Vis 787 Newi ThW 801 Neui Insti and i Ar
810 The R.J. Barohn, C. Bazan, and J. Grissom
815 Cardiac injury associated with neurogenic pulmonary edema following subarachnoid hemorrhage S.A. Mayer, M.E. Fink, S. Homma, D. Sherman, G. LiMandri, L. Lennihan, R.A. Solomon, L.M. Klebanoff, A. Beckford, and E.C. Raps
821 Clozapine in Huntington's chorea U. Bonuccelli, R. Gervaulo, C. Maremmani, A. Nuti, G. Rossi, and A. Muratorio
823 Reduced basal ganglia volume associated with the gene for Huntington's disease in asymptomatic at-risk persons E.H. Aylward, J. Brandt, A.M. Codori, R.S. Mangus, P.E. Barta, and G.J. Harris
837 The Henry Ford Hospital Headache Disability Inventory (HDI) G.P. Jacobson, N.M. Ramadan, S.K. Aggarwal, and C.W. Newman
843 Mitochondrial DNA mutations in an outbreak of optic neuropathy in Cuba M. Hirano, J.M. Cleary, A.M. Stewart, N.S. Lineoff, J.G. Odel, B. Santiesteban, and R. Santiago Luis
846 Prolonged MRI T_2 times of the lentiform nucleus in idiopathic spasmodic torticollis S. Schneider, E. Feifei, D. Ott, M. Schumacher, C.H. Lücking, and G. Deuschl
850 Functional magnetic resonance imaging of focal seizures G.D. Jackson, A. Connelly, J.H. Cross, I. Gordon, and D.G. Gadian
862 Multiple symmetric lipomatosis: Abnormalities in complex IV and multiple deletions in mitochondrial DNA T. Klopfstock, M. Naumann, B. Schalte, F. Bischof, P. Seibel, M. Kottlers, P. Eckert, K. Reiners, K.V. Toyka, and H. Reichmann
908 Sarcomas of calvarial bones: Rare remote effect of radiation therapy for brain tumors D.W. Dodick, B. Mokri, E.G. Shaw, G.M. Miller, and K.K. Unni
919 Genetic heterogeneity in spinal muscular atrophy: A linkage analysis-based assessment A.E. MacKenzie, P. Jacob, L. Surti, and A. Besner
925 Validation of a new instrument for determining migraine prevalence: The UCSD Migraine Questionnaire T. Tom, M. Brody, A. Valabhji, L. Turner, C. Molgaard, and J. Rothrock
936 Latency and duration of the muscle silent period following transcranial magnetic stimulation in multiple sclerosis, cerebral ischemia, and other upper motoneuron lesions B.A. Haug and B. Kukowski

continued on page 10A
May 1994 NEUROLOGY 44 9A
Humoral response to hsp 65 in multiple sclerosis and other neurologic conditions Y.L. Gao, C.S. Raine, and C.F. Brosnan

Brief Communications

Focal tectal tumors: Management and prognosis L.A. Squires, J.C. Allen, R. Abbott, and F.J. Epstein

Konzo in the Central African Republic T. Tytelskár, F.D. Legue, S. Peterson, E. Kpizingui, and P. Stecker

Peripheral nerve injury and causalgia secondary to routine venipuncture S.H. Horowitz

Progression of multifocal motor neuropathy during apparently successful treatment with human immunoglobulin J.L. Elliott and A. Pestronk

Progressively intractable seizures, focal alopecia, and hemimegalencephaly R. Pelajo, E. Barasch, H. Kang, R. Marion, and S.L. Moshé

Clinical and morphologic features of a myopathy associated with a point mutation in the mitochondrial tRNAPro gene V.V. Ionasescu, M. Hart, S. DiMauro, and C.T. Moraes

Clinical/Scientific Notes

Anosognosia and the intracarotid amobarbital procedure (Wada test) M.W. Durkin, K.J. Meador, M.E. Nichols, G.P. Lee, and D.W. Loring

Early T2 hypointense signal abnormality preceding clinical manifestations of central pontine myelolysis F. Rouanet, P. Tison, V. Dousset, V. Corand, and J.M. Orgogozo

Thrombocytopenia in association with adjunctive felbamate use G.C. Ney, N. Schaul, J. Loughlin, K. Rai, and V. Chandra

Isolated bilateral third nerve palsy caused by a mesencephalic hematoma J.-C. Getenet, A. Vignetto, N. Nighoghossian, and P. Trouillas

Lack of serious toxicity following gabapentin overdose J.H. Fischer, A.N. Barr, S.L. Rogers, P.A. Fischer, and V.L. Trudeau

Fluoxetine withdrawal and thalamic pain E.C. Lauterbach

Drug-induced aseptic meningitis caused by two medications B.J. Davis, J. Thompson, A. Feimann, and B.H. Bendixen

Correspondence

Musical hallucinations To the Editor: A.G. Gordon. Reply from the Author: G.J. Gilbert

CNS tuberculosis To the Editor: R.B. Libman, T.H. Rao. To the Editor: D.S. Bachman. Reply from the Authors: F. Eide, A.D. Gean, and Y.T. So

Acute quadriplegic myopathy To the Editor: D.W. Zochodne and D.A. Ramsay. Reply from the Authors: M. Hirano, E.C. Raps, E. Bonilla, and A.P. Hays

Negative myoclonus To the Editor: J.W. Lance. To the Editor: Y. Ugawa. Reply from the Authors: R. Guerrini, C. Dravet, G. Genton, M. Bureau, J. Roger, G. Rubboli, and C.A. Tassinari

Foreign accent syndrome To the Editor: M.L. Berthier. Reply from the Authors: Y. Takayama, M. Sugishita, T. Kido, M. Ogawa, and I. Akiguchi

Lightning-induced robotic speech To the Editor: G.J. Gilbert. Reply from the Authors: M. Cherington and P.R. Yarnell

More on tissue transplantation in PD To the Editor: W.M. Landau

Correction

To: Idiopathic intracranial hypertension and facial diplegia A.K. Selley, W.B. Dobyns, and R.D. Yee (February 1994 issue, pp. 357)

Departments

Information for Authors Calendar

Professional Notices
Multiple symmetric lipomatosis: Abnormalities in complex IV and multiple deletions in mitochondrial DNA

T. Klopstock, MD; M. Naumann, MD; B. Schalke, MD; F. Bischof; P. Seibel, PhD; M. Kottlors; P. Eckert, MD; K. Reiners, MD; K.V. Toyka, MD; and H. Reichmann, MD

Article abstract—Multiple symmetric lipomatosis (MSL) is a rare disorder of middle life characterized by large nonencapsulated lipomas distributed around the neck, shoulders, and other axial regions. Neurologic involvement, particularly peripheral neuropathy, is frequent. The pathogenesis of the syndrome is still unknown, but ragged-red fibers are occasionally present in muscle of affected patients, suggesting a mitochondrial abnormality. We studied 11 unrelated patients with MSL by means of neurophysiology, muscle morphology, muscle biochemistry, Southern blot, and PCR analysis of mitochondrial DNA. All patients were men aged 41 to 63 years. Clinical or electrophysiologic signs of a sensorimotor polyneuropathy were present in nine patients, eight of whom had a history of alcoholism. In muscle biopsy specimens, the most prominent feature was pathologic subsarcolemmal aggregates of mitochondria. Biochemical analysis of respiratory chain enzymes revealed a moderate but significant decrease of cytochrome c oxidase activity as compared with age-matched controls. In one patient, Southern blot analysis showed multiple deletions of mitochondrial DNA. We conclude that mitochondrial dysfunction is common in MSL and may be based on identifiable defects in the mitochondrial genome.

Multiple symmetric lipomatosis (MSL) is an uncommon disorder first described by Brodie in 1846.1 Subsequently, the condition acquired a variety of names, such as Madelung's disease2 and Launois-Bensaude syndrome.3 The large subcutaneous fat masses are distributed mainly around the neck and shoulders but may also involve other parts of the trunk. Neurologic involvement, particularly peripheral neuropathy, has been reported in most patients4 but was found to be unrelated to the high percentage of alcoholism. Thus, neuropathy has been regarded an integral part of the MSL syndrome.5,6

Although abnormalities of lipolysis have been described,7,8 the basic biochemical defect in MSL is still unknown. Recently, an association was suggested between MSL and mitochondrial dysfunction. Berkovic et al9 found ragged-red fibers in three of four muscle biopsy specimens and reduced cytochrome c oxidase activity in two. We also had noticed ragged-red fibers or subsarcolemmal aggregates of mitochondria in occasional MSL patients. Ciafaloni et al10 reported multiple deletions of mitochondrial DNA (mtDNA) in a patient with multiple lipomas. Moreover, some patients with the syndrome of myoclonic epilepsy and ragged-red fibers (MERRF) presented with cervical lipomas resembling those of MSL (references 12 and 13 and personal communication by D.C. Wallace and J.M. Shoffner). Those lipomas contained a high fraction of mutated mtDNA in one MERRF patient.14 Here we report on morphologic, biochemical, and molecular genetic features of 11 patients to test the hypothesis that MSL is associated with mitochondrial dysfunction.

Methods. Subjects. Eleven unrelated patients with the typical appearance of MSL (figure 1) were seen at the Departments of Neurology or Plastic Surgery, University of Würzburg, from 1985 to 1993. They were all men aged 41 to 63 years. Lipomatosis was restricted largely to the neck and shoulders in eight and was more widespread in three. Most of the lipomas had developed within a few years. Chronic intake of alcohol (>70 g/d) was reported by 10 patients. Clinical signs of a sensory neuropathy were present in seven patients, and five of these seven had signs of distal motor involvement. There were no clinical signs of myopathy in any patient. Patient 11 had ataxia and dysarthria in addition to MSL and neuropathy.
Electrophysiology. Standard nerve conduction studies were performed in nine patients. Measurements of motor nerve conduction velocity (NCV) were done on the tibial nerve with surface electrodes placed over the abductor hallucis muscle and sensory NCV on the sural nerve by antidromic recording below the lateral ankle and stimulation above the ankle. Needle EMG was done on five subjects, examining proximal and distal muscles. Patients 9 and 10 were seen exclusively at the Department of Plastic Surgery for lipectomy and did not have neurophysiologic examinations.

Muscle biopsy. Specimens were taken from one of the following muscles: biceps brachii, triceps brachii, quadriceps femoris, gastrocnemius or, in the context of surgical indications above the ankle. Needle EMG was done on five patients, either from cervical muscles in a context of cervical lipectomy or from proximal limb muscles in an effort to detect mitochondrial abnormalities. Most specimens revealed mild myopathic changes with increased fiber diameter variability, occasional atrophic fibers, and fiber splitting. Neurogenic alterations were seen in only two patients, most likely due to the selection of proximal muscles that were not affected by overt neuropathy. In seven specimens, we found subsarcolemmal accumulations of mitochondria in Gomori’s trichrome stain with the typical appearance of ragged-red fibers in two patients. Additionally, three patients showed increased subsarcolemmal staining for NADH tetrazolium salt reductase; another had scattered cytochrome c oxidase-deficient fibers; and two of five had subsarcolemmal accumulations of mitochondria on electron microscopy.

Muscle biochemistry (figure 2). Analysis of the respiratory chain enzymes in 10 patients revealed a moderately reduced activity of cytochrome c oxidase (complex IV) in the MSL patients compared with age-matched controls. This reduction was statistically significant (p < 0.02, nonparametric Mann-Whitney U test), with seven patients having cytochrome c oxidase values below the 10th percentile of controls. There was no significant difference in the activities of NADH dehydrogenase (complex I), NADH cytochrome c reductase (complex I + III), succinate dehydrogenase (complex II), and of Leber’s hereditary optic neuropathy (LHON) at nt 3460, 3464, and of MERRF at nt 8344, 8348, and of MELAS at nt 3243, 3247, and 3251. The 100-μl PCR reactions contained 200 μM each of dNTP, 50 μM KCl, 10 mM TRIS-HCl (pH 8.3), 1.5 mM MgCl₂, 0.01% gelatin, 30 pM of each primer, and 2.5 U of Ampli-Taq polymerase (Perkin-Elmer/Cetus). Amplification was performed for 30 cycles at a denaturation temperature of 93 °C (1 minute), a hybridization temperature of 58 °C (1 minute), and an elongation temperature of 72 °C (1 minute). Allele-specific PCR was performed in a single reaction for the MERRF mutation at nt 8344 of mtDNA (primer A: nt 8149-8166; primer B: nt 8363-8344) and the MELAS mutation at nt 3243 (primer A: nt 3007-3023; primer B: nt 3261-3243); the LHON mutation at nt 11778 was also tested by allele-specific PCR (primer A: nt 11141-11158; primer B: nt 11796-11778).

Results. Neurophysiology (table). Tibial and sural nerve conduction studies in nine patients showed pathologic findings in all examined cases, mostly a reduction in amplitude of the compound muscle action potentials. Needle EMG demonstrated a chronic neurogenic pattern in five of these patients, including spontaneous activity (fibrillation potentials and positive sharp waves) in three.

Muscle morphology (table). Muscle biopsy was performed on all patients, either from cervical muscles in a context of cervical lipectomy or from proximal limb muscles in an effort to detect mitochondrial abnormalities. Most specimens revealed mild myopathic changes with increased fiber diameter variability, occasional atrophic fibers, and fiber splitting. Neurogenic alterations were seen in only two patients, most likely due to the selection of proximal muscles that were not affected by overt neuropathy. In seven specimens, we found subsarcolemmal aggregates of mitochondria in Gomori’s trichrome stain with the typical appearance of ragged-red fibers in two patients. Additionally, three patients showed increased subsarcolemmal staining for NADH tetrazolium salt reductase; another had scattered cytochrome c oxidase-deficient fibers; and two of five had subsarcolemmal accumulations of mitochondria on electron microscopy.
Table. Clinical, electrophysiologic, and morphologic data of 11 patients with MSL

<table>
<thead>
<tr>
<th>Pt no.</th>
<th>Age (yr)</th>
<th>Alcohol (>70 g/d)</th>
<th>Clinical signs of neuropathy</th>
<th>Nerve conduction</th>
<th>Tibial nerve (motor)</th>
<th>Sural nerve (sensory)</th>
<th>EMG</th>
<th>Morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>+</td>
<td>Sensory</td>
<td>CV < 17 m/s</td>
<td>Ampl n n n <</td>
<td>nd</td>
<td>nd</td>
<td>RRF, COX-</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>+</td>
<td>Sensorimotor</td>
<td>CV < 17 m/s</td>
<td>Ampl n n n <</td>
<td>nd</td>
<td>nd</td>
<td>RRF, NADH+</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>+</td>
<td>Sensorimotor</td>
<td>CV < 17 m/s</td>
<td>Ampl n n n <</td>
<td>nd</td>
<td>nd</td>
<td>RRF, NADH+</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>+</td>
<td>Sensory</td>
<td>CV < 17 m/s</td>
<td>Ampl n n n <</td>
<td>nd</td>
<td>nd</td>
<td>RRF, NADH+</td>
</tr>
<tr>
<td>5</td>
<td>63</td>
<td>+</td>
<td>None</td>
<td>CV < 17 m/s</td>
<td>Ampl n n n <</td>
<td>nd</td>
<td>nd</td>
<td>RRF, NADH+</td>
</tr>
<tr>
<td>6</td>
<td>59</td>
<td>+</td>
<td>Sensorimotor</td>
<td>CV < 17 m/s</td>
<td>Ampl n n n <</td>
<td>nd</td>
<td>nd</td>
<td>RRF, NADH+</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>+</td>
<td>Sensorimotor</td>
<td>CV < 17 m/s</td>
<td>Ampl n n n <</td>
<td>nd</td>
<td>nd</td>
<td>RRF, NADH+</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>+</td>
<td>None</td>
<td>CV < 17 m/s</td>
<td>Ampl n n n <</td>
<td>nd</td>
<td>nd</td>
<td>RRF, NADH+</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>+</td>
<td>None</td>
<td>CV < 17 m/s</td>
<td>Ampl n n n <</td>
<td>nd</td>
<td>nd</td>
<td>RRF, NADH+</td>
</tr>
<tr>
<td>10</td>
<td>56</td>
<td>+</td>
<td>None</td>
<td>CV < 17 m/s</td>
<td>Ampl n n n <</td>
<td>nd</td>
<td>nd</td>
<td>RRF, NADH+</td>
</tr>
<tr>
<td>11</td>
<td>53</td>
<td>-</td>
<td>Sensorimotor</td>
<td>CV < 17 m/s</td>
<td>Ampl n n n <</td>
<td>nd</td>
<td>nd</td>
<td>Neurogenic</td>
</tr>
</tbody>
</table>

nd Not done.
n.o. Not obtainable.
CV Conduction velocity.
Ampl Amplitude.
n Normal.
< Below normal values.
EMG Electromyography.

Neurogenic Chronic neurogenic pattern.

RRF Ragged-red fibers.
rff Increased subsarcolemmal Gomori staining.
COX COX-deficient fibers.
NADH+ Increased subsarcolemmal NADH tetrazolium staining.
Ø No mitochondrial myopathy.

Figure 2. Enzyme activities of respiratory chain complexes in 10 patients with MSL compared with age-matched controls. Activities are given in U/g protein. NADH-DH = NADH dehydrogenase (complex I), NADH-Cyt c = NADH cytochrome c reductase (complex I + III), SDH = succinate dehydrogenase (complex II), Succ-Cyt c = succinate cytochrome c reductase (complex II + III), COX = cytochrome c oxidase (complex IV). There were no measurements in patient 3 due to lack of material. Mean age ± SD of patients was 55.6 ± 5.2, and for controls it was 57.8 ± 5.8 years; pat = patients; con = controls; n.s. = not significant.

or succinate cytochrome c reductase (complex II + III).

Molecular genetics (figure 3). Total DNA was isolated from the muscle biopsies of all patients. Southern blot analysis showed a single DNA species of approximately 16.5 kb in 10 patients, representing normal linearized mtDNA. In patient 11, however, there was a hybridization pattern consistent with the presence of multiple populations of mtDNA, one corresponding to wild-type mtDNA and two others to mtDNA molecules with deletions of approximately 5.5 and 6.5 kb. The proportion of
mutant DNA was estimated by laser densitometry and was about 10%. PCR analysis revealed no point mutations at nt 3243 (MELAS), nt 8344 (MERRF), or nt 11778 (LHON) in any patient.

Discussion. In this study, we confirm and extend earlier reports on MSL and describe in more detail the morphologic, biochemical, and molecular genetic abnormalities of muscle mitochondria. In seven of 11 patients, we observed morphologic signs of mitochondrial dysfunction, and biochemically assessed cytochrome c oxidase activity was significantly lower than in controls. Multiple deletions of mtDNA were identified in one patient. The 10 remaining patients had no major deletions nor known point mutations of mtDNA.

The biochemical defect and the pathophysiology of MSL are still unknown. Because of the frequent distribution of the lipomas in the cervical region, some have suggested that MSL adipocytes may originate from brown fat. Although the light microscopic appearance of MSL adipose tissue is basically that of white fat, ultrastructural investigations resemble brown fat. Most remarkably, cultured MSL preadipocytes transiently develop large mitochondria with parallel cristae and maintain a multivacuolar lipid deposit; these are typical features of brown preadipocytes. From the metabolic point of view, there is a specific insensitivity of MSL adipose tissue to the lipolytic effect of norepinephrine in vitro. This observation led to the assumption that adrenergic denervation of brown fat causes the accumulation of triglycerides. Indeed, autonomic neuropathy is frequent in MSL.

How can the abnormalities in complex IV and the mtDNA deletion in one patient be related to MSL? Lipolysis in all tissues requires a continuous supply of energy in the form of ATP as well as a processing of fatty acids by β-oxidation and the respiratory chain. If there was a defect in the respiratory chain, one might suppose that lipolysis would be hindered for lack of energy and because of product inhibition. Brown adipose tissue confined to mammals functions to dissipate energy in the form of heat. This is accomplished by the action of a specific uncoupling protein that transports protons back through the inner mitochondrial membrane, bypassing the ATP synthesis pathway. There is particularly high activity of respiratory chain enzymes in brown fat to maintain this short-circuit. A defect in one of the respiratory chain complexes I to IV would therefore interfere particularly with the high fat turnover in brown adipose tissue, thus explaining the association of mitochondrial dysfunction and development of lipomas in MSL.

The fact that we found morphologic and biochemical signs of mitochondrial malfunction in almost all patients but a defect of mtDNA in only one might indicate that there are yet-unknown point mutations of mtDNA or defects of nuclear-encoded subunits of the respiratory chain enzymes in our other cases. Moreover, as there are four patients without mitochondrial abnormalities in muscle morphology, a subgroup of MSL might be unassociated with mitochondrial dysfunction. The possibility that cytochrome c oxidase deficiency is caused by alcoholism in our MSL patients is unlikely in view of a recent study that shows no defect of respiratory chain complexes in 30 alcoholic patients. The assumption of heterogeneity in MSL is supported by the observation that our patients differ in certain clinical characteristics. The patient with the deletions, for example, the only nonalcoholic one, has ataxia and dysarthria in addition to MSL and neuropathy.

The proportion of deleted mtDNA in muscle of this patient is only about 10%, concurrent with the fact that there is no clinical myopathy and only a small number of ragged-red fibers. Considering the segregation of mutant and wild-type mitochondria in different tissues, it is conceivable that there is a higher percentage of mutant mtDNA in clinically affected organs like peripheral nerve or lipomatous tissue. Further studies are in progress to directly address changes in the respiratory chain of these tissues.
Acknowledgments

We thank Mrs. S. Seufert for technical assistance and Dr. D. Köhnke for helpful discussion.

References