0.08 20.07 1.00 0.05

lysoPC a C18.2 20.14 0.21 0.13 20.07 1.00 0.08

S PC ae 20.04 1.00 0.05 20.05 1.00 0.09

S lysoPC 20.04 1.00 0.06 20.02 1.00 0.04

PC aa C38:3/PC aa C42:6 0.03 1.00 0.01 0.18 2.69610206 0.05

PC aa C38:3/PC aa C42:2 0.05 1.00 0.03 0.14 7.49610204 0.05

lysoPC a C14:0/lysoPC a C18:2 0.18 0.003 0.17 0.10 0.113 0.09

PC aa C38:3/lysoPC a C18:1 0.07 1.00 0.11 0.11 0.0377 0.10

PC aa C38:3/lysoPC a C18:2 0.10 1.00 0.13 0.10 0.158 0.11

PC aa C38:3/PC ae C42:3 0.10 1.00 0.01 0.18 8.77610207 0.05

PC aa C38:3/PC ae C36:2 0.06 1.00 0.04 0.14 1.48610203 0.06

PC aa C38:3/PC ae C42:2 0.07 1.00 0.00 0.17 1.02610205 0.04

SM C16:0/SM C16:1 20.02 1.00 0.23 20.06 1.00 0.27

SM (OH) C16:1/SM C 18:1 0.01 1.00 0.01 20.08 1.00 0.02

SM C 16:0/SM C 18:1 20.02 1.00 0.17 20.06 1.00 0.23

SM (OH) C16:1/SM C 18:0 0.02 1.00 0.17 20.10 0.170 0.05

SM (OH) C22:2/SM C 18:1 0.00 1.00 0.05 20.07 1.00 0.01

aFat Free Mass Index;
bfor multiple testing adjusted p-value;
cadjusted R2 of the linear model; AAs, amino acids; S aromatic amino acids, sum of tyrosine, phenylalanine, and tryptophan; S BCAAs, sum of valine, isoleucine, and
leucine; S glucogenic amino acids, sum of alanine, glycine, and serine.
doi:10.1371/journal.pone.0040009.t004
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metabolism and fatty acid metabolism (reflected by acylcarnitines

and glycerophospholipids).

BCAAs are described as a preferred substrates for muscle tissue,

and BCAA supplementation can suppress protein degradation

[21]. During short-term fasting, glucose released from glycogen

stores of the liver is provided as fuel for tissues that need glucose

(e.g. brain). Muscle protein degradation provides amino acids that

are used by the liver for gluconeogenesis [22], with alanine being

the most important one. BCAAs are a major source of nitrogen for

muscle synthesis of glucogenic amino acids such as alanine

[23,24]. This has been shown in studies with 1–3 days of

starvation. Levels of BCAAs rise in fasting state parallel to an

increased protein degradation. In this state, the only source of

BCAAs is appearance from protein degradation, which is a key

process for maintenance of protein quality and repair process of

tissues. Thus, during overnight fasting, BCAA serum concentra-

tions are increased proportional to the muscle mass of the body.

Furthermore, alanine concentration levels rise with increasing

protein degradation during starving [21]. Thus, our findings of

increasing serum concentrations of BCAAs and alanine that are

strongly associated with FFMI are in line with the expectations.

Several other studies reported that acylcarnitines are also found

in circulation [4]. Acylcarnitines are intra-cellularly synthesized for

the transport of fatty acids into the mitochondria for b-oxidation.

In the present analyses an increase of acylcarnitine concentrations

could be observed which argues for an upregulated b-oxidation of

fatty acids in subjects with higher muscle mass. One explanation

for the origin of propionylcarnitine is oxidative degradation (b-

oxidation, c-oxidation) of BCAAs, releasing propionylcarnitine

units. Another source of propionyl residues may be the intestinal

production by gut microbiota; however a relationship with plasma

propionylcarnitine or FFMI is not established.

Our phospholipid results point towards a decrease in chain

length and degree of saturation of the lipid side chains. The

concentrations of lysoPC and PC ae decrease with increasing

FFMI and PC aa C38:3 is the only PC positively associated with

higher FFMI. Considering the GGM results, PC aa C38:3 is

central in one cluster of PC metabolites, while the other cluster

consists of long chain PCs. Overall, our results implicate that

FFMI is associated with lower plasma concentrations of very long

chain PCs (GGM cluster 2), while the concentration of PC aa

C38:3 increased. Thus, a higher FFMI might indicate a higher

activity of enzymes involved in fatty acid oxidation, especially in

the oxidation of very-long chain fatty acids. In addition, an altered

activity of enzymes involved in chain elongation (ELOVL) or

desaturation (FADS) could contribute to these findings. Earlier

studies using metabolomics and genetic data could demonstrated

that genetic effects (mediated by the expression of enzymes) are

reflected in the serum metabolic profile, thus lending credibility to

the approach of identifying enzyme activities by means of serum

metabolites or ratios of serum metabolites [15,25]. The shift from

PC ae and lysoPC towards PC aa could also be explained by

modifications in expression or activity of relevant enzymes [15].

However, analyses of the association between selected SNPs which

are known to be associated with anthropometric characteristics did

not reveal any significant relationship with metabolite ratios.

In addition, a higher FFMI was found to be associated with an

increased concentration of sphingomyelins as compared to

hydroxysphingomyelins. Recently, Wang-Sattler et al. [26]

reported a reduced concentration of SM and an increased

concentration of SM (OH) in smokers. This finding was explained

as a consequence of smoking on the activity of the peroxisomal

enzyme alkylglycerone phosphate synthase (alkyl-DHAP). Follow-

ing the same line of argumentation, FFMI is probably associated

with an increase of the activity of alkyl-DHAP. The negative

association of the SM C16:0/SM C16:1 ratio with FFMI might be

explained by regulatory processes in the fatty acid biosynthesis

pathway. In particular, stearoyl-CoA desaturase (SCD), which

catalyses the desaturation of C16 and C18 fatty acids, might be a

target enzyme/gene affected by greater muscle mass and/or

activity.

Strength and Limitations
The participants of our studies represent random samples of the

underlying population. In such a population with a heterogeneous

metabolic makeup influenced by different environmental factors,

genetic predispositions, and lifestyles, the interpretation of

metabolic profiling is quite ambitious [6]. The metabolite

concentrations which are reported in the present paper were

identified by means of two slightly different AblsoluteIDQTM kits

p150 and p180. These two kits are not identical (190 different

metabolites were measured with an overlap of 141) and the

measurement method of the amino acids slightly differs. However,

this technology allows the automated quantification of hundreds of

metabolites for many samples at a time which is very helpful for

future studies [27]. Furthermore, the side chain composition of the

different PCs, lysoPCs, sphingomyelins and acylcarnitines carries

many information on the different fatty acid pools in the human

body, such as n23 and n26 polyunsaturated fatty acids or

saturated and mono-saturated short and medium chain fatty acids

[28]. Thus, the kit is well oriented to map out the human lipidome

and therefore particular for the purpose of this study.

The bioelectrical impedance analysis measurements did only

take place in KORA S4. For the analyses of associations between

FFMI and the metabolite concentrations in KORA F4 only the

results of the bioelectrical impedance analysis measurements at

baseline examination (KORA S4) were available. Assuming that

the participants’ body composition is fairly stable in weight-stable

subjects, the KORA F4 based analyses were restricted to the

weight-stable subjects in order to account for this.

For the current analysis, subjects with a diagnosis of diabetes or

hypertension or medication for both diseases were excluded.

However, obese subjects are more likely to develop derangements

in glucose or lipid metabolism as compared to normal-weight

subjects which are in a subclinical state and have not led to a

clinical diagnosis yet. An analysis of serum glucose (hexose) and

triacylglycerol indicated significantly different means between non-

obese and obese subjects. In non-obese subjects, mean 6 SD

serum glucose concentration was 5.1860.76 mmol/l and mean

serum triacylglycerol concentration was 1.460.81 mmol/l; the

corresponding values in obese subjects were 5.661.11 mmol/l

and 1.7061.05 mmol/l, respectively. However, the higher glucose

and triacylglycerol concentrations in obese do not indicate a

catabolic status and thus are not sufficient to explain the missing

association between FFMI and serum metabolites.

Stratified analyses by gender, age, and sports activity were

conducted in order to detect potential confounders and effect

modifiers. Similar results were found for men and women

separately. P-values increased, as the sample size within the strata

(slightly more for men) was smaller, but there was no improvement

of the model fit, represented by the adjusted R2. In addition, the

FFMI is independent of height [3] thus taking one difference

between men and women into account. Furthermore, analysing

the whole sample increases the power and we were able to cover a

wider range of the FFMI. With respect to sports activity, slight

differences were found for the acylcarnitine metabolite group.

There, these effects were no longer present within the inactive

subjects. However, as sports activity and FFMI are correlated and
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FFMI covers the long-term sports effect as it represents the muscle

mass, sports activity was not included as a covariate in the main

analyses.

The GGMs present low levels of linkage between the

metabolites which is in line with findings from Krumsiek et al.

[12] who demonstrated that GGMs omit indirect correlations.

Nevertheless, the GGMs complete the linear regression results

with the underlying relationships between the metabolites.

Conclusion
We found strong associations between serum amino acids,

acylcarnitines, and glycerophospholipids with the FFMI in a

population-based sample. These findings were stable as they could

be reproduced in a follow-up study of this population. Most

interestingly, such associations were largely missing in obese

subjects. The latter finding supports the hypothesis that a

sedentary lifestyle associated with accumulation of fat tissue may

be accompanied by a derangement in skeletal muscle metabolism,

especially a limited inducibility of fatty acid oxidation.

Supporting Information

Figure S1 Gaussian graphical model of serum metabo-
lite concentrations of KORA F4. Each node represents a

metabolite, whereas edges represent significant partial correla-

tions. Nodes were coloured according to the b-estimate and the p-

value from the linear models (red = positive association with fat

free mass index; blue = negative association with fat free mass

index; white = not significant association with fat free mass

index).

(TIF)

Table S1 Full biochemical names, abbreviation, mean
± standard deviation of all metabolite concentrations
measured in mmol/l with the Biocrates AbsoluteIDQ kits
p150 (KORA F4, n = 890) and p180 (KORA S4, n = 965).
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Table S2 Metabolic traits significantly associated with
fat free mass index in linear regression models adjusted

for age, and sex (a = 5%, p-gain.170) in the KORA S4
sample.
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Table S3 Metabolic traits significantly associated with
fat free mass index in linear regression models adjusted
for age, sex and batch (a = 5%, p-gain.150) in the KORA
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Table S4 List of selected SNP, which were significantly
associated in genome wide association studies with
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the present study for associations with metabolomics
data.
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