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Abstract

Investigating differences between means of more than two groups or experimental conditions is a routine research
question addressed in biology. In order to assess differences statistically, multiple comparison procedures are applied. The
most prominent procedures of this type, the Dunnett and Tukey-Kramer test, control the probability of reporting at least
one false positive result when the data are normally distributed and when the sample sizes and variances do not differ
between groups. All three assumptions are non-realistic in biological research and any violation leads to an increased
number of reported false positive results. Based on a general statistical framework for simultaneous inference and robust
covariance estimators we propose a new statistical multiple comparison procedure for assessing multiple means. In contrast
to the Dunnett or Tukey-Kramer tests, no assumptions regarding the distribution, sample sizes or variance homogeneity are
necessary. The performance of the new procedure is assessed by means of its familywise error rate and power under
different distributions. The practical merits are demonstrated by a reanalysis of fatty acid phenotypes of the bacterium
Bacillus simplex from the ‘‘Evolution Canyons’’ I and II in Israel. The simulation results show that even under severely varying
variances, the procedure controls the number of false positive findings very well. Thus, the here presented procedure works
well under biologically realistic scenarios of unbalanced group sizes, non-normality and heteroscedasticity.
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Introduction

Many research projects in Life Sciences employ comparative

studies [1–5]. For example, biodiversity exploration such as in

population genetics measures the properties of individuals

belonging to different groups. Often, multiple groups each

containing several individuals are compared for traits which may

differ only quantitatively but not qualitatively. The scientific

hypothesis under test is then most often formulated in terms of

mean differences among at least two of these groups. However,

choosing an appropriate statistical inference procedure in order to

assess mean differences between multiple groups often poses a

non-trivial challenge. First, for many statistically less well trained

users it is hard to verify to which extent statistical procedures for

comparing means are based on theoretical assumptions such as

normality or homoscedasticity, i.e. homogeneous or equal

variances among all groups. This may lead to misapplication of

tests, which is often not even detected by reviewers or editors.

Second, for a specific experiment an appropriate statistical

procedure might not even be available from the statistical

literature. This is the case when the researcher can not assume

the variances to be equal under all experimental conditions. All

previously suggested parametric procedures for comparisons of

means, such as the methods by Tukey [6] and Dunnett [7], require

homogeneous variances among all groups. Applying these

methods under heteroscedasticity, which refers to heterogeneous

or unequal variances among all groups, can result in extreme size

violations. As a consequence, false positive results will be reported

with a probability far higher than a, which is the a-priori chosen

probability for wrongly rejecting a true null hypothesis. The

situation is becoming even worse when unbalanced group sizes

and/or non-normally distributed data are present. Unfortunately,

unequal variances, non-normal data and unbalanced group sizes

are realistic and hardly avoidable situations in biological research.

A switch to non-parametric tests is not necessarily an option

because even though they do not assume normality, they still

assume that the shapes of the distributions are the same in all

groups, which implies that variances are equal [8]. Several

approaches for global comparison of several means under

heteroscedasticity have been reported [9–12]. Yet no methods

for multiple pairwise comparisons of means in presence of

heteroscedasticity and potentially unequal sample sizes in the

groups exist so far.

Hothorn et al. [13] introduced a statistical framework for

simultaneous inference in general parametric models, which can

be applied to a broad range of parametric models including

ANOVA models. Neither homoscedasticity nor normality nor

balanced group sizes are assumed, thus allowing for multiple

comparisons in balanced and unbalanced models with arbitrary

error distribution and hence arbitrary data distribution and

variance structure. Pairwise comparisons of means can be tested

simultaneously under control of the familywise error rate. The

familywise error rate is the probability of falsely rejecting one or

more hypothesis (i.e. finding a significant difference among the
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means of any two groups in the dataset even though there is

actually no difference present) and is used as the standard measure

for false positive results in multiple testing.

The aim of this paper is to advocate a new statistical method for

the comparison of multiple means which does not suffer from

increased false positive results the standard procedures will

produce under non-normal heteroscedastic errors in unbalanced

experimental designs. Asymptotic control of the familywise error

rate for this procedure has been shown [13]. To assess the quality

of the test under finite sample sizes, we examine the familywise

error rate of the test under homoscedasticity as well as under

heteroscedasticity for different error distributions in simulations

and show that the familywise error rate is controlled. We also

present the familywise error rate of procedures assuming

homoscedasticity and show that the familywise error rate is not

controlled under different forms of heteroscedasticity. In addition,

we investigate the test’s ability to find significant differences and

therefore estimate the test’s power, which is the probability of

correctly rejecting a false hypothesis. We then reanalyze data from

biodiversity research using this new procedure. In this research,

the multiple cladogenic splits of evolutionary lineages (putative

ecotypes) of the bacterium Bacillus simplex as an adaptational

response to the microclimatically heterogeneous environment of

‘‘Evolution Canyon’’, Israel, are being studied [14–17]. In this

model population, unbalanced groups with frequently heteroge-

neous variances in their phenotypic properties are found. We

apply the here presented method, which accounts for the existing

heteroscedasticity. The analyzes are additionally conducted with

methods requiring homogeneous variances. For several compar-

isons the results differ depending on whether heterogeneous

variances are accounted for. When neglecting the heteroscedas-

ticity, in several comparisons significant differences are found

although they are actually not present or significant differences are

not detected although they are present when the appropriate

method is chosen. Results from simulations and the application to

biodiversity research show how standard methods for multiple

group comparison may fail under biologically realistic scenarios of

heteroscedasticity and unbalanced groups, whereas the here

presented method appears to be appropriate for such scenarios

even in the situation of non-normal data. An implementation of

the test procedure is provided in the multcomp package in the

open-source-software R. We present R code which can be used to

perform multiple comparisons of groups showing heterogeneous

variances in the section ‘‘Computational Details’’.

Methods

Model, Assumptions and Inference Procedures
We consider a one-way ANOVA model

yij~mzbizeij , i~1, . . . ,q, j~1, . . . ,ni, ð1Þ

where yij denotes the jth observation in group i, m is the overall

average, bi denotes the main effect in group i and eij are random

errors.

General linear hypotheses. To assess which particular

groups differ concerning their means, we are interested in testing

Tukey’s all pairwise comparisons of group effects

H0
i| : bi{b|~0 Vi=|,i,|~1, . . . ,q, ð2Þ

or other post hoc comparisons simultaneously. To apply the

inference procedure introduced by Hothorn et al. [13] these

hypotheses have to be specified as general linear hypotheses of the

model parameter vector b~ b1, . . . ,bq

� �
. The general linear

hypothesis

H0 : Kb~m

is set up by a matrix of linear functions K[Rk,q, k~ q qz1ð Þð Þ=2
being the number of all pairwise comparisons. Each row of the

matrix K corresponds to one of the partial hypotheses H0
i|. With

the matrix K of the form

K~

{1 1 0 0 � � � 0 0 0

{1 0 1 0 � � � 0 0 0

..

.

{1 0 0 0 � � � 0 0 1

..

.

..

.

0 0 0 0 � � � 0 {1 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð3Þ

and the right hand side of the hypotheses specified as

m~ 0, . . . ,0ð Þ[Rk, the general linear hypothesis corresponds to

the partial hypotheses specified in equation (2). Further pairwise

comparisons procedures like Dunnett’s many-to-one comparisons

can be specified by a corresponding matrix K .

Assumptions. We assume that an estimate b̂bN[Rq of the

parameter vector b[Rq can be calculated based on N observations

yij and that the estimate follows an asymptotic multivariate normal

distribution b̂bN*N q b,Sð Þ. Additionally, a consistent estimation

ŜSN[Rq,q of the associated covariance matrix S[Rq,q is required to

be available. With these two assumptions fulfilled, the asymptotic

distribution of the linear combinations Kb̂bN is available, which is a

joint normal distribution N k Kb,KŜSNKT
� �

[13]. The deviation of

the estimates Kb̂bN from the null hypothesis Kb is standardized by

DN~diag KŜSNKT
� �

. The k test statistics are defined in terms of

these standardized deviations, i.e., TN~D
{1=2
N Kb̂bN{Kb

� �
which again asymptotically follows a joint normal distribution:

TN*N k 0,RNð Þ with RN~D
{1=2
N KŜSNKT D

{1=2
N . This distri-

bution holds under heteroscedasticity or unequal sample sizes in

the groups and is used as the reference distribution for the

simultaneous inference on the comparisons specified in the general

linear hypothesis.

Max-t test. The max-t test provides the information which of

the k pairwise comparisons is significant [13]. It is based on

maxDTN D, which is the maximum of the absolute values of the

standardized test statistics TN . Under the null hypothesis the

distribution function of this statistic is

P max DTN Dð Þƒsð Þ&
ðs

{s

� � �
ðs

{s

wk t1, . . . ,tk; RNð Þdt1 � � � dtk,

where wk is the density function of the distribution N k 0,RNð Þ.
Adjusted single-step p-values, which control the familywise error

rate, are

pj~1{P maxDTN D§Dtj D
� �

for the jth partial hypothesis with t1, . . . ,tk the components of the

observed test statistic TN . Approximate simultaneous 1{að Þ-
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confidence intervals are given by

K b̂bN+qa=2 d11, . . . ,dkkð ÞT ,

where dii, i~1, . . . ,k, are the square roots the diagonal elements of

DN .

Parameter estimation. In the derivation of the max-t test

we only assume that the parameter estimates are asymptotically

multivariate normal with a consistent estimate of the associated

covariance matrix being available. In an ANOVA model the

group effects b~ b1, . . . ,bq

� �
are generally estimated by the

ordinary least squares method. Under homoscedasticity the

ordinary least squares parameter estimates are asymptotically

normal and the ordinary least squares covariance estimation is a

consistent estimation of the true covariance of the parameter

estimates. Thus, both assumptions are fulfilled. In presence of

unequal variances, the ordinary least squares parameter estimates

are still asymptotically normal, while the covariance estimation

obtained by the ordinary least squares estimation technique is

inconsistent. Hence, a heteroscedastic consistent covariance

estimation technique needs to be applied for simultaneous

inference on the linear hypotheses. For small samples with a

total number of observations up to N~250 Long and Ervin

suggest to use the covariance estimation HC3 introduced by

MacKinnon and White [18,19].

Simulation
The inference procedure is based on the asymptotic distribution

of the test statistic. To assess the quality of the max-t test in

ANOVA models with finite sample sizes we investigated the

familywise error rate and the power of the max-t test in rather

small samples by simulations. The familywise error rate must not

exceed the a-priori defined level a, i.e., the probability of rejecting

at least one true null hypothesis. If the familywise error rate is

controlled, we are additionally interested in the power of the test,

which measures the test’s ability to find significant differences. For

each false comparison the power is the probability of rejecting this

false comparison.

We considered unbalanced one-way ANOVA models with q~4
groups with equal variances s2 and normal data (A) and with

heterogeneous variances with smaller variances in the smaller

groups (B, D) and vice versa (C, E) both for normal and non-

normal, right-skewed data. For the classical procedures, these

special conditions of positive or negative pairing of group sizes and

variances typically lead to conservative or liberal results,

respectively.

A: n1vn2vn3vn4 and s1~s2~s3~s4, normal data.

B: n1vn2vn3vn4 and s1vs2vs3vs4, normal data.

C: n1vn2vn3vn4 and s1ws2ws3ws4, normal data.

D: n1vn2vn3vn4 and s1vs2vs3vs4, non-normal data.

E: n1vn2vn3vn4 and s1ws2ws3ws4, non-normal data.

For all pairwise comparisons of the group effects the familywise

error rate and the power properties of the max-t test using the

covariance estimation HC3 were estimated and compared to the

Tukey-Kramer test, which assumes equal variances among all

groups.

Simulation parameters. Total sample sizes of

N~60,120,180,240 were considered with the N observations

unbalancedly distributed to the four groups. The number of

observations ni for each group i~1, . . . 4 were defined as

ni~nz0:2:i:n,i~1, . . . ,4,n~10,20,30,40, leading to
P

i ni~N.

The overall mean was set to m~0 and all group effects were chosen

equally bi~2, i~1, . . . ,4. The random errors were independently

normally distributed eij*N 0,s2
i

� �
with group specific standard

deviations si. Standard deviations s~ s1, . . . ,s4ð Þ were chosen as

s~ 2,2,2,2ð Þ in model A, s~ 3,5,7,9ð Þ in model B, s~ 9,7,5,3ð Þ
in model C, s~ 0:14,0:18,0:29,0:35ð Þ in model D and

s~ 0:35,0:29,0:18,0:14ð Þ in model E.

Estimation of size and power. Datasets of size N~
P

i ni

were simulated according to the considered models A to E. In each

dataset all pairwise comparisons of the group effects were tested

simultaneously by the max-t test accounting for heteroscedasticity

and by the Tukey-Kramer test.

To investigate the power of the tests the effects of groups 2 to 4

(b2,b3 and b4) were kept equal while the effect of the first group b1

was chosen differently. Thus, the pairwise comparisons of b1 with

each of the three other effects were false. For each of these false

partial hypotheses the power of the max-t test and the Tukey-

Kramer test were estimated by the proportion of correctly re-

jected partial hypotheses among 1000 datasets for increasing

distances between b1 and bi,i~2,3,4. 41 values of distances

b1{bi,i~2,3,4, were considered. The familywise error rate was

estimated by the proportion of datasets, in which at least one true

partial hypothesis was falsely rejected. The same datasets were

used for the analyzes of size and power leading to 41 estimated

values of the familywise error rate each based on 1000 datasets.

The distribution of the estimated familywise error rate is illustrated

by the boxplots in Figure 1, where the boxplot for each setting is

calculated from the 41 estimated values.

Comparisons of fatty acid phenotypes of Bacillus simplex
putative ecotypes under heteroscedasticity

The B. simplex population from ‘‘Evolution Canyons’’ I and II in

Israel has recently developed to a model study of bacterial

adaptation and speciation under heterogeneous environmental

conditions [14]. These two canyons represent similar ecological

sites, at a distance of 40 km, in which the orientation of the sun

yields a strong sun-exposed and hot ‘African’ south-facing slope

versus a rather cooler and mesic-lush ‘European’ north-facing

slope within a distance of only 50–400 m. Phylogenetically, based

on DNA sequences, the B. simplex population splits into two major

groups GL1 and GL2. Interestingly, within each GL1 and GL2,

further phylogenetic groups (or so called ‘putative ecotypes’) were

observed which show a clear preference for either slope type

[14,15]. As a putative ecotype (PE) we regard a phylogenetic

lineage whose members are adapted to specific ecological

conditions [16,20]. Whereas GL2 is composed of only PE1 and

PE2, GL1 is made up of multiple PE (PE3–PE9) [15,16]. In our

quest to understand this characteristic slope type preference of the

bacteria, we analyze physiological properties (phenotypes) that

might be explanatory, such as temperature stress related

phenotypes as a putative evolutionary adaptive response to the

different temperatures on both slopes. For example, the physical

integrity of the cell membrane at different temperatures is crucial

for the cell survival. Here, the fatty acid composition of the cell

membrane is of substantial importance. This was the motivation

for a recent study on the contents of high- and low-temperature-

tolerance-providing fatty acids (FAs) of the B. simplex ecotypes [17].

However, as the methods for the genetic characterization were

improved in the meanwhile, leading to a re-shuffling of individuals

into different groups (see also Table 3 of the supplemental material

of [16]) and as the former fatty acid data were analyzed using the

classical non-robust statistical tools [17] we take here the

opportunity to reanalyze the experiment using the newly

developed statistical tools presented in this manuscript. We focus

specifically on the multiple ecotypes PE3 to PE9 from GL1 (we

Comparing Multiple Means

PLoS ONE | www.plosone.org 3 March 2010 | Volume 5 | Issue 3 | e9788



exclude PE8, as this ecotype is represented by only two bacterial

strains).

Heteroscedasticity among the PE is assessed visually by

boxplots, which illustrate the distribution of the FAs for the six

PE. Analyzes are conducted both with methods assuming

homoscedasticity and with methods accounting for heteroscedas-

ticity to investigate in which way wrong conclusions are drawn

when heterogeneous variances are ignored. We compute simul-

taneous confidence intervals for all pairwise differences of group

effects to investigate which pairs of PE differ significantly

concerning a specific growth condition of the bacteria [17]. These

confidence intervals are calculated by the max-t method using the

ordinary least squares covariance estimation (assuming homosce-

dasticity), by the max-t method using the heteroscedastic

consistent covariance estimation HC3 as well as by the Tukey-

Kramer method.

Results

Size and power of the max-t test
The estimated familywise error rates for all pairwise compar-

isons of group effects for both the max-t test using a

heteroscedastic consistent covariance estimation and for the

Tukey-Kramer test are illustrated in Figure 1. In the model with

equal variances in all groups (model A) the estimated familywise

error rate of the max-t test is close to the a-priori chosen level of

a~0:05 for either covariance estimation. With unequal variances

and higher variances in the larger groups for both normal or non-

normal data (models B and D), the Tukey-Kramer test is

conservative while the estimated familywise error rate of the

max-t test using the heteroscedastic consistent covariance

estimation is close to a~0:05 already for a total sample size of

N~60. In the situation with higher variances in the smaller

groups for both normal or non-normal data (models C and E), the

usage of the Tukey-Kramer test results in serious violations of the

familywise error rate. The familywise error rate of the max-t test

using the consistent covariance estimation is liberal for a total

sample size of N~60 but close to a~0:05 with increasing total

sample size N.

Figure 2 shows the power curves of the max-t test for models A

to C for the three pairwise comparisons of group effects

bi,i~2,3,4, with b1, when the effects of the first group differs

from the remaining effects. Under homoscedasticity (model A) the

power of both multiple test procedures is almost identical for

equivalent sample size N. In model B, the power of the max-t test

is higher than the power of the Tukey-Kramer test. In model C

the probability of discovering a false hypothesis is higher for the

Tukey-Kramer test, but yet this test cannot be used because the

familywise error rate is not controlled (Figure 1C).

Comparisons of fatty acid phenotypes
Figure 3 shows the distributions of high- and low-temperature-

tolerance-providing FAs in six PE of B. simplex (PE3–PE9) for six

different experimental conditions (Figures 3a to 3f). Variances

Figure 1. Familywise error rate of the simultaneous tests. Estimated familywise error rate of the max-t test using a heteroscedastic consistent
covariance estimation (max-t+HC3) and of the Tukey-Kramer test (Tukey-Kramer) assessing all pairwise comparisons of group effects in models under
homoscedasticity (A), under heteroscedasticity with smaller variances in the smaller groups (B, D) and under heteroscedasticity with smaller variances
in the larger groups (C, E) for normal data (A, B, C) and non-normal data (D, E). The total number of observations N was unbalancedly distributed to
the four groups. The horizontal red line indicates the a-priori defined level a~0:05.
doi:10.1371/journal.pone.0009788.g001
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differ considerably between the lineages within each type of

experimental conditions. Thus, the validity of the results of the

tests neglecting heteroscedasticity might be in question and

attention should be drawn to the results of the max-t method

accounting for heteroscedasticity. Results of the inference

procedures assuming homoscedasticity (Tukey-Kramer method

and max-t method using the ordinary least squares covariance

estimation) are presented as well to show the extent of differences

in the results (Figure 4).

The simultaneous confidence intervals for all pairwise differ-

ences of group effects for all six fatty acids calculated by the

methods which assume homoscedasticity (Tukey-Kramer and

ordinary max-t method) do not alter in any comparison of strains.

In contrast, the width of the max-t confidence intervals based on

the heteroscedastic consistent covariance estimation is noticeably

different, either narrower or wider.

Two PE are considered significantly different concerning their

fatty acid content, if the associated simultaneous confidence

interval does not include the zero. For several comparisons the

decision of significant difference depends on the method chosen

(simultaneous confidence intervals colored blue). When heteroge-

neous variances are neglected, a significant difference in the

lineages PE3 and PE5 is found concerning the FAs (Figure 4a),

which is not present when heteroscedasticity is accounted for. For

Figure 2. Power of the simultaneous tests. Comparison of the estimated power of the max-t test using a heteroscedastic consistent covariance
estimation (max-t+HC3) and of the Tukey-Kramer test (Tukey) assessing all pairwise comparisons of group effects in models under homoscedasticity
(A), under heteroscedasticity with smaller variances in the smaller groups (B) and under heteroscedasticity with smaller variances in the larger groups
(C). The total number of observations N was unbalancedly distributed to the four groups.
doi:10.1371/journal.pone.0009788.g002
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the other FAs (Figure 4b to 4f) significantly differing lineages of B.

simplex are not detected, when heteroscedasticity is ignored.

Discussion

We described the application of the simultaneous inference

procedure proposed by Hothorn et al. [13] to pairwise comparisons

of means. By using an appropriate covariance estimation

technique, the method can be used for multiple comparisons in

presence of either equal or unequal group variances in balanced or

unbalanced designs with arbitrary error distribution.

Simulations showed, that the familywise error rate is bound by

the a-priori chosen level of a already for relatively small sample

sizes in unbalanced designs with both normal or skewed error

distributions and different kinds of pairing of group sizes and

variance, whereas the Tukey-Kramer test can lead to false positive

rates considerably higher than a. Even in situations where the

Tukey-Kramer test does not lead to inflated false positive rates, the

max-t test is superior to the Tukey-Kramer test, as it has the

higher power to detect existing differences in means.

Thus, the max-t test for multiple comparisons of means using

the heteroscedastic consistent covariance estimation in presence of

unequal variances helps to avoid an increased number of false

positive results. The procedure is implemented in the R [21] add-

on package multcomp [22] utilizing an implementation of the

HC3 estimator in package sandwich [23]. A short introduction

along with an example is given in the Appendix.

Computational Details
Install the R software from http://CRAN.R-project.org/. Then

use the R software to install the packages multcomp and sandwich.

The multcomp package in R provides a general implementation

of the framework for global and simultaneous inference in

parametric models. In this section we present R code which can

be used to perform multiple comparisons of groups showing

heterogeneous variances. Data has to be in a form with two

columns, where the first column contains the grouping variable

and the second column contains the quantitative values of the

observations. This can be in a .txt, .csv or .Rda file, which can be

imported in R by the functions read.table(), read.csv() and

load() respectively, or by the R Commander. The example data

used in the following correspond to the data underlying Figure 3A

and 4A and are available in the multcomp package.

The example data fattyacid can be loaded by

. library(‘‘multcomp’’)

Figure 3. Distribution of the fatty acid content in six lineages (putative ecotypes, PE) of B. simplex for six different experimental
conditions (a to f). Strains were grown on Trypticase Soy Broth Agar (Difco) for 24 hours at different temperatures. Harvesting of the cells,
saponification, methylation, and extraction were performed according to instructions for fatty acid (FA) evaluation with the Sherlock Microbial
Identification System (MIDI, Inc, Newark, USA). The samples were analyzed on an Agilent Technologies 6890N gas chromatograph. The FA content for
each strain is reported as the percentage of FA among all FAs present. Fig. a and b sum up the high-temperature tolerance providing iso-branched
FAs (i-14:0, i-15:0, i-16:0, i-17:0). Fig. a shows the ratio of these FA when the strains were grown at 200C versus 280C. In Fig. b, the growth temperature
was 400C. Fig. c to f sum up the cold-temperature tolerance providing anteiso-branched (ai-15:0, ai-17:0) and unsaturated FA (16:1 v11c, 16:1 v7c
alcohol, i-17:1 v10c). The strains were grown at 200C (Fig. d) and 400C (Figure e). Fig. c shows the ratio of 200C/280C, Fig. f the ratio of 400C/280C.
Further experimental details are described elsewhere [17].
doi:10.1371/journal.pone.0009788.g003
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. data(‘‘fattyacid’’)

It contains the grouping variable (here the putative ecotype PE)

in the first column and the fatty acid content (FA) by which the

groups are to be compared in the second column:

. fattyacid

PE FA

1 PE9 0.95

2 PE9 0.95

3 PE9 1.04

4 PE9 1.01

5 PE9 0.86

.

.

.

91 PE3 0.83

92 PE3 1.02

93 PE3 0.89

The following R code performs all-pairwise comparisons of

means of the fattyacid data. It can be applied to any other data

by replacing fattyacid in the third line by the name of the

object containing the data in the two-column way described

above, and by replacing the variable names PE and FA by the

names of the variables used in the dataset wherever PE and FA
appear in the code.

. library(‘‘sandwich’’)

. amod ,- aov(FA,PE, data=fattyacid)

. amod_glht ,- glht(amod, mcp(PE=‘‘Tukey’’),
vcov=vcovHC)

. summary(amod_glht)
Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula=FA,PE, data=fattyacid)
Linear Hypotheses:
Estimate Std. Error t value Pr(.|t|)

PE4 - PE3= =0 20.012820 0.034997 20.366 0.99905
PE5 - PE3= =0 20.084398 0.033846 22.494 0.13104
PE6 - PE3= =0 0.019286 0.035760 0.539 0.99400
PE7 - PE3= =0 20.010048 0.038006 20.264 0.99981

PE9 - PE3= =0 0.075536 0.035783 2.111 0.28057
PE5 - PE4= =0 20.071579 0.019764 23.622 0.00600 **
PE6 - PE4= =0 0.032105 0.022887 1.403 0.71500
PE7 - PE4= =0 0.002772 0.026258 0.106 1.00000

PE9 - PE4= =0 0.088355 0.022923 3.854 0.00282 **
PE6 - PE5= =0 0.103684 0.021085 4.917 ,0.001 ***
PE7 - PE5= =0 0.074351 0.024703 3.010 0.03678 *

PE9 - PE5= =0 0.159934 0.021124 7.571 ,0.001 ***
PE7 - PE6= =0 20.029333 0.027266 21.076 0.88423
PE9 - PE6= =0 0.056250 0.024072 2.337 0.18270
PE9 - PE7= =0 0.085583 0.027297 3.135 0.02592 *

— Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
0.1 ‘ ’ 1
(Adjusted p values reported – single-step method)

Figure 4. Simultaneous confidence intervals for all pairwise comparisons of group means. Intervals are computed by the max-t method
accounting for heteroscedasticity using the heteroscedastic consistent covariance estimation HC3 (max-t+HC3), by the max-t method assuming
homoscedasticity using the ordinary least squares covariance estimation (max-t+OLS) and by the Tukey-Kramer method assuming homoscedasticity
(Tukey-Kramer). The blue confidence intervals indicate the pairwise comparisons for which the decision of significant difference of the associated
group means differs between the test procedures.
doi:10.1371/journal.pone.0009788.g004
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First, a common ANOVA model is fitted by the function

aov(). The fitted model amod is then given to the function

glht() which sets up the hypotheses to be tested (i.e. the multiple

contrasts of means). The argument vcov=vcovHC specifies the

use of the heteroscedastic consistent covariance estimation HC3

accounting for the heterogeneous variances. The function

vcovHC() and further heteroscedastic consistent sandwich

covariance estimation functions are provided in the package

sandwich. For multiple comparisons by the max-t method in the

situation of homogeneous variances the argument vcov=vcovHC
of the function glht() has to be omitted.

Adjusted p-values assuring that the familywise error rate is not

larger than a are computed by the summary() function. For each

pairwise comparison the adjusted p-values are given in the last

column of the output (column headed ‘Pr(.|t|)’). An adjusted

p-value of smaller than the a-priori chosen value of a indicates a

significant difference of the corresponding group means. We here

find six significant differences on the level a~0:05. Significance is

marked by asterisks at the end of the associated row.

Simultaneous confidence intervals for each difference of means

can be computed by

. confint(amod_glht)
Simultaneous Confidence Intervals
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula=FA,PE, data=fattyacid)
Estimated Quantile=2.8935
95% family-wise confidence level
Linear Hypotheses:
Estimate lwr upr
PE4 - PE3= =0 20.012820 20.114083 0.088444
PE5 - PE3= =0 20.084398 20.182332 0.013535
PE6 - PE3= =0 0.019286 20.084185 0.122756
PE7 - PE3= =0 20.010048 20.120016 0.099921
PE9 - PE3= =0 0.075536 20.028002 0.179074
PE5 - PE4= =0 20.071579 20.128765 20.014393
PE6 - PE4= =0 0.032105 20.034117 0.098328
PE7 - PE4= =0 0.002772 20.073204 0.078748

PE9 - PE4= =0 0.088355 0.022027 0.154683
PE6 - PE5= =0 0.103684 0.042676 0.164693
PE7 - PE5= =0 0.074351 0.002874 0.145828
PE9 - PE5= =0 0.159934 0.098812 0.221057
PE7 - PE6= =0 20.029333 20.108227 0.049560
PE9 - PE6= =0 0.056250 20.013400 0.125900
PE9 - PE7= =0 0.085583 0.006601 0.164565

where the entries of the columns headed ‘lwr’ (lower) and ‘upr’
(upper) give a lower and an upper bound for the confidence

interval of each contrast.

. plot(confint(amod_glht))
visualizes the simultaneous confidence intervals.

The given R Code performs Tukey’s all pairwise comparisons of

means. Dunnett’s many-to-one contrasts comparing several groups

each with a reference group can be tested by replacing the argument

mcp(PE=‘‘Tukey’’) by mcp(PE=‘‘Dunnett’’) in the func-

tion glht(). Arbitrary other multiple contrasts of group means

can be described symbolically, e.g. by replacing the argument

mcp(PE=‘‘Tukey’’) by mcp(PE=c(‘‘PE4 - PE3=0’’,
‘‘PE5 - PE3=0’’,
‘‘PE9 - PE5=0’’)),

for comparisons of means of groups 4 and 3, 5 and 3, and 9 and 5.

Further details to the above listed R code are available at http://

CRAN.R-project.org/package = multcomp.

The simulation results can be reproduced using the R transcript

file available via

. file.show(system.file(‘‘multcomp_VA.R’’, pack-
age=‘‘multcomp’’))
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