Editor

W. J. Irvine (Edinburgh, UK)

Editorial Board

U. Di Mario (Rome, Italy) Å. Lernmark (Gentofte, Denmark)
C Hellerström (Uppsala, Sweden) A. MacCuish (Glasgow, UK)
J. Hors (Paris, France) N. MacLaren (Gainesville, USA)
L. Jarett (Philadelphia, USA) H. Rifkin (New York, USA)
Y. Kanazawa (Tokyo, Japan) J. Rotter (Torrance, USA)
W. Knowler (Phoenix, USA) J. Turtle (Sydney, Australia)
A. Kurtz (London, UK) C. Wollheim (Geneva, Switzerland)
P. Zimmet (Caulfield South, Australia)

VOLUME 2
Pages 1–331
CONTENTS

Volume 2, Number 1 — January 1985

ORIGINAL PAPERS

In vitro Inhibition of Insulin Release Mediated by Sera with Complement-fixing Islet Cell Antibodies Belonging to Normal First Degree Relatives of Patients with Type 1 Diabetes.
M. SENSI, O. ZUCCARINI, K. M. SPENCER, P. BEALES, R. PUJOL-BORRELL and P. POZZILI (London, UK/Rome, Italy/Barcelona, Spain) 1

M. TITLBACH, K. FÄLT and S. FALKMER (Prague, Czechoslovakia/Malmö, Sweden) 5

Non-response of Muscle Capillary Density and Lipoprotein Lipase Activity to Regular Training in Diabetic Patients.
H. LITHELL, M. KROTKIEWSKI, B. KIENS, Z. WROBLEWSKI, G. HOLM, G. STRÖMLAD, G. GRIMSBY and P. BJÖRNTORP (Uppsala and Göteborg, Sweden/Copenhagen, Denmark) 17

Mortal Factors in Type 2 (NIDDM) Diabetes Mellitus.

M. STANGENBERG, B. PERSSON and E. NORDLÄNDER (Stockholm, Sweden) 29

Are Insulin Dependent Diabetics in the West of Scotland Prone to Nutritional Deficiencies?
A. S. HUTCHISON, P. V. KNIGHT and C. M. KESSON (Glasgow, UK) 35

Insulin Pump Treatment: Effect on Glucose Homeostasis, Metabolites, Hormones, Insulin Antibodies and Quality of Life.
H. BECK-NIELSEN, B. RICHELSEN, N. S. SØRENSEN and O. H. NIELSEN (Aarhus C, Denmark) 37

The Effect of Valproate on Blood Metabolite Concentrations in Spontaneously Diabetic, Ketoacidotic, BB/E Wistar Rats.
D. M. TURNBULL, A. J. BONE, F. J. TAMES, L. WILSON, J. D. BAIRD and H. S. A. SHEARRATT (Newcastle upon Tyne and Edinburgh, UK) 45

Changes in Blood Amino Acids Account for the Insulin and Glucagon Responses to Mixed Meals in Dogs.
A. M. ALBISER, D. C. H. CHENG, Y. YAMASAKI, E. B. MARLISS and B. ZINMAN (Toronto, Canada) 49

LETTERS TO EDITOR

Volume 2, Number 2 — March 1985

ORIGINAL PAPERS

Assessment of Tissue Sensitivity to Insulin in Uraemic Patients on Long-term Haemodialysis Therapy.
O. SCHMITZ, E. HJOLLUND, K. G. M. M. ALBERTI, H. ØRSKOV and H. BECK-NIELSEN (Aarhus, Denmark/Newcastle upon Tyne, UK) 57

Blood Pressure at Diagnosis of Type 2 Diabetes Correlates with Plasma Insulin Concentration but not during the next 5 Years.

Glucose Regulated Insulin Biosynthesis in Isolated Rat Pancreatic Islets is Accompanied by Changes in Proinsulin mRNA.
S. J. GIDDINGS, J. M. CHIRGWIN and M. A. PERMUTT (St. Louis, USA) 71

Cytotoxicity of MHC Antisera against Rat Islets: Detection by Release of 51Cr and Leakage of Hormones.
B. KUTTLER, I. KLÖTING and S. SCHMIDT (Karlsruhe, GDR) 77

Cerasee, a Traditional Treatment for Diabetes. Studies in Normal and Streptozotocin Diabetic Mice.
C. J. BAILEY, C. DAY, S. L. TURNER and B. A. LEATHERDALE (Birmingham, London and Southampton, UK) 81

P. HOSKINS, J. ALFORD, P. FOWLER, T. BOLTON, C. PECH, M. HOSKING, S. DUNN, J. FORREST, D. YUE and J. TURTLE (Sydney, Australia) 85

Effect of Psychosocial Factors on Success in a Program of Self-glucose Monitoring.

D. F. GARDNER, B. G. EASTMAN, T. D. MEHL and T. J. MERIMEE (Gainesville, USA) 89

Glucose Tolerance and Insulin and C-peptide Responses after Various Insulin Secretory Stimuli in Hyper- and Hypothyroid Subjects before and after Treatment.

B. AHRÉN, I. LUNDQUIST, P. HEDNER, S. VALDEMARSSON and B. SCHERSTÉN (Lund, Sweden) 95

P. AOUTERS, H. P. MEISSNER and J. C. HENQUIN (Brussels, Belgium/Homburg/Saar, Germany) 105

NOTICE OF MEETING
The VIIth Steno Symposium, Denmark.

Volume 2, Number 3—May 1985

ORIGINAL PAPERS

R. J. HEINE, P. D. HOME, M. PONCHER, H. ØRSKOV, V. HAMMOND, A. J. McCULLOCH, I. HANNING and K. G. M. M. ALBERTI (Newcastle upon Tyne, UK/Aarhus, Denmark) 113

Comparative Study of Hormonal Counter-regulation during GC11s-guided Insulin Hypoglycaemia Tests using Human Insulin (Recombinant DNA) and Pork Insulin.

The Effect of Non-specific β-blockade on Metabolic and Haemostatic Variables during Hypoglycaemia.

The Effect of Chronic Treatment with a Non-selective β-adrenoceptor Antagonist on the Enteroinsular Axis and Intermediary Metabolites.

N. R. PEDEN, R. J. DOW, T. E. ISLES, B. T. MARTIN, K. F. YEE and K. D. BUCHANAN (Dundee, Belfast and Edinburgh, UK) 135

Insulin Appearance of Subcutaneously Infused Insulin: Influence of the Basal Rate Pulse Interval of the Infusion Pump.

K. BIRCH, P. HILDEBRANDT, B. MÖLLER JENSEN, C. KÜHL and J. BRANGE (Bagsvaerd, Denmark) 141

Glycemic Control in Diabetic Dogs Treated with Pancreatic Autotransplants and Insulin Pumps.

A. M. ALBISSER, M. NOMURA and N. T. McPHEEDRAN (Toronto and Calgary, Canada) 145

Impaired Physical Fitness and Insulin Secretion in Normoglycaemic Subjects with Familial Aggregation of Type 2 Diabetes Mellitus.

K. BERNTORP and F. LINDGÄRDE, (Malmö, Sweden) 151

Organ Culture of Isolated Rat Pancreatic Islets with Reference to A-cell Function.

R. A. LORENZ, R. A. SHARP, A. G. KASSELBERG and I. M. BURR (Nashville, USA) 157

Renal Handling of 125I-labelled Insulin in the Hen.

A. MILTON, B. ODLING, L. WIBELI and L. DENCKER (Uppsala, Sweden) 163

Volume 2, Number 4—July 1985

ORIGINAL PAPERS
Dissociation of Thrombin Generation and Platelet Secretion in Diabetes Mellitus.

M. H. ROSEVE, J. A. BERLINER, S. S. L. HARWIG and H. J. L. FRANK (Los Angeles, USA) 171

Lymphocyte Proliferation as a Test of the Immune Response to Insulin in Diabetics.

A. B. KURTZ, L. DI SILVIO and P. LYDYARD (London, UK) 175
Glomerular Filtration Rate, Autonomic Nerve Function, and Orthostatic Blood Pressure in Patients with Diabetes Mellitus.
B. LILJA, B. NOSSLIN, B. BERGSTROM and G. SUNDKVIST (Malmö, Sweden) 179

Cigarette Smoking, Blood Pressure and the Control of Blood Glucose in the Development of Diabetic Retinopathy.
J. M. WALKER, D. H. COVE, D. G. BEEVERS, P. M. DODSON, B. A. LEATHERDALE, R. F. FLETCHER and A. D. WRIGHT (Birmingham, UK) 183

P. HILDEBRANDT, K. BIRCH, L. SESTOFT and S. L. NIELSEN (Klampenborg, Denmark) 187

Effect of Cyclosporin A on Low-dose Streptozotocin Diabetes in Mice.
H. KOLB, M. OSCHILEWSKI, E. SCHWAB, U. OSCHILEWSKI and U. KIESEL (Düsseldorf, FRG) 191

W. J. MALAISSE, Y. SCHOLLER and V. DE MAERTELAER (Brussels, Belgium) 195

Somatostatin Release from Freshly Isolated and Cultured Rat Islets in Response to Rat Insulin and to Anti-insulin Serum.
G. SCHÄFER, G. SCHNELLBACHER-DAUM, A. E. HEYER and H. SCHATZ (Giessen, FRG) 201

Islet Lysosomal Enzyme Activities and Plasma Insulin Levels in Obese Hyperglycemic Mice Following Injection of the Lysosomotropic Drug Suramin.
I. LUNDQUIST (Lund, Sweden) 207

CASE REPORT
Aprotinin Induced Lipohypertrophy and Glomerulonephritis in an Insulin Dependent Diabetic.
P. DANDONA, A. MIER, F. BOAG, M. CHAPPELL and A. G. BECKETT (London, UK) 213

LETTER TO EDITOR
Improved Isolation Yield of Murine Islets of Langerhans from a Single Donor can Reverse Experimental Diabetes after Isotransplantation.
B. FORMBY, L. WALKER and C. M. PETERSON (Santa Barbara, USA) 217

NOTICE OF MEETING
Volume 2, Number 5—September 1985

ORIGINAL PAPERS
A Prospective Study of the Immunogenicity of Porcine Insulin in HLA-typed New Insulin-treated Diabetics.
L.-O. ALMÉR, G. EKBERG, S. FANKHAUSER, P. D. HOME, R. WORTH, S. SAILER, A. B. KURTZ and M. CHRISTY (Malmö, Sweden/Olten, Switzerland/Newcastle upon Tyne and London, UK/Innsbruck, Austria and Gentofte, Denmark) 221

Detection of Islet Cell Surface Antibodies using Cloned \(\beta\) Cells and Comparison of their Incidence with that of Islet Cell Cytoplasmic Antibodies.

Islet Cell Antibodies in Insulin-dependent (Type 1) Diabetic Children Treated with Plasmapheresis.
B. MARNER, A. LERNMARK, J. LUDVIGSSON, P. MACKAY, I. MATSUBA, J. NERUP and A. RABINOVITCH (Gentofte, Denmark/Linköping, Sweden/Miami, USA and Tokyo, Japan) 231

The Relationship of Metabolic Control to Growth and Pubertal Development in Children with Insulin-dependent Diabetes.
C. CLARSON, D. DANEMAN and R. M. EHRLICH (Toronto, Canada) 237

Glycosylated Hemoglobin \(A_1\) used in Quality-control of Diabetes Care: A Cross-sectional Study in an Outpatient Clinic.
L. E. MATZEN, J. B. LARSEN and A. FRÖLAND (Fredericia, Denmark) 243

The Influence of Erythrocyte Age on Estimations of Erythrocyte Insulin Binding in Healthy Children and Adults and in Conditions with Increased Erythropoiesis.
S. A. IVARSSON and J. I. THORELL (Lund, Sweden) 249

CONTENTS ix
DNA Repair Synthesis in the Pancreatic Islets of Streptozotocin-treated Mice.
S. Sandler and J. Swenne (Uppsala, Sweden) 255

Effect of Age on Hepatocyte and Soleus Muscle Insulin Receptor Binding in Lean and Genetically Obese Diabetic (ob/ob) Mice.
J. M. Lord and T. W. Atkins (Birmingham, UK) 259

Stimulation by Glucose and Carbamylcholine of Phospholipase A2 in Pancreatic Islets.
P. C. F. Mathias, L. Best and W. J. Malaisse (Brussels, Belgium) 267

Volume 2, Number 6 — November 1985

ORIGINAL PAPERS

Anti-thymocyte Globulin and Prednisone Immunotherapy of Recent Onset Type 1 Diabetes Mellitus.
G. S. Eisenbarth, S. Srikanta, R. Jackson, S. Rabinowe, R. Dolinar, T. Aoki and M. A. Morris (Boston and Durham, USA) 271

C. C. T. Smith, A. C. Dickson and D. J. Betteridge (London, UK) 277

Is Red Cell Sorbitol Content a Good Marker of Glycemic Control in Diabetic Patients?
A. Lapolla, T. Poli, A. Valerio and D. Fe dele (Padova, Italy) 283

Diabetic Serum Stimulates the Proliferation of Endothelial Cells in Culture.
M. S. Koh, B. B. J. Majewski and E. L. Rhodes (Carshalton, UK) 287

Pancreatic A- and B-cell Responses to Intravenous Arginine in Cancer of the Head of the Pancreas: Relation to Clinical Features.
T. Hayakawa, T. Suzuki, N. Okumura, A. Noda and T. Kondo (Kariya and Takayama, Japan) 291

Glucose Metabolism during Long-term Treatment with Prazosin.
H. Lithell, C. Berne, A. U. Waern and L. Wibell (Uppsala, Sweden) 297

Prevalence of Diabetes Mellitus and Impaired Glucose Tolerance in a Rural Area of Italy.
A. Verrillo, A. De Teresa, S. La rocca and P. C. Giar usso (Naples, Italy) 301

Protective Effect of Nicotinamide against Nephropathy in Diabetic Rats.
G. Wahlberg, L. A. Carlson, J. Wasser man and A. Ljungqvist (Stockholm, Sweden) 307

Cholesterol Metabolism: Regulatory Effects of the Vagus in the Normal and Diabetic Animal.
L. M. Scott and G. H. Tomkin (Dublin, Eire) 313

MEETING REPORT

M. L. Padgett and A. M. Albisser (Toronto, Canada) 319

INDEX VOLUME 2 (1985)

Author

Subject
COMPARATIVE STUDY OF HORMONAL COUNTER-REGULATION DURING GCIIS-GUIDED INSULIN HYPOGLYCEMIA TESTS USING HUMAN INSULIN (RECOMBINANT DNA) AND PORK INSULIN

G. MÜLLER-ESCH,1 P. BALL,2 U. BEKEMEYER,1 K. HEIDBÜCHEL,1 E. KRAAS,3 C. V. D. LÜHE,1 R. TYBUSSEK,1 W. G. WOOD1 and P. C. SCRIBA1

1Klinik für Innere Medizin, 2Institut für Biochemische Endokrinologie and 3Institut für Klinische Chemie, Lübeck Medical University, West Germany

(Received 27 August 1984)

SUMMARY Human insulin (BHI, recombinant DNA) and pork insulin (PI) were compared in 10 healthy volunteers. Using a glucose controlled insulin infusion system for the performance of the insulin hypoglycemia test (IHT), a comparable dosage of both insulins had to be infused (BHI 0.129 ± 0.007 vs PI 0.115 ± 0.001 U/kg; mean ± SEM). Blood glucose slopes and nadirs did not differ significantly (BHI 30 ± 2 vs PI 29 ± 2 mg/dl). There was no difference in C-peptide inhibition (minimum for BHI 0.50 ± 0.08 vs PI 0.42 ± 0.08 μg/l). Maximum hormone responses were identical for ACTH (BHI 78.4 ± 11.3 vs PI 76.0 ± 8.7 pg/ml), cortisol (BHI 246 ± 20 vs PI 252 ± 15 ng/ml) and GH (BHI 43.8 ± 7.3 vs PI 49.4 ± 6.7 ng/ml). Peak levels of prolactin did not differ significantly (BHI 1,335 ± 315 vs PI 1,766 ± 614 μU/ml).

The urinary excretion pattern of epinephrine in three 120 min periods before, during and after IHT was identical (before IHT: BHI 0.9 ± 0.2 vs PI 0.6 ± 0.1 μg/120 min; during IHT: BHI 12.6 ± 2.2 vs PI 13.4 ± 2.5 μg/120 min; after IHT: BHI 2.5 ± 0.7 vs PI 3.7 ± 1.3 μg/120 min). No differences in the minima of serum potassium levels were observed (BHI 3.38 ± 0.04 vs PI 3.33 ± 0.05 mmol/l).

We conclude that the biological effects of human insulin and pork insulin are comparable. Our data do not support the assumption of a different hypothalamic handling of human insulin (recombinant DNA) and porcine insulin.

Key words: Human insulin (recombinant DNA), insulin hypoglycemia test, glucose controlled insulin infusion system

INTRODUCTION

Studies comparing the effect of human insulin (recombinant DNA) and pork insulin on hormonal counter-regulation after insulin-induced hypoglycemia have yielded contradictory results up to now (1–6). Concerning the counter-regulatory response of cortisol and growth hormone, a diminished as well as an increased secretion was reported (4, 7). Moreover, both decreased and increased inhibition of endogenous insulin secretion was observed (4, 5). Furthermore, Rosak and co-workers (5) found a blunted or deficient prolactin response under human insulin, whereas Petersen et al. (3) noticed that injection of human insulin resulted in less pronounced hypokalemia and epinephrine secretion. On the other hand, Landgraf (2) was not able to show any significant differences in counter-regulatory hormone responses.

Among these conflicting data, the differences in serum potassium, prolactin and epinephrine secretion, which may reflect a different hypothalamic handling of the insulins, are perhaps of clinical importance. However, as a result of very different insulin doses used in these studies, the comparability is limited. We therefore used a glucose controlled insulin infusion system (GCHIS) in order to perform the insulin hypoglycemia test (IHT) on the basis of a standardized hypoglycemia (8).
MATERIALS AND METHODS

Ten healthy volunteers (4 female, 6 male; 25±0.9 yr; 174±4 cm; 66±4 kg; (mean±SEM)) were studied after informed consent. Each subject underwent 2 insulin hypoglycemia tests: one with human insulin of recombinant DNA origin (Biohumaninsulin normal, ELI LILLY GMBH) and one with pork insulin (Insulin S, HOECHST).

Glucose Controlled Insulin Infusion System

The details of the GCIIS used for our study (Biostator, LIFE SCIENCE INSTRUMENTS, MILES LABORATORIES) have been described elsewhere (9-11). The Biostator was used on static control. The following constants were chosen: BI 35, QI 10, RI 20, FI 300.

Experimental Protocol

After an overnight fast and bed rest, the subjects were connected to the GCIIS between 8 am and 9 am. Feedback controlled insulin infusion was discontinued and the device was only used for blood glucose monitoring when blood glucose had fallen below 40 mg/dl and initial clinical symptoms of hypoglycemia like palpitations, headache, sweating, tachycardia and drowsiness occurred (8). Venous blood samples were drawn at -10, ±0, +10, +20, +30, +40, +60, +90 and +120 min, respectively, from an indwelling catheter placed in an antecubital vein. In addition, urine was collected during three 120 min periods before, during and after IHT.

Analytical Methods

Serum GH (CIS), prolactin (CIS), cortisol (clinical assays, SP), ACTH (INC, without extraction), insulin (CIS) and C-peptide (BYK Mallinckrodt) were measured by radioimmunoassay. Serum potassium was determined by flame photometry. Urinary epinephrine was measured by HPLC with electrochemical detection (12).

Results

Figures 1-4 and Table 1 show the results obtained with biosynthetic human insulin (BHI) and pork insulin (PI). The curves were obtained by calculating the mean values±SEM at identical timepoints, whereas Table 1 gives the results obtained by calculating the mean±SEM of the individual peak or nadir levels, which differed slightly in time from the overall means.

A total of 0.129±0.007 U/kg BHI and 0.115±0.01 U/kg PI was given by the GCIIS (no statistically significant difference). Blood glucose values did not differ significantly for both insulins during IHT (fig. 1). The lowest blood glucose concentration was 30±2 for BHI and 29±2 for PI (not significant).

Peak values for serum insulin did not differ significantly (214±34 for BHI vs 172±14 mU/l for PI), whereas serum insulin levels at 20 min were higher for BHI than for PI (151±16 vs 214±34 mU/l; p < 0.05).
Following BHI and PI administration, an identical pattern of C-peptide inhibition could be demonstrated (fig. 2). ACTH and cortisol responses were identical for BHI and PI (fig. 3). ACTH reached its maximum at 45 min with 78.4 ± 11.3 pg/ml for BHI vs 76.0 ± 8.7 pg/ml for PI. Peak values for cortisol, observed at 90 min, were 246 ± 20 ng/ml for BHI and 252 ± 15 ng/ml for PI, respectively.

Identical slopes were obtained for GH. The maximal hormone response values were 43.8 ± 7.3 ng/ml for BHI and 49.4 ± 6.7 ng/ml for PI; the difference was statistically not significant. The same was true with prolactin secretion. After administration of both insulins, prolactin reached its maximum after 60 min: 1,335 ± 315 µU/ml (BHI) and 1,766 ± 614 µU/ml (PI). Although prolactin levels following BHI administration tended to be lower than after PI, a statistically significant difference could not be detected (fig. 3).

Following insulin administration, the decline of serum potassium was virtually identical (fig. 4). The minimal values were 3.38 ± 0.04 mmol/l (BHI) and 3.33 ± 0.05 mmol/l (PI).

The urinary excretion pattern of epinephrine, as evaluated by its content in three 120 min periods before, during and after IHT, did not differ significantly: during IHT 12.6 ± 2.2 µg for BHI vs 13.4 ± 2.5 µg for PI; after IHT 2.5 ± 0.7 µg for BHI vs 3.7 ± 1.3 for PI.

DISCUSSION

The aim of this investigation was to study the counter-regulatory effects following BHI and PI administration during standardized hypoglycemia achieved by automatic adjustment of insulin delivery to the individual insulin sensitivity by means of the GCIIIS (8). As shown, nearly identical amounts of infused insulin produced comparable serum insulin peaks and resulted in identical blood glucose responses. So we feel that—in spite of some minor differences in serum insulin levels, which may be in part attributed to the different insulin formulations (14)—the results obtained with BHI and PI are comparable.
The inhibition pattern of endogenous insulin secretion during IHT as reflected by serum C-peptide levels showed no differences after BHI and PI.

No differences in glucose counter-regulation with regard to the hypothalamic-pituitary-adrenocortical axis could be detected.

Furthermore, we were not able to see a deficient prolactin response during IHT as reported by others (5). The failure to detect any statistically significant difference in prolactin secretion does not necessarily imply that the hormonal responses for both insulins are identical, because of the large standard deviation in a limited number of subjects. However, it is doubtful, whether a blunted response, which has recently been shown only after a dosage of 0.075 U/kg insulin (2, 5), has any clinical importance.

With the assumption that the epinephrine secretion is reflected with sufficient reliability by the urinary epinephrine excretion during the collection periods, no differences in counter-regulatory epinephrine responses could be demonstrated. A distinct decrease of serum potassium concentrations occurs during insulin-induced hypoglycemia. The initial decline is due to the insulin-induced cell-influx, whereas the second phase after blood glucose recovery is attributed to epinephrine secretion in response to hypoglycemia (5, 15, 16). According to the identical epinephrine excretion pattern, we could not find any differences in serum potassium concentrations during IHT. These findings confirm recent data (2), but are in contrast to Petersen and co-workers (3) who described less pronounced changes in serum potassium and epinephrine after injection of 0.1 U/kg BHI when compared to an identical pork insulin formulation.

Table 1 Mean basal values (bas.) and maximum (max.) or minimum (min.) levels obtained during GCIIS-guided IHT with BHI and PI for blood glucose (BG), C-peptide, prolactin, ACTH, cortisol, GH, serum potassium and urinary epinephrine in 10 healthy volunteers (mean ± SEM).

<table>
<thead>
<tr>
<th>BG (mg/dl)</th>
<th>C-peptide (μg/l)</th>
<th>Prolactin (μU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bas.</td>
<td>min.</td>
<td>bas.</td>
</tr>
<tr>
<td>BHI</td>
<td>85 ± 3</td>
<td>1.25 ± 0.10</td>
</tr>
<tr>
<td>PI</td>
<td>79 ± 3</td>
<td>1.08 ± 0.08</td>
</tr>
<tr>
<td>ACTH (pg/ml)</td>
<td>Cortisol (ng/ml)</td>
<td>GH (ng/ml)</td>
</tr>
<tr>
<td>bas.</td>
<td>max.</td>
<td>bas.</td>
</tr>
<tr>
<td>BHI</td>
<td>16.7 ± 2.2</td>
<td>85 ± 11</td>
</tr>
<tr>
<td>PI</td>
<td>18.5 ± 2.6</td>
<td>94 ± 9</td>
</tr>
<tr>
<td>Potassium (mmol/l)</td>
<td>Urinary epinephrine (μg/120 min)</td>
<td></td>
</tr>
<tr>
<td>bas.</td>
<td>min.</td>
<td>before</td>
</tr>
<tr>
<td>BHI</td>
<td>4.29 ± 0.09</td>
<td>0.9 ± 0.2</td>
</tr>
<tr>
<td>PI</td>
<td>4.30 ± 0.04</td>
<td>0.6 ± 0.1</td>
</tr>
</tbody>
</table>

FIG. 4. Urinary epinephrine before, during and after GCIIS-guided IHT with BHI and PI in 10 healthy volunteers (mean ± SEM). Serum potassium concentrations for BHI O--O and PI - - are also shown (mean ± SEM).
We conclude that the biological effects of human insulin (recombinant DNA) and pork insulin are comparable. Our data do not support the assumption of a different hypothalamic handling of human and porcine insulin (3, 6) which might have been of clinical importance in diabetes treatment.

ACKNOWLEDGEMENT

This work was supported by the Federico Foundation.

REFERENCES

