
Sebastian Kaiser and Friedrich Leisch

A Toolbox for Bicluster Analysis in R

Technical Report Number 028, 2008
Department of Statistics
University of Munich

http://www.stat.uni-muenchen.de

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Access LMU

https://core.ac.uk/display/12164184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/
http://www.stat.uni-muenchen.de/

A Toolbox for Bicluster Analysis in R

Sebastian Kaiser and Friedrich Leisch

Department of Statistics, Ludwig-Maximilians-Universität München,
Ludwigstrasse 33, 80539 München, Germany,
firstname.lastname@stat.uni-muenchen.de

Abstract. Over the last decade, bicluster methods have become more and more
popular in different fields of two way data analysis and a wide variety of algorithms
and analysis methods have been published. In this paper we introduce the R package
biclust, which contains a collection of bicluster algorithms, preprocessing methods
for two way data, and validation and visualization techniques for bicluster results.
For the first time, such a package is provided on a platform like R, where data
analysts can easily add new bicluster algorithms and adapt them to their special
needs.

Keywords: Biclustering, Two-Way-Clustering, Software, R

This is a pre-print of an article which has been accepted for the
Compstat 2008-Proceedings in Computational Statistics.

1 Introduction

Biclustering is an important new technique in two way data analysis. After
Cheng and Church (2000) followed the initial bicluster idea of Hartigan (1972)
and started to calculate bicluster on microarray data, a wide range of different
articles were published dealing with different kinds of algorithms and methods
to preprocess and analyze the results of such methods. Comparisons of several
bicluster algorithms can be found, e.g., in Madeira and Oliveira (2004) or
Prelic et al. (2006).

Consider a two-way data set of form

c1 . . . ci . . . cm

r1 a11 . . . ai1 . . . am1

...
...

. . .
...

. . .
...

rj a1j . . . aij . . . amj

...
...

. . .
...

. . .
...

rn a1n . . . ain . . . amn

2 Kaiser, S. and Leisch, F.

with rows ri and columns cj and entries aij . The goal of biclustering is to
find subgroups of rows and columns which are as similar as possible to each
other and as different as possible to the rest.

As noted above, the recent boom in biclustering has originated in the
analysis of genetic data, where rows ri correspond to genes and columns
cj to conditions, and aij is the expression level of gene ri under condition
cj . The task is to find groups of genes which are co-regulated under some
conditions. However, two way data appear also in other research fields. E.g.,
in marketing biclusters can be used to group consumers into market segments
which have several preferences in common. Traditional market segmentation
methods like k-means cluster analysis or mixture models use the same set of
variables for all clusters, while bicluster methods are able to select different
sets of variables for different segments (Goveart and Nadif (2003)).

This article is organized as follows: In Section 2 we give an introduction to
the structure of R package biclust including a brief description of the theory
and algorithms of the five bicluster methods that have been implemented
yet. We also focus on preprocessing of the data, validation and visualization
methods, and show the advantage of storing the resulting bicluster output in
consistent classes for all methods. In Section 3, we demonstrate usage of the
package using the popular yeast data (Barkow et al., 2006). Finally, we give
a short summary and point out future plans for extending biclust.

2 R package biclust

Most bicluster methods have been developed for a particular data analysis
problem, some authors provide standalone software for their algorithms, while
others only describe the algorithms in papers. Barkow et al. (2006) provide a
first toolbox with several algorithms within a single graphical user interface.
While the GUI has the advantage that it is easy to use, it has also the disad-
vantage that it is again monolithic software, which cannot be changed easily
by users, and results cannot be directly used as input for other statistical
methods.

We have therefore started to implement a comprehensive bicluster toolbox
in R (R Development Core Team, 2007). It provides a growing list of bicluster
methods, together with pre-processing and visualization techniques, using S4
classes and methods (Chambers, 1998). The software is open source and freely
available from R-Forge at http://R-Forge.R-project.org.

One of the main design principles of the package is to provide the re-
sults as an entity of Biclust-Class, an S4-class containing all information
needed for postprocessing of results. It consists of the four slots Parameters,
RowxNumber, NumberxCol and Number. Slot Parameters contains parameters
and algorithm used, Number the number of biclusters found. The RowxNumber
and NumberxCol slots represents the biclusters that have been found. They
are both logical matrices of dimension (rows of data × number of biclus-

A Toolbox for Bicluster Analysis in R 3

ters found) with a TRUE-value in RowxNumber[i,j] if row i is in bicluster
j. NumberxCol is the same for the columns, but due to computational rea-
sons, here the rows of the matrix represent the number of biclusters and the
columns represent the columns of the data. So by simply calling

data[Biclust@RowxNumber[,a] * Biclust@NumberxCol[a,]]

the values of the bicluster a can be extracted.
Objects of class Biclust-class are created using a uni-

form interface for all bicluster methods by calls of form
biclust(x,method=BiclustMethod,...). This generic function takes
as inputs the preprocessed data matrix x, a bicluster algorithm represented
as a Biclustmethod-Class and additional arguments (...) for the latter.

In the following we give a brief description of the five algorithms already
implemented in the package, subsection headings correspond to the name of
the respective Biclustmethod-Class. The naming scheme is BCxxx where
xxx is an abbreviation for the name of the algorithm. Some methods have
been chosen because open source code from the original authors is avail-
able, others have been newly implemented to make the overall toolbox as
comprehensive as possible. Of course, there is always room for improvement,
and more methods will be added to the package in the future. See also van
Mechelen and Schepers (2006) for a discussion on main directions of bicluster
calculation. Algorithms are described in alphabetic order and, if not stated
otherwise, functions were implemented in interpreted S code.

2.1 BCBimax()

The Bimax algorithm presented by Prelic et al. (2006) finds subgroups in a
binary matrix where all entries are one. The algorithm iterates the following
two steps:

1. Rearrange the rows and columns to concentrate ones in the upper right
of the matrix.

2. Divide the matrix into two submatrices.

Whenever in one of the submatrices only ones are found, this submatrix is
returned. In order to get satisfying results the method has to be restarted
several times with different starting points.

Although the algorithm was originally designed to deliver ideas for bi-
cluster validation, it can also be used as a bicluster method itself. In our
implementation we used the original and fast C Code of Prelic et al. (2006).

2.2 BCCC()

The CC method implements the algorithm by Cheng and Church (2000).
Starting from an adjusted matrix, where normalization or simple standard-

4 Kaiser, S. and Leisch, F.

ization preprocessing is suggested, they define a score

H(I, J) =
1

‖I‖‖J‖
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2, (1)

where aiJ is the mean of row i,aIj is the mean of column j and aIJ is the
overall mean. They call a subgroup a bicluster if the score is below a level
α and above a δ-fraction of the whole data. The algorithm itself has three
major steps:

1. Deleting rows and columns with a score larger than alpha times the
matrix score.

2. Deleting rows and columns with largest scores.
3. Adding Rows or Columns until alpha level is reached.

These steps are repeated until a maximum number of biclusters is reached
or no bicluster is found. The result are constant bicluster where all aij are
nearly on the same level. Choosing an appropriate preprocessing methods is
essential for good solutions.

2.3 BCPlaid()

This algorithm is an improvement of the plaid model of Lazzeroni and Owen
(2002) by Turner et al. (2005). The original algorithm was fitting layers k to
the model

Yij = (µ0 + αi0 + βj0) +
K∑

k=1

(µk + αik + βjk)ρikκjk + εij (2)

using ordinary least squares (OLS), where µ, α, β represent mean, row and
column effects and ρ and κ identify if a row or column is member of the layer,
respectively. After the computation of the residuals of the obtained data, the
calculation has the following steps:

1. Update all parameters one after another S times.
2. Calculate the sum of squares of the layer (LSS) using the resulting para-

meters.
3. Compare Result with random permutation and return bicluster if LSS is

higher.

The algorithm terminates when no new layer (bicluster) is found. In the
new faster algorithm of Turner et al. (2005), OLS is replaced with a binary
least square algorithm. In our implementation we used the original code from
Turner et al. (2005).

A Toolbox for Bicluster Analysis in R 5

2.4 BCSpectral()

The bicluster algorithm described by Kluger et al. (2003) includes several
preprocessing steps, like normalization, independent scaling, bistochastiza-
tion and log interactions. The goal is to find a checkerboard structure of the
data matrix and in order to identify it, the following steps are performed:

1. Reorder the data matrix and choose a normalization method.
2. Compute a singular value singular value decomposition to get eigenvalues

and eigenvectors.
3. Depending on the chosen normalization methods, construct biclusters

beginning from the largest or second largest eigenvalue.

The quantity of bicluster depends on the number and value of the eigenvalues.
The biclusters found have higher or lower values than the rows and columns
around them and are arranged in a checkerboard structure.

2.5 BCXmotifs()

The Xmotifs algorithm of Murali and Kasif (2003) searches for rows with
constant values over a set of columns. For gene expression data, they call
the biclusters “conserved genes expression motifs”, short “Xmotifs”. Again,
finding a good preprocessing method is crucial, because the main aspect
of their algorithm is to define a gene state where a gene (row) is called
conserved, if it has the same state in all samples (columns). One way to deal
with gene states is to simply discretize the data (for example with function
discretize()). Once the data matrix represents the states, the algorithm
works by choosing a random number of columns n times and performs the
following steps:

1. Choose a subset from these columns and collect all rows with equal state
in this subset.

2. Collect all columns where these rows have the same state.
3. Return the bicluster if it has the most rows from all found and is also

larger than a alpha fraction of the data.

To collect more than 1 bicluster the calculation can be reran without the rows
and columns already found or just return the smaller combinations found.

This algorithm finds submatrices where all rows have the same value
structure over the columns. So here it is possible to find groups with a large
variance in their values in the row direction.

2.6 Other functions of package biclust

In addition to the cluster algorithms described above, our package provides
several methods for data pre-processing, some of which have already been

6 Kaiser, S. and Leisch, F.

described above. Other functions provide utilities for cluster validation, like
an adaptation of the well known Jaccard index for comparison of two cluster
results in jaccardind(). Function constantVariance() implemements the
variation index of Madeira and Oliveira (2004).

Another important focus of the package is visualization of bicluster re-
sults. As the results are stored in consistent classes, it is easy to implement vi-
sualization techniques which work for results of different algorithms. Parallel
coordinates (function parallelCoordinates()) can be used to visualize sim-
ilarity of rows over columns within a bicluster. Heatmaps (drawHeatmap())
highlight the difference between the bicluster and the surrounding rows and
columns. The bubbleplot (Bubbleplot()) of Santamaria et al. (2007) repre-
sents biclusters in two dimensions, its position in the graph is a two dimen-
sional representation of the row and column combination in the cluster, the
size of the bubble corresponds to the size of the bicluster. Hence, a bicluster
containing another bicluster is drawn as a big bubble around a smaller one.

3 Example with yeast data

After introducing the main functions of the package we now want to show
how the package works. As a standard example we ran all the algorithms on
the BicatYeast data from Barkow et al. (2006). To do so the data has to be
preprocessed and committed to the biclust function together with the chosen
algorithm (here Xmotifs) and parameters:

> data(BiclustYeast)
> x<-discretize(Bicatyeast)
> res<-biclust(x, method=BCXmotifs(), alpha=0.05, number=50)

To visualize the result you can simply call any visualization function on the
result, for example:

> parallelCoordinates(x=BicatYeast, result=res, bicluster=4)

The output of this code can be seen in Figure 1.
Table 1 shows the pairwise Jaccard indices of all bicluster algorithms.

The Jaccard index is a measure of similarity between two cluster results, zero
means no concordance, one means that the results are identical. It can be seen
that all algorithms find very different sets of biclusters. This can be partly
explained by different pre-processing steps which were necessary such that
the data conform to the respective assumptions of the algorithms. Another
important aspect is that we selected the first algorithms to implement to get
a collection of algorithms which differ from each other as much as possible. It
is now very easy for practitioners to try various bicluster methods in R and
choose the one which works best for given data set.

A Toolbox for Bicluster Analysis in R 7

2 4 6 8 10 12 14

−
0.

5
0.

0
0.

5

Gene

E
xp

re
ss

io
n

le
ve

l

Fig. 1. Example for parallel coordinates plot: Expression levels of conditions across
their genes in the 4th bicluster in the result of the Xmotifs algorithm.

BCPlaid BCXmotifs BCCC BCSpect. BCBimax

BCPlaid 1.0000 0.0007 0.0116 0.0000 0.0000

BCXmotifs 0.0007 1.0000 0.1789 0.0935 0.0000

BCCC 0.0116 0.1789 1.0000 0.0898 0.0036

BCSpectral 0.0000 0.0935 0.0898 1.0000 0.0000

BCBimax 0.0000 0.0000 0.0036 0.0000 1.0000

Table 1. Bicluster results similarity measure with an adaptation of Jaccard index

4 Summary and future work

In this article, we gave a short introduction to R package biclust with
special emphasis on the algorithms that have already been implemented. We
explained some of the design principles and object structures of the packages,
and demonstrated usage of the software on a real word data set. All methods
implemented share common infrastructure for data pre-processing, storing
results and visualization. It is now very easy to add new bicluster methods,
because the modular design allows for re-use of existing building blocks.

As a next step, we will do benchmark experiments comparing all the algo-
rithms. As demonstrated in the example above, bicluster results do strongly
depend on the clustering algorithm. It will be interesting to investigate which
algorithm works best for which type of data, and how sensitive the algorithms
are with respect to their parameters and data pre-processing steps.

5 Acknowledgments

Package biclust is joint work with Rodrigo Santamaria.

8 Kaiser, S. and Leisch, F.

References

BARKOW, S., BLEULER, S., PRELIC, A., ZIMMERMANN, P., and ZITZLER,
E. (2006): Bicat: a biclustering analysis toolbox. Bioinformatics, 22,1282–1283.

CHAMBERS, J. M. (1998): Programming with data: A guide to the S Language.
Chapman & Hall, London.

CHENG, Y. and CHURCH, G. M. (2000): Biclustering of expression data. In:
Proceedings of the Eighth International Conference on Intelligent Systems for
Molecular Biology, 1,93–103.

GOVEART, G. and NADIF, M. (2003): Clustering with block mixture models.
Pattern Recognition, 36, 463–473.

HARTIGAN, J.A. (1972): Direct Clustering of a data matrix. Journal of The Amer-
ican Statistical Association, 67,12079–12084.

KLUGER, Y., BASRI, R., CHANG, J. T., and GERSTEIN, M. (2003): Spectral
biclustering of microarray data: Coclustering genes and conditions. Genome
Research, 13,703–716.

LAZZERONI, L. and OWEN, A. (2002): Plaid models for gene expression data.
Statistica Sinica, 12,61–86.

MADEIRA, S. C. and OLIVEIRA, A. L. (2004): Biclustering algorithms for bio-
logical data analysis: A survey. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 1(1),24–45.

VAN MECHELEN, I. and SCHEPERS, J. (2006): A unifying model for biclustering.
In: Compstat 2006 - Proceedings in Computational Statistics, 81–88.

MURALI, T. and KASIF, S. (2003): Extracting conserved gene expression motifs
from gene expression. In: Pacific Symposium on Biocomputing, 8,77–88.

PRELIC, A., BLEULER, S., ZIMMERMANN, P., WIL, A., BÜHLMANN, P.,
GRUISSEM, W., HENNING, L., THIELE, L., and ZITZLER, E. (2006): A
systematic comparison and evaluation of biclustering methods for gene expres-
sion data. Bioinformatics, 22(9),1122–1129.

SANTAMARIA, R., THERON, R., and QUINTALES, L. (2007): A framework
to analyze biclustering results on microarray experiments. In: 8th Interna-
tional Conference on Intelligent Data Engineering and Automated Learning
(IDEAL’07) ,Springer, Berlin, 770–779.

TURNER, H., BAILEY, T., and KRZANOWSKI, W. (2005): Improved bicluster-
ing of microarray data demonstrated through systematic performance tests.
Computational Statistics and Data Analysis, 48,235–254.

