
Andrea Wiencierz, Sonja Greven, Helmut Küchenhoff

Restricted Likelihood Ratio Testing in Linear Mixed
Models with General Error Covariance Structure

Technical Report Number 109, 2011
Department of Statistics
University of Munich

http://www.stat.uni-muenchen.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12172836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/
http://www.stat.uni-muenchen.de/


Restricted Likelihood Ratio Testing in Linear Mixed

Models with General Error Covariance Structure

Andrea Wiencierz∗, Sonja Greven, Helmut Küchenhoff

Department of Statistics, LMU Munich

Abstract

We consider the problem of testing for zero variance components in linear mixed

models with correlated or heteroscedastic errors. In the case of independent and iden-

tically distributed errors, a valid test exists, which is based on the exact finite sample

distribution of the restricted likelihood ratio test statistic under the null hypothesis.

We propose to make use of a transformation to derive the (approximate) test distri-

bution for the restricted likelihood ratio test statistic in the case of a general error

covariance structure. The proposed test proves its value in simulations and is finally

applied to an interesting question in the field of well-being economics.

Keywords: linear mixed model, penalized splines, likelihood ratio test, correlated

errors, generalized least squares, SOEP data, subjective well-being

1 Introduction

We are interested in testing for zero variance components in the context of Linear Mixed

Models (LMMs). LMMs constitute a flexible class of statistical models that can be applied to

a wide range of problems. These models are suitable to analyze, for example, longitudinal or

clustered data (e.g. Verbeke and Molenberghs, 2000) as well as spatial data (e.g. Kammann

and Wand, 2003). Moreover, LMMs are established as a useful framework for nonparametric

models (e.g. Ruppert, Wand and Carroll, 2003).

Within the LMM framework it is possible to test whether individuals or clusters differ

from other observation units in a way that cannot be predicted by the considered covariates,

or whether an estimated smooth function is different from a polynomial of a given degree.

Such test problems are equivalent to testing whether the variance of the corresponding

random effect is different from zero. This is a nonstandard test situation because under

∗Correspondence should be addressed to: andrea.wiencierz@stat.uni-muenchen.de
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the null hypothesis the tested parameter is on the boundary of the parameter space. A

valid Restricted Likelihood Ratio Test (RLRT) for this situation has been established by

Crainiceanu and Ruppert (2004), who derived the exact finite sample distribution of the

RLRT statistic in the case of an LMM with only one random effect’s variance component.

For LMMs with more than one additional variance components, there are good approxima-

tions of the test distribution based on the exact RLRT distribution (Greven et al., 2008;

Scheipl, Greven and Küchenhoff, 2008).

The established test procedure has been derived based on the assumption that the errors

are independent and identically distributed (i.i.d.) conditional on the random effects. In

many practical settings the i.i.d. assumption is not fulfilled. For example, in a panel data

set from a social survey, the observations of each respondent are likely to be autocorrelated

conditional on the individual random effect, because observations closer in time are likely

to be more similar.

The data situation we have in mind is motivated by the micro-econometric analysis in

Wunder et al. (2011). Here, unbalanced panel data on subjective well-being were analyzed

with a semiparametric mixed model containing a smooth function in age and an individ-

ual random intercept. The data used are from the German Socio-Economic Panel Study

(SOEP), which are available as scientific use files at http://www.diw.de/en/soep (Wag-

ner, Frick and Schupp, 2007). The question of interest was whether the smooth function is

different from a quadratic or cubic polynomial as is typically used in well-being research. In

the LMM framework, this question can be answered in testing whether the corresponding

random effect’s variance is different from zero. Further analyses of the data set indicated

that for each individual the errors are correlated over time.

Therefore, we look for a generalization of the established test allowing for more general

covariance structures of the errors. Since the exact RLRT null distribution cannot simply be

extended to correlated errors and a bootstrap-based test is computationally too demanding

(given the large SOEP data set of more than 250 000 observations), we follow another

approach: We use the RLRT statistic and propose to use a transformation to approximate

the test distribution employing results on the exact distribution in the case of i.i.d. errors.

The paper is organized as follows: In Section 2 we present the methodological framework

and the notation used in this paper. First, we introduce the considered class of models and

discuss the problem of testing for zero variance components in the case of i.i.d. errors. After

this, we present the idea of the transformation we adapt to take the correlation structure

of the errors into account, before we propose the test procedure for the case of errors with

general covariance structure. The accuracy of the proposed test is then investigated in

a simulation study described in Section 3. Moreover, we apply the suggested test to the

motivating question regarding the profile of subjective well-being over age in Section 4.

Finally, Section 5 gives a short summary and discussion of our findings.
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2 Theoretical Background and Methods

2.1 The Linear Mixed Model

We consider LMMs of the following form:





y = Xβ +Z1b1 + . . .+ZSbS + ε,

bs ∼ N(0, σ2
sΣs), s = 1, . . . , S,

ε ∼ N(0, σ2
εR),

b1, . . . , bS, ε independent.

(1)

Here, X and Z1, . . . ,ZS are design matrices with full ranks p and K1, . . . , KS, respec-

tively. The vector β contains fixed covariate effects, whereas b1, . . . , bS are independent

random effect vectors. The correlation matrices associated with the random effects vectors,

Σ1, . . . ,ΣS, are assumed known. The matrix R describes an error covariance structure. It

is often assumed that the errors are uncorrelated, i.e. R = In, where In is the n-dimensional

identity matrix and n is the total number of observations. Since there are many situations

in practice in which this assumption is not appropriate, a more general class of models is

considered here, allowing any covariance structure for the errors to be specified in R.

There are two important special cases of LMMs that are often used in applications:

the simple random intercept model and mixed model smoothing. In both special cases,

the model contains only one random effect vector b of length K with covariance matrix

Cov(b) = σ2
bΣ = σ2

bIK .

The random intercept model can be used to model longitudinal or clustered data where

it is assumed that the individual or cluster means deviate randomly from the overall mean

(e.g. Verbeke and Molenberghs, 2000),

yij = x′ijβ + bi + εij.

In this case, b = (b1, . . . , bN)′ is an N × 1-vector, where N is the number of individuals or

clusters.

To express a penalized splines model as an LMM, the basis coefficients of the nonpara-

metric model are split into two groups: those which are shrunk by the penalization imposed

during the estimation and the unpenalized coefficients. The penalization of the one group

of coefficients can equivalently be expressed by assuming a normal distribution with mean

zero for those coefficients. Therefore, the penalized splines model can be formulated as an

LMM where the random effects vector b is formed by the penalized basis coefficients. These

coefficients represent deviations of the modeled function from a global polynomial of degree

d.
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For example, consider a penalized splines model with truncated power functions as spline

basis functions

yi = f(xi) + εi =
d∑

j=0

βjx
j
i +

K∑

j=1

bj(xi − κj)d+ + εi, i = 1, . . . , n,

where κ1 < . . . < κK are K knots and (u)d+ = (max{0, u})d. To impose smoothness of the

estimated curve, high values of the coefficients b1, . . . , bK are penalized. Then, the estimator

of θ = (β0, . . . , βd, b1, . . . , bK) is given by:

θ̂ = (B′B +
1

λ
D)−1B′y,

where B is the design matrix of the spline basis, λ is the inverse of the so-called smoothing

parameter, which controls the amount of shrinkage, and

D =

(
0 0

0 IK

)
.

This penalized splines model can alternatively be formulated as an LMM, where

d∑

j=0

βjx
j
i = x′iβ, and

K∑

j=1

bj(xi − κj)d+ = z′ib,

and the smoothing parameter is given by 1
λ

= σ2
ε

σ2
b
. Estimating a smooth function within the

LMM framework has the advantages of higher computational efficiency and of an integrated,

automated smoothing parameter selection. Detailed information about penalized splines

and mixed model smoothing can be found, for example, in Eilers and Marx (1996) and

Ruppert, Wand and Carroll (2003).

2.2 Testing for Zero Variance Components in LMMs

We are interested in testing whether a random effect is different from zero. In the case

of a random intercept model for longitudinal data, this means determining whether there

are significant individual-specific deviations from the population mean. In the penalized

splines context, the tested null hypothesis (H0) is that the smooth function of interest can

adequately be described by a polynomial of a given degree d. Since the random effects have

expectation zero, the considered testing situation is equivalent to testing if the variance of

that random effect is different from zero. Hence, the test has the structure:

H0 : σ2
s = 0 vs. H1 : σ2

s > 0. (2)
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The considered testing problem is not regular because first, under the null hypothesis the

tested parameter lies on the boundary of the parameter space and second, the data are not

i.i.d. because of the particular covariance structure of grouped data or due to correlations

induced by penalized splines. Both characteristics violate the typical regularity conditions

for likelihood ratio testing, therefore, the asymptotic distribution of the Likelihood Ratio

Test statistic (LRT) is not the standard χ2 distribution.

In the case of longitudinal data, however, the vector of observations y can be subdivided

into independent subvectors. Considering an increasing number of subvectors, Stram and

Lee (1994) derived an asymptotic distribution of the LRT, applying results of Self and Liang

(1987). This asymptotic distribution is an equal mixture of two χ2 distributions. As shown

by Morrell (1998), their results also apply to the RLRT statistic, which is the test statistic

based on Restricted Maximum Likelihood (REML) estimation of the variance components.

If we consider LMMs of a more general form like, for example, a penalized splines

model, such a subdivision of the data is not possible. Therefore, the asymptotic χ2 mixture

distribution does not apply to this case. Crainiceanu and Ruppert (2004) found the exact

finite sample distribution of the LRT and of the RLRT in the case of an LMM with only

one random effect variance component and i.i.d. errors. They also derived asymptotic

distributions of both statistics in this situation. The distribution of the LRT under the null

hypothesis can have a very high mass on zero; thus, testing on the basis of the LRT may

be impracticable. That is why we will focus on the RLRT in the remainder of the paper.

Consider a test of the given structure for an LMM with only one random effect (vector)

and i.i.d. errors. In this case, the exact RLRT distribution under H0 can be expressed (with

λ =
σ2
b

σ2
ε
) as (Crainiceanu and Ruppert, 2004):

RLRTn
d
= sup

λ≥0

{
(n− p) log

[
1 +

Nn(λ)

Dn(λ)

]
−

K∑

l=1

log(1 + λµl,n)

}
, (3)

where

Nn(λ) =
K∑

l=1

λµl,n
1 + λµl,n

ω2
l , Dn(λ) =

K∑

l=1

ω2
l

1 + λµl,n
+

n−p∑

l=K+1

ω2
l ,

and
d
= means equality in distribution. Here, µl,n, l = 1, . . . , Ks, are the eigenvalues of

the matrix Σ
1
2
sZ ′s(In − X(X ′X)−1X ′)ZsΣ

1
2
s and ωl

iid∼ N(0, 1), l = 1, . . . , n − p. This

distribution only depends on the design matrices of the fixed and random effects, X and

Zs, and on the correlation structure within the random effects vector, Σs.

Critical values or p-values of the distribution of RLRTn can be determined efficiently by

simulation, which is implemented in the RLRsim package (Scheipl, 2008) for the statistical

software environment R (R Development Core Team, 2011). In case of nuisance variance
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components, the above RLRT distribution is a well-performing approximation of the exact

test distribution (Greven et al., 2008; Scheipl, Greven and Küchenhoff, 2008).

The previously mentioned results are based on the assumptionR = In. We are interested

in a more general setting where the covariance matrix of the errors can be of any possible

structure, including heteroscedastic and correlated errors. Since the existing test cannot

directly be extended to a general R, we suggest to follow the idea of the Generalized Least

Squares (GLS) transformation to derive the null distribution of the RLRT in this situation.

2.3 Regression with Correlated Errors

The errors in a simple linear regression model are usually assumed to be i.i.d. with expec-

tation zero and fixed variance σ2
ε . In this situation, the Best Linear Unbiased Estimator

(BLUE) of β is the Ordinary Least Squares (OLS) estimator, β̂OLS = (X ′X)−1X ′y, which

is equivalent to the ML estimator in the case of normality.

If the i.i.d. assumption is not fulfilled, the OLS estimator is still unbiased but no longer

efficient. In case the covariance matrix of the errors Cov(ε) = V is known, one can obtain

the BLUE as the GLS estimator:

β̂GLS = (X ′V −1X)−1X ′V −1y,

which is again the ML estimator, under normality. The GLS estimate of β can also be

obtained as the OLS estimate of a transformed model, where the initial model equation is

premultiplied by V −
1
2 , i.e. β̂GLS is equivalent to ˆ̃βOLS of the model

ỹ = X̃β + ε̃,

where ỹ = V −
1
2y, X̃ = V −

1
2X and ε̃ = V −

1
2ε. In the transformed model, the error

covariance matrix is given by Cov(ε̃) = In. Furthermore, if the covariance matrix of the

errors is specified by V = σ2
εR, assuming the covariance structure is known up to a constant,

it is possible to base the so-called GLS transformation only on the matrix R. Then, the

variance of the transformed i.i.d. errors is σ2
ε instead of one.

If the covariance structure is unknown, so-called Feasible GLS (FGLS) estimators can be

used. Many of those are obtained from two-step estimation methods where the parameters

of the covariance matrix are estimated in a first step. Then, the data are transformed

by the inverse root of the estimated covariance matrix, before OLS estimation is finally

applied to the modified data set. FGLS estimators are consistent and asymptotically normal,

provided certain regularity conditions are fulfilled (Newey and McFadden, 1994; Wooldridge,

2001, ch. 12). Furthermore, comparative simulation studies indicate that consistent FGLS

estimators are more efficient than the OLS estimator, in the situation of linear regressions
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with correlated errors as well as in the case of simple variance component models (Rao and

Griliches, 1969; Baltagi and Chang, 1994).

In the context of LMMs, parameter estimates are efficiently obtained via (RE)ML esti-

mation. Thus, we are not interested in (F)GLS estimation here, but we adopt the idea of

(F)GLS estimation to construct a test for zero variance components of an LMM in the case

of a general error covariance structure.

2.4 RLRT in LMMs with General Error Covariance Structure

2.4.1 Known Covariance Structure of the Errors

We use the idea of the GLS transformation to derive the RLRT distribution in the case of

a general covariance structure of the errors, i.e. V = σ2
εR for some R.

Consider first the LMM (1) with one random effect, S = 1, σ2
S = σ2

b , and assume that

R and Σ are known. Model (1) then reduces to

y = Xβ +Zb+ ε;

(
b

ε

)
∼ N

((
0

0

)
,

(
σ2
bΣ 0

0 σ2
εR

))
. (4)

We can show that the RLRT for testing (2) in (4) is equivalent to the RLRT for hypothesis

(2) in the GLS-transformed model

ỹ = X̃β + Z̃b+ ε̃;

(
b

ε̃

)
∼ N

((
0

0

)
,

(
σ2
bΣ 0

0 σ2
εIn

))
, (5)

where ỹ = R−
1
2y, X̃ = R−

1
2X, Z̃ = R−

1
2Z and ε̃ = R−

1
2ε.

Lemma 1 The RLRT for hypothesis (2) in (4) is equivalent to the RLRT for hypothesis

(2) in the GLS-transformed model (5).

A proof is given in the appendix. As model (5) has independent and identically distributed

errors, the exact RLRT distribution for testing (2) in (4) is thus given by (3) (Crainiceanu

and Ruppert, 2004), with the design matrixes X and Z replaced by X̃ and Z̃.

2.4.2 Unknown Covariance Structure of the Errors

Now consider the more general case where R = R(φ) may depend on an unknown param-

eter vector φ, which is estimated simultaneously with the other parameters using REML

estimation.

We propose to use the RLRT distribution derived in 2.4.1 as an approximation in this

case, substituting the estimate R̂ = R(φ̂) from the null model to obtain the transformed

design matrices X̃ = R̂−
1
2X and Z̃ = R̂−

1
2Z. Under the null hypothesis, φ̂ is a consistent
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estimator of φ, and this substitution should thus be negligible asymptotically. We investi-

gate the goodness of the approximation for finite sample sizes in the next section, focusing

in particular on the observance of the type 1 error of the resulting test.

For models with more than one random effect, S > 1, we employ the approximation

proposed in Greven et al. (2008), which uses the RLRT in a reduced model with S = 1,

including only the relevant random effect. The goodness of our approximation for this case

is likewise analyzed in the next section.

3 Simulation Study

We set up a simulation study to investigate the performance of the proposed approximation

of the RLRT distribution in the case of correlated errors. Motivated by the economic

analysis of subjective well-being mentioned in section 1, we consider a longitudinal data

set where the errors of each individual follow a first order autoregressive process (AR(1)).

The simulation setup covers three different settings. All simulations are conducted in the

statistical software environment R (R Development Core Team, 2011). The proposed test

is then evaluated by means of simulation-based type-one error rates.

3.1 Simulation Setup

For our simulation study we consider special cases of the following general model:

y = Xβ +Z1b1 +Z2b2 + ε.

The design matrix of the fixed effects, X, contains terms of a cubic polynomial in x, Z1

is the design matrix of a random intercept, and Z2 contains cubic truncated polynomial

terms completing a penalized splines model for f(x). Finally, ε contains the residuals that

are autocorrelated for each individual. We investigate three different test situations:

1. H0 : σ2
1 = 0 vs. H1 : σ2

1 > 0, where σ2
2 = 0,

i.e. testing the random intercept in a simple LMM.

2. H0 : σ2
2 = 0 vs. H1 : σ2

2 > 0, where σ2
1 = 0,

i.e. testing for a cubic polynomial vs. a smooth function in an LMM designed for

smoothing.

3. H0 : σ2
2 = 0 vs. H1 : σ2

2 > 0, where σ2
1 > 0,

i.e. testing the variance of the penalized smoothing coefficients in the presence of a

nuisance random intercept.
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We vary the number of individuals N ∈ {20, 100, 500}, the number of observations per

individual ni ∈ {4, 10, 20} as well as the parameter of autocorrelation ρ ∈ {0, 0.4, 0.8}.
We run 10 000 simulations for each of the 27 scenarios defined by combinations of the

varied parameters in each of the three test situations. The data are generated according

to the corresponding null model of the test situation. Motivated by our application we set

β = (11,−0.7, 0.03,−0.0003)′ and σ2
1 = σ2

ε = 1. For the penalized splines model, we choose

a cubic truncated power function basis with 39 inner knots, which represent the 2.5 j%

quantiles, j = 1, . . . , 39, of the empirical distribution of the simulated x-values.

In each simulation step, both null and alternative model are estimated using the functions

lme() and gls() of the R package nlme (Pinheiro and Bates, 2008) with option REML. After

this, the RLRT statistic is computed. Then, the GLS transformation matrix is constructed

using the estimate ρ̂0 from the null model as correlation parameter ρ. In the considered

AR(1) case, the transformation matrix R−
1
2 is block diagonal with N blocks R

− 1
2

i of size

ni × ni:

R
− 1

2
i =




1 0 0 . . . 0
−ρ√
1−ρ2

1√
1−ρ2

0 . . . 0

0 −ρ√
1−ρ2

1√
1−ρ2

. . .
...

...
. . . . . . . . . 0

0 . . . 0 −ρ√
1−ρ2

1√
1−ρ2




.

Finally, the design matrices of the null model are transformed and used to obtain the 95%

quantile of the RLRT distribution through the RLRTSim() function of the RLRsim package

(Scheipl, 2008), and the test decision is taken.

3.2 Results

Table 1 lists the percentages of rejections of the null hypothesis in each scenario. We

observe values ranging from 4.57% to 5.91%, which are all reasonably close to 5%. Thus, the

estimation uncertainty of the correlation parameter does not considerably affect the accuracy

of the test. Furthermore, there is no systematic variation of the rejection rate across the

simulated scenarios besides a general slight improvement of accuracy with larger sample

sizes n. We conclude that the proposed approximation of the exact RLRT distribution

performs sufficiently well.
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Scenarios Test situation

Parameters 1 2 3

ρ N ni % rejected % rejected % rejected

0.0 20 4 4.86 4.69 5.82
0.0 20 10 5.19 4.96 5.49
0.0 20 20 4.95 5.50 5.07
0.0 100 4 4.85 4.72 5.17
0.0 100 10 4.73 5.03 5.07
0.0 100 20 5.11 4.79 5.30
0.0 500 4 4.82 5.11 4.83
0.0 500 10 4.75 5.30 4.92
0.0 500 20 5.08 5.55 4.96

0.4 20 4 5.26 5.17 5.51
0.4 20 10 5.00 5.21 5.46
0.4 20 20 5.06 5.14 5.10
0.4 100 4 5.31 5.21 5.09
0.4 100 10 4.70 5.31 4.77
0.4 100 20 5.04 5.27 5.69
0.4 500 4 4.84 4.87 5.07
0.4 500 10 5.17 5.05 4.71
0.4 500 20 4.63 5.10 4.97

0.8 20 4 5.58 5.10 5.77
0.8 20 10 5.55 5.91 5.57
0.8 20 20 5.18 5.63 5.34
0.8 100 4 4.57 4.96 5.11
0.8 100 10 4.92 5.61 5.00
0.8 100 20 4.81 5.19 5.36
0.8 500 4 5.15 4.81 4.91
0.8 500 10 5.05 4.84 4.99
0.8 500 20 5.14 5.04 5.36

Table 1: Percentages of rejected tests out of 10 000 simulated tests per scenario.

4 Application: Subjective well-being in Germany

4.1 Background

The work presented here was motivated by an econometric study about subjective well-

being (Wunder et al., 2011). One crucial question in this field is how the level of overall

life satisfaction evolves with age. Is there a midlife crisis? Does the level of life satisfaction

decline when growing old?

In the literature on well-being, it is often assumed that the relationship between life

satisfaction and age can be described by a quadratic function. Yet empirical analyses using
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models that are quadratic in age find contradictory results: both a U-shaped profile (e.g.

Blanchflower and Oswald, 2004) and a reverse U-shaped profile (e.g. Easterlin, 2006) have

been reported. Since either shape lacks a convincing foundation in the economic theory,

Wunder et al. (2011) argue that the profiles found in these studies are an artefact of the

quadratic modeling and suggest to follow a semiparametric approach instead.

Wunder et al. (2011) base their analyses on data from the German SOEP and the

British Household Panel Survey (BHPS), two suitable data sources for studies on well-

being (Wagner, Frick and Schupp, 2007). For each data set, they estimate an additive mixed

effects model including a smooth term in age, several socio-economic control variables and

a random intercept for each individual. The estimation of the smooth functions is based

on the LMM representation of penalized splines. The resulting profiles appear to be clearly

different from a quadratic curve. Moreover, likelihood-based tests and Bonferroni-adjusted

confidence intervals indicate that, even though an LMM with a cubic function in age fits the

data better than a quadratic one, this parametrization is not flexible enough to adequately

describe the entire variability within the data sets.

In their models, Wunder et al. (2011) assume that the errors are i.i.d. conditional on

the random intercept. However, individual values of self-reported life satisfaction are likely

to be correlated over time. Further investigations indeed confirmed a superior fit for a

model with AR(1) errors for each respondent. Thus, the test based on the i.i.d. assumption

for the errors is only a rough approximation. Here, we analyze the SOEP data set again,

explicitely accounting for the covariance structure of the individual error terms. We fit

models including errors that follow an AR(1) process for each respondent and then apply

the appropriate test developed in Section 2.

4.2 Analysis of the SOEP data

For the SOEP Study, overall life satisfaction is measured on a discrete scale from 0 (not

satisfied) to 10 (completely satisfied). The analyzed data set contains observations of 20

waves between 1986 and 2007. The years 1990 and 1993 are excluded, because one relevant

control variable is not available for these years. Altogether, there are 253 044 data points

obtained from 33 451 persons. Since the data set is sufficiently large, we can assume an

approximate normal distribution for the life satisfaction and apply the LMM framework.

The aim of our analysis is to reveal the relationship between age and self-reported

well-being, controlling for relevant socio-economic characteristics and at the same time

accounting for the correlation structure of the observations. For this purpose, we test the

null hypothesis that the profile of well-being over the life span is adequately described by

a cubic polynomial against a smooth alternative with an RLRT. This test has the same

structure as the test in the third situation of the simulation study in section 3.
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We consider the following models under the null and under the alternative hypotheses:

H0 : y = Xβ +Z1b1 + ε, H1 : y = Xβ +Z1b1 +Z2b2 + ε.

Here, X contains terms of a cubic polynomial in age and additional covariates, which have

been chosen in accordance with Wunder et al. (2011). The matrix Z1 is the design matrix of

a random intercept and Z2 is composed of cubic truncated polynomial terms of the penalized

splines model under H1. Furthermore, the errors in ε are assumed to be autocorrelated for

each individual. A detailed list of the covariates included in X can be found in appendix

B, together with further estimation results.

To obtain the test decision, we transform the design matrices X and Z2 with the in-

verse root of the estimated correlation matrix under the null hypothesis and determine

the 95% and 99.9% quantiles of the corresponding RLRT statistic. Since the data set is

an unbalanced panel, the transformation matrix is block diagonal with N = 33 451 blocks

of different sizes ni × ni, ni ∈ {1, . . . , 20}. Furthermore, for some respondents there are

missing observations between two observations. We found that, in this case, the individual

transformation matrices R
− 1

2
i are given by:

R
− 1

2
i =

1√
1− ρ2




√
1− ρ2 0 0 . . . 0
−ρ∆2

f(∆2)
1

f(∆2)
0 . . . 0

0 −ρ∆3

f(∆3)
1

f(∆3)

. . .
...

...
. . . . . . . . . 0

0 . . . 0 −ρ∆ni

f(∆ni )
1

f(∆ni )




,

where ∆h = ti,h − ti,h−1, h ∈ {2, . . . , ni}, is the time difference between two subsequent

observations and f(∆h) =
√

1 +
∑∆h−1

r=1 ρ2r. Using the explicit form above to obtain the

transformation matrix requires much less computational effort than other methods to com-

pute R−
1
2 , which is particularly useful when analyzing a large data set as we do here.

Figure 1 shows both estimated curves. There are considerable differences between the

profiles estimated from the null and from the alternative model, in particular between 45

and 70 years of age. In contrast to the curve from the cubic model, the semiparametric

curve does reveal a midlife crisis, which is located around the age of 50. Moreover, the

following temporary recovery before the final decline of life satisfaction is not reflected by

the curve estimated from the null model, which is due to the limited flexibility of a cubic

polynomial. In the corresponding RLRT, the null hypothesis is rejected at both levels, 95%

and 99.9% (i.e. the p-value is less than 0.001). Hence, the test confirms that the profile of

well-being over the life span has a complex shape that cannot be captured by a polynomial

of a small degree. Neither a U-shaped or reverse U-shaped profile nor a cubic function are

suitable to describe the course of life satisfaction along the aging process.
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Figure 1: Profile of the overall life satisfaction along the aging process: Curves estimated
from the null model (dashed line) and from the alternative model (solid line).

5 Discussion

In the present paper, we established a test for zero variance components in LMMs where

the errors are not i.i.d. We used the idea of the GLS transformation to derive the RLRT

distribution in the case of a general covariance structure of the errors. If the covariance

structure of the errors is unknown and has to be estimated, we proposed to approximate

the RLRT distribution by transforming the model according to the covariance parameters

estimated from the considered null model.

We set up a simulation study to investigate the performance of the proposed approxi-

mation of the RLRT distribution. Since the type one error rates of the simulated tests were

reasonably close to 5%, we concluded that the approximation performs sufficiently well.

Finally, we applied our test methodology to a micro-econometric analysis on subjective

well-being. The test provides an answer to one crucial question of well-being economics:

13



The profile of overall life satisfaction over the life span has a complex shape, that cannot

be captured by a polynomial of a small degree. First, there is a steady decline up to a

midlife crisis around the age of 50, then, well-being temporarily rises again, before finally,

it declines again from the early sixties on.

The proposed method can be applied to a wide range of practical settings where corre-

lated or heteroscedastic errors occur. An interesting future extension could be to generalize

the test methodology to Generalized Linear Mixed Models (GLMMs).
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the Life Span: Semiparametric Evidence from British and German Longitudinal Data.

Review of Economics and Statistics . Accepted for publication.

15



A Proof of Lemma 1

The restricted likelihood for model (4) is the probability density function (pdf) for A1y,

whereA1y define error contrasts (Patterson and Thompson, 1971). The restricted likelihood

is - up to a constant - independent of the precise error contrast chosen (Harville, 1974). A

suitable matrix A1 is, for example, A1 = In −X(X ′R−1X)−1X ′R−1.

The restricted likelihood for model (5) is the pdf for A2ỹ, where A2ỹ again define

suitable error contrasts, for example, A2 = In − X̃(X̃ ′X̃)−1X̃ ′. It is

A2ỹ = (In −R−
1
2X(X ′R−1X)−1X ′R−

1
2 )R−

1
2y

= R−
1
2 (In −X(X ′R−1X)−1X ′R−1)y = R−

1
2A1y.

Thus, A2ỹ is a simple variable transformation of A1y, and the pdf of A2ỹ is equal to the

pdf of A1y up to a multiplicative constant, the Jacobian |R− 1
2 |.

For the two restricted likelihood ratio test statistics RLRT1, based on the profile re-

stricted log-likelihood `1(λ) for model (4), and RLRT2, based on the profile restricted log-

likelihood `2(λ) for model (5), where λ =
σ2
b

σ2
ε
, we have

RLRT1 = sup
λ≥0
{2`1(λ)− 2`1(0)} = sup

λ≥0
{(2`2(λ)− log |R|)− (2`2(0)− log |R|)}

= sup
λ≥0
{2`2(λ)− 2`2(0)} = RLRT2.
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B List of covariates and further estimation results

Covariate Variable Description

Intercept global constant
Age current age of the respondent
Sex: Female indicator for sex, reference category: male
Disability status: Disabled indicator for disability, reference category: not disabled
Nights stayed in Hospital number of nights spent in hospital during the last year
Years of Education number of years during which education was acquired
log of net houshold income

}
allows to control for log of net houshold income per person

log of household size
Nationality: German indicator of nationality, reference category: not German
Full time employed



 employment status, reference category: vocational trainingPart time employed

Unemployed or self-employed
Single



 marital status, reference category: marriedDivorced

Widowed
Region: West-Germany indicator for the region in which the respondent lives, reference

category: East-Germany
Life expectation average life expectancy at birth
Attrition in t+ 1 indicator for attrition in t + 1, reference category: not retired

from the panel in t+ 1
Attrition in t+ 2 indicator for attrition in t + 2, reference category: not retired

from the panel in t+ 2
Attrition in t+ 3 indicator for attrition in t + 3, reference category: not retired

from the panel in t+ 3

Table 2: List of covariates considered in the model. The design matrix of the fixed effects,
X, furthermore includes dummy variables for each year (reference year 1986) in order to
control for period effects on the level of subjective well-being.
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Control variables
null model alternative model

Estimate St. Dev. p-value Estimate St. Dev. p-value

Intercept 7.912 0.315 < 0.001 11.248 3.282 < 0.001
Sex: Female 0.219 0.023 < 0.001 0.234 0.023 < 0.001
Disability status: Disabled -0.427 0.015 < 0.001 -0.432 0.015 < 0.001
Nights stayed in Hospital -0.011 0.000 < 0.001 -0.010 0.000 < 0.001
Years of Education 0.042 0.003 < 0.001 0.037 0.003 < 0.001
log of net houshold income 0.462 0.010 < 0.001 0.477 0.010 < 0.001
log of household size -0.195 0.013 < 0.001 -0.173 0.013 < 0.001
Nationality: German 0.037 0.020 0.070 0.038 0.020 0.063
Full time employed 0.060 0.011 < 0.001 0.102 0.012 < 0.001
Part time employed 0.011 0.013 0.376 0.039 0.013 0.003
Unemployed -0.599 0.014 < 0.001 -0.564 0.014 < 0.001
Single -0.221 0.018 < 0.001 -0.183 0.018 < 0.001
Divorced -0.174 0.020 < 0.001 -0.155 0.020 < 0.001
Widowed -0.246 0.025 < 0.001 -0.228 0.025 < 0.001
Region: West-Germany 0.537 0.017 < 0.001 0.534 0.017 < 0.001
Life expectation -0.033 0.004 < 0.001 -0.034 0.004 < 0.001
Attrition in t+ 1 -0.118 0.012 < 0.001 -0.117 0.013 < 0.001
Attrition in t+ 2 -0.137 0.012 < 0.001 -0.135 0.012 < 0.001
Attrition in t+ 3 -0.078 0.012 < 0.001 -0.076 0.012 < 0.001

Covariance estimates

ρ̂ 0.249 0.246
σ̂ε 1.343 1.341
σ̂1 1.068 1.067

Data: n = 253 044 observations, N = 33 451 persons, SOEP 1986–2007 (excl. 1990, 1993)

Table 3: Estimates of the covariate effects in the null model and in the alternative model,
rounded to three digits. The estimates of the year effects are not displayed, since they are
not of major interest here.
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