ANNUAL REVIEW OF CHRONOPHARMACOLOGY

Volume 5

BIOLOGICAL RHYTHMS AND MEDICATIONS

Proceedings of the Third Conference of Chronopharmacology, Nice, 14–17 March 1988

Editors:

A. REINBERG
Fondation A. de Rothschild, Paris, France

M. SMOLENSKY
University of Texas, Houston, U.S.A.

G. LABRECQUE
Université de Laval, Québec, Canada
Section 1 — Laboratory and Clinical Immunology and Inflammation

Co-chairmen: J.-P. BUREAU (Nimes, France)
E. HAEN (Munich, W. Germany)
F. LEVI (Paris, France)

Circannual modulation of the circadian rhythm of polymorphonuclear cells
J.-P. BUREAU, G. LABRECQUE, and M. COUPÉ

Increased evening exposure to cyclosporine and metabolites
D. M. CANAFAX, R. J. CIPOLLE, W. J. M. HRUSHESKY,
J. T. RABATIN, D. I. MIN, N. M. GRAVES,
D. E. R. SUTHERLAND and L. D. BOWERS

Evaluation of various factors influencing the action of mouse α, β interferon on the chemiluminescence of mouse peritoneal macrophages
V. CARRIERE, P. DORFMAN and M. BASTIDE

Two-dose chronopharmacokinetic optimization of cyclosporine in pancreas transplant patients
R. J. CIPOLLE, D. M. CANAFAX, J. T. RABATIN,
L. D. BOWERS, D. E. R. SUTHERLAND
and W. J. M. HRUSHESKY

Chronobiological aspects of spondylarthritis
C. FOCAN, M. ALVIN, V. MAZY, D. FOCAN-HENRARD, F. LEVI and P. FRANCHIMONT

Alteration of circadian time structure of plasma proteins in patients with inflammation
C. FOCAN, B. BRUGUEROLLE, C. ARNAUD, F. LEVI,
V. MAZY, D. FOCAN-HENRARD and G. BOUVENOT
Contents

Circadian-stage-specified effects of melatonin on human natural killer (NK) cell activity: In vitro and in vivo studies 25
G. GATTI, R. CARIGNOLA, R. MASERA, M. LUISA SARTORI, A. SALVADORI, E. MAGRO and A. ANGELI

Circadian-shaped intrarenal cyclosporine delivery 29

Influence of circadian changes in triglyceride concentrations on the pharmacokinetics and experimental toxicity of cyclosporine 31
D. R. LUKE, K. VADIEI and L. J. BRUNNER

Circadian dosing-stage dependence in metabolic effects of cyclosporine in the rat 35
M.-F. MALMARY, K. KABBAJ and J. OUSTRIN

Pain time profile under treatment with Ibuprofen in patients suffering from osteoarthritis (multicenter study) 39
J. MOERCHEL

Chronopharmacologic optimization of oral Ciclosporin A (CIA) in mice: A search for a compromise between least renal toxicity and highest immunosuppressive effects 43
A. PATI, I. FLORENTIN, G. LEMAIGRE, M. MECHKOURI and F. LEVI

Circadian variations of the efficiency of hepatitis B vaccination 45
L. PÖLLMANN and B. PÖLLMANN

Seasonal variations of host resistance and in vitro antibody formation of spleen cells from the B6C3F1 mouse 49
H. RATAJ CZAK, P. THOMAS, T. VOLL MUTH, D. HECK, R. SOTHERN and W. HRUSHESKY

Section 2A — Neurobiology and Endocrinology

Co-chairmen: G. DARCOURT (Nice, France) R. REITER (San Antonio, Texas) W. RIETVELD (Leiden, Netherlands) Y. TOUTOU (Paris, France)

Further evaluation of the treatment of jet-lag by melatonin: A double-blind crossover study 53
J. ARENDT and M. ALDHOUS
The phase relation of corticosterone and prolactin injections as a factor in the inhibition of hibernation in the thirteen-lined ground squirrel, *Citellus tridecemlineatus*
J. T. BURNS and A. H. MEIER
57

Circadian and circannual variations of plasma calcitonin level in the rat: Influence of sex
F. DUCHÁTEL, M.-F. MALMARY and J. OUSTRIN
61

The circadian pattern of plasma melatonin in anorexia nervosa: Its possible relationships with the pituitary–gonadal impairment
E. FERRARI, P. A. BOSSOLO, S. FOPPA, S. COMIS, P. MAGNI, F. FRASCHINI and F. BRAMBILLA
65

The circadian rhythm of proopiomelanocortin-related peptides in aging
E. FERRARI, P. A. BOSSOLO, S. FOPPA, M. FIORAVANTI, M. DALZANO, A. COSTA BARBÉ and F. FACCHINETTI
69

Regulation of the type II thyroxine-5’-deiodinase circadian rhythm in the rat frontal cerebral cortex
J. M. GUERRERO, C. SANTANA, M. PUIG-DOMINGO, A. GONZALEZ-BRITO and R. J. REITER
73

Circadian rhythm parameters of clinical and endocrine functions in elderly subjects under treatment with various commonly used drugs
E. HAUS, G. Y. NICOLAU, D. J. LAKATUA, C. BOGDAN, M. POPESCU, L. SACKETT-LUNDEEN, A. FRABONI and E. PETRESCU
77

Circadian and ultradian characteristics of plasma growth hormone in children of short stature
R. C. HERMIDA, L. GARCÍA, C. LODEIRO and T. IGLESIAS
81

Biorhythmicity and EEG paroxysmal abnormalities in various forms of epileptic seizures
M. F. MONGE-STRAUSS and F. MIKOL
85

The role of the lateral geniculate nuclei in phasic response to photic and pharmacologic stimuli
L. P. MORIN, R. F. JOHNSON, L. SMALE, K. MICHELS and R. Y. MOORE
89

Testosterone replacement with a circadian pattern
V. A. PLACE
93

Circadian rhythm of type II thyroxine-5’-deiodinase activity in the pineal gland: Controlling factors
R. J. REITER, J. M. GUERRERO, C. SANTANA and M. PUIG-DOMINGO
95
The role of the hypothalamic suprachiasmatic nucleus in methamphetamine induced rhythms in behavior 99
W. J. RIETVELD, J. RUIS and P. BUIJS

Simultaneous study of LH, cortisol, TSH and melatonin in normal subjects 103
P. SCHULZ, J. RENARD, J. WIDMER, R. RIVEST, P. DICK and R. TISSOT

Stimulating effect of 5-methoxypsoralen on the secretion of melatonin 107
E. SOUETRE, L. TAMARKIN, E. SALVATI, G. PACIOTTI, B. KREBS and G. DARCOURT

The circadian body temperature rhythm in estrous rats: Effects of environmental and endocrine manipulations 111
F. SPENCER, H. B. JOHNSON, J. GANES and B. P. HSI

Time-dependent effects ACTH 1–17 on plasma GH and GH–RH in man 113
Y. TOUITOU, A. REINBERG, P. GARNIER, A. BICAKOVA-ROCHER, Y. MOTOHASHI, A. BOGDAN and A. AUZÉBY

Section 2B — Neurobiology and Psychiatry

Co-chairmen: G. DARCOURT (Nice, France)
P. REDFERN (Bath, England)
R. REITER (San Antonio, Texas)
W. RIETVELD (Leiden, Netherlands)
Y. TOUITOU (Paris, France)

Changes from circadian to ultradian periodicities of the axillary temperature in three depressive patients 115
A. BICAKOVA-ROCHER, A. REINBERG, A. GORCEIX, Y. MOTOHASHI and J. NOUGUIER

Chronopharmacologic evaluation of an “antifatigue” preparation. A double-blind, placebo control and cross-over study 119
A. BICAKOVA-ROCHER, A. REINBERG, F. LÉVI, A. GORCEIX, Y. TOUITOU and G. METZGER

Chronic clorgyline alters the wheel-running response of Syrian hamsters to continuous bright light 123
W. C. DUNCAN, P. G. SOKOLOVE and T. A. WEHR

Chronopharmacokinetics of imipramine and its metabolite desipramine in brain and plasma after single and chronic application of imipramine in rats 127
L. HOLLE, Z. GÓRKA, B. LANGNER and B. LEMMER
Contents

Destruction of suprachiasmatic nuclei serotonergic fibers alters response of hamster activity rhythms to a monoamine oxidase inhibitor 131
J. S. KRUSE

Time-dependent variations in morphine-induced analgesia 135
G. LABRECQUE, D. LEPAGE-SAVARY and E. POULIN

Chronic antidepressants (imipramine, citalopram, mianserin) differently affect beta-receptor-effector-system in rat forebrain at different times of day 139
B. LEMMER and H. GOTTHEINER

Effects of the antidepressant drugs clomipramine, fluoxetine and mianserin on free-running activity rhythms in the rat 143
P. J. MITCHELL, P. H. REDFERN and J. STOLZ

Section 3 — Theophylline, Bronchodilators and Chest

Co-chairmen: G. D’ALONZO (Houston, Texas)
E. HAUS (St. Paul, Minnesota)
G. KUNKEL (W. Berlin)
J. JONKMAN (Groningen, Netherlands)

Increased nocturnal bronchial hyperreactivity without increased airflow obstruction 147
W. M. C. VAN AALDEREN, D. S. POSTMA, G. H. KOÊTER, J. GERRITSEN and K. KNOL

A study of the circadian rhythm of serum theophylline levels (STLs) in asthmatic children treated with three sustained-release theophylline (SRT) formulations 151
A. BACULARD, P. AYMARD and G. TOURNIER

A preliminary study of the circadian rhythm of serum theophylline levels (STLs) in asthmatic infants treated with sustained-release theophylline (SRT) formulation 153
A. BACULARD, J. COUVREUR, B. DUBOIS, P. AYMARD and G. TOURNIER

The utility of the estimated Tw/Ttot in evaluating a long acting sympathomimetic agent used for nocturnal asthma 157
R. P. BAUGHMAN and R. G. LOUDON

Chronopharmacokinetics of theophylline from a once-a-day tablet dosed in the morning and at night 161
C. J. BETLACH, A. B. STRAUGHN, E. J. JARVI, C. F. RYAN, J. C. KISICKI and M. A. GONZALEZ
Circadian chronesthesia of the airways of healthy adults to the β-agonist bronchodilator isoproterenol 163
 A. BROWN, M. SMOLENSKY, G. D'ALONZO, H. FRANKOFF, L. GIANOTTI and J. NILSESTUEN

Comparison of the kinetics and effects of sustained-release theophylline scheduled conventionally and once-daily mornings or evenings in adult asthmatics 167
 H. FRANKOFF, M. SMOLENSKY, G. D'ALONZO and J. TOMLINSON

Effect of unequal twice daily theophylline on the circadian variation in the expression of β2-adrenoceptor sites on peripheral mononuclear leucocytes (MNL) 171
 E. HAEN, I. LANGENMAYER, H. EMSLANDER, H. HEUSINGER, M. HALLEK and J. REMIEN

Circadian variation in the expression of β2-adrenoceptor sites in male asthmatic patients 175
 E. HAEN, I. LANGENMAYER, H. EMSLANDER, N. WEBER and J. REMIEN

Appearance of circannual variations of different immune parameters in the bronchoalveolar lavage (BAL) fluid in patients with chronic bronchitis after treatment with a bacterial lysate 179
 M. HALLEK, B. EMMERICH, R. BUSCH, E. HAEN and H. P. EMSLANDER

A pharmacokinetic model of sustained-release theophylline with circadian rhythmic input and correlated with pulmonary function response 183
 A. S. KAPADIA and B. P. HSI

Circadian variations of lymphocyte subpopulations without and with theophylline 187
 G. KUNKEL, C. RAUFFUS, R. KUNZE, B. SIEBERT and D. ALBRIGHT

Circadian variations of β2-adrenoceptors with and without theophylline 189
 G. KUNKEL, B. SIEBERT, M. SUERMONDT, R. SPIERER and D. ALBRIGHT

Circadian rhythm in forced expiratory flows in asthmatic children: Modification after bronchodilators (ipratropium and fenoterol) 191
Effect of a mucolytic agent on biologic rhythms of cough and sputum production
R. G. LOUDON and R. P. BAUGHMAN

Comparison of the relationship between two measures of bronchial patency, peak expiratory flow (PEF) and forced expiratory volume (FEV_1), over 24 hr under steady-state theophylline treatment
A. A. MELTZER, M. H. SMOLENSKY, G. E. D’ALONZO, R. B. HARRIST and P. H. SCOTT

Periodicities of patient admissions to an emergency department for asthma, chronic obstructive pulmonary disease and/or theophylline toxicity
R. W. MORRIS, J. B. LEIKIN, M. K. PATEL and M. ZELL

Chronopharmacokinetic simulation of a circadian rhythm in theophylline disposition during a constant-rate intravenous infusion of aminophylline in the dog
R. J. RACKLEY, M. C. MEYER and A. B. STRAUGHN

Oral morning dosing of corticosteroids in long term treated cortico-dependent asthmatics: Increased tolerance and preservation of the adrenocortical function
A. REINBERG, Y. TOUITOU, M. BOTBOL, P. GERVAlS, D. CHAOUAT, F. LÉVI and A. BICAKOVA-ROCHER

Influence of different evening intake times of sustained-release theophylline formulation Euphylong® (BY158) on pharmacokinetics and peak expiratory flow values after individual dose titration
B. SIEBERT, G. KUNKEL, K. BORNER, H. W. STAUDINGER and V. W. STEINIJANS

Section 4 — General Chronopharmacology

Co-chairmen: P. BÉLANGER (Québec, Canada)
B. BRUGUEROLLE (Marseille, France)
S. NAKANO (Ehime, Japan)
R. STURTEVANT (Maywood, Illinois)

Circadian periodicity in the glutathione concentration of rat liver
P. M. BÉLANGER, M. DESGAGNÉ and B. BRUGUEROLLE

Day–night variations in the activity and composition of the microsomal mixed function oxidase of rat liver
P. M. BÉLANGER and M. LALANDE
Contents

Bupivacaine chronokinetics in man after a peridural constant rate infusion
B. BRUGUEROLLE, M. DUPONT, P. LEBRE and G. LEGRE 223

Temporal variations of membrane permeability to local anaesthetic agents, bupivacaine and mepivacaine, documented by their erythrocytic passage
B. BRUGUEROLLE and M. PRAT 227

Circadian rhythm in serum zinc concentrations in healthy humans
J. C. CAL, F. DUMAS, F. PELEN, J. M. RAYMOND, J. CAMBAR and M. AMOURETTI 231

The mechanism of the chronohapatotoxicity of chloroform in rat: Correlation between binding to hepatic subcellular fractions and histologic changes
M. DESGAGNÉ, M. BOUTET and P. M. BÉLANGER 235

Circadian variations in mice erythrocyte membrane permeability to sodium and potassium
C. DORIAN, P. CATROUX, B. BRUGUEROLLE and J. CAMBAR 239

Insects as animal models for chronopharmacological research
D. K. HAYES and N. O. MORGAN 243

Dosing-time and sex related differences in the pharmacokinetics of cefodizime as well as in cortisol circadian rhythm

Circadian variations of nicotine-induced stimulant effects on ambulatory activity and drinking produced by daily administration in rats
T. KITA, M. SHIRASE, H. KONDOH, T. NAKASHIMA and Y. KUROGOCHI 249

Diurnal variations in the local anesthetic effect of carticaine plus epinephrine (ultracain D-SR) in patients with caries — studies with an electronic pulptester
B. LEMMER and R. WIEMERS 253

Is acetylator phenotype distribution dependent of circadian rhythms?
M. OLLAGNIER, J. P. GAY, Y. CHERRAH, H. DECOUSUS and A. REINBERG 257
Contents

Retrospective analysis of non-equidistant pharmacological data
R. PIERRE, J. DE PRINS, E. MALHERBE, P. MANCHON and S. MORE

Chronotoxicity and chronokinetcs of two local anaesthetic agents, bupivacaine and mepivacaine, in mice
M. PRAT and B. BRUGUEROLLE

Diurnal oscillations in salivary levels of quinine following a single dose administration to human volunteers
B. RAMESH RAO and D. RAMBAHU

Circadian ethanol exposure related to fetal growth and development in mice
I. SAUERBIER

Maturation of circadian behavior rhythms in the first year of human life
U. SCHMID, R. LANG, M. HALLEK, D. HEIMER-LANG, M. WERRES, R. SCHMID and T. HELLBRÜGGE

A method for the repetitive collection of small blood samples from unanesthetized rats
K. SCHÜMANN, E. RICHTER and E. HAEN

Analysis of variance in human chronopharmacology. An old method in a new area of research
K. STEPHAN, R. DOROW, K. WEGSCHEIDER and B. STREITBERG

Section 5 — Ulcerogenesis, H2-Antagonists, Diabetes and Nutrition

Co-chairmen: A. MARKIEWICZ (Katowice, Poland)
J. MOORE (Salt Lake City, Utah)
S. SZABO (Boston, Massachusetts)

Ultrannual rhythm of stimulated gastric acid secretion in duodenal ulcer (DU)
J. P. ACCARY, M. MERROUCHE, D. RIGAUD, J. VATIER and M. MIGNON

Nizatidine 300mg H.S. compared with cimetidine 800 mg H.S. in the treatment of acute duodenal ulcer
M. CLOUD and W. OFFEN

The circadian effect of alloxan-diabetes on the timed regulation of hepatic pyruvate kinase from mice
R. J. FEUERS, R. A. MITTELSTAEDT, L. E. SCHEVING, T. H. TSAI and J. HUNTER
The suppression of nocturnal acid secretion by H.S. famotidine therapy is sufficient to heal benign gastric ulcers

T. J. HUMPHRIES and R. G. BERLIN

Circadian variations in insulin and alloxan sensitivity noted in blood glucose alterations in normal and diabetic mice

J. D. HUNTER, J. P. McGEE, J. SALDIVAR, T. TSAI, R. FEUERS and L. E. SCHEVING

Circadian variation of catecholamines excretion and skin basic resistance in children with insulin dependent diabetes

D. KIEŁCZEWSKA-MROZIKIEWICZ, A. MROZIKIEWICZ and E. CHMARA

Diet and mealtiming as circadian synchronizers

D. J. LAKATUA, M. HAUS, C. BERGE, L. SACKETT-LUNDEEN and E. HAUS

Seasonal variation in the incidence of bleeding ulcer

A. MARBELLA, D. GRAHAM and M. SMOLENSKY

Chronosupplementation after gastrectomy

A. MARKIEWICZ, H. BOŁDYS, D. SKRZYPEK and J. KALACiŃSKI

Continuous infusion of famotidine maintains high gastric pH in duodenal ulcer (DU)

H. MERKI, L. WITZEL, M. LANGMAN, D. KAUFMANN, J. NEUMANN, J. RÖHMEL and R. WALT

Manipulation of feeding schedule can modify the circadian rhythms of toxicity and kinetics of theophylline in mice

S. NAKANO, S. OHDO and N. OGAWA

Timing of evening meal and ranitidine administration on patterns of 24hr intragastric pH

W. C. ORR, M. ALLEN, A. FINN and M. G. ROBINSON

Circadian rhythms of gastrointestinal peptides in ovariectomized rats: Effects of estradiol and progesterone treatment

J. N. PASLEY and P. L. RAYFORD

Effect of seasonal variations on serum neutral amino acids in response to stress in rat

A. G. ROBERGE

Effect of seasonal variations on blood parameters in response to stress in cat

A. G. ROBERGE and L. THIBAULT
Circadian variation in the pharmacodynamic effect of intravenous ranitidine
S. W. SANDERS, J. G. MOORE, K. N. BUCHI and A. L. BISHOP

Circadian dissociation between drug-induced gastric mucosal lesions and gastric secretion in the rat
S. SZABO, C. ROGERS and K. J. VENER

Relationship between activity—rhythm shift by daytime restricted feeding and ulcer-development in activity—stress procedure
K. WATANABE, C. HARA and N. OGAWA

Section 6 — Cancer
Co-chairmen: I. ASHKENAZI (Tel Aviv, Israel) C. FOCAN (Liège, Belgium) R. VON ROEMELING (Lubbock, Texas) L. SCHEVING (Little Rock, Arkansas)

Twenty-four hour variation in self-administration of morphine sulfate (MS) and hydromorphone (H) by post-surgical gynecologic cancer patients

The role of circadian mitotic control for the promotion of preneoplastic lesions initiated by diethylnitrosamine (DEN)
H. BARBASON, B. BOUZAHZAH and M.-C. MORMONT

Toxicities and tissue pharmacokinetics of oxaliplatin and carboplatin depend upon their dosing time in mice
N. A. BOUGHATTAS, F. LÉVI, B. HECQUET, G. LEMAIGRE, A. ROULON, C. FOURNIER and A. REINBERG

Circadian cellular proliferation in human rectal mucosa
K. N. BUCHI, N. H. RUBIN and J. G. MOORE

Chronotoxicity of anti-cancer drugs: II. Recovery pattern
R. CARLEBACH, M. RAVID, L. PELEG, I. ASHKENAZI and Y. KITAY-COHEN

Modulation of the circadian rhythm in methotrexate toxicity in the rat by melatonin and photoperiod
J. ENGLISH, G. W. AHERNE and J. ARENDT

Observation of circadian variations of serum thymidine kinase levels in control and tumor patients
M. HALLEK, B. EMMERICH, A. REICHLE, H. D. SCHICK, R. SENEKOWITSCH and A. REINBERG
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronotoxicity of anti-cancer drugs: I. Immediate effects</td>
<td>365</td>
</tr>
<tr>
<td>Y. KITAY-COHEN, I. ASHKENAZI, M. RAVID, L. PELEG and R. CARLEBACH</td>
<td></td>
</tr>
<tr>
<td>Circadian rhythm in murine tolerance for the anticancer agent</td>
<td>367</td>
</tr>
<tr>
<td>mitomycin-C (MIT-C)</td>
<td></td>
</tr>
<tr>
<td>F. KLEIN, L. DANOBER, A. ROULON, G. LEMAIGRE, M. MECHKOURI and F. LÉVI</td>
<td></td>
</tr>
<tr>
<td>Circadian gating of DNA synthesis and its relationship to surgical</td>
<td>371</td>
</tr>
<tr>
<td>debulking in human ovarian cancer</td>
<td></td>
</tr>
<tr>
<td>R. R. KLEVECZ and P. S. BRALY</td>
<td></td>
</tr>
<tr>
<td>Etoposide and cisplatin in advanced solid tumors: Results of a study</td>
<td>373</td>
</tr>
<tr>
<td>of chronotolerance</td>
<td></td>
</tr>
<tr>
<td>I. KRAKOWSKI, F. LÉVI, M. MECHKOURI, T. CONROY, E. LUPORSI, B. WEBER</td>
<td></td>
</tr>
<tr>
<td>and R. METZ</td>
<td></td>
</tr>
<tr>
<td>Treatment of childhood acute lymphoblastic leukemia with 6-mercaptopurine: Circadian variability of efficacy, bioavailability and pharmacokinetics</td>
<td>377</td>
</tr>
<tr>
<td>G. E. RIVARD, K.-T. LIN, C. INFANTE-RIVARD, J. M. LECLERC and F. VARIN</td>
<td></td>
</tr>
<tr>
<td>Differential effect of interleukin-2 on $[^3]$H]TdR incorporation into DNA in the thymus, spleen and bone marrow of CD2F$_1$ male mice</td>
<td>381</td>
</tr>
<tr>
<td>L. A. SCHEVING, T. H. TSAI, R. J. FEUERS, M. H. SMOLENSKY, J. D. YOUNG</td>
<td></td>
</tr>
<tr>
<td>and L. E. SCHEVING</td>
<td></td>
</tr>
<tr>
<td>A circadian study of cell cycle distribution in non-Hodgkin lymphomas</td>
<td>383</td>
</tr>
<tr>
<td>R. SMAALAND, K. LOTE, O. D. LAERUM and Z. VOKAC</td>
<td></td>
</tr>
<tr>
<td>Circadian stage not time of day characterizes doxorubicin susceptibility rhythm of mice in continuous light</td>
<td>385</td>
</tr>
<tr>
<td>R. B. SOTHERN, F. HALBERG and W. J. M. HRUSHESKY</td>
<td></td>
</tr>
<tr>
<td>Profound circadian stage dependence of mitomycin-C toxicity</td>
<td>389</td>
</tr>
<tr>
<td>Clinical chronopharmacokinetics of doxorubicin (DXR)</td>
<td>393</td>
</tr>
<tr>
<td>A. SQALLI, J. OUSTRIN, G. HOUIN, R. BUGAT, P. CANAL and M. CARTON</td>
<td></td>
</tr>
<tr>
<td>Circadian influence of interleukin-2 in stimulating DNA synthesis in the lung, liver and pancreas of CD2F$_1$ male mice</td>
<td>397</td>
</tr>
<tr>
<td>T. H. TSAI, L. A. SCHEVING, R. J. FEUERS, J. D. YOUNG and L. E. SCHEVING</td>
<td></td>
</tr>
</tbody>
</table>
Sources of variability of dihydropyrimidine dehydrogenase activity in human blood mononuclear cells

M. TUCHMAN, R. v. ROEMELING, R. M. LANNING, R. B. SOTHERN and W. J. M. HRUSHESKY

Round Table — Drug Delivery Systems and Pumps for Timing Medications

Chairman: W. J. M. HRUSHESKY (Minneapolis, Minnesota)

Chronotherapy of patients with metastatic colorectal cancer with 5-fluorouracil (5-FU) and oxaliplatin (1-OHP), automatically delivered via a programmable external pump.
Preliminary results

J. P. CAUSSANEL, F. LÉVI, J. L. MISSET, A. DESCORPS DECLERE, R. ADAM, H. BISMUTH, A. REINBERG and G. MATHE

Time-modulating controlled delivery of peptide/protein drugs for possible applications in chronotherapy

Y. W. CHIEN

Circadian variations of vindesine serum concentrations during continuous infusion

C. FOCAN, V. MAZY, J. ZHOU, R. RAHMANI and J. P. CANO

Implantable therapeutic systems

J. KOST

Ambulatory 5-day chronotherapy of colorectal cancer with continuous venous infusion of 5-fluorouracil (5-FU) at circadian-modulated rate. Preliminary results

Pump delivered insulin and home monitored blood glucose in a diabetic patient: Retrospective and chronophysiologic evaluation of 3-year time series

A. REINBERG, P. DROUIN, M. KOLOPP, L. MÉJEAN, F. LÉVI, G. DEBRY, M. MECHKOURI, G. DI COSTANZO and A. BICAKOVA-ROCHER

Circadian timing and mode of fluoropyrimidine administration markedly impact organ-specific toxicity and maximal dose intensity

R. v. ROEMELING, J. RABATIN, M. TUCHMAN and W. J. M. HRUSHESKY
Feasibility, safety and accuracy of an automated drug delivery system suitable for chronochemotherapy in pediatric patients

Section 7 — Cardiovascular and Renal Systems

Co-chairmen: J. CAMBAR (Bordeaux, France)
H. DECOUSUS (St. Etienne, France)
B. LEMMER (Frankfurt, W. Germany)

Circadian variations in post ischemic acute renal failure in rats

P. CATROUX, C. DORIAN and J. CAMBAR

Role of renin angiotensin system in amikacin chrononephrotoxicity

C. DORIAN, P. CATROUX and J. CAMBAR

Does the circadian variation of β_2-adrenoceptor sites on peripheral mononuclear leucocytes (MNL) reflect the circadian variation of different MNL subsets?

E. HAEN, T. LEDERER, P. RIEBER, P. SCHLEICHER, I. LANGENMAYER, M. HALLEK and J. REMIEN

24-hour variations in the distribution of labeled microspheres to the intestine, liver and kidneys

G. LABRECQUE, P. M. BÉLANGER, F. DORÉ and M. LALANDE

Nocturnal blood pressure in sleep apnea, effect of nasal continuous positive airway pressure (nCPAP)

Alteration of circadian rhythms of blood pressure by delayed bed-time sleep schedule

Y. MOTOHASHI and T. TAKANO

Circadian variation in digoxin pharmacokinetics

A. MROZIKIEWICZ, A. JABŁECKA, Z. ŁOWICKI and E. CHMARA

Seasonal variations in gentamicin nephrotoxicity in rats

C. PARIAT, P. COURTOIS, J. CAMBAR, A. PIRIOU and S. BOUQUET

Biological rhythms of blood coagulation and of the effect of warfarin in rats

G. SOULBAN and G. LABRECQUE
<table>
<thead>
<tr>
<th>Contents</th>
<th>xxv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circadian variation of prohormone atrial natriuretic factors 1-30, 31-67 and 99-126 in man</td>
<td>469</td>
</tr>
<tr>
<td>Effects of different stimuli (isoprenaline, Gpp(NH)p, forskolin) on circadian rhythms in cAMP content and adenylate cyclase activity in the rat heart</td>
<td>473</td>
</tr>
<tr>
<td>K. WITTE and B. LEMMER</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>477</td>
</tr>
<tr>
<td>Subject Index</td>
<td>481</td>
</tr>
</tbody>
</table>
DOES THE CIRCADIAN VARIATION OF β²-ADRENOCEPTOR SITES ON PERIPHERAL MONONUCLEAR LEUCOCYTES (MNL) REFLECT THE CIRCADIAN VARIATION OF DIFFERENT MNL SUBSETS?

E. Haen,* T. Lederer,* P. Rieber,* P. Schleicher,** I. Langenmayer,* M. Hallek*** and J. Remien*

*Walther-Straub-Institute of Pharmacology and Toxicology, Nussbaumstr. 26, D-8000 München 2, F.R.G.
**Institute of Immunology, Goethestr. 33, D-8000 München 2, F.R.G.
***Zytognost GmbH, Ismaninger Str. 64, D-8000 München 80, F.R.G.
****I. Medical Clinic, Klinikum r.d. Isar, Ismaninger Str. 22, D-8000 München 80, F.R.G.

ABSTRACT

The fractional distribution of lymphocyte subsets was determined in three male subjects. Its contribution to the circadian variation in the expression of β²-adrenoceptor sites on peripheral mononuclear leucocytes (MNL) was calculated to be 92.7-107.3 % of the 24h-mean. This strongly favors the idea that the actually observed circadian range of 74.5-124.9 % of the 24h-mean constitutes a circadian receptor down- and up-regulation.

KEY WORDS
circadian variation, β²-adrenoceptors, peripheral mononuclear leucocytes (MNL), lymphocyte subsets, humans

INTRODUCTION

MNL are widely used for clinical studies evaluating the expression and function of β²-adrenoceptors (Haen 1987, Brodde et al 1985, Middeke et al 1985). We recently described a circadian variation in the expression of β²-adrenoceptors on peripheral MNL (Pangerl et al 1986, Haen 1987). Since T-lymphocytes have been reported to bear less than half the number of β²-adrenoceptor sites as B-lymphocytes (Landmann et al 1984, Krawietz et al 1982), the circadian variation in the expression of β²-adrenoceptor sites may result from a circadian variation in the numerical distribution of these lymphocyte subsets.

MATERIALS AND METHODS

Venous blood was drawn at 14h00, 18h00, 22h00, 02h00, 06h00, 10h00, and again at 14h00 from three male subjects, 24-34 years of age. Peripheral mononuclear leucocytes were immediately harvested by Ficoll-Hypaque density gradient centrifugation. The cells were incubated with a set of mouse IgG monoclonal antibodies (CD 3, CD 4, CD 8, CD 37 specific for T-, T-helper*, T-suppressor*, and B-cells, respectively) and in a second step with a fluoresceinisothiocyanate (FITC)-labeled goat anti-mouse IgG monoclonal antibody. After washing out exceeding amounts of antibody the cells were fixed in 0.1% paraformaldehyde and stored at 4°C. Approximately one week after sampling the fixed cells were run in a fluorescence activated cell sorter (FACS) to count the percentage of labeled cells in a cell fraction gated to contain lymphocytes and monocytes. The distribution of lymphocyte
subsets was compared to the circadian variations in β2-adrenoceptor sites on peripheral MNL and in total lymphocyte count in another group of seven healthy men (Pangerl et al 1986).

The subjects were asked to follow a regular life-style for the two weeks preceding the study with bed rest between 23h00 and 07h00. On the day of the study the subjects stayed in the clinical pharmacological research unit of the institute. They continued to follow their normal daily routine. Subjects were asked to record meal times, the consumption of alcohol and caffeine. All were non-smokers.

Circadian variations were statistically validated by the cosinor method (Halberg et al 1967) and by analysis of variance (anova). Significance limit was \(p < 0.05 \).

RESULTS

The fractional distribution of T- and B-cells showed a large inter-individual variation and varied within 24 hours, but the circadian variation did not reach statistical significance (Fig. 1). The highest percentage of T-cells was observed at 18h00 (73.0±0.45 % of gated cells, \(\bar{x} \pm SE \)), the lowest percentage at 02h00 (56.4±9.7 % of gated cells, \(\bar{x} \pm SE \)). The highest percentage of B-cells occurred at 10h00 (11.2±6.9 % of gated cells, \(\bar{x} \pm SE \)), the lowest percentage was seen at 18h00 (6.3±3.0 % of gated cells, \(\bar{x} \pm SE \)). T helper- and T suppressor-cells also demonstrated a statistically insignificant variation with highest percentage of T helper at 06h00 (51.5±1.2 % of gated cells) and of T suppressor at 06h00 (22.0±1.0 % of gated cells). The lowest fraction was seen at 06h00 (34.6±4.2 % of gated cells) and at 22h00 (12.0±3.0 % of gated cells) for T helper and T suppressor, respectively (all \(\bar{x} \pm SE \)).

![Fig. 1. Fractional distribution of human lymphocyte subsets determined over 24 hours](image)

The total lymphocyte count demonstrated a circadian variation (\(p < 0.01 \) anova, \(p=0.07 / PR=61.3\% \) in population-mean cosinor analysis, Fig. 2 lower panel) with highest numbers at 02h00 (3367±236 cells) and lowest numbers at 10h00 (2175±262 cells, all \(\bar{x} \pm SE \)). Highest β2-adrenoceptor density occurred at the time of lowest lymphocyte count (10h00), the number of receptor sites decreased to a minimum at 02h00, when the total number of lymphocytes is highest. The circadian range was 74.5-124.9 % of 24h-mean for the expression of β2-adrenoceptor sites on peripheral MNL.
Circadian variation of β_2-adrenoceptor sites

Since the β_2-adrenoceptor density on MNL is expressed as sites/cell the circadian variation in the expression of these receptors is corrected for the circadian variation in total lymphocyte count. Landmann et al 1984, however, reported a different β_2-adrenoceptor density on T-cells (1400 sites/cell, irrespective of T\text{helper or T\text{suppressor}}) and on B-cells (3700 sites/cell). A circadian variation in the fractional distribution of lymphocyte subsets might account, therefore, for the circadian variation in the expression of β_2-adrenoceptor sites on peripheral MNL:

The total number of lymphocytes reaches a minimum at the time of highest β_2-adrenoceptor density (10h00). At that time the percentage of B-cells among peripheral MNL is highest (11.2%); approximately 243 cells of 2175 total lymphocytes may be B-cells bearing according to Landmann et al 1984 a total number of 8.99×10^6 sites; 60.5 % of the total lymphocytes are T-cells (1316 cells) that add another 1.84×10^6 β_2-adrenoceptor sites resulting in an average value for all lymphocytes at that time of day of 1259 sites/cell. At the trough of the circadian variation in the expression of β_2-adrenoceptor sites (02h00) the total number of lymphocytes is highest. At that time 8.1 % (273 cells) of the lymphocytes (3367 cells) are B-cells participating 1.00×10^6 β_2-adrenoceptor sites. The fraction of T-cells is minimal at that time: 56.4 % (1899 cells) of the lymphocytes bear 2.66×10^6 β_2-adrenoceptors. This results in an average value for all lymphocytes of 1087 sites/cell at 02h00.

According to this very rough calculation the circadian range of the variation in the expression of β_2-adrenoceptor sites on peripheral MNL would be 92.7-107.3 % of the 24h-mean, which is much less than the one actually observed (74.5-124.9 % of the 24h-mean). Quite a number of uncertainties are assumed in this calculation: It has not yet been established, how the extensive handling with antibody labelling and FACS-analysis affects the expression of β_1-adrenoceptor sites on MNL. In this context the data reported by Landmann et al 1984 have to be regarded as preliminary. Also our data on the fractional distribution of lymphocyte subsets are rather preliminary due to the small number of subjects; some cell types such as monocytes were not included yet into the analysis but may express β_2-adrenoceptors as well. Nevertheless the calculation yielded reasonable
adrenoceptor densities, but it appears that the fractional distribution of lymphocyte subsets does not show a relevant circadian variation at all. This study does not preclude, however, that the lymphocyte subset composition may change in response to short acting stimuli such as physical exercise. According to this study different lymphocyte subset distributions may contribute (if at all) only little to the circadian variation in the expression of β_2-adrenoceptor sites on peripheral MNL. As outlined elsewhere (Haen 1987) the circadian variation in the expression of β_2-adrenoceptor sites on peripheral MNL rather constitutes a circadian receptor down- and up-regulation in response to hormonal stimuli, such as adrenaline and cortisol concentrations in blood, respectively.

REFERENCES

ACKNOWLEDGEMENTS

We gratefully acknowledge the skillful technical assistance of our lab technicians Ursula Judenhofner, Sybille Kirzinger, and Iris Reithmeier. Without their ready acceptance to work overtime this study would have been impossible to perform.