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Background. Sepsis patients may die either from an overwhelming systemic immune response and/or from an
immunoparalysis-associated lack of anti-bacterial immune defence. We hypothesized that bacterial superantigen-activated
T cells may be prevented from contribution into anti-bacterial response due to the inhibition of their effector functions by the
hypoxia inducible transcription factor (HIF-1a) in inflamed and hypoxic areas. Methodology/Principal Findings. Using the
Cre-lox-P-system we generated mice with a T–cell targeted deletion of the HIF-1a gene and analysed them in an in vivo model
of bacterial sepsis. We show that deletion of the HIF-1a gene leads to higher levels of pro-inflammatory cytokines, stronger
anti-bacterial effects and much better survival of mice. These effects can be at least partially explained by significantly
increased NF-kB activation in TCR activated HIF-1 a deficient T cells. Conclusions/Significance. T cells can be recruited to
powerfully contribute to anti-bacterial response if they are relieved from inhibition by HIF-1a in inflamed and hypoxic areas.
Our experiments uncovered the before unappreciated reserve of anti-bacterial capacity of T cells and suggest novel
therapeutic anti-pathogen strategies based on targeted deletion or inhibition of HIF-1 a in T cells.
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INTRODUCTION
The surprisingly low incidence of serious complications after

normal immune response to pathogens suggests the functioning of

regulatory mechanisms that limit the collateral inflammatory

damage to normal cells. It was suggested that it is the damage to

the microvasculature and the ensuing decrease in oxygen supply

(local tissue hypoxia) that may serve as primary signals of excessive

tissue damage and need to de-activate immune cells [1]. One of

the hypoxia-generated signals of excessive inflammation could be

the accumulation of extracellular adenosine [2], while the second

signal could be provided by a hypoxia-sensing molecule [1]. It was

proposed that the overactive T-cells in inflamed and hypoxic areas

are down-regulated by A2A adenosine receptors [1] and hypoxia

inducible factor 1a (HIF-1a) [3,4] which may act in concert [5,6].

While the genetic evidence for the critical role of A2A adenosine

receptors in down-regulation of activated immune cells in vivo has

been provided using A2A receptor deficient mice [2,6], thereby

confirming the overall validity of this ‘‘anti-inflammatory hypoxia’’

hypotheses, the anti-inflammatory role of HIF-1a in T cells in vivo

remained to be proven using appropriate genetic models. The

hypothesis of HIF-1a being anti-inflammatory in T cells seems to be

counter-intuitive, since the myeloid cell-targeted deletion of HIF-

1a resulted in the loss of inflammatory response by myeloid cells

leading to the impression that HIF-1a in myeloid cells is pro-

inflammatory [7]. Despite these findings, we reasoned that T cells

may be different from macrophages and neutrophils, which are

known to be much more dependent on glycolysis-derived ATP and

therefore on glycolysis-controlling HIF-1a- [7]. We considered

that since HIF-1a is not as critical for activated T cells’ short term

survival as it is for myeloid cells, it may play an important T cell-

down regulating role in inflamed and hypoxic tissue microenviron-

ments in vivo by acting in concert with other hypoxia-triggered

mechanisms [1,5]. To directly test this we used mice with T cell

targeted deletion of HIF-1a gene. The present studies of bacterial

sepsis show that T–cell specific deletion of HIF-1 a in mice results

in: i) higher levels of pro-inflammatory cytokines; ii) stronger anti-

bacterial effects of T cells and granulocytes and iii) better survival

of mice from cecal ligation and puncture (CLP)-induced bacterial

sepsis [8]. In vitro studies to clarify the possible mechanism of the in

vivo observations revealed much faster cell proliferation and

enhanced activation of NF-kB in HIF-1a deficient T cells.

Quantitative real-time RT-PCR showed higher NF-kB p50

subunit expression in TCR stimulated T cells upon HIF-1a
deletion, suggesting that the HIF-1a-mediated pathway is at least

in part responsible for the suppression of NF-kB dependent cell

proliferation and pro-inflammatory cytokine production. These
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experiments uncover the before unappreciated reserve of pro-

inflammatory capacity of T cells in vivo and suggest novel

therapeutic strategies when there is a need to enhance activity of

T cells in hypoxic and/or inflamed tissues. We propose to inhibit

HIF-1a in order to relieve from inhibition the ‘‘anti-bacterial’’ T

cells during immune response to drug-resistant bacteria.

RESULTS AND DISCUSSION

T-cells are present in hypoxic inflamed peritoneum

but do not seem to contribute to anti-bacterial

immune response
The comparison of survival rates of WT (n = 10) vs. T cell deficient

RAG-2 knockout (n = 10) mice revealed no differences suggesting

that T cells do not contribute to an anti-sepsis immune response in

our model of sepsis (data not shown). We tested whether this could

be explained by i ) the lack of T cells’ presence in hypoxic inflamed

areas or ii) by hypoxic inhibition of activated T cells in the local

inflamed microenvironment.

The use of the in vivo hypoxic marker EF5 [9] allowed to

discount the possibility of T cells avoiding hypoxic areas in order

to maintain the highest levels of activation [10]. The labelling of

both CD4+ and CD8+ peritoneal T cells in vivo by EF5 is

diagnostic of their exposure to a less than 1% oxygen tension [9] in

inflamed areas of the peritoneum (Fig. 1A).

To test whether the failure to observe T cells’ contribution in

anti-bacterial response and pathogen destruction was due to their

negative regulation by hypoxia-stabilized and TCR-activation

induced HIF-1a, we studied newly developed mice with T cell

targeted deletion of the HIF-1 a gene. We hypothesized that if

HIF-1a was indeed one of the mediators of immunosuppressive

effects of hypoxia [10] by inhibiting T cells, then it would be

expected that HIF-1a gene-deficient T cells would be resistant to

inhibition in inflamed and hypoxic areas of peritoneum. This, in

turn, would be expected to result in uninhibited production of e.g.

Figure 1. Increased survival and decreased bacterial sepsis-associated tissue damage of mice with T-cell targeted deletion of HIF-1a. A: Use of
the hypoxic marker EF5 reveals that CD4+ and CD8+ T cells have been exposed to low oxygen tension (hypoxic) conditions in the peritoneum during sepsis
in mice. Single cell suspensions from peritoneal lavage fluid and spleens were analyzed by flow cytometry using anti-EF5 mAb (Elk3-52 Cy5). B: High
Efficiency of Cre recombinase-mediated deletion of HIF-1 a in T-Cells. Efficiency of deletion was calculated by quantitative real-time PCR as described.
Constitutively synthesized HIF-1 a mRNA was detected in control (lck-Cre negative) but not in (lck-Cre positive) HIF1 a gene targeted mice. N = 3 per
group. C: T cell lineage specific HIF-1 a deficient mice are more resistant to lethal sepsis after cecal ligation and puncture procedure. Mice underwent CLP
and were observed for mortality. N = 13 per group. p = 0.0326, Logrank (Mantel-Cox). D: T cell lineage specific HIF-1 a deficient mice have less sepsis-
associated liver damage as evaluated by levels of ALT transaminase activity in serum. Serum samples obtained from mice 72 hrs after CLP. *:p,0.05 vs.
WT, N = 5–6 per group.
doi:10.1371/journal.pone.0000853.g001
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IFN-c and of other pathogen-destroying cytokines by activated T

cells, as well as in the overall enhancement of the anti-bacterial

host response and better survival.

Selective disruption of HIF-1 a in T cells rescues mice

from septic death and decreases bacterial burden-

associated tissue damage
The possible contribution of T cells may have been overlooked in

models of sepsis with early (,24 hour) lethal outcomes, since T

cells may require longer than 24 hrs to be recruited to and

activated in inflamed environment. Therefore, we have adapted

a more long-lasting model of sepsis with ,50% mortality after

72 hours of CLP [8] to allow sufficient time for T cell recruitment

and activation in inflamed peritoneum so that T cells will have an

opportunity to contribute to the anti-bacterial response. Compar-

ative studies of mice with the confirmed HIF-1 a deletion in their

T cells (Fig. 1B) supported the view that HIF-1a in T cells did

inhibit them during sepsis. This was reflected in a statistically

significant increase in survival of mice with HIF-1a-deficient T

cells as compared with their HIF-1 a expressing littermates

(Fig. 1C). Survival between lck-Cre (+) and lck-Cre (2) control

mice was not different, demonstrating that the difference in

survival between lck-Cre (+) HIF-1 a loxP and lck-Cre (2) HIF-1

a loxP mice was indeed due to Cre mediated HIF-1 a knock-down

(data not shown). In another control, the sham CLP surgery did

not result in any mouse mortality (data not shown).

The significantly higher survival rates of mice with T cell-

targeted deletion of HIF-1 a gene (n = 27) as compared with

control HIF-1 a expressing mice (n = 29) were also observed in

other independent experiments in different mice facilities

(p = 0.040, log rank test; C. Caldwell, data not shown).

The HIF-1 a deficient mice also had much less sepsis-associated

tissue damage in different organs as demonstrated by an e.g.

significant decrease in levels of liver enzymes (Fig. 1D).

Histological analysis of livers revealed less apoptotic hepatocytes

72 hrs after CLP in HIF-1 a deficient mice (not shown).

The protective effects of genetic inactivation of HIF-1a in T

cells are most likely due to the relief from the negative regulation

by HIF-1a of pro-inflammatory, anti-bacterial functions of T cells.

This is reflected in the strong attenuation of bacterial burden in

spleen and liver of HIF-1 a-deleted mice (Fig. 2A). The

quantitative data showing that the decrease in bacterial counts

are paralleled by a dramatic decrease in the number of gas-

forming bacteria in HIF-1 a-deficient mice. For instance, Fig. 2B
shows that masses of gas-forming bacteria formed rings around gas

Figure 2. Decreased bacterial burden in mice with T-cell targeted deletion of HIF-1 a. A: T cell lineage specific HIF-1 a deficient mice have much less
bacterial burden in liver and spleen 72 hrs after CLP *:p,0.05 vs. WT, means6SEM, N = 3 per group. B: Growth of gas-forming bacteria and tissue
destruction during CLP-induced sepsis in mice with HIF-1 a-expressing T cells, but not in mice with HIF-1 a gene–deleted T cells. Masses of bacteria form
rings around gas bubbles in spleens of mice with HIF-1 a expressing T cells. Much less bacteria could be seen in the spleen taken 72 h after CLP from
mice with HIF-1 a deficiency in T cells. C: T-cell specific deficiency in HIF-1 a enhances effector functions of bactericidal granulocytes. Left Panel: Much
stronger upregulation of activation marker CD11b on tissue granulocytes (CD11b+/Gr-1bright cells) isolated from HIF-1 a-deleted mice compared to
HIF-1 a -expressing control mice. *:p,0.05 vs. WT, N = 3. Right Panel: Higher spontaneous production of hydrogen peroxide by tissue granulocytes
(CD11b+/Gr-1bright cells) in HIF-1 a-deleted mice than in HIF-1 a-expressing control mice. *:p,0.05 vs. WT, N = 3.
doi:10.1371/journal.pone.0000853.g002
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bubbles that also contained free bacteria in the spleen of HIF-1 a-

expressing mice. Such intensive bacterial growth was not observed

in littermates with HIF-1 a-deficient T cells. These data provide

direct microbiological and histological evidence that HIF-1

a inhibits anti-bacterial activities of T cells (Fig. 2A,B). In-

activation of HIF-1 a in T cells might contribute to amplification

of bactericidal functions of cells of the innate immune system.

Accordingly, granulocytes isolated from septic mice with T cell

specific HIF-1 a deficiency were much stronger activated as

indicated by levels of CD11b cell surface expression and H2O2

production (Fig. 2C). In agreement with the general view that

IFN- c is a likely candidate for T cell dependent enhancement of

bactericidal functions of granulocytes, the observed rescue from

septic death and the decrease in the bacteria-mediated tissue

damage (Fig. 1C and 2A,B) in mice with HIF-1 a protein

deficiency in T cells suggested to test for a possible HIF-1a

deficiency-induced ‘‘de-inhibition’’ of secretion of pro-inflamma-

tory cytokines in TCR-activated T cells.

T cell specific deletion of HIF-1 a gene ‘‘de-inhibits’’

TCR-activated T cells and results in increased cell

proliferation and cytokines secretion
Genetic deletion of HIF-1a in T cells resulted in increased TCR

triggered cell proliferation as shown by significantly higher

percentages of cells which had undergone three or four cell

divisions upon anti-CD3 mediated activation (Fig. 3A). Although

enhanced cell proliferation may result from direct relief of cell

cycle arrest as induced by loss of HIF-1a e.g. in B cells [11], the

increase in IL-2 production we found in HIF-1a deficient T cells

might account for enhanced T cell proliferation as well (Fig. 3B).

Besides IL-2, IFN-c secretion was significantly increased with the

Figure 3. HIF-1a is a negative regulator of TCR-triggered pro-inflammatory cytokine secretion in vitro and in vivo. A: T lymphocytes deficient in
HIF-1a undergo more cell divisions as compared to wild type T cells. Splenic T cells were purified, stained using CFSE, activated for 72 hours and
analyzed by flow cytometry as described. A representative dot plot of wild type CD4 T cells (A) and HIF-1a deficient T cells (B) showing both activation
by CD25 expression and cell divisions. (C) Comparison of number of divisions by CD4 T cells.*: p,0.05 vs. WT, N = 3 per group. B: T cell specific
disruption of HIF-1 a gene substantially increases pro-inflammatory cytokine secretion by ex vivo TCR-activated T cells. Spleen T cells were derived from T
cell lineage specific HIF-1 a deficient mice. Cells were activated for 24 h under hypoxic conditions (1% O2). Extracellularly secreted cytokines were
determined by ELISA. *:p,0.05 vs. WT, N = 5. C: Higher intracellular levels of IFN-c production by inflamed peritoneum-located hypoxic HIF-1 a deficient
CD8+ T cells as compared with similarly located in vivo hypoxic HIF-1 a expressing T cells after CLP. Peritoneal lavage was performed 72 hrs after CLP and
1,56106 T cells were restimulated and stained with anti-IFN-c mAb. D: Levels of proinflammatory cytokines TNF-a and IL-6 are significantly higher as
compared to mice with selective disruption of HIF-1a gene in T-cells. Peritoneal fluid (TNF-a, left panel) and serum (IL-6, right panel) were withdrawn at
the indicated times after CLP and cytokines were determined by ELISA. Closed circles: HIF-1a KO, open circles: WT. *:p,0.05 vs. WT, N = 4
doi:10.1371/journal.pone.0000853.g003

HIF-1a Inhibits T cells

PLoS ONE | www.plosone.org 4 September 2007 | Issue 9 | e853



latter confirmed at the intracellular level in HIF-1a deficient

peritoneal T cells harvested 72 h after CLP (Fig. 3C). No

extracellularly secreted IFN-c could be detected in blood serum or

peritoneal lavage fluid neither of HIF-1a KO or HIF-1a WT mice.

However, in agreement with IFN-c acting as an autocrine or

paracrine biological immune response modifier which enhances

the production of other pro-inflammatory cytokines [12], levels of

TNF-a and IL-6 after cecal ligation and puncture were higher in

peritoneal lavage fluid and blood serum in HIF-1a KO than in

HIF-1a WT mice (Fig. 3D).

The here described first evidence of the enhanced in vivo pro-

inflammatory cytokine production by T cells deleted in HIF-1a by

the Cre-lox P system [13] is in agreement with in vitro assays of T

cell lines independently obtained from chimeric mice, where HIF-

1 a was genetically inactivated using RAG-2 gene blastocyst

complementation system [14,15].

Deletion of HIF-1a enhances TCR stimulated NF-kB

activation
The NF-kB transcription factors are key regulators of inflamma-

tory and immune response [16]. We hypothesized that observed

effects of HIF-1a deletion in T cells may be due to HIF-1a
affecting T cells by acting through NF-kB. Indeed, studies of

neutrophils did suggest that NF-kB could be hypoxia-regulated

and a HIF-dependent target to increase neutrophil survival [17].

Accordingly, we studied the effects of HIF-1a deletion on NF-kB

activity in T cells. As shown by EMSA, NF-kB DNA binding

activity was enhanced in nuclear extracts of TCR stimulated

HIF-1a deficient T cells (Fig. 4A). While in neutrophils NF-kB

p65 expression plays a major role in HIF-1a dependent regulation

of NF-kB activity [17], the TCR-stimulated NF-kB activation in T

cells comprises p50+RelA and p50+cRel heterodimers and p50

homodimers [18]. NF-kB family profiling (p65, p50, c-Rel, p52

and RelB ) of DNA binding activity of T cell nuclear extracts

showed that upon TCR activation the activity of both the p50 and

the p65 subunits significantly increased in HIF-1a deficient cells as

compared to T cells with intact HIF-1a genes (Fig. 4B). To find

out whether these findings are due to NF-kB transcription, we

performed quantitative RT-PCR which confirmed a significant

increase in NF-kB p50 mRNA expression in HIF-1a deficient T

cells (Fig. 4C). Thus, HIF-1a is likely to suppress TCR stimulated

T cell responses by preventing p50 transcription and thereby

inhibiting NF-kB activation. Although HIF-1a is capable to

directly inhibit transcription (e.g. CAD gene [19] or ENT gene

[20]), we were not able to identify putative HRE sites in the

promoter region of the p50 encoding gene [21] by analyses using

a hidden Markov model (HMM) algorithm. Alternatively, HIF-1a
might affect a multiplicity of yet unknown proteins or transcription

factors influencing the p50 transcription and therefore may

indirectly suppress p50 expression.

The reported here consideration and studies of an inhibitory

role of HIF-1a in regulation of activated T cells have been

prompted by several lines of earlier observations: i) hypoxia

inhibited the TCR-induced pro-inflammatory cytokine (e.g. IFN-

c) accumulation by T cells [10]; ii) the deletion of HIF-1a in T and

Figure 4. Increased NF-kB m-RNA expression and activity of ex vivo activated T cells of mice with T-cell targeted deletion of HIF-1 a. For all three
panels, T-cells from spleens were isolated from age and sex matched lck Cre (2) and lck Cre (+) HIF-1a loxP mice and stimulated as described (WT-S,
kO2S). Unstimulated cells served as controls (WT, kO). A: T cell specific disruption of HIF-1 a gene substantially increases NF-kB binding activity in ex
vivo TCR-activated T cells. Nuclear extracts were prepared from harvested cells and EMSA was conducted. The experiment was repeated and
representative data of two experiments are shown. All lanes contain hot binding probe for NF-kB. Specificity of EMSA was tested in the presence of
50 fold excess of either unlabeled probe (Con 1) or CRE specific probe (Con 2), respectively. B: T cell specific disruption of HIF-1 a gene increases NF-kB
p50 and p65 binding activity in ex vivo TCR-activated T cells. NF-kB-ELISA was conducted with nuclear extracts. *:p,0.05 vs. WT, N = 4. C: T cell specific
disruption of HIF-1 a gene increases NF-kB p50 mRNA expression in ex vivo TCR-activated T cells. RNA was prepared and subsided to quantitative RT-PCR.
*:p,0.01 vs. WT. N = 4.
doi:10.1371/journal.pone.0000853.g004

HIF-1a Inhibits T cells

PLoS ONE | www.plosone.org 5 September 2007 | Issue 9 | e853



B cells resulted in an increased tissue damage and autoimmunity

[14] and iii) the deletion of HIF-1a in T cells resulted in enhanced

activation of T cells in vitro [15].

The data presented here provide the first direct genetic evidence

for the negative regulation of T cell activities by HIF-1a in vivo.

Furthermore, we show that the observed anti-inflammatory effect

of HIF-1a during anti-bacterial response results from suppression

of T cell proliferation and pro-inflammatory cytokine production

most likely due to inhibition of NF-kB/p50 transcription and

subsequent reduction of NF-kB activity.

Of potential clinical significance, these observations offer a new

approach to enhance the immune response by de-inhibiting T cells

from HIF-1a–mediated immunosuppression and thereby enhanc-

ing production of IFN-c by T cells in vivo. This may-in turn-lead to

a greater activation of cells of the innate immune system, which

then play a key role in the early bacterial elimination. Our findings

may re-invigorate the attention to the anti-bacterial effects of

T cells and appeal to recruit T cells’ powerful, but otherwise

unavailable anti-bacterial capacity in novel anti-sepsis therapies.

Moreover, our observations of T cells inhibition by HIF-1a in

hypoxic inflamed peritoneum suggest that activated anti-tumor

T cells may be also inhibited near or within hypoxic tumors by

HIF-1a. The HIF-1a-mediated inhibition may be additive or

synergistic with immunosupression caused by tumor hypoxia-

produced extracellular adenosine that is protecting tumors by

inhibiting the incoming anti-tumor T cells via their A2A adenosine

receptors [22].

MATERIALS AND METHODS

Generation of lck-Cre+/HIF1-a loxP floxed/floxed

mice
Mice with T cell-targeted deletion of HIF-1 a gene have been

generated as described in [15]. This allows for a T cell lineage

specific HIF-1 a deletion in lck-Cre positive mice, while the lck-

Cre negative littermates are HIF-1 a positive and can be used as

controls. The gross phenotype of the lck-Cre (+) HIF-1 a loxP

mouse was not markedly different from lck Cre (2) HIF-1 a loxP

mouse (HIF-1 a expressing littermates) as judged by viability,

weight, or limb deformities.

Determination of deletion efficiency
For the measurement of deletion efficiency of HIF-1 a in lck-Cre

(+) mice the purified T cells were obtained by positive selection on

AutoMACS cell separator using anti-CD3 mAb and HIF-1

a mRNA expression was determined by real time RT-PCR as in

[23] using primers spanning the targeted region as well as primers

for an undeleted control gene for normalization.

Cecal ligation and puncture
To enable the investigation of the possible role of T cells in

clearing bacterial infections, we have adapted a murine model of

sepsis, which results in 50% mortality after 72 hours of cecal

ligation and puncture (CLP) [8]. By avoiding the early (,24 hour)

lethal events of sepsis enabled us to study the behavior of T cells,

which may have required longer than 24 hrs to be recruited and

activated in inflamed environment. CLP was performed always by

the same scientist who was blinded to the experimental design

until the final time point of experiment (death of mice). Sham-

treated controls underwent the same surgical procedures (i.e.

laparotomy and resuscitation), but the cecum was neither ligated

nor punctured.

Bacterial Forming Colony Analysis
Bacterial counts were performed on aseptically harvested spleens,

lungs and livers as described previously [24]. The tissues were

weighed, homogenized, and cellular debris pelleted. The super-

natant samples were serially diluted in sterile saline and cultured

on tryptic soy agar pour plates. Plates were incubated for 48 hours

after which colony counts were performed. Data are expressed as

colony counts per gram tissue.

Tissue Damage Assessment
The spleen, liver and lung were harvested from sham and CLP

mice and placed into 4% paraformaldehyde. The tissue were

sliced and stained according to standard protocols used by

American Histolabs, Gaithersburg, MD.

To estimate hepatocellular injury during sepsis, ALT serum

activity was determined as previously described [6].

Analysis of granulocyte functions in extraperitoneal

organs
Functions of granulocytes–production of hydrogen peroxide and

expression of CD11b–were determined as previously described

[2].

Isolation of mononuclear cells from spleen, lymph

nodes and peritoneum
Spleens (lymph nodes) were homogenized using a 70 mm cell

strainer. Cells from the peritoneum were collected by insertion and

withdrawing of 10 ml of sterile PBS from the peritoneal space.

Purified T cells were obtained by negative selection on

AutoMACS cell separator using the Pan T-cell isolation kit

(Miltenyi Biotech) and placed in RPMI 1640 (Biofluids) supple-

mented with 5% dialyzed FCS (heat inactivated) and 100 U/ml

penicillin, 100 mg/ml streptomycin, 1 mM sodium pyruvate,

1 mM HEPES, and non-essential amino acids (RP5). Viability

was assessed using trypan blue.

Cytokine measurements
Intracellular staining of TCR-activated cells to evaluate IFN-c
production in situ was performed in permeabilized cells (after 4 h

of anti-CD3 and anti-CD28 mAb restimulation) by flow cytometry

analysis using anti-cytokine mAB (BD Pharmingen), 2 mM (final

concentration) monensin (Cal-Biochem) and saponin buffer (PBS

containing 0,1% (w/v) saponin, 0,1% BSA, 0,01 M HEPES and

0,1% sodium azide) as described [10] Extracellular cytokine

concentrations from serum, peritoneal fluid and from cell culture

supernatant were determined by ELISA kits (BD Pharmingen)

according to the manufacturer’s instructions.

Flow cytometry
Analyses of cell surface antigen expression and of IFN-c expression

in situ were performed as described earlier [10]. Flow cytometry

data acquisition and analysis were done on LSR, DIVA and

CellQuestPro programs (Becton Dickinson). All mAb used for

cytometry were obtained from BD Pharmingen.

Ex vivo activation of T cells
Purified T-cells were cultured in 12-well plates pre-coated with

anti-CD3 and anti-CD28 mAb 3 micro g/ml each. (Culture

volume was 1 ml per well containing 36106 cells.)

Cells were cultured in normoxic (21% O2) or hypoxic (1% O2)

environments. Normoxia was controlled by using a humidified 5%

HIF-1a Inhibits T cells
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CO2/air incubator, and hypoxia by pregasing culture medium for

10 min in a sealed hypoxic work station with 5% CO2/balance N2

gas mix and subsequent culture in a humidified hypoxic (CO2/N2)

incubator. Supernatants and cells were harvested 24 h later.

Analysis of cell proliferation
Purified splenic T cells were stained using 5,6-carboxyfluorescein

diacetate succinimidyl ester (CFSE), activated by platebound 3

micro g/mL anti-CD3 and anti-CD28 mAb for 72 hours and

analyzed by flow cytometry as described [25].

NF-kB DNA binding activity
Nuclear proteins were extracted from 1,56107 T-cells using the

Active Motif Nuclear Extract kit according to the manufacturer’s

instructions, total protein concentrations of the lysates were

determined by Bradford assay (Bio-Rad). EMSA was performed

as in [26]. The DNA binding activity of the NF-kB subunits in

5 mg of T-cell nuclear extracts was quantified by an ELISA assay

using the trans-AM NF-kB family transcription factor assay kit

(Active Motif North), according to the manufacturer’s protocol.

Quantitative RT-PCR
Spleen samples were homogenized before Total RNA isolation

using the RNeasy mini kit (Qiagen) including DNAse treatment

following the manufacturer’s protocol. Equal amounts of RNA

from the different samples were transcribed into cDNA using the

Superscript first strand RT-PCR kit (Invitrogen). Real-time qPCR

was performed in duplicates with the Light Cycler480 instrument

(Roche Diagnostics) using the Roche’s SYBR-Green mastermix

and prevalidated primer pairs (Qiagen). The thermal cycler

conditions were 35 cycles of 94uC for 20 s, 55uC for 20 s, and

72uC for 30 s. Relative mRNA expression was calculated with the

Relative Quantification software (Roche Diagnostics) using an

efficiency-corrected algorithm with standard curves and 18S

ribosomal RNA as an endogenous reference.

Statistical Analysis
All data were analyzed using GraphPad Prism software (GraphPad

Software). If otherwise not stated, values given represent

means6SD. Intergroup comparisons were performed by unpaired

T-Test or Mann-Whitney Test, if data were normal or not

normally distributed, respectively. Survival curves were compared

using the Log Rank test. Two-tailed levels of statistical significance

are indicated by *:p,0.05.
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