PROTEASES II
Potential Role in Health and Disease

Edited by
Walter H. Hörl
University of Freiburg
Freiburg, Federal Republic of Germany

and
August Heidland
University of Würzburg
Würzburg, Federal Republic of Germany

PLENUM PRESS • NEW YORK AND LONDON
CONTENTS

I PHYSIOLOGY AND PATHOPHYSIOLOGY OF PROTEASES AND THEIR INHIBITORS

Aspartic Proteinases and Inhibitors for their Control in Health and Disease 1
J. Kay, R. A. Jupp, C. G. Norey, A. D. Richards, W. A. Reid, R. T. Taggart, I. M. Samloff, and B. M. Dunn

Human Neutral Endopeptidase 24.11 (NEP, Enkephalinase); Function, Distribution and Release 13
E. G. Erdös and R. A. Skidgel

Neutrophil Elastase and Cathepsin G: Structure, Function and Biological Control 23
W. Watorek, J. Farley, G. Salvesen, and J. Travis

The Degradation of Collagen by a Metalloproteinase from Human Leucocytes 33

Plasma Membrane Proteases as Useful Tool in Histochemical Toxicology 45
R. Graf and R. Gossrau

Activation of Leukocytes During Prolonged Physical Exercise .. 57

Inhibition of Human Neutrophil Elastase by Polyguanylic Acid and other Synthetic Polynucleotides 65
S. Simon, M. Vered, A. Rinehart, J. Cheronis, and A. Janoff

Inhibition of Human Neutrophil Elastase by Acid-Soluble Inter-Alpha-Trypsin Inhibitor 75
A. Gast and J. G. Bieth

Development of Eglin c as a Drug: Pharmacokinetics .. 83
H. P. Nick, A. Probst, and H. P. Schnebli
Monoclonal Antibodies Recognizing Inter-Alpha-Trypsin-Inhibitor and its Related Fragments - Evidence for the Involvement of the Proteinase Inhibitor in Cutaneous (Patho-) Physiology ... 89
C. Justus, K. Hochstrasser, and M. D. Kramer

Inhibition of Human Chymotrypsin-Like Proteases by Alpha-1-Proteinase Inhibitor and Alpha-1-Antichymotrypsin .. 97
A. Hayem, D. Marko, A. Laine, and M. Davril

Immunoreactive Pancreatic Secretory Trypsin Inhibitor in Gastrointestinal Mucosa 101
M. Bohe, C. Lindström, and K. Ohlsson

II PROTEASES AND LUNG

Semisynthetic Inhibitors of Human Leukocyte Elastase and their Protective Effect on Lung Elastin Degradation in vitro 107
J. Beckmann, A. Mehlich, H. R. Wenzel, and H. Tschesche

Human Bronchial Proteinase Inhibitor: Rapid Purification Procedure and Inhibition of Leucocyte Elastase in Presence and in Absence of Human Lung Elastin 115
C. Boudier, D. Carvallo, M. Bruch, C. Roitsch, M. Courtney, and J. G. Bieth

Functional Studies of Human Secretory Leukocyte Protease Inhibitor 123
K. Ohlsson, M. Bergenfeldt, and P. Björk

The Role of Chymase in Ionophore-Induced Histamine Release from Human Pulmonary Mast Cells 133
T. Hultsch, M. Ennis, and H. H. Heidtmann

Proteolytic Activities in Bronchoalveolar Lavage Fluid Correlate to Stage and Course of Interstitial Lung Disease .. 137
M. Schmidt and E. Brugger

Behaviour of Angiotensin Converting Enzyme, Hydroxyproline and some Protease Inhibitors in Pulmonary Sarcoidosis 145
M. Masiak, B. Podwysocki, and A. Gajewska

Experimental Studies on the Adult Respiratory Distress Syndrome: Elastase Infusion in Normal and Agranulocytic Minipigs 149
H. Burchardi and T. Stokke
Arginylation, Surface Hydrophobicity and Degradation of Cytosol Proteins from Rat Hepatocytes 159
P. Bohley, J. Kopitz, and G. Adam

Proteinase Inhibitors as Acute Phase Reactants: Regulation of Synthesis and Turnover 171
A. Koj, D. Magielska-Zero, A. Kurdowska, and J. Bereta

Regulation of Proteinase Activity by High Molecular Weight Inhibitors: Biosynthesis of Rat Alpha-Macroglobulins 183

Induction of the Proteinase Inhibitor Alpha-2-Macroglobulin in Rat Hepatocytes by a Monocyte-Derived Factor 191

Astrocytes Synthesize and Secrete Alpha-2-Macroglobulin: Differences Between the Regulation of Alpha-2-Macroglobulin Synthesis in Rat Liver and Brain 199
J. Bauer, P. J. Geoicke-Haerter, U. Ganter, I. Richter, and W. Gerok

Characterization of Different Forms of Dipeptidyl Peptidase IV from Rat Liver and Hepatoma by Monoclonal Antibodies 207
S. Hartel, C. Hanski, R. Neumeier, R. Gossrau, and W. Reutter

Non-Lysosomal, High-Molecular-Mass Cysteine Proteinases from Rat Skeletal Muscle 215
B. Dahlmann, L. Kuehn, F. Kopp, H. Reinauer, and W. T. Stauber

Role of Factors Derived from Activated Macrophages in Regulation of Muscle Protein Turnover 225
V. E. Baracos

Responses of Lysosomal and Non-Lysosomal Proteases to Unloading of the Soleus 235
E. J. Henriksen, S. Satarug, M. E. Tischler, and P. Fürst
Cathepsin B and D Activity in Human Skeletal Muscle in Disease States ... 243
 G. Guarnieri, G. Toigo, R. Situlin, M. A. Del Bianco, and L. Crapesi

Hormonal Regulation of Muscle Protein Catabolism in Acutely Uremic Rats: Effect of Adrenalectomy and Parathyroidectomy .. 257

V PROTEASES, KIDNEY AND UREMIA

Relation Between Urinary Proteinases and Proteinuria in Rats with a Glomerular Disease 267
 J.-C. Davin, M. Davies, J.-M. Foidart, J. B. Foidart, C. A. Dechenne, and P. R. Mahieu

Characterization and Clinical Role of Glomerular and Tubular Proteases from Human Kidney 275
 J. E. Scherberich, G. Wolf, C. Stuckhardt, P. Kugler, and W. Schoeppe

Effect of Glomerular Proteinuria on the Activities of Lysosomal Proteases in Isolated Segments of Rat Proximal Tubule ... 283
 C. J. Olbricht

Meprin Phenotype and Cyclosporin A Toxicity in Mice ... 293
 J. F. Reckelhoff, S. S. Craig, R. J. Beynon, and J. S. Bond

Potential Role of Lysosomal Proteases in Gentamicin Nephrotoxicity ... 305
 C. J. Olbricht, E. Gutjahr, M. Fink, and K. M. Koch

Urinary Proteinase Activity in Patients with Acute Renal Failure after Trauma and Kidney Transplantation ... 309
 C. Wanner, S. Greiber, G. Kirste, P. Schollmeyer, and W. H. Hörl

Mechanisms for Activation of Proteolysis in Uremia ... 315
 W. E. Mitch

Evidence for the Role of Proteinases in Uremic Catabolism .. 323

Eglin C Fails to Reduce Catabolism in Acutely Uremic Rats .. 331
Evidence for Protein Split Products in Plasma of Patients with Acute Renal Failure 339
M. Haag, H. E. Meyer, P. Schollmeyer, and W. H. Hörl

Proteases and Antiproteases at Different Vascular Sites in Renal Failure 345

Protease Histochemistry in Normal and Uremic Rats ... 351
R. Gossrau, A. Heidland, and J. Haunschild

Total Kininogen Levels, Plasma Renin Activity, Dopamine-Beta-Hydroxylase and Plasma Catecholamines in Chronic and Acute Renal Failure .. 361
K. Marczewski, A. Ksiazek, J. Solski, and Z. Pachucki

VI PROTEOLYTIC ENZYMES DURING EXTRACORPORAL CIRCULATION

Biocompatibility of Dialysis Membranes: Factor H Binding Correlates Inversely with Complement Activation Indicating a Local Imbalance of Involved Proteases/Anti-Proteases 365
E. W. Rauterberg and E. Ritz

Hemodialysis with Curophane Membranes Leads to Alteration of Granulocyte Oxidative Metabolism and Leukocyte Sequestration in the Lung 377

Effect of Immunsuppression on the Release of Main Granulocyte Components: In Vivo and In Vitro Studies ... 385
C. Wanner, B. Simon, A. Gösele, W. Riegel, P. Schollmeyer, and W. H. Hörl

Release of Granulocyte Proteins During Cardiopulmonary Bypass: Effect of Different Pharmacological Interventions ... 391
W. Riegel, G. Spillner, V. Schlosser, K. Lang, and W. H. Hörl

Significant Role of Protease Inhibition by Aprotinin in Myocardial Protection from Prolonged Cardioplegia with Hypothermia 399
M. Sunamori, R. Innami, H. Fujiwara, M. Yokoyama, A. Suzuki
Fibrinolysis Caused by Cardio-Pulmonary Bypass and Shed Mediastinal Blood Retransfusion - Is it of Clinical Relevance? 405
W. Dietrich, A. Barankay, P. Wendt, A. Stemberger, G. Blümel, M. Spannagl, M. Jochum, and J. A. Richter

VII PROTEINASES IN CATABOLIC STATES

Nutrition and Protease Activity 411
J. D. Kopple

Insulin Degradation after Injury in Man 421
S. M. Hoare, K. N. Frayn, and R. E. Offord

Endotoxin Abolishes the Induction of Alpha-2-Macroglobulin Synthesis in Cultured Human Monocytes Indicating Inhibition of the Terminal Monocyte Maturation into Macrophages ... 425
J. Bauer, U. Ganter, and W. Gerok

Local and General Defence Mechanisms in Bacterial and Chemical Peritonitis 433
A. Lasson, M. Delshammer, and K. Ohlsson

Deficient Phagocytosis Secondary to Proteolytic Breakdown of Opsonins in Peritonitis Exudate 441
A. Billing, U. Fröhlich, M. Jochum, and H. Kortmann

Proteolysis and Lipid Peroxidation - Two Aspects of Cell Injury in Experimental Hypovolemic-Traumatic Shock ... 449
H. Redl, S. Hallström, C. Lieners, W. Fürst, and G. Schlag

Plasma Levels of Elastase 1 Protease Inhibitor Complex in the Monitoring of ARDS and Multi-Organ Failure - A Summary of Three Clinical Trials ... 457
H. Redl, E. Paul, R. J. A. Goris, R. Pacher, W. Woloszczuk, and G. Schlag

PMN Elastase and Leukocyte Neutral Proteinase Inhibitor (LNPI) from Granulocytes as Inflammation Markers in Experimental-Septicemia ... 465
R. Geiger, S. Sokal, G. Trefz, M. Siebeck, and H. Hoffmann

Plasma Derivative Replacement Therapy in Diss.Intravasc.Coag.(DIC) Induced by Septic Disorders with highly Elevated Elastase Alpha-1-AT-Complexes ... 473
Neutrophil Elastase, Thrombin and Plasmin in Septic Shock ... 481
R. Seitz, M. Wolf, R. Egbring, and K. Havemann

Elastase-Alpha-1-Proteinase Inhibitor: An Early Indicator of Septicemia and Bacterial Meningitis in Childhood 485
C. P. Speer, M. Rethwilm, and M. Gahr

Serum Pancreatic Secretory Trypsin Inhibitor (PSTI) in Seriously Injured and Septic Patients 493
H. Tanaka, M. Ogawa, T. Yoshioka, and T. Sugimoto

Changes in PMN-Elastase in Blood and in Renal and Plasma Kallikrein-Kinin Systems after Severe Burn Injury ... 499
G. Böner, W. Niermann, R. Festge, and U. Büchsler

Serum Pancreatic Secretory Trypsin Inhibitor (PSTI) in Patients with Inflammatory Diseases 505

The Effect of Aprotinin Administration on the Intraoperative Histamine Release and Haemostatic Disorders 509
H. Harke and S. Rahman

Increased Mortality in Septic Rats after Leupeptin Application ... 515
E. Kovats, J. Karner, G. Ollenschläger, J. Karner, A. Simmel, and E. Roth

Lysosomal Enzymes and Granulocyte Elastase in Synovial Fluid after Multiple Traumatic Injuries ... 519
M. Hörl and H. P. Bruch

A Serine Proteinase Inhibitor in Human Articular Cartilage-Possible Role in the Pathogenesis of Inflammatory Joint Diseases 523
H. Burkhardt, M. Kasten, and S. Rauls

Detection of Granulocyte Elastase Specific IgG Split Products in Rheumatoid Synovial Fluid 531
I. Eckle, G. Kolb, F. Neurath, and K. Havemann
The T Cell Specific Serine Proteinase TSP-1:
Biochemical Characterization, Genetic Analysis, and Functional Role 535

Pancreatic Secretory Trypsin Inhibitor in Cancer ... 547

Proteases and Antiproteases in Ascites - Differentiation of Malignant and Non-
malignant Ascites and Prediction of Coagulopathy in Ascites Retransfusion 555
J. Schölmerich, E. Köttgen, B. A. Volk, and W. Gerok

Alpha-1-Antitrypsin and Alpha-1-Antichymotrypsin Serum Level in Relation to Staging and Postoperative Clinical Course of Human Colorectal Cancer 561
A. Kuryliszyn-Moskal, K. Bernacka, and S. Sierakowski

Inhibition of Proteases During Extracorporeal Extremity Perfusion 565
H. Walther, H. Müller, and K. R. Aigner

INDEX ... 569
FIBRINOLYSIS CAUSED BY CARDIO-PULMONARY BYPASS AND SHED MEDIASTINAL BLOOD RETRANSFUSION - IS IT OF CLINICAL RELEVANCE?

W. Dietrich1, A. Barankay1, P. Wendt2, A. stemberger2, G. Blumel2, M. Spannagl3, M. Jochum3, and J.A. Richter1

1Institute for Anesthesiology, German Heart Center, Munich
2Technical University, Munich
3Ludwig Maximilian University, Munich

INTRODUCTION

The importance of blood saving methods during cardiac surgery is well accepted. It is commonly known that, in spite of heparin treatment, systemic coagulation and fibrinolysis will be activated by cardio-pulmonary bypass (CPB). Whether this activation is of clinical relevance was many times a point of discussion (1). Similar changes were found in the shed mediastinal blood postoperatively (2), which was retransfused to reduce homologous blood requirement (3). It is generally accepted now, that this method leads to a reduction of homologous blood requirement in cardiac surgery (4), but some reservations were made because of the low quality of the chest tube blood (5).

The aim of our study was to investigate the degree of fibrinolysis in the shed blood and in patients' circulation, the influence of lysosomal enzymes of desintegrated or activated granulocytes upon fibrinolyses, and to answer the question, whether retransfusion of shed mediastinal blood causes clinically relevant changes in patients' hemostasis.

METHODS

In twenty adult patients undergoing cardiac surgery parameters of fibrinolysis were analysed at the following instances: 1. before operation, 2. after CPB (comparing the data obtained at these two instances the effect of CPB on fibrinolysis can be estimated), 3. in the intensive care unit before and 4. 20 minutes after retransfusion. Samples were taken from patients' circulation as well as from the chest tube drainage. The applied analytical methods for measurements of plasminogen, antiplasmin, D-dimer, early fibrin(ogen) degradation products (N-terminal Bß-fragments 1-42 and 15-42) and elastase from PMN granulocytes complexed with a\textsubscript{1}-proteinase-inhibitor (E-a\textsubscript{1}PI) are shown in Table 1. Retransfusion was only performed when at least 250 cc blood were collected and when it was indicated by the patient's circulatory state.
Table 1. Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plasminogen</td>
<td>- chromogenic substrate S 2251 (Kabi)</td>
</tr>
<tr>
<td>antiplasmin</td>
<td>- chromogenic substrate S 2251 (Kabi)</td>
</tr>
<tr>
<td>D-dimer</td>
<td>- monoclonal antibodies (ELISA/MabCo)</td>
</tr>
<tr>
<td>N-terminal Bß-fragments</td>
<td>- monoclonal antibodies (ELISA/NIH)</td>
</tr>
<tr>
<td>E-a₁PI</td>
<td>- PMNE (ELISA/Merck)</td>
</tr>
</tbody>
</table>

For statistical analysis the paired t-test comparing the measurements before and after retransfusion was applied. A p-value \(< 0.05 \) was considered to be significant. Results are given as mean ± SD.

RESULTS

The mean amount of the first chest blood retransfusion was 325 ± 77 cc (ranging from 250 - 520 cc). The mean hemoglobin content of the chest drainage was 69 g/l, the mean hematocrit 21 % (ranging from 13 - 29 %), the protein content 40.1 ± 5.4 g/l.

Figure 1 shows the course of plasminogen and antiplasmin activity, the dotted line representing the value corrected for preoperative protein. When using this correction for hemodilution no statistically significant influence of CPB on these parameters was found. However, antiplasmin activity in the drainage fluid was significantly reduced. No difference of activity in the patients' blood could be demonstrated before and after retransfusion. The surprising fact that no reduction of plasminogen activity in the chest drainage was measured might be explained by the influence of fibrin and fibrinogen split products on the measurement of plasminogen (6).

![Fig. 1 Course of plasminogen and antiplasmin. The dotted line represents the value corrected for preoperative protein.](image-url)
The cross-linked fibrin fragments (Figure 2) showed a wide variation after CPB. The concentration decreased after operation, but developed a tremendous increase up to 5,000 ng/cc in the drainage fluid. The retransfusion caused a significant increase of cross-linked fibrin fragments in patients' blood.
The Bß-related peptides (Figure 3) showed a comparable course during CPB with an increase of the 1-42 fragments which was not significant. In the chest tube drainage a more pronounced increase of Bß 15-42 peptides was found. However, there were no differences of Bß-related peptides in patients' blood before and after retransfusion.

The PMN E-a^PI complex (Figure 4) showed a tenfold increase in patients' blood after CPB, but there was an extraordinary increase in the drainage fluid with a mean concentration of 13,000 ng/cc - more than hundredfold the preoperative value. Retransfusion also caused a significant increase of the E-a^PI complex in patients' blood. These values were significantly higher than those obtained prior to retransfusion.

No significant correlation between either blood loss or time lag between operation and retransfusion and fibrinolysis, represented by the antiplasmin activity, could be found in the shed blood. After retransfusion blood loss did not exceed the average of normal range.

![Graph showing PMN E-a^PI complex](image)

Fig. 4 PMN E-a^PI complex. Note the interruption and different scale of the Y-axis. There was a tremendous increase in the shed blood. Retransfusion of shed blood caused a significantly increased level of the complex in patients' blood.

DISCUSSION

Shed mediastinal blood is not comparable to autologous or homologous (7) blood in regard to hemoglobin content, hematocrit or coagulation properties. However, in former investigations (8), comparing two groups of patients with and without retransfusion of shed mediastinal blood, no difference in the postoperative blood loss could be observed.
In the present study an activation of the fibrinolytic system in shed mediastinal blood was found. The magnitude of fibrinolytic activation in shed blood was comparable to that measured during CPB. This activation of the fibrinolytic system was indicated by comparable decreases of antiplasmin activity in patients' blood after CPB as well as in the shed blood. However, retransfusion of shed blood did not cause an additional decrease of antiplasmin in the patients' circulation.

Bβ-related peptides are a most sensitive marker of the endogenous activation of the fibrinolytic system, which can reveal subclinical activation of fibrinolysis (9). A pronounced increase of fibrinogen split products was found in the shed blood. After retransfusion only the D-dimers showed a significant increase in patients' blood, whereas the concentration of Bβ-related peptides showed no increase. This can be explained by the lower molecular weight and therefore faster clearing rate of these peptides.

The constellation of increased fibrinogen split products and stable antiplasmin activity after retransfusion can be interpreted as a waste effect of retransfusion. That means, the enhanced fibrinolytic or proteolytic activity within the shed blood is inhibited by the physiologic inhibitors. Some of these complexes and the split products obviously remain in the circulation after retransfusion without inducing fibrinolytic activity within the patient.

In this study the elevated levels of complexed elastase after CPB correspond to the results of other authors (10) indicating an activation or desintegration of PMN granulocytes due to CPB. The extraordinary increase of E-

Which conclusions can be drawn from the results of this study?

The fibrinolytic and unspecific proteolytic activity in the drainage fluid does not induce fibrinolytic activation after retransfusion. The increased level of fibrinogen split products seems not to be clinically relevant, at least not with the amounts having been retransfused. It can be concluded that retransfusion of shed mediastinal blood is a safe method of autologous volume substitution in the early postoperative period. However, it has to be taken into account that retransfusion of greater volumes of shed blood may cause a considerable impairment of coagulation and/or the fibrinolytic system. This deterioration might be induced by the infusion of fibrinogen split products and/or the release of the content of desintegrated granulocytes. In this respect the possible role of pharmacological intervention by protease inhibition should be object of further investigations.

REFERENCES

