The Journal of UROLOGY®

Volume 148 August 1992 Number 2

CLINICAL UROLOGY

Review Article
Reviews on Chromosome Studies in Urological Tumors. I. Renal Tumors. A. M. Meloni, J. Bridge and A. A. Sandberg ... 253

Original Articles

Microscopic Venous Infiltration as Predictor of Relapse in Renal Cell Carcinoma. Ch. Mrstik, J. Salamon, R. Weber and F. Stögermayer 271

Home Screening for Hematuria: Results of Multi-Clinic Study. E. M. Messing, T. B. Young, V. B. Hunt, E. B. Roecker, A. M. Vaillancourt, W. J. Higien, E. B. Greenberg, M. E. Kuglitsch and J. D. Wegenke 289

Treatment of Recurrent Urethral Stricture by Internal Urethrotomy and Intermittent Self-Catheterization: Controlled Study of New Therapy. A. Bedker, P. Ostri, J. Rye-Andersen, L. Edwardsen and J. Struckmann ... 308

Change of Urinary 11-Dehydro-Thromboxane B2 and 2,3-Dinor-6-Keto-Prostaglandin Flα in Arteriogenic Impotence. J. S.-N. Lin, S. M.-C. Lui, C.-M. Chen and W.-C. Chang ... 311

Value of Dynamic Color Duplex Scanning in Diagnosis of Venogenic Impotence. L. A. Merckx, R. M. G. De Bruyne, H. Goes, M. P. Derde and F. Keuppens .. 318

Current Urological Practice: Routine Urological Examination and Early Detection of Carcinoma of Prostate. I. M. Thompson and E. J. Zeidman (Editorial Comments by M. I. Resnick, G. W. Chodak and G. P. Murphy) .. 326

Effect of Casodex on Sleep-Related Erections in Patients With Advanced Prostate Cancer. R. Migliari, G. Muscas and E. Usai .. 338

Transrectal Microwave Hyperthermia for Advanced Prostate Cancer: Long-Term Clinical Results. F. Montorsi, G. Guazzoni, R. Coloombo, L. Galli, F. Bergamaschi and P. Rigatti 342

Urologists At Work
Stepladder Incision Technique for Lengthening of Bowel Mesentery. L. A. Levine (Editorial Comments by W. S. McDougall and J. F. Donovan) ... 351

Contents continued on page A12
Modified Surgical Rectractor Blade for Radical Retropubic Prostatectomy and Retropubic Surgery. H. L. Holtgrewe, G. W. Yu and G. N. Jacobs

Simple Test for Detection of Intraoperative Rectal Injury in Major Urological Pelvic Surgery. L. L. Pisters and Z. Wajsman

Urological Neurology and Urodynamics

Detrusor Function in Suprasacral Spinal Cord Injuries. J. K. Light and A. Beric

Pediatric Articles

Results of Renewed Extravesical Reimplant for Surgical Correction of Vesicoureteral Reflux. J. Wacksman, A. Gilbert and C. A. Sheldon

Perforation of Gastric Segment of Augmented Bladder Secondary to Peptic Ulcer Disease. Y. Reinberg, J. C. Manivel, C. Froemming and R. Gonzalez

Ileal Nipple for Continence in Cloacal Exstrophy. W. H. Hendren

Unilateral Hydroureteronephrosis Caused by Abdominoscrotal Hydrocele. B. Klin, Y. Efrati, A. Mor and L. Vinograd

Editorial

Clinical Trials: Conflicting Opinions. E. D. Crawford

Case Reports

Repair of Autotransplant Renal Artery Aneurysm: Case Report and Literature Review. N. E. Fleshner and K. W. Johnaton

Late Onset Renal Allograft Anastomotic Pseudoaneurysm With Absent Doppler Signal. J. G. Buckley, Z. Salimi and E. George

Late Development of Renal Carcinoma in Allograft Kidney. J. D. Feldman and S. C. Jacobs

Late Manifestation of Testicular Seminoma in Bladder in Renal Transplant Recipient. A. C. Viddeleer, G. A. Lycklama à Nijeholt and J. A. M. Beehkus-Brussee

Trifurcation of Urethra. Z. Gülerce, O. Nazli, R. Killi, C. Girgin and Ö. Erhan

Actinomycosis Associated With Pilonidal Sinus of Penis. A.-M. H. Rashid, R. M. Williams, D. Parry and P. R. Malone

Case of Simultaneous Bilateral Nonseminomatous Testicular Tumors in Persistent Müllerian Duct Syndrome. J. A. Eastham, K. McEvoy, R. Sullivan and P. Chandrasoma

Letter to the Editor

No-Scalpel Vasectomy, by S. Li, M. Goldstein, J. Zhu and G. Huber. P. M. Alderman

INVESTIGATIVE UROLOGY

Quantitative Morphometry of Adult Human Bladder. H. Lepor, I. Sunaryadi, V. Hartanto and E. Shapiro

Radioimmunodetection of Human Bladder Tumor Xenografts in Nude Mice With Radiolabeled Monoclonal Antibodies. Y. Fradet, J. Friede, B. Guertin, J. Leclerc, C. Dufour and C. Caron

Alterations of Norepinephrine and Acetylcholine Concentrations in Immature Rat Urinary Bladder Caused by Streptozotocin-Induced Diabetes. I. Nakamura, C. Takahashi and I. Miyagawa

Epidermal Growth Factor: Receptor Binding and Effects on Sex Accessory Organs of Sexually Mature Male Mice. A. Liu, R. J. Davis, C. Flores, M. Menon and L. Seethalakshmi

Contents continued on page A14
Mechanism of Ammonium Transport by Intestinal Segments Following Urinary Diversion: Evidence for Ionized NH\textsubscript{3} Transport Via K+-Pathways. M. C. Hall, M. O. Koch and W. S. McDougal

Inhibition of Rat Bladder Tumor (RBT323) Growth by Tumor Necrosis Factor Alpha and Interferon-Gamma In Vivo. R. J. A. van Moorselaar, B. Th. Hendriks, G. Borm, P. H. van der Meide, F. M. J. Debruyne and J. A. Schalken

Collagen Alterations in Corpus Cavernosum of Men With Sexual Dysfunction. R. Luangkhot, S. Rutchik, V. Agarwal, K. Puglia, G. Bhargava and A. Melman

Investigative Grammar

UROLOGICAL SURVEY

Principles of Oncology and Immunology, and Tumors of Bladder, Penis and Urethra

Male Infertility

Sexual Function and Dysfunction

Renal Calculi

Renal Tumors, Retroperitoneum, Ureter, and Urinary Diversion and Reconstruction

Information for Authors

PROPRIETARY NAMES

Many of the words appearing in the JOURNAL OF UROLOGY are proprietary names even though no reference to this fact is made in the text. The appearance of any name without designation as proprietary is, therefore, not to be regarded as a representation by the editorial committee or publisher that it is not the subject of proprietary rights.

GUIDELINES FOR SUPPLEMENTS

The Editors of the Journal will consider requests for and solicit sponsors of Supplements to The Journal of Urology. For those interested the following are the proposed steps for publication of a Supplement.

1) Proposal formulated by sponsors of the Supplement or solicited by the Journal Editorial Staff that would include an indication of the major topics with a limited outline of subtopics, the nature of the articles to be included (review, original papers with or without discussion), identification of a sponsoring group or individual, identification of the type of internal quality control group available for the Journal Editors to work with and an indication of the financial support available.

2) Response by the Editorial Staff with identification of a specific individual to work with the Editorial Committee of the sponsors.

3) Agree to a deadline for submission of the papers, number of papers and so forth.

4) Formulation of and agreement on procedure for initial screening and editorial evaluation of manuscripts and discussions with active participation by the sponsoring group.

5) Submission to the Editorial Staff of the Journal for their evaluation.

6) Interaction between Journal and sponsoring editorial group. Final decision is retained by Journal Editorial Staff.

7) Redaction, page proofing and so forth by Editorial Staff. Articles in supplements would be indexed in the Journal.

8) Publication.

DISCLAIMER

The statements and opinions contained in the articles of JOURNAL OF UROLOGY are solely those of the individual authors and contributors and not of the American Urological Association, Inc. or Williams & Wilkins. The appearance of the advertisements in the Journal is not a warranty, endorsement or approval of the products or services advertised or of their effectiveness, quality or safety. The American Urological Association, Inc., and the Publisher disclaim responsibility for any injury to persons or property resulting from any ideas or products referred to in the articles or advertisements.
EFFECT OF INTRACAVERNOUS SIMULTANEOUS INJECTION OF ACETYLCHOLINE AND VASOACTIVE INTESTINAL POLYPEPTIDE ON CANINE PENILE ERECTION

YOSHIASTU TAKAHASHI,* SHERIF R. ABOSEIF, FRANCOIS BENARD, CHRISTIAN G. STIEF, TOM F. LUE AND EMIL A. TANAGHO

From the Department of Urology, University of California School of Medicine, San Francisco, California

ABSTRACT

We investigated the effects of intracavernous injection of a combination of acetylcholine (ACh) and vasoactive intestinal polypeptide (VIP) on the erectile response in eleven adult male dogs. The minimum dose of ACh which increased the intracavernous pressure in eight dogs varied from 0.2 to 40 μg., and the minimum dose of VIP varied from 0.2 to 5 μg. When the minimum doses of ACh and VIP were injected simultaneously, a strong increase of intracavernous pressure (the mean increase was 102 cm. H₂O from the baseline level) and a sustained erection (mean 5 min.) were observed in all eight dogs. The effect of simultaneous injection of both drugs was not additive but synergetic. Pretreatment with VIP-antibody and atropine intracavernously suppressed the erectile response induced by cavernous nerve stimulation. VIP may increase the affinity of muscarinic receptors for ACh in canine corpus cavernosum because pretreatment with atropine alone before the simultaneous injection of ACh and VIP completely abolished the effect of the combination. We conclude that ACh and VIP may play a cooperative role in canine penile erection.

KEY WORDS: acetylcholine, vasoactive intestinal peptide, penile erection, canine

There are two types of local control in penile erection: neurological and humoral. In either case, the key event is a relaxation of the smooth muscle of the corpus cavernosum.¹ Neurological control suggests three types of autonomic nervous system effect on the smooth muscle: adrenergic (excitatory), cholinergic (inhibitory) and non-adrenergic non-cholinergic (NANC) (inhibitory). Several groups of humoral agents have been proven to influence the tone of cavernous smooth muscle when injected intracavernously.²

The presence of cholinesterase-containing fibers,³ muscarinic receptors⁴ and acetylcholine (ACh) synthesis and release in human corpus cavernosum⁵ has been reported. Cholinesterase-positive fibers were also demonstrated around the cavernous arteries and within the cavernous smooth muscle in the canine penis.⁶ Vasoactive intestinal polypeptide (VIP)-immunoreactive fibers have been reported to run parallel to cholinesterase-positive fibers in human corpus cavernosum.⁷

Recently it has been found that neuropeptides are often located in the same neurons as ACh.⁸ The mechanism of interaction of peptides and non-peptides is better understood in vascular neuromuscular systems.⁹ Lundberg demonstrated that VIP increased the affinity of muscarinic receptors for ACh in cat submandibular glands.¹⁰ In this study we investigated the effect of a combination of ACh and VIP in canine penile erection.

MATERIALS AND METHODS

In eleven adult male mongrel dogs (12 to 34 kg.), anesthesia was induced by acepromazine (0.2 mg./kg., B.W.) and ketamine (10 mg./kg., B.W.) subcutaneously. Sodium pentobarbital (45 to 60 mg./hour) was administered intravenously to maintain an adequate level of anesthesia and spontaneous respiration. The animal was placed in a supine position, and the bladder and prostate were exposed through a midline abdominal incision. The cavernous nerves were identified posterolaterally to the prostate and bipolar cuff electrodes (Avery Laboratories, Farmingdale, NY) were placed around them for electrical stimulation. The ipsilateral internal pudendal artery to the cavernous nerves was exposed and an ultrasonic blood flow probe (Transonic Systems Inc., N.Y.) was placed around the internal pudendal artery to measure the blood flow to the penis. The entire penis was denuded, exposing both corpora cavernosa down to the ischial rami. Two 21-gauge scalp-vein needles were inserted into each corpus cavernosum, one proximally for intracavernous pressure (ICP) recording and the other distally for intra-cavernous injection. Systemic arterial blood pressure was monitored via a 16-gauge cannula in the femoral artery. All fluid-filled lines were connected to Statham pressure transducers and a Grass polygraph for recording.

To find the minimum dose that effectively increased ICP, varying doses of ACh and VIP were injected intracavernously while ICP, systemic blood pressure and pudendal arterial blood flow were measured in eight dogs (Nos. 1–8). The doses of ACh injected were: 0.2, 1, 2, 5, 10, 20 and 40 μg. The doses of VIP injected into the same corpus were: 0.2, 0.5, 1, 2, 3, 4 and 5 μg. Between each cavernous injection there were intervals of approximately 15 minutes, which was enough time for ICP to return to the baseline level. Before each injection, one ml. saline was injected intracavernously in order to ascertain the ineffectiveness of previous injection. Then the experimentally determined minimum doses of VIP and ACh were injected simultaneously into the same corpus as before.

Following these studies, we repeated the same injection of the ACh and VIP combination in four dogs in the same corpus (Nos. 1–4). Then, to examine the effect of atropine on the combination, 20 to 50 μg. of atropine sulfate was injected two minutes before the ACh-VIP injection was repeated. To investigate the possibility that ACh and VIP could play a role as neuro-cotransmitters in canine penile erection, the erectile response induced by cavernous nerve stimulation was compared before and after the intracavernous simultaneous injection with atropine (10 to 100 μg.) and VIP-antibody (300 to 500 μg., 1:10 dilution in saline) in six dogs (Nos. 6–11). Neurostimulations were performed every 15 minutes and in each response we measured the peak ICP and the erection time.

Accepted for publication February 10, 1992.

* Requests for reprints: Diabetes Center, Tokyo Women’s Medical College, Kawadacho 8-1, Shinjuku-ku, Tokyo, Japan 162.
TABLE 1. Effects of intracavernous simultaneous injection of ACh and VIP on canine penile erection

<table>
<thead>
<tr>
<th>Dose of Injection</th>
<th>Baseline ICP (cm.H₂O)</th>
<th>Increase of ICP**</th>
<th>Duration of Plateau (ICP > 80 cm.H₂O) (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACh (µg.)</td>
<td>VIP (µg.)</td>
<td>ACh</td>
<td>VIP</td>
</tr>
<tr>
<td>0.5</td>
<td>3</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

ICP = Intracavernous pressure, VIP = Vasoactive intestinal polypeptide, ACh = Acetylcholine.** Increase of ICP means the rise from the baseline level to the peak of ICP.

FIG. 1. Representative recordings of erectile response to simultaneous injection of ACh and VIP. Both 0.5 µg. ACh and 3 µg. VIP alone raised ICP slightly. Simultaneous injection of ACh and VIP in same corpus induced an immediate, strong increase of ICP up to 140 cm. H₂O with sustained erection for 1.5 minutes.

FIG. 2. Representative recordings of ICP induced by ACh and VIP before and after atropine injection. Both 0.5 µg. ACh and 1.0 µg. VIP alone raised ICP slightly. First simultaneous injection of 0.5 µg. ACh and 1.0 µg. VIP increased ICP to 88 cm. H₂O and secondary injection with same doses to 100 cm. H₂O. Following these studies, synergistic effect of ACh and VIP was completely abolished with intracavernous pretreatment with 20 µg. atropine.

DISCUSSION

The minimum doses of ACh and VIP that increased ICP varied so much probably due to the interindividual difference, however, we observed a consistent, synergistic effect of simultaneous intracavernous injection of ACh and VIP on canine penile erection in all dogs studied. We found that the synergistic effect was atropine sensitive, suggesting an effect of VIP on the cholinergic mechanism.

ACh can induce smooth muscle relaxation but does not relax the smooth muscle directly.11 When ACh is injected intracavernously, it probably diffuses gradually into the sinusoids and mediates endothelium-derived relaxing factor (EDRF). EDRF is now known to be nitric oxide released from the endothelium of various vascular beds.12 The receptor on endothelial cells for ACh may be muscarinic because pretreatment of the corpus cavernosum with atropine inhibits the effect of exogenous ACh in vivo.6,13 and in vitro.11

On the other hand, it has been suggested that VIP plays a major role as one of the NANC transmitters in penile erection and induces cavernous smooth muscle relaxation in both in vivo and in vitro studies. The combination of ACh and VIP injection probably plays a cooperative role through the muscarinic receptors on endothelial cells of the sinusoidal space in the corpus cavernosum, because the synergistic effect was completely abolished by atropine pretreatment.

The precise mechanism of the cooperative relationship between ACh and VIP in penile erection is still unknown. However, it has recently become clear that perivascular nerves...
contain a number of biologically active peptides, and amino acids in addition to the classical neurotransmitters, ACh and noradrenaline. In 1987, Burnstock proposed a mechanism of interaction between peptides and nonpeptides. Some findings about the interaction of ACh and VIP in parasympathetic nerves have been reported as follows:

1. VIP increased the affinity of the muscarinic receptor for ACh by about 10-fold in cat submandibular glands. Intravenously infused VIP decreased the ACh turnover rate by about 50% in rodent salivary glands.

2. VIP increased the ACh synthesis, possibly by enhancing the activity of choline acetyltransferase in rat hippocampal slices. It can be speculated that VIP increases the affinity of muscarinic receptors for ACh on the endothelial cells in the corpus cavernosum and also reduces the ACh turnover rate, and thus plays a synergistic role with ACh in canine penile erection.

The results in this study showed that the erectile response induced by cavernous nerve stimulation was suppressed by the intracavernous pretreatment with atropine and VIP-antibody. The suppression is supposed to be due to the combination of the two drugs but not due to each drug alone because atropine modified only the response induced by neurostimulation, and VIP-antibody blocked only the continuation of the response; neither of them reduced the peak level of ICP. Although the time from injection to maximum suppression and the degree of suppression was not consistent in six dogs, the difference in ICP before and after the injection was statistically significant (p < 0.05). Andersson et al. suggested that erection in the dog is due to arterial vasodilation caused by VIP release, followed by a filling of the cavernous bodies under the control of the cholinergic mechanism and that both of these events have to occur to induce a full erection. We propose that the interaction of ACh and VIP may play an important physiologic role in canine penile erection.

In vivo experiments with intracavernous injections of VIP in monkeys and in humans have yielded contradictory results. Studies with simultaneous injections of ACh and VIP in monkeys and in men are planned.

REFERENCES

