
Mojgan Mohajer, Karl-Hans Englmeier, Volker J. Schmid

A comparison of Gap statistic definitions with and
with-out logarithm function

Technical Report Number 096, 2010
Department of Statistics
University of Munich

http://www.stat.uni-muenchen.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12172514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/
http://www.stat.uni-muenchen.de/


A comparison of Gap statistic definitions with

and without logarithm function

Mojgan Mohajer1,2, Karl-Hans Englmeier1, Volker J. Schmid2

1 Institute for Biological and Medical Imaging, Helmholtz Zentrum München
2 BioImaging group, Department of Statistics, Ludwig-Maximilians-Universität München

Abstract

The Gap statistic is a standard method for determining the number
of clusters in a set of data. The Gap statistic standardizes the graph
of log(Wk), where Wk is the within-cluster dispersion, by comparing it
to its expectation under an appropriate null reference distribution of the
data. We suggest to use Wk instead of log(Wk), and to compare it to the
expectation of Wk under a null reference distribution. In fact, whenever
a number fulfills the original Gap statistic inequality, this number also
fulfills the inequality of a Gap statistic using Wk, but not vice versa. The
two definitions of the Gap function are evaluated on several simulated
data set and on a real data of DCE-MR images.

1 Introduction

In clustering methods the number of clusters is either a direct parameter, or it
may be controlled by other parameters of the method. Estimating the proper
number of clusters is an important problem in selecting the clustering method
as well as in validating the result. The Gap statistic is one of the most popular
techniques to determine the optimal number of clusters. The idea of the Gap
statistic is to compare the within-cluster dispersion to its expectation under an
appropriate null reference distribution (Tibshirani et al., 2001). It outperforms
many other methods, including the method by Kaufman and Rousseeuw (1990),
the Caliński and Harabasz (1974) index, the Krzanowski and Lai (1988) method,
and the Hartigan (1975) statistic (Tibshirani et al., 2001). Therefore, the Gap
statistic is frequently used in a variety of applications, from image segmentation
(Zheng-Jun and Yao-Qin, 2009), image edge detection (Yang et al., 2009) to
genome clustering (Wendl and Yang, 2004).

However, there are few works investigating the method itself. The tendency
of the Gap statistic to overestimate the number of clusters was reported by
Dudoit and Fridlyand (2002). It is also known that the Gap statistic may not
work correctly in cases where data are derived from exponential distributions
(Sugar and James, 2003). The weighted Gap statistic, proposed by Yan and Ye
(2007), is an improvement, for example in the case of mixtures of exponential
distribution. Yin et al. (2008) pointed out that in situations where a data
set contains clusters of different densities the Gap statistic might fail. They
suggested to use reference data sets sampled from normal distribution rather
than uniform distribution.
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The original Gap statistic is based on some empirical choices, such as the
“one standard error” -style rule for simulation error, and using the logarithm
of the within cluster dispersion Wk. However, few studies have focused on
analyzing the effect of these choices. In this paper we will show that using the
logarithm of Wk is actually disadvantageous for finding the number of clusters
in data sets. Especially in cases where clustering data are sampled from multi-
dimensional uniform distributions with large differences in the variances of the
different clusters, it is better to use Wk instead of log(Wk).

The paper is organized as follows. In section 2 the original Gap statistic is
described and the difference between the use of the logarithm of Wk and the
calculation of the Gap statistic directly from Wk is discussed. In section 3 both
Gap functions, with and without log function, are applied to simulated and real
data, using hierarchical clustering with average linkage method. We end with a
discussion of the results and the proposed method.

2 Theory

2.1 Gap statistic

Let {xij} be observations with i = 1, 2, ..., n, j = 1, 2, ..., p, p features measured
on n independent samples, clustered into k clusters C1, C2, ..., Ck, where Cr

denotes the indexes of samples in cluster r, and nr = |Cr|. Let dii′ be the
distance between samples i and i′. For example, this distance might be the
squared Euclidean distance dii′ =

∑
j (xij − xi′j)

2
. The sum of the pairwise

distances Dr for all points in cluster r is

Dr =
∑

i,i′∈Cr

dii′ . (1)

We define

Wk :=

k∑

r=1

1

2nr
Dr. (2)

If d is the squared Euclidean distance, then Wk is the within-cluster sum of
squared distances from the cluster means. For the calculation of the Gap func-
tion, Tibshirani et al. (2001) proposed to use the difference of the expected value
of log(W ∗

k ) of an appropriate null reference and the log(Wk) of the data set,

Gapn(k) := E∗
n log(W

∗
k )− log(Wk). (3)

Then, the proper number of clusters for the given data set is the smallest k such
that

Gapn(k) ≥ Gapn(k + 1)− sk+1 (4)

where sk is the simulation error calculated from the standard deviation sd(k) of
B Monte Carlo replicates log(W ∗

k ) according to the equation sk =
√

1 + 1/Bsd(k).
The expected value E∗

nlog(W
∗
k ) of within-dispersion measuresW ∗

kb is determined
as

E∗
n log(W

∗
k ) =

1

B

∑

b

log(W ∗
kb), (5)
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where W ∗
kb are given by clustering the B reference data sets. The sum of

log(W ∗
kb) can be written as

E∗
n log(W

∗
k ) =

1

B
log
(∏

W ∗
kb

)
. (6)

Therefore the Gap function from Eqn. 3 can be re-written;

Gapn(k) = log

(
(
∏

W ∗
kb)

1/B

Wk

)
. (7)

The number (
∏

W ∗
kb)

1/B is the geometric mean of W ∗
kb. Thus, the Gap

statistic is the logarithm of the ratio of the geometric mean of W ∗
kb to Wk. In

the next section, we will compare this to using the differences of the arithmetic
mean of W ∗

kb and Wk.

2.2 Gap statistic without logarithm function

Lets considering using Wk instead of log(Wk). That is, we use an alternative
definition of the Gap function,

Gap∗n(k) = E∗
n(W

∗
k )−Wk, (8)

where

E∗
n(W

∗
k ) =

1

B

∑

b

W ∗
kb. (9)

We refer to the proposed alternative Gap statistic defined by using Wk di-
rectly as Gap∗n; the original Gap calculated using the logarithm of Wk is referred
to as Gapn. Tibshirani et al. (2001) note that in case of a special Gaussian
mixture model log(Wk) has interpretation as log-likelihood (Scott and Symons,
1971). In maximum likelihood inference, it is usually more convenient to work
with the log-likelihood function than with the likelihood function, in order to
have sums instead of products. However, using log(Wk) has no computational
advantage versus using Wk directly in the definition of the Gap statistic.

It can be shown that an answer in the original Gapn is a sufficient condition
for the proposed Gap∗n statistic, but not vice versa. Let A =

∏
W ∗

kb
1/B , B =∏

W ∗
k+1b

1/B , C = 1
B

∑
b W

∗
kb, D = 1

B

∑
b W

∗
k+1b, d1 = Wk, and d2 = Wk+1.

Proposition 1. For ∀d1, d2 > 0, d1 > d2, A,C > d1 and B,D > d2, if

log

(
A

d1

)
≥ log

(
B

d2

)
,

then
C − d1 ≥ D − d2.

Proposition 2. ∃d1, d2 > 0, d1 > d2, A,C > d1 and B,D > d2 so that if

C − d1 ≥ D − d2,

then

log

(
A

d1

)
< log

(
B

d2

)
.
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Proofs are given in Appendix A.
Hence, if there is a possible candidate in Gapn at point k, it is also a possible

candidate in Gap∗n. On the other hand it is possible that there is no such k in
Gapn function while the Gap∗n function indicates a possible candidate at point
k. In the section 3.4 and 3.5 there are examples from real and simulated data, in
which the original Gapn function is a strictly increasing function, thus there is
no k that fulfills the condition in Eqn. 4. However, the proposed Gap∗n function
may be able to suggest a number of clusters for these data sets.

2.3 Weighted Gap statistic

In Eqn. 2 Wk is the pooled within-cluster sum of squares. This implies consid-
ering a point far away from the cluster mean, the large distance of this point
to the cluster center has more impact compared to points with small distances
from the cluster mean. To this end, Yan and Ye (2007) suggested to compute
W

′
k as average of all pairwise distances for all points in a cluster,

W
′
k =

k∑

r=1

2

nr(nr − 1)
Dr. (10)

This approach is called “weighted Gap function”.
Similar to the original Gap function, the weighted Gap function can also be

computed with or without logarithm. However, Wk in Eqn. 2 is monotonically
decreasing in k if the distance dii′ is the Euclidean distance. On the other hand,
W

′
k in Eqn. 10 is not a decreasing (or increasing) function in k. Therefore, the

propositions given in section 2.2 are not valid for the weighted Gap method. We
will compare results from the original and the weighted Gap function on two
historical data sets in section 3.1.

3 Application to simulated and real data sets

In the previous section we discussed the differences of the Gap functions com-
puted with and without logarithm. In this section we will apply the original
Gap and proposed Gap∗ statistics to simulated and real data sets, in order to
evaluate the effect of the differences in both approaches.

Here, we use agglomerative hierarchical clustering with group average link-
age method (Kaufman and Rousseeuw, 1990). The average linkage method has
some advantages over the widely used k-mean clustering. Hierarchical cluster-
ing methods produce hierarchical representations in which the clusters at each
level of the hierarchy are created by merging clusters at the next lower level.
Each level of hierarchy represents a particular grouping of the data into disjoint
clusters of samples. The entire hierarchy represents an ordered sequence of such
groupings. Unlike k-mean clustering, where the choice of different numbers of
clusters can lead to totally different assignment of elements to the clusters, in
hierarchical clustering the sets of clusters are nested within one another. The
average linkage method has another interesting property: the group average
dissimilarity d(G,H) between two groups G and H is defined as:

d(G,H) =
1

NGNH

∑

i∈G

∑

i′∈H

dii′ , (11)
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Table 1: Results of standard and weighted Gap and Gap∗ functions on Iris and
Breast Cancer data sets. “+” indicates the correct number of clusters for that
data set.

Gap function number of clusters
Iris Breast

Gap 3+ 2+

Gap∗ 3+ 2+

weighted Gap 2 1
weighted Gap∗ 7 1

where NG and NH are the number of samples in each group. The group average
dissimilarity is an estimate of

∫ ∫
d(x, x′)pG(x)pH(x′)dxdx′ (12)

with the number of observations N → ∞, where d(x, x′) is the dissimilarity
between points x and x′. Eqn. 12 is an approximation for d(G,H), Eqn. 11,
when N approaches infinity. This is a characteristic of the relationship between
the two densities pG(x) and pH(x′) of samples in group G and H. The aver-
age linkage method attempts to produce relatively compact clusters that are
relatively far apart (Kaufman and Rousseeuw, 1990).

3.1 Two historical data sets

Two historical data sets are frequently used when discussing clustering; “Fisher’s
Iris data set” (Fisher, 1963) and Wolbergs “Breast Cancer Wisconsin data
set”(Wolberg et al., 1993). We apply the four different definitions of the Gap
statistic to these two famous historical data sets. Fisher’s Iris data set consists
of 50 samples from three species of Iris flowers. Four variables were measured
for each sample. For the “Breast Cancer Wisconsin data set”, samples arrived
periodically as Dr. Wolberg reports his clinical cases. The data set consists of
699 samples. Each sample is described by nine variables. The whole data set
has two main groups, consisting of 458 benign and 241 malignant tumors.

Table 1 lists the estimated number of clusters for both the iris and the breast
data sets using the original Gap statistic Gap from Eqn. 3 and the proposed
Gap statistic without logarithm Gap∗ as defined in Eqn. 8. These two Gap
functions are compared with the results of the weighted Gap as described in
section 2.3 and the weighted Gap∗, i.e., the weighted Gap using Wk instead of
log(Wk).

In contrast to the result from k-mean clustering reported by Yan and Ye
(2007), when using average linkage clustering the Gap statistic with the original
Wk, Eqn. 2, estimates the number of clusters for both data sets correctly. Figs. 1
and 2 show the calculated Gap functions for the two data sets. Both, the iris and
the breast cancer data sets represent their natural clusters in average linkage
clustering. Thus, Gap and Gap∗ show similar behavior. It can be observed
that in the case of iris data, the weighted Gap suggests number 2 as proper
number of clusters but weighted Gap∗ suggest 7 as cluster number. According
to the discussion in section 2.2, whenever a number fulfills the inequality 4, this
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Figure 1: Standard and weighted Gap and Gap∗ functions for Iris data set

number fulfills the inequality for the proposed Gap∗. However, this statement
is not valid for weighted Gap due to the fact that W

′
k from Eqn. 10 is not

monotonically decreasing.

3.2 Not well separated clusters

Now we assume clusters which are not well separated. We simulated 1000 data
sets with two clusters each, with different proportions of overlapping. Each
cluster had 50 observations with two variables. Both variables were drawn in-
dependently from Gaussian distributions; for observations from the first cluster
both variables had expected values 0 and standard deviation 1. For observa-
tions from the second cluster both variables were again randomly drawn from
Gaussian distribution with expected value ∆ and standard deviation 1. As a
result, there are two clusters, where the distance between the means of two clus-
ters decreases with decreasing value of ∆. We use ∆ = 0.5, 1, 1.5, . . . , 5.0. For
each of the ten unique values of ∆ 100 data sets were generated, and original
Gap and proposed Gap∗ functions were calculated for these data sets. Figure
3 shows the percentage of finding two as the number of clusters for each type
of data set. It can be observed that the original Gap was better in estimating
the proper number of clusters in overlapped clusters than Gap∗. These results
were expected due to the tendency of the Gap to overestimate the number of
clusters which has been reported by Dudoit and Fridlyand (2002).
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Figure 2: Standard and weighted Gap and Gap∗ functions for Breast Cancer
Wisconsin data set

3.3 Unequally sized clusters

Yin et al. (2008) report that whenever the number of observations in one cluster
is more than six-fold the number of observations in the other clusters, the Gap
statistic is not able to estimate the number of clusters accurately. This effect
depends not only on the number difference between clusters but also on the
distance between clusters. We study this effect in the special case of two clusters
sampled from two 2D normal distributions N(µ, I) and N(µ′, I), where µ and
µ′ are two different expected values and I is the identity matrix. Details of
this study are given in Appendix B. Suppose N1 is the number of samples in
the first cluster and N2 is the number of samples in the second cluster and
N1 = m · N2 and n = N1 + N2. For a fixed total number of samples n, by
increasing m, the value of W1 decreases. Thus, Gap1 increases while Gap2 is
almost unchanged. When m becomes large enough, Gap1 will be greater than
Gap2, and the estimated cluster number will be one. The possible numbers of m
for which Gap and Gap∗ can still estimate two as proper number of clusters, can
be estimated from the following two inequalities (see Appendix B inequalities
Eqns. 24 and 25):

1. for Gap

md

(m+ 1)2
≥ E(d1)

E(d2)
− 1 (13)
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Figure 3: Gap function from eq. 3 and Gap∗ function from eq. 8 are com-
pared for 10 data sets with two clusters. Two clusters have different portion of
overlapping area in each data set.

Table 2: Five simulated data sets with two clusters with N1 and N2 number of
samples in first and second cluster respectively.

simulation N1 N2 m = N1/N2

1 765 765 1
2 1020 510 2
3 1224 306 4
4 1360 170 8
5 1440 90 16

2. for Gap∗

2md

(m+ 1)2
≥ E(d1)− E(d2) (14)

where d is the average distance between the points in first cluster to the points in
second cluster, E(d1) is the expected distance of two points from a rectangular
uniform distribution with sides a and b and E(d2) is the expected distance of
two points from a rectangular uniform distribution with sides a

2 and b.
These results are illustrated in an example in Fig. 4. In this example we

compared five data sets with two clusters of different observation sizes. The
total number of observations is the same in all five data sets, however, the ratio
of observations is varied. Table 2 summarizes the size of the clusters in each data
set and the ratio between number of observations in the two clusters. In the
first data set the number of observations in the first (N1) and in second cluster
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Figure 4: Top: log(Wk) (left) and Wk (right) five simulated data sets with two
clusters each, where N1 and N2 are the number of samples in the first and
second cluster, respectively. Bottom: Gap (left) and Gap∗ (right) for these data
sets.

(N2) are equal. In the other four data sets N1 increases and N2 decreases as
given in table 2.

Samples where drawn as follows:

1. Select Nmax
1 as maximum number of samples in first cluster in all five

data sets.

2. Select Nmax
2 as maximum number of samples in second cluster in all five

data sets.

3. Draw Nmax
1 samples from a bivariate normal distribution with parameters

(µ, I), where µ = (0, 0).

4. Draw Nmax
2 samples from a bivariate normal distribution with parameters

(µ′, I), where µ′ = (5, 0).

5. For each data set, select the first N1 samples from the Nmax
1 sample points

according to the number N1 given for this data set in table 2.

6. For each data set, select the first N2 samples from the Nmax
2 sample points

according to the number N2 given for this data set in table 2.
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According to the estimations in Appendix B and the inequalities 13 and 14,
in this example, E(d1) ≈ 4.53, E(d2) ≈ 2.99, and d ≈ 3.48. As a result only for
m < 6 for the original Gap, and m < 2 for the proposed Gap∗, the gap statistic
determines two as proper number of clusters. Figure 4 shows log(Wk) and Wk

for all five simulated data sets. The blue dotted line is the expected log(Wk) on
the left top and expected Wk on the right top of the null reference distribution.
As demonstrated in figure 4, by increasing the number of samples in first cluster
against the second cluster, the within-cluster dispersion W2 remains the same
but W1 decreases. Depending on how far apart the two clusters are, increasing
the ratio of observations in both clusters increases the Gap(1) value. Figure 4
demonstrates the original Gap function (bottom left) and the proposed Gap∗

function (bottom right) for these five data sets. The estimated m from the
inequalities 13 and 14 is confirmed by the results illustrated in Fig. 4.

3.4 Simulated data with increasing Gap function

In this experiment, data were simulated such that the calculated Gap function
(Gap from Eqn. 3) is a strictly increasing function. A data set was simulated
2000 times and for each simulated data set the original Gap and the proposed
Gap∗ statistic was calculated. The simulated data set consists of two clusters
each. Each cluster contains 50 observations from a n-dimensional variable space.
In the first cluster, each feature was sampled from a uniform distribution on
interval [0, 10] at random. For the second cluster only the first variable was
sampled from the same uniform distribution. All other variables of observations
in the second cluster were set to zero. Half of the data sets were simulated
in a 100-dimensional variable space while the other half were simulated in a
2-dimensional variable space.

Figure 5 depicts the average Gap and the average Gap∗ functions for both
the 2D data sets and the 100D data sets. For the 2D data sets, both Gap
functions suggest two as proper number of clusters. However, it can be seen
that the Gap function for the 100D data sets is a strictly increasing function.
This is indeed expected due to the “curse of dimensionality” (Bellman, 1961).
Beyer et al. (1999) have shown that the minimum and the maximum occurring
distances become indiscernible, as the difference of the minimum and maximum
value compared to the minimum value converges to 0 as the dimensionality d
goes to infinity.

lim
d→∞

distmax − distmin

distmin
→ 0. (15)

Consequently, all the distances dii′ from Eqn. 1 can be considered to be
equal in a high dimensional space. Consider n observations from a 100 dimen-
sional uniform distribution and suppose these samples are divided into k clusters
C1, C2, ..., Ck, where |C1| = |C2| = ... = |Ck| = n

k . Consider all dii′ = dist, thus,
Wk is equal to:

Wk =

(
n

2
− k

2

)
dist. (16)

By increasing the number of clusters k, Wk in Eqn. 16 decreases linearly. The
slope of this line is the same for all data sets sampled from the same high

10



0 5 10 15 20
−50

0

50

100

150

200

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

number of clusters
0 5 10 15 20

−4

−3

−2

−1

0

1

2

3

number of clusters

av
er

ag
e 

G
ap

*

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

av
er

ag
e 

G
ap

Figure 5: Gap and Gap∗ for simulated 2D (left) and 100D (right) data sets from
experiments 3.4.

Table 3: Number of clusters for 1000 2D and 100D data sets, estimated by Gap
and Gap∗.

Method Estimate of number of clusters
1 2 3 4 5 6 7 8 9 ≥ 10

Gap 368 489 143 0 0 0 0 0 0 0
2D

Gap∗ 270 567 162 1 0 0 0 0 0 0
Gap 0 0 0 0 0 0 1 3 1 995

100D
Gap∗ 0 1000 0 0 0 0 0 0 0 0

dimensional uniform population even with different number of samples. Here,
in the case of a 100D data set for all k > 2 only the first cluster will be divided
further, due to the large distances of the samples in this cluster compared to
the second cluster. Hence, Wk will be linear for k > 2 and parallel to E∗(W ∗

k ).
The difference E∗(W ∗

k ) − Wk remains constant as E∗(W ∗
k ) and Wk decrease.

Therefore, the Gap function is strictly increasing. On the other hand, whenever
the difference E∗(W ∗

k ) − Wk remains constant, Gap∗(k) and Gap∗(k + 1) will
be equal. Therefore, due to the Gap condition Eqn. 4 k will be suggested as
proper number of clusters by the proposed Gap∗ statistic.

Table 3 lists the number of clusters found with the original Gap and the
proposed Gap∗ statistic for 1000 simulations of 2D and 100D data sets, respec-
tively. While for the 2D simulation both the original Gap and the proposed
Gap∗ statistic perform similarly, the original Gap fails in finding the true num-
ber of clusters for all of the 1000 simulated 100D data sets. The proposed Gap∗

statistic, however, is able to determine the true number of clusters for these
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simulations.

3.5 Real data set with increasing Gap function

We evaluate both Gap functions further on seven real data sets from Dynamic
Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) of breast tumors
(German Cancer Research Center (DKFZ), 2004). For each data set a se-
lected slice through the tumor with thickness TH = 6mm and field of view
FOV = 320mm × 320mm was measured every 3.25s for 6.9 minutes. As a re-
sult, each voxel in a data set is described by a signal time curve of length T = 128
during the contrast agent passage through the tumor (Brix et al., 2004). These
curves give valuable information about blood circulation and permeability of
tumor tissue. Hence, it is of interest to detect voxel with similar signal curves.
Previously different clustering methods were applied on DCE-MRI data (Fis-
cher and Hennig, 1999; Nattkemper et al., 2005; Varini et al., 2006; Wismüller
et al., 2006; Schlossbauer et al., 2008; Castellani et al., 2009). One of the main
challenges on this approach is to determine the number of underlying patterns
in the signal curves. To this end we use the Gap statistic on DCE-MRI data.
As before, we use the average linkage clustering method with squared Euclidean
distance as measure of dissimilarity. The samples are the signal curves of voxel
of which each is described by 128 features, i.e., time points.

Table 4 gives the number of clusters found with the original Gap and the
proposed Gap∗ for seven DCE-MRI data sets. The tumors in all of these images
have the same type. Using the proposed Gap∗ statistic, the number of five
clusters was found in five of the seven images, whereas with the original Gap
statistic, no consistent number of clusters, i.e., regions, was found.

Fig. 6 shows the resulting Gap and Gap∗ functions for one of the DCE-MR
images (data set 4). Similar to the simulated data set in 3.4, the Gap function
is a strictly increasing function, whereas the Gap∗ function is not strictly in-
creasing and suggests five as number of clusters for this data set. In Fig. 7(a)
first and second principal component of the data set are depicted and the five
identified clusters are shown in different colors and with different symbols. The
intensity curves for each voxel in a cluster are shown in Fig. 7(c); the mean
curve of each cluster is depicted in red. Fig. 7(b) depicts the tumor image with
voxel colored according to their cluster with the same colors as in sub-figure
(a). A ring-shaped ordering of the five clusters can be observed in this image.
This ordering is in agreement with enhancement patterns reported in medicine
such as, circumferential, centripetal and peripheral ring contrast (Buadu et al.,
1997). However, so far there is no information on the number of regions.

4 Discussion

The Gap statistic is one of the most popular methods for estimating the number
of clusters in a data set. It is rather simple to implement and is used in many,
diverse applications. As reported by Tibshirani et al. (2001) it outperforms
many other methods. However the Gap statistic is not able to suggest the
correct number of clusters in some cases. Yin et al. (2008) have reported that in
cases where the ratio of observation sizes between clusters is over than six-fold,
the Gap statistic does not work accurately. Dudoit and Fridlyand (2002) have
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Table 4: Results for all seven DCI-MRI data sets analyzed with the Gap and
the Gap∗ statistic. nd stands for not defined.

data set number of voxels Gap Gap∗

1 1260 7 7
2 207 9 5
3 116 9 5
4 262 nd 5
5 141 11 5
6 277 nd 5
7 151 13 4
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Figure 6: Gap functions Gap and Gap∗ for DCE-MRI data set of a breast tumor.

mentioned the overestimation of Gap statistic in some applications. Sugar and
James (2003) have reported the failure of the Gap statistic in the case that data
were derived from exponential distributions.

In this paper we have shown that using log(Wk) instead of Wk in the cal-
culation of the Gap function can be one cause of overestimation of number of
clusters in the Gap statistic. Theoretically there is no feasible reason to choose
Eqn. 3 over Eqn. 8 for the definition of the Gap statistic. Indeed, using the log-
arithm function in the definition of the Gap statistic has a fundamental effect
on the results of the Gap statistic. This is due to a property of the logarithm
function described in following example: Consider four positive numbers a, b, c,
and d, with logarithm of all of them greater than 1. Let be a > c and b > d and
a−b = c−d > 0, then we will have log(a)− log(b) < log(c)− log(d). As a result,
by increasing the number of clusters the within cluster dispersion Wk decreases.
Consequently the Gap function increases even when the distance between W ∗

k

and Wk remains the same.
Estimating the number of clusters depends on many factors. The choice of

clustering method is one of these factors. The Gap statistic is designed to be
applicable to any clustering method. In general, the results and discussions given
in this work are not restricted to any clustering method. However, the choice of
the clustering method influences the result of Gap statistic. Different clustering
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per voxel. Voxel are colored according to their cluster affiliation. (b) Segmen-
tation map of the tumor. Voxel are colored similar to subfigure (a). (c) Signal
time curves for each voxel in the five respective clusters along with the mean
curve (bold red line).
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methods look for different structures in data. The average linkage method, used
for the Gap calculation in section 3.1, was able to find the real cluster number
for both the “iris” (Fisher, 1963) and the “Breast Cancer Wisconsin data set”
(Wolberg et al., 1993) in contrast to the Gap function with k-mean clustering
reported by Yan and Ye (2007).

Comparing the original Gap and proposed Gap∗ statistic, the original Gap
statistic has a better performance in the case of overlapped clusters than Gap∗

due to the tendency of the Gap of overestimating the number of clusters. For
real application, it is however up to the user to decide whether two clusters
with overlapping area should be considered as one cluster or two. In previous
studies (Tibshirani et al., 2001; Yan and Ye, 2007; Yin et al., 2008; Dudoit and
Fridlyand, 2002; Sugar and James, 2003) it was reported that a null reference
data generated from a uniform distribution aligned with the principal compo-
nents of the data causes a better performance of Gap statistic. The Gap function
calculated from such null reference data is referred to as Gappc. It would be
interesting to compare Gappc and Gap∗pc in further studies.

We have introduced Gap∗, which compares the expected values of W ∗
k with

Wk. Thus, it reflects exactly the changes in the within cluster dispersion of the
real data against the expected W ∗

k of the null reference data set. Whenever
the original Gap results in a k as proper number of cluster, this k is also a
possible answer with the proposed Gap∗. In contrast, there are situations where
proposed Gap∗ function is able to offer a number as a proper number of clusters
while the original Gap has no answer. Evaluations in section 3 verify this idea.
In subsections 3.4 and 3.5, the original Gap function is a strictly increasing
function, hence it cannot find any cluster number. On the other hand, Gap∗ is
not strictly increasing and therefore is able to suggest a cluster number for the
data. For the simulated data in subsection 3.4 the suggested number is equal
to real number of clusters. For the real data set in subsection 3.5, however,
we have no reference to decide if the number suggested by the proposed Gap∗

statistic is the proper number of clusters. Further experiments are necessary
on real data with known cluster number to verify the accuracy of the proposed
Gap∗ statistic in cases where the original Gap is a strictly increasing function.
Our experiments suggest that such data are possibly from multi dimensional
feature space, with different variances in the different feature axes.
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A Proofs

A.1 Proof of proposition (1):

Proof.

log(
A

d1
) ≥ log(

B

d2
) ⇒ A

B
≥ d1

d2
⇒

A

B
≥ 1 and

d1
d2

≥ 1 ⇒ A

B
− 1 ≥ d1

d2
− 1

Proof by contradiction: If C − d1 ≥ D − d2 is not true, then we have:

C − d1 < D − d2

C −D < d1 − d2 ⇒ C −D

d2
<

d1
d2

− 1

⇒
C −D

d2
<

A

B
− 1

1

B

∑

b

W ∗
kb −

1

B

∑

b

W ∗
k+1b < d2

∏
W ∗

kb
1/B

∏
W ∗

k+1b
1/B

− d2 (17)

Geometric to arithmetic mean relationship says:

(∏ W ∗
kb

W ∗
k+1b

)1/B

≤ 1

B

∑

b

W ∗
kb

W ∗
k+1b

so we can rewrite the Eqn. 17 as follows:

1

d2

∑

b

W ∗
kb −

1

d2

∑

b

W ∗
k+1b <

∑

b

W ∗
kb

W ∗
k+1b

−B (18)

⇒ ∑

b

W ∗
kb

d2
−
∑

b

W ∗
kb

W ∗
k+1b

<
∑

b

W ∗
k+1b

d2
−B

⇒ ∑

b

W ∗
kb

W ∗
k+1b

(
W ∗

k+1b − d2

d2

)
<
∑

b

W ∗
k+1b − d2

d2

For all values of b,
W∗

kb

W∗
k+1b

≥ 1, setting
W∗

kb

W∗
k+1b

to its minimum value 1, then

we have: ∑

b

W ∗
k+1b − d2

d2
<
∑

b

W ∗
k+1b − d2

d2
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A.2 Proof of proposition (2):

Proof. From the previous proof we have:

A

B
− 1 <

C −D

d2

Thus, in the case of d1 − d2 = C −D we will have:

A

B
<

d1
d2

B Case Study: Unequally sized clusters

Figure 8: Two 2D distributions from the case study in Appendix B. Each
distribution is depicted with three areas of 68.2%, 95.45%, and 99.7% percentage
of sample occurrence inside each area.

In the following case study the effect of number difference between clusters
on Gap statistic was studied. The case study considered data sets with each
consisting of two clusters sampled from two 2D normal distributions N(µ, σ2I)
and N(µ′, σ2I), where µ and µ′ are expected values, I is the identity matrix,
and σ2 > 0 is a positive real number. According to standard score (Glenberg
and Andrzejewski, 2008) 99.7% of samples will be inside a circle with radius
3 · σ. Here, the uniform distribution rectangle, from which the null references
are sampled, was estimated as a rectangle with sides 6 · σ + ∆ and 6 · σ as
illustrated in Fig. 8, where ∆ = ‖µ− µ′‖. Let N1 be the number of samples in
the first cluster and N2 be the number of samples in the second cluster, while
N1 = m · N2 and n = N1 + N2. In section 3.2 we observed that in the case
of N1 = N2, for ∆ ≥ 5σ both Gap functions estimate two as proper number
of clusters. In this study we want to show how changes in m affect the result
of the Gap statistic. Let ∆ ≥ 5σ and n be fixed. For the Gap statistic it is
necessary to have Gapn(1) ≤ Gapn(2)− s2 in order to be able to choose k = 2
as proper number of clusters otherwise it suggests k = 1. We ignore s2 and
consider the inequality Gapn(1) ≤ Gapn(2). The two next inequalities follow
from the Eqns. 3 to 8 for Gap and Gap∗, respectively:
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1. Gap

(∏ W ∗
1b

W ∗
2b

) 1
B

≤ W1

W2
(19)

2. Gap∗

1

B

∑
(W ∗

1b −W ∗
2b) ≤ W1 −W2 (20)

Each W ∗
1b can be estimated as nE(d1) where E(d1) is the expected distance

between two random points from a rectangular uniform distribution with sides
6σ+∆ and 6σ. In a similar way W ∗

2b can be estimated as nE(d2) where E(d2) is
the expected distance between two random points from a rectangular uniform
distribution with sides 6σ+∆

2 and 6σ. The expected distance of two random
points sampled from a rectangular uniform distribution with sides a and b with
a ≥ b is given by (Santalo, 1976)

E(d) =
1

15

[
a3

b2
+

b3

a2
+ d

(
3− a2

b2
− b2

a2

)
+

5

2

(
b2

a
log

a+ d

b
+

a2

b
log

b+ d

a

)]
(21)

where d =
√
a2 + b2. Using these estimation and Eqns. 19 and 20 we gain

1. Gap

E(d1)

E(d2)
≤ W1

W2
(22)

2. Gap∗

n (E(d1)− E(d2)) ≤ W1 −W2 (23)

Furthermore, we can take into account that W1 includes the inter-cluster dis-
tances between the first and second clusters in addition to all distances which
are used in calculation of W2. Therefore W1 can be written as W2 +

2N1N2d∆

n ,
where d∆ is the average inter-cluster distances. Consequently, inequalities (22)
and (23) can be rewritten as:

1. Gap

E(d1)

E(d2)
− 1 ≤ md∆

σ(m+ 1)2
(24)

2. Gap∗

E(d1)− E(d2) ≤
2md∆

(m+ 1)2
(25)

18



References

Bellman, R. (1961). Adaptive control processes: a guided tour. A Rand Corpo-
ration Research Study Series. Princeton University Press.

Beyer, K., J. Goldstein, R. Ramakrishnan, and U. Shaft (1999). When is nearest
neighbor meaningful? In C. Beeri and P. Buneman (Eds.), Database Theory
ICDT99, Volume 1540 of Lecture Notes in Computer Science, pp. 217–235.
Springer Berlin / Heidelberg.

Brix, G., F. Kiessling, R. Lucht, S. Darai, K. Wasser, S. Delorme, and J. Griebel
(2004). Microcirculation and microvasculature in breast tumors: pharma-
cokinetic analysis of dynamic MR image series. Magnetic Resonance in
Medicine 52 (2), 420–429.

Buadu, L., J. Murakami, S. Murayama, N. Hashiguchi, S. Sakai, S. Toyoshima,
K. Masuda, S. Kuroki, and S. Ohno (1997). Patterns of peripheral enhance-
ment in breast masses: correlation of findings on contrast medium enhanced
MRI with histologic features and tumor angiogenesis. Journal of computer
assisted tomography 21 (3), 421.

Caliński, T. and J. Harabasz (1974). A dendrite method for cluster analysis.
Communications in Statistics-Theory and Methods 3 (1), 1–27.

Castellani, U., M. Cristiani, A. Daducci, P. Farace, P. Marzola, V. Murino, and
A. Sbarbati (2009). DCE-MRI data analysis for cancer area classification.
Methods of information in medicine 48 (3), 248–253.

Dudoit, S. and J. Fridlyand (2002). A prediction-based resampling method for
estimating the number of clusters in a dataset. Genome biology 3 (7).

Fischer, H. and J. Hennig (1999). Neural network-based analysis of MR time
series. Magnetic Resonance in Medicine 41 (1), 124–131.

Fisher, R. (1963). Irvine, CA: University of California, School of In-
formation and Computer Science: UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml.

German Cancer Research Center (DKFZ) (2004). Research program “Innovative
Diagnosis and Therapy”. Heidelberg, Germany: German Cancer Research
Center (DKFZ).

Glenberg, A. and M. Andrzejewski (2008). Learning from data: An introduction
to statistical reasoning. Taylor & Francis Group, LLC.

Hartigan, J. (1975). Clustering algorithms. John Wiley & Sons, Inc. New York,
NY, USA.

Kaufman, L. and P. Rousseeuw (1990). Finding Groups in Data An Introduction
to Cluster Analysis. New York: Wiley Interscience.

Krzanowski, W. and Y. Lai (1988). A criterion for determining the number
of groups in a data set using sum-of-squares clustering. Biometrics 44 (1),
23–34.

19



Nattkemper, T., B. Arnrich, O. Lichte, W. Timm, A. Degenhard, L. Pointon,
C. Hayes, and M. Leach (2005). Evaluation of radiological features for breast
tumour classification in clinical screening with machine learning methods.
Artificial Intelligence in Medicine 34 (2), 129–139.

Santalo, L. A. (1976). Integral geometry and geometric probability / Luis A.
Santalo ; with a foreword by Mark Kac, pp. 49. Addison-Wesley Pub. Co.,
Advanced Book Program, Reading, Mass. :.

Schlossbauer, T., G. Leinsinger, A. Wismuller, O. Lange, M. Scherr, A. Meyer-
Baese, and M. Reiser (2008). Classification of small contrast enhancing
breast lesions in dynamic magnetic resonance imaging using a combination
of morphological criteria and dynamic analysis based on unsupervised vector-
quantization. Investigative radiology 43 (1), 56.

Scott, A. and M. Symons (1971). Clustering methods based on likelihood ratio
criteria. Biometrics 27 (2), 387–397.

Sugar, C. A. and G. M. James (2003). Finding the Number of Clusters in a
Data Set - An Information Theoretic Approach. J. Am. Statist. Ass. 98 (463),
750–763.

Tibshirani, R., G. Walther, and T. Hastie (2001). Estimating the number of
clusters in a data set via the gap statistic. J. R. Statist. Soc. B 63 (2), 411–423.

Varini, C., A. Degenhard, and T. Nattkemper (2006). Visual exploratory anal-
ysis of DCE-MRI data in breast cancer by dimensional data reduction: A
comparative study. Biomedical Signal Processing and Control 1 (1), 56–63.

Wendl, M. and S. Yang (2004). Gap statistics for whole genome shotgun DNA
sequencing projects. Bioinformatics 20 (10), 1527–1534.
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