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A NOTE ON THE ORDINAL ANALYSIS OF KPM
W. BUCHHOLZ !

This note extends our method from (Buchholz [2]) in such a way that it
applies also to the rather strong theory KPM. This theory was introduced and
analyzed proof-theoretically in (Rathjen [6]), where Rathjen establishes an upper
bound for its proof theoretic ordinal |[KPM|. The bound was given in terms of
a primitive recursive system 7 (M) of ordinal notations based on certain ordinal
functions x , ¥, (w < kK < M, « regular) ? that had been introduced and studied
in (Rathjen [5]). 3 In section 1 of this note we define and study a slightly different
system of functions 9, (k¢ < M)—where ¥y plays the role of Rathjen’s y—that is
particularly well suited for our purpose of extending [2]. In section 2 we describe
how one obtains, by a suitable modification of [2], an upper bound for |[KPM| in
terms of the v,.’s from section 1. We conjecture that this bound is best possible
and coincides with the bound given in [6]. In section 3 we prove some additional
properties of the functions t, which are needed to set up a primitive recursive
ordinal notation system of ordertype > J*, where 9* := 1q ey, is the upper
bound for |[KPM| determined in section 2.

Remark: Another ordinal analysis of KPM has been obtained independently

by T. Arai in Proof theory for reflecting ordinals II: recursively Mahlo ordinals
(handwritten notes, 1989).

§1. Basic properties of the functions ¢, (xk < M). Preliminaries. The letters

a,B,7,6,u,0,6,m,( always denote ordinals. On denotes the class of all ordinals,
and Lim the class of all limit numbers. Every ordinal « is identified with the set
{€ € On: € < o} of its predecessors. For a < f we set [, 8 := {¢ : a < £ < B}.
By + we denote ordinary (noncommutative) ordinal addition. An ordinal a > 0
which is closed under + is called an additive principal number. The class of all
additive principal numbers is denoted by AP. The Veblen function ¢ is defined by
waf = p,(B), where o, is the ordering function of the class {§ € AP : V¢ <
ape(B) = B)}. An ordinal v > 0 which is closed under ¢ (and thus also under +)
is said to be strongly critical. The class of all strongly critical ordinals is denoted

by SC.

IThe final version of this paper was written while the author was visiting Carnegie Mellon
University during the academic year 1990/91. I would like to express my sincere thanks to
Wilfried Sieg (who invited me) and all members of the Philosophy Department of CMU for their
generous hospitality.

2M denotes the first weakly Mahlo cardinal.

3The essential new feature of [5] is the function x, while the 1.’s (x < M) are obtained by a
straightforward generalization of previous constructions in [1], [3], [4].
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Some basic facts:
1. AP = {w*: a € On}
2. 0B =wh , plf =¢4

3. For each v > 0 there are uniquely determined n € N and additive prin-

cipal numbers 5 > -+ > v, such that y =y + - - + 7,,.

4. For each v € AP \ SC there are uniquely determined £,7 < 4 such that

7 = @Ln.
5. Every uncountable cardinal is strongly critical.
Definition of SC(v):
1. SC(0):=0
2. SC(v):={v},ify€SC
3. SCyo+ -+ 79n) = SC(yp)U---USC(y,), if n > 1 and v, >
are additive principal numbers.

4. SC(pn) = SC(E)USC(n), if &1 < @&n.

.>7

- n

We assume the existence of a weakly Mahlo cardinal M. So every closed
unbounded (club) set X C M contains at least one regular cardinal, and M itself

is a regular cardinal.

DEFINITION 1.1.
={a:w<a<M & aregular}
MF := min{y € SC: M < vy} = closure of MU {M} under +, ¢
SCu(y) == SC(y)NM
Qo:=0, Q,: =8, foro > 0.
€2 := the function o + 1, restricted to ¢ <M

Remark: Ve e R(k = Q  or k € {Q,,, : 0 <M})

Convention. In the following the letters k,m, T always denote elements of R.

DEFINITION 1.2 (The collapsing functions ,).

By transfinite recursion on a we define ordinals ¥, a and sets C(a,8) € On as
follows. Under the induction hypothesis that ,¢ and C(£,7n) are already defined

forall { <a, 7€ R, neOn weset
1. C(e, B) := closure of BU {0, M} under +, ¢, 2, Y|,
where |« denotes the binary function given by
dom(y|a) :={(r,€):é<a & meR & n,& € C(£ ¥.€)}
($la)(m, &) = ¥.€.
2. Ypoa:=min{f € D.(a): C(a, )Nk C B}
. _J{peR:aelCla,M)=aecCla,p)} =M
with D (a) := %6 ke Cla k)= ke C(a,,@)(} } if k< M

Abtreviation: C(a) = Ca, )

The first two lemmata are immediate consequences of Definition 1.2.

LEMMA 1.1.
a)ag <a & By < B = Clag ) € C(a,B)
b)l#X COn & B=sup(X) = C(a,B) = Uyex Cle,n)
c) B <k = card(C(e, B)) < &
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LEMMA 1.2.
C(et, B) = Unco C(a, B), where C*(c, B) is defined by
(i) C%e, B) := B U {0,M},
(ii) C* (e, B) := {v : SC(y) € C™(e, B)} U {Q, : 0 € C™(ar, B)} U

U{pl:{<a & m &€ Ca,B)NCL(E)}

LEMMA 1.3.
a)Cla)Nk=vYa<k
b))k <M= 9.a¢R
c) P e SC\{Q,:0<Q,}
d) k€ Cla,k) &= k € Ci(a)
e) Cla, M) =M = {¢: £ € Cu(§)}
f)ve Cia) = 7€ Cu(r) & SCu(y) =SC(7)\ (M}
g)1<a & yel(a,f) = Puy € C(a,B)

Proof.
a),b) 1. C.(a) N & = . is a trivial consequence of the definition of ¥ a.
2. Let & = M. Obviously there exists a § < « such that RN [, kx[C D.(a). There-
fore in order to get Y., < «k it suffices to prove that the set
U:={B€x:C(a, )Nk C B} is closed unbounded (club) in «.
1) closed: Let @ # X C U and B := sup(X) < «. Then C(a,8) Nk =
Ueex(C(o,§) NK) CUgex € = B, ie. BeU.
i) unbounded: Let B, < . We define 8,,; := min{n : C(a,B8,) N« C 5} and
B := sup,., B, Using L.1.1c we obtain 8, < B,,; < . Hence , < B < «
and C(a,B) N & = Upeo(Cle, B,) N &) C Uncw Bryr = B, 1e. By < B € U.
3. Let k < M. Starting with By := min(D.(a)) we define the ordinals 8, and 3
as in 2.(ii). Then we have # € D, (a) N U and therefore ¥, < f < k. — Now
assume that ¥.a € R. We prove 8, < ¢.a (Vn). By definition of §; and by
L.1.1a we have B, < ¢¥.a & B, ¢ Lim. Hence B, < ¥,a. From 3, < ¥.a € R
it follows that C(a,f,) Nk C Y. and card(C(e,B8,) N &) < Y., and there-
fore 8,4y < Y.a. From Vn(B, < ¢.a € R) we get f < .. Contradiction.
c) 1. Obviously Cy(a) Nk is closed under ¢. Together with a) this implies
Y.a € SC. — 2. We have (Y, = Q, > 0 = ¢.a € C(a)) and (by a) )
Yoo € Cy(a). Hence Yo & {Q, : 0 < Q,}.
d) follows from L.1.1a, L.1.3a and the definition of 9.
e) By L.1.3a VreR(y,€ < M) and therefore C(o, M) = MI. As in d) one obtains
(e € Cla,M) & a e Cy(a)).
f) and g) follow from e).

LEMMA 1.4.
a) 7 € C(a, B) <= SC(v) € C(qa, B)
b) Q, € C(a,p) <= 0 € C(a, B)
c) k=0 = N, <Pa<,y,
d) Qo= = Qo =Y.
e) sz)Ma = ¢'Ma
) Q <7< 0y & y€C(,f) = 0 €C(a, )

Proof. a) and b) follow from L.1.2 and L.1.3c. — e) follows from d), since
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M € R and Qy = M. — f) follows from a),b),c),d) and L.1.2.

c) Let k = Q,,,. Then & € C(a,«) and thus & € C,(a). By a) and b) from
k=04 €Cla)weget Q, € Cla)Nk =1

d) Take o € On such that Q, < ¥,.a < Q,,,. Then we have o + 1 < x and thus
Ca)Nk = Pea < N,y < Q, = &. This implies Q,,;, ¢ C.(a) and then (by
a),b)) o & Cu(a). Hence a0 <o <, <9hea

LEMMA L.5.
a) g <a & ap € Oyla) = Ymap < Pya
b) vy = ¥may & a0 <ME = oy = oy

Proof.
a) From the premise we get Py € Cy(a) N M = ¢y by L.1.3a,g.
b) Assume Yoy = Yoy & g < o < MP. Then oy € Cy(ag) € Cpy(ey) and
therefore by a) Yyay < Yypey. Contradiction.

LEMMA 1.6.
For k < M the following holds
a’) aQy <« = 1/&&0 S wna
b)ag<a & k,ap € Clag) = Yoo < Y

Proof.
a) From oy < a it follows that C(ag,¥.a) Nk C .. By definition of ¥,
it therefore suffices to prove ¥,a € {f : k € Cag, k) = £k € C(ag, B)}. So let
£ € C(ag, k). — We have to prove & € C(ag, ¥,.).
CASE 1: k = Q,,;. By Lemma 1.4c we have , < ¥,a and therefore 0 +1 €
C(ap, ) which implies k € C(ag, Y. ).
CASE 2: k = Q. From k£ € C(ap, k) € C(a, &) we obtain k € C(ag) N Ci(a).
From this by L.1.2, L.1.3b, L.1.5b it follows that &« = ¥y with £ < a4 and
¢ € Ca). Now by L.1.4a, L.1.3a,e we get SCy(§) € C(a)NCy() N M =
Cila)N & = ., and then ¢ € Cay,¥.a) (by L.1.3f). From this together with
& < ay we obtain k& = Py € C(ap, Yia) (by L.1.3g).
b) The premise together with a) implies oy < a & &, € Cy(a) N C,(ap) which
gives us Y. € C (@) Nk = Y.

DEFINITION 1.3.
For each set X C On we set H(X) :=N{C(a,B): X C C(a,B) & 7y < a}.

§2. Ordinal analysis of KPM.

In this section we show how one has to modify (and extend) [2] in order to
establish that the ordinal vq €ypy is au upper bouud for [KPM|. Of course we
now assume that the reader is familiar with [2].

The theory KPM is obtained from KPi by adding the following axiom scheme:

(Mahlo) Vz3y¢(z,y,Z) — Jw[Ad(w) A VzewIycwsd(z,y, 7)) (¢ € Ap)

We extend the infinitary system RS* introduced in Section 3 of [2] by adding
the following inference rule:
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F, B(LM) Qg
(Mah) (tg+M < @)
I, Jwely(Ad(w) A B(w)) : «

where B(w) is of the form Veew3dycewA(z,y) with k(A) C M.
Weset R:= {a:w<a<M & aregular}.

Then all lemmata and theorems of Section 3 4 are also true for the extended
system RS®(with almost literally the same proofs)®, and as an easy consequence
from Theorem 3.12 one obtains the

EMBEDDING THEOREM for KPM.
IfM € H and if H is closed under £ — ER then for each theorem ¢ of KPM there
is an n € N such that Higr— & +n - M.

Some more severe modlﬁcatlons have to be carried out on Section 4. The
first part of this section (down to Lemma 4.5) has to be replaced by Section 1
of the present paper. Then the sets C(a, ) are no longer closed under (7, ¢) —
¥.€ (€ < @), but only under (¥|a) as defined in Definition 1.2 above. Therefore
we have to add “m, ¢ € C,(€)” to the premise of Lemma 4.6¢c, and accordingly
a minor modification as to be made in the proof of Lemma 4.7(A1). But this
causes no problems. A little bit problematic is the fact that the function ¥y is

not weakly increasing. In order to overcome this difficulty we prove the following
lemma.

DEFINITION 2.1.
For y =w™ 4 - 4w with vy > -+ > v, we set e(y) := wrntl,
Further we set e(0) := On.

LEMMA 2.1.
For y € Cyy(y+1) and 0 < « < e(«y) the following holds
a) Ym(y +1) S duly +a) & Cu(y+1) € Culy + @)
b)0<ag<a & ag€ Cu(r+1) = ¥Yu(y+ @) < ¥Pu(y+ @)
Proof:
a) follows from b).
b) We will prove (x) ¥(v+1) < Yp(v+a). From this we get y+ay € Cy(v+1) C
Cm (v + ) and then by L.1.5a the assertion.
For v = 0 (x) is trivial. If v # 0 then v+ a < MT and therefore v+ a € Cy(y+ «)

which (together with o < e(y)) implies v + 1 € Cy(y + «). Hence (v +1) <
¥um(y + a) by L.1.5a.

Now we give a complete list of all modifications which have to be carried out
in [2] subsequent to Lemma 4.6 .

4We use boldface numerals to indicate reference to [2]

%In Theorem 3.8 one has to add the clause which corresponds to the new inference rule (Mah).
The last line in the proof of Lemma 3.14 has to be modified to “..cannot be the main part of
a (Ref)- or (Mah)-inference.”. At the end of the proof of Lemma 3.17 one may add the remark
“Due to the premise a < 3 < k we have a < M, and therefore the given derivation of T',C does
not contain any applications of (Mah).”.
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(1) Replace I by M in the definition of K.

(2) Add “p < v +¢e(v)” to the premise of Lemma 4.7(A2).

(3) Add “wste < e(y)” to the premise of Theorem 4.8.

(4) Add “m < e(y')” to the premise of (O) in the proof of Theorem 4.8.

(5) Insert the following proof of “s.a* < %,a” at the end of the proof of (O):
“From v, ', € H.,[O] we get a* € H,[O]. From k(0) € Ci(y+1) C
C.a) & ~ < a it follows that H,,[0] C C (&). Hence a* € C (@) and thus
Yot < Y@, since a* < a.”

(6) Extend the proof of Theorem 4.8 by the following treatment of the case where
the last inference in the given derivation of I' is an application of (Mah):

“5. Suppose that Jwely(Ad(w) A B(w)) €T and H,[O] l%l T, B(Ly) with
B(w) = Vzew3dyewA(z,y) & ap+M <a & k(A)C M.

Then £ =M (since T C (k) and k < M).

For « € Ty we set , := v + weteotld Then Cy(y + 1) € Cu(v.), and since
SC(J¢]) € SCM(1.) € M., we have || <y, and thus  k(O,¢) C Cy(v,)-
From ~,p,0p € H,[O] we get v, € H,[O,:]. Consequently A(O,:;v,,M,u),
and the Inversion-Lemma gives us H.,[O][:] |%Q [e € Ly — 3Jy € LyA(yy).

Now we apply the I.H. and obtain H,.[O][] IM Ie & Ly — JyelpyA(ny)
with o := 7, + whteo <y fwrteotM = or < 4.
Let m:= pya* & B, := Pyar. Then by L.4.7 T € Hz[0] & 7 < yYya.
We also have VieT, (a € Cy(a*)) and thus V€T, (B, < 7).
The Boundedness-Lemma gives us now
Vee T,( M0 14T, ¢ Ly — 3yel, A(1,y) ).
From this by an application of (\) we obtain Hz[O] |E T, B(L,).
From L.2.5h and L.3.10 we get Hz[O] |g [, Ad(L,) with § := w™5. We also have
HaO) |2 T, L, & Ly. Hence Hz[O) 92T, L, ¢ Lo A Ad(L,) A B(L,) . Now we
apply (V) and obtain Hz;[O] |M r.”
(7) Replace I by M in the Corollary to Theorem 4.8 and in Theorem 4.9.

This yields the following Theorem.

THEOREM.
Let 9* :=1hg (em41).- Then for each ¥, -sentence ¢ of L we have:
KPM F Vz(Ad(z) — ¢*) = Ly« = ¢.

COROLLARY. |KPM| < g, (€m41)-

§3. Further properties of the functions v,.

We prove four theorems which togetber with J..1.3a,b,c and L.1.4a-e provide
a complete basis for the definition of a primitive recursive well-ordering (OT,<)
which is isomorphic to (C(MF,0),<). (The set OT consists of terms built up
from the constants 0, M by the function symbols +, ¢, £, 9, such that for each
v € C(MT,0) there is a unique term ¢t € OT with |¢| = v, and for all s,¢ € OT one
has (s < t < |s| < |t|). Here |t| denotes the canonical value of t. For details see

(1], (4], 5])
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Now the letters o, 8,7, 6, 1, 0, €, n, ¢ always denote ordinals less than MT. So,
for all a we have o € Cy(a) and SC(a) \ (M} = SCy(a) C ¥yea.

DEFINITION 3.1.
max SCy(a) if k=M & SCy(a) #0
sci(a) = .

0 otherwise

LEMMA 3.1.
a) sc (@) < o0
b)r=M & sc.(B) <¢pa = peCla)

Proof. Trivial (cf. L.1.a,e,f and L.1.4a).

LEMMA 3.2
Let k € C(a) & 7€ C,(B). Then
v.B<k<m & sc.(B) <o = ¥,.0 <P,

Proof. By L.1.4c,d it follows that , = 7 and Q,_g = ¥,8. Therefore if
£ =,y then ¥, <O, < ¥,a, and we may now assume that 1, = k. Then by
L.1.2 and L.1.3b we obtain £ = ¢y withy < a & v € C (a)NCy(y). By L.1.4a
and L1.3a we get SCy(7) € Ci(a)NCy(y) M = C(a) Nk = ¢.a. From 9,8 <
k = Ppmy < 7 it follows that ¥y & C,(B) and thus 8 < v or ¢, 8 < sem(y). — If
Y3 < scm(7y) then ¥,8 < ¥.a, since SCy(y) C Yea. i sepq(y) < ¢,8 & 1=M
then we have f < v < a and 8 € C,(a) (since sc,(8) < P.a), from which we
get ¥,.0 € C.(a) Nk = ¢pa. — For 1 = M the proof is now finished. — If
sem(y) < ¥.8 & m < M then Yy <7 <M & sey(y) < 9.8 which (according
to what we already proved for # = M) implies & = Py < .. Contradiction.

DEFINITION 3.2.

K(m, B, k, ) abbreviates the disjunction of (K 1),...,(K4) below:
(K1) 7 <ya

(K2) 9B < sci(a)

(K3) n=k & B<a & sc,(B) < Y.

(K4) v.8< k<7 & sc,(f) <Y

LEMMA 3.3.
Let k€ Cla) & 7€ C,(B).
a) “K(m, B,k,a) & ~K(k,a,m,0) = =7 & a=f
b) K(m,B,k,a) = ¥, <
) K(m, B, k,0) & B€C(B) = ¥ <tye
Proof. a) is a logical consequence of the linearity of <. b) and c) follow
immediately from L.1.3a, L.1.5a, L.1.6, L.3.1, L.3.2.

As an immediate consequence from lemma 3.3 we get
THEOREM 3.1.

kK,a€Cyla) & m,€C.(B) & bua=9,f = k=71 & a=p.
THEOREM 3.2.

Let k€ C(a) & =,B € C.(P).

a) Y.0<¢a < K(r, 0B,k a)

b) ¥.B€Cula) & (b8 <draor[B<a & mpeCa)])
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Proof. a) “«<” follows from L.3.3b. “=" follows from L.3.3a,c.
b) The “«&” part is trivial. So let us assume that .o < ¢,8 € C(a). By
L.1.2 and L.1.3c this implies the existence of 7, € C,(a) N C,(§) with £ < «
and ¥, = 9, £. From this by Theorem 3.1 we obtain 7 = 7 € C,(a) and
B=¢€eCila)Na.

THEOREM 3.3.
k€ Cya) <= k€ {Qyy 10 <M}U{Pué: € <a}U{M}

Proof. 1. “=" follows from L.1.2 and L.1.3b. — 2. By L.1.3d we have
(k € Cila) & k € C(a,k)). — 3. If £k = Q,,, then 0 +1 < & and thus
k € Cla,k). — 4. If & = ¢y with £ < a then € € Cy(¢) = C(¢, &) C C(a, k)
and thus « € C(a, k).

THEOREM 3.4.
k=0, = C(a)=C(a,Q,+1)

Proof by induction on a. So let us assume that C,(¢) = C(&,Q, + 1), for all
¢ < a. — We have to prove p,.a C C(a,Q, +1). As we will show below the [.H.
implies that §:= C(a, ), +1)N« is in fact an ordinal. Obviously « € C(a, 3) and
Cla,B)Nk C C(e, N, + 1) Nk = B and thus Yo < B, 1e. Yoa C Cla, N, +1).
—CLAIM: ye C(e, 2, + )Nk = vC C(e, R, +1).

Proof. 1. Q, <y € SC. Then vy =9, with{ <a & £ € C,(£). Since 2, <y <
k = ,,,, we have 7 = & and therefore by the above LH. C,(¢) = C(¢,Q, +1).
Hence vy =4, C C(£,Q, +1) € C(a, Q, +1).

2. Let v be arbitrary and v, := max({0}USC(v)). Then (by 1. above) voU{7,} C
Cle,Q, 4+ 1). From this we get v C v* C C(e,Q, + 1), where v* := min{n € SC :
Y < 1}

COROLLARY. %q a = C(a,0)N 8,
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